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ABSTRACT

The National Institute of Standards and Technology (NIST) has developed a modular definition of components for machine control, and a
specification to their interfaces, with broad application to robots, machine tools, and coordinate measuring machines. These components
include individual axis control, coordinated trajectory generation, discrete input/output, language interpretation, and task planning and
execution. The intent of the specification is to support interoperability of components provided by independent vendors. NIST has installed
a machine tool controller based on these interfaces on a 4-axis horizontal machining center at the Pontiac Powertrain Division of General
Motors (GM). The intent of this system is to validate that the interfaces are comprehensive enough to serve a demanding application, and
to demonstrate several key concepts of open architecture controllers: component interoperability, controller scalability, and function
extension. In particular, the GM-NIST Enhanced Machine Controller (EMC) demonstrates interoperability of motion control hardware,
scalability across computing platforms, and extensibility via user-defined graphical user interfaces. An important benefit of platform
scalability is the ease with which the developers could test the controller in simulation before site installation. The EMC specifications are
serving a larger goal of driving the development of true industry standards that will ultimately benefit users of machine tools, robots, and
coordinate measuring machines. To this end, a consortium has been established and cooperative participation with the Department of
Energy Technologies Enabling Agile Manufacturing (TEAM) program and the United States Air Force Title III program has been
undertaken.

1. INTRODUCTION

In the early 1990s, the Manufacturing Engineering Laboratory of the National Institute of Standards and Technology (NIST) began the
Enhanced Machine Controller (EMC) program to develop a modular definition of components for machine control [1]. The intent was to
document the interfaces to these modules to the degree that would allow independent third parties to provide interoperable products. The
development of this modular architecture grew out of NIST's involvement with the United States Air Force's Next Generation Controller
(NGC) program, and the Real-time Control System (RCS) architecture [2, 3] which has evolved within NIST over many years. In a
unification of RCS with the NGC architecture as embodied in the Specification for Open System Architecture Standards (SOSAS) [4], a
definition of the modules which make up a controller and their interfaces was developed. This architecture is shown in Figure 1.

Figure 1. The Enhanced Machine Controller Architecture. The labels on the left, CELL through SERVO, indicate nomenclature from
the NIST RCS reference model. WPSA, WMSA, CSA, and DIA represent modules from the NGC SOSAS. The EMC architecture
is derived from an RCS analysis of machine controllers, and is consistent with the SOSAS model of standard applications.
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In this figure, boxes indicate the individual modules for which interfaces have been defined: workstation planning, workstation
management, plan interpretation, trajectory generation, servo control, and discrete input/output. These have been mapped onto the
broader NGC SOSAS "Standard Applications" (SAs), e.g., Workstation Planning (WPSA), Workstation Management (WMSA), and
Controls (CSA). The EMC architecture defines modules at a higher granularity within the CSA. This reflects both the existence of
products at this granularity, as well as their presence in the NIST reference model architecture. The modules on the side indicated by DIA
are Domain Independent Applications, in SOSAS parlance. These modules do not require any specific interfaces themselves, but may be
developed using only the interfaces provided by the other modules. For example, a necessary module for a controller is the operator
interface. However, implementations of the operator interface need only avail themselves of messages to the controller and data
provided by the controller: no additional interfaces are required to be defined in order to incorporate an operator interface into an EMC
controller.

The interface specifications are formalized in the C++ programming language, using header files. The specification consists of messages
into each module, and world model data provided by each module. Both the messages and world model data are implemented using C++
classes. Underlying the EMC architecture is a model of data transfer, the Neutral Manufacturing Language [5] (NML). This model
provides for "mailboxes" of data, with one or more readers and writers. The control methodology indicates that control commands into
each module originate with a single writer, and are read by a single reader. World model data originates with a single writer, but may be
read by arbitrarily many readers. For example, both the trajectory generator module and the operator interface may read the current
position of the actuators as maintained by the servo control module.

The EMC specifications have been implemented on a variety of machines, both at NIST and elsewhere. In this paper, we will describe an
implementation built for the General Motors (GM) Powertrain facility in Pontiac, Michigan, retrofitted to a Kearney and Trecker (K&T)
800-series horizontal machining center. The intent of this installation was to provide a validation testbed for the interfaces. In our
laboratory implementations of the EMC, we often found ourselves deferring the solution to problems that were not germane to the
research goals. In the case of the definition of EMC interfaces, however, we found that our laboratory systems only took us so far, and
we needed a true production application to gain confidence that the interfaces would be sufficient and correct.

Due to the geographic separation between NIST in Maryland and GM in Michigan, we found it necessary to build a high-fidelity simulation
of the K&T machining center so that we could develop most of the controller locally. Additionally, the requirement that the machine be
available for use on a weekly basis by the GM machinists meant that we needed our own development simulation during the machine's
use. Installation of a series of connectors allowed us to quickly swap between the existing controller and the EMC, so that the
development cycle consisted of local coding and testing on the simulator, controller swapover and test, and swapback. This provided
both the development team and the machinists reasonable access to the machine during the entire development phase of the GM EMC.

It is important to note that no portion of the controller was simulated: only the machine to which the controller was installed. Simulating
any portion of the controller would introduce uncertainties when that portion was run on the production machinery. Commercially available
software applications for simulating the machining process or motion control are widely available, but were of little use during controller
development since these products assume ideal controller behavior and are used to validate the controller input. The exact opposite
situation applied to the EMC controller development: we assume that the controller inputs (i.e., numerical control programs) are correct,
and the controller itself needs to be proven.

2. SYSTEM DESCRIPTION

Before detailing the simulation of the EMC, it is worthwhile to describe the actual machining center itself, particularly the physical
interfaces to which the EMC installs. The Kearney and Trecker 800 horizontal machining center has 4 axes of coordinated positioning.
These axes are typically labeled X, Y, Z, and B. The X axis is horizontal, and moves side to side when looking at the front of the machine
into the spindle tooling. The Y axis is vertical, and moves up and down. The Z axis moves in and out, parallel to the axis of spindle
rotation. The B axis is a rotary axis, whose axis of rotation is parallel to the up-and-down Y axis. Physically, it sits atop the X axis, and is
level with the floor similar to an audio turntable. The X and B axis form one kinematic chain, and the Z and Y axes form a second. That is,
the workpieces are affixed to the B axis, which moves with the X; the spindle is affixed to the Y axis, which moves with the Z.

The spindle is position- or velocity controlled, providing up to 3000 revolutions per minute (rpms) of speed through 3 gear ranges. During
cutting, velocity is maintained using tachometer feedback. During positioning, for example to orient the spindle during a tool change,
resolver feedback is used to precisely orient the spindle axis. In total, there are 5 axes of servo control: 3 linear axes, 1 rotary, and the
spindle.

The K&T 800 also has a tool change mechanism for 68 tools and a pallet shuttle which allows pallets of workpieces to be loaded on or
off the machine. These are controlled by sequencing outputs to solenoids and hydraulic valves in response to sensed limit switch
closures. Altogether, there are 38 discrete outputs and 66 discrete inputs.

In order to maintain the uptime of the machine, we required a quick changeover procedure that would allow us to convert to our
development controller upon our arrival, and to switch back to the original controller when we left. The staff of General Motors provided
engineers who designed the interfaces necessary for this quick change procedure. Briefly, the procedure consisted of removing the
original resolver feedback from the X, Y, Z, and spindle axes and connecting them to the resolver-to-encoder converter inputs of the
EMC; removing the amplifier outputs to the X, Y, Z, and spindle axes and connecting them to the EMC outputs; and removing the
computer logic ribbon cables for the discrete input/output points and connecting them to the EMC digital input/output boards. The B axis
was left alone during the changeover, due to the incompatibility of its electronics. Instead, we accessed its position feedback and velocity
output on the same digital interface that contained the discrete input/output information. This necessitated a software servo, as described
in a subsequent section.
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In order to adequately test the controller locally, all of these components required simulation. Whenever possible, the simulation was
performed with hardware as similar to the real hardware as possible. Ideally, we would have liked to have an entire identical machine
installed in our laboratory. In practice, this was too expensive and would have taken far too much installation time. In other cases, we
simulated portions of the machine in software, taking great care to characterize the system's timing during initial visits to the production
facility. Of course, much of the initial controller development followed the time-honored practice of converting physical output signals to
printed output. While suitable for initial tests, this practice was almost useless during most of the development since many of the
problems encountered in real-time systems originate with timing.

The EMC simulation system consists of 4 components: a small 3-axis milling machine which physically simulates the machining center and
the signal inputs and outputs to the axes; a duplication of the operator interface, including pushbuttons and lights; a personal computer
simulation of the discrete input/output points of the controller which provides an identical interface to the input/output points on the real
machining center; and a graphical animation of the machine. These components, shown in Figure 2, are detailed in the following sections.

Figure 2. Simulation setup of the EMC, with cabling omitted for simplicity. The output of the control computer is split between the
desktop mill/spindle motor and the multiplexed interface to the software simulation of the discrete input/output. Parts can be
machined on the desktop mill and verified visually. Tool changing and pallet shuttling are verified via the animation, which displays
the state of the software I/O simulation in real time.

3. AXIS SIMULATION

The machine's linear axes were simulated with a desktop milling machine originally intended for prototype or model making. As sold, the
unit provided stepper motor control which had to be replaced with servo motors and amplifiers to more closely duplicate the K&T. Further
complicating the control was the fact that the original axis feedback devices on the K&T were resolvers. Because the desktop milling
machine provided encoder feedback, and the motion control boards we selected for the EMC required encoder feedback, we decided to
install resolver-to-encoder converters on the K&T itself. Once this was done, our interface to the axis servo control of the desktop
machine was identical to that of the production machine.

However, some important differences remained. The minimill was a vertical machining center while the K&T was horizontal; the kinematic
configuration of the Y axes differed; we had no B axis on the simulated mill; and the homing and overtravel limit switches on the K&T
were not available to the EMC motion control boards. The horizontal- and vertical differences were of no consequence for the control.
More importantly, on the desktop mill, the X and Y axes lay on the same kinematic chain which contained the workpiece fixture, while the
Z axis supported the spindle. On the K&T, the Y axis was on the spindle's kinematic chain along with the Z. Simulating the same
kinematic configuration would have meant significant rework on the desktop mill's support structure, or purchasing a different mill
altogether. In this case, we decided that the uncertainty introduced by this difference would have little impact, since the kinematic
parameters were localized in the controller software and were easily modifiable. In fact, the difference in this case allowed us to verify
that our attempt to localize kinematic parameters such as these actually worked.

We elected not to simulate the B axis since we estimated that the time it would take to measure the dynamics of the B axis and simulate
it would exceed the time we would need to tune the control parameters on-site. The situation with the homing and limit switches was
entirely different. In this case, not having this feedback on the K&T meant that we would suffer significant lag time between when these
switches tripped and when our separate I/O controller could report the trippings to the motion control boards. Therefore, we decided to
modify the wiring on the K&T so that these inputs were available directly to the EMC motion control system. Of course, this rewiring was
done so as not to impact the original controller. This solution simplified our simulation, since now both the desktop mill and the production
machine had identical interfaces to the X, Y, and Z axes.

4. SPINDLE SIMULATION

Like the B axis, the spindle in our desktop mill differed from that on the production machine. First, the spindle on the production machine
had tachometer feedback, which our desktop machine lacked. Second, the spindle operated in 3 gear ranges, which we lacked on the
desktop machine. Both of these disparities were rectified on the testbed at NIST.

To solve the spindle tachometer problem, we disconnected the controller's spindle interface from the desktop mill, and installed it onto a
separate motor test stand consisting of a motor, amplifier, encoder, and tachometer. This provided the identical interface to the real
spindle. However, this rendered the actual cutting head on the desktop mill uncontrolled. During cutting tests, the spindle test stand had to
be viewed as the cutting spindle, which proved difficult. We also were required to turn the cutting spindle on and off from a separate
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manual source. In defense of this setup, the system proved quite adequate when developing the interface to controlling spindle speed
and orientation. Criticizing this setup, it proved difficult to verify that tapping operations (which require synchronized Z axis motion and
spindle rotation) were correct. Like the tuning of the B axis parameters, we left development of this feature of the controller to the on-site
integration.

Simulating the interaction of the spindle control with gear changing followed naturally from our high-fidelity simulation of the discrete I/O
system, which is detailed in the following section. Anticipating this simulation, we were provided simulated sensed values for the gear
engagement, whose timing was precisely measured and simulated. Verifying that spindle gearing changes occurred properly was simply
a matter of individually verifying that the controller could access the state of the gear engagement, and visually ascertaining that the
required spindle speed sequences occurred at the proper time during the gear shifting.

5. DISCRETE INPUT/OUTPUT SIMULATION

Due to the number of discrete inputs and outputs, and the difficulty in replicating the custom mechanical structures for the tool changer
and pallet shuttle, a full software simulation of the discrete input/output system was undertaken. The intent was to provide to the
controller developers the identical hardware interface that was present at the machine site. Recalling the controller changeover
procedure, this interface was a set of ribbon cables on which were provided all the discrete input/output points that would be connected
to a commercial PC-bus card in the EMC. In order to remove any uncertainty about this interface, a full hardware interface including the
multiplexing hardware was built. On the simulation side of this hardware interface was a standalone PC running a full software simulation
of the discrete I/O system, containing the time delays and dependencies between the limit switches and valves as characterized by
timing studies performed early in the installation. This system is depicted in Figure 3.

Figure 3. Discrete I/O Hardware Simulator. System consists of a duplication of the multiplexing interface to the actual machine
tool, a software simulation of the timing for the discrete actuators and sensors, the simulated world model of the discrete I/O
(e.g., tool changer, spindle gearing, pallet shuttle) and a serial connection to the real-time animation running on a graphics
workstation.

This system provided immense aid in developing the programs for control of the tool changer and pallet shuttle mechanisms. This was
particularly evident when comparing the development cycle with that in previous projects. For example, assuming the programmers had
access to a complete machine tool, programming errors may have caused mechanism crashes and physical damage. On the simulator,
their effects were innocuous. Furthermore, in cases of complex mechanism interaction, it is easy to put the mechanisms into a state
requiring a tedious step-by-step reversal of the failed sequence. Restarting the test after a failure meant at most a simulator reboot.

Of course, software simulation of the entire I/O system reduced the confidence that the controller will perform on the real machine as it
does on the simulation. In this case, however, the laborious and costly task of duplicating the physical tool changer and pallet shuttle
(perhaps only possible by purchasing a full machine tool) indicated the use of such a simulation.

6. OPERATOR INTERFACE

The interface used by the machinists to run the machining center consisted of a PC-compatible monitor with touch screen, an industrial
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keyboard and mouse, and a set of lighted pushbuttons and rotary switches. With the exception of the pushbuttons and switches, all these
components were easily duplicated with off-the-shelf components for the local simulator. A touch screen was omitted, since the mouse
provided redundant capabilities.

The panel containing the pushbuttons and switches required the fabrication of a driver chassis, which converted the 24 Volt signals to 5
Volt signals compatible with computer boards. This driver chassis remained at the local development site until final installation, allowing
the programmers to develop the code to read the switches and light the lights locally. When the controller was ready for installation, the
driver chassis and associated front panel were shipped to the installation site. This meant that for any further local debug or
development, the programmers were without a way to operate the controller.

This unacceptable situation led to the immediate development of a graphical surrogate to the control panel, which was accessible via one
of the screens on the graphics display. This simulated control panel provided all the inputs and outputs of the hardware control panel,
while saving the cost and time which would have resulted had a new driver chassis and front panel been built. However, the simulated
control panel provided no support for the development of the code which interfaced to the hardware driver chassis. For example, we
could not test the addition of a new hardware switch or modifications in the lighting patterns. Fortunately, there have been no changes to
the control panel design, and this shortcoming of the simulation system has not been an impediment.

One positive side effect of the development of the graphical control panel was recently discovered: one of the transformers in the driver
chassis failed, and the machinist continued operation of the machine using the redundant graphical version while technicians repaired the
driver chassis.

7. ANIMATION

Supplementing the discrete I/O simulation is the graphical animation. Unlike the desktop milling machine and motor test stand for the
spindle, the software simulator has no visibly verifiable output. What is desired is an instantaneous snapshot of the state of the I/O
system, particularly in cases where the actuator and sensor states can be correlated with the obvious position of mechanical
components. Using a library of graphics primitives developed during previous projects, an animation of the K&T machine tool was quickly
built. The positions of the tool carousel, tool changer components, and pallet shuttle were continuously updated based on the model of
the world maintained in the standalone PC simulation. This provided almost instantaneous visual verification of the control sequencing.
Coupled with the hardware simulation of the machine's axes and spindle using the desktop milling machine and spindle test stand, the full
simulation system provided an invaluable visual confirmation of the controller code under development.

8. SUMMARY

Based on the experience of developing a complex controller for a machine located at a remote facility, in almost continuous use, the aid
of a high-fidelity simulation has proven invaluable. In particular, care was taken to simulate only the machine being controlled, so that the
controller under development was almost plug-compatible with both the simulation system and the real machine. With this as the case,
the developers maintained a high degree of confidence that the programs written to control the machine and verified on the simulator
would run correctly during the scarce time available for testing. Some points evidenced during this development:

* Full hardware simulation (e.g., machine duplication) gives the most confidence but introduces the possibility of machine damage
resulting from failed tests;

* Full software simulation speeds the development cycle, but reduces confidence that the controller will perform on the real machine as it
does on the simulation;

* Simulation of electronic interfaces (e.g., resolver-to-encoder converters or multiplexers) introduces almost no risk of physical damage,
while greatly increasing the likelihood that the controller will operate on the real machine as it does on the simulated version;

* Use of easily obtainable hardware simulators (e.g., desktop milling machines or motor test stands) is advantageous. Building physical
simulations of custom hardware (e.g., tool changer) may provide additional confidence, but will increase the risk of damage and add to
the cost and development time.
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This publication was prepared by United States Government employees as part of their official duties and is, therefore, a work of the
U.S. Government and not subject to copyright.

http://web.archive.org/web/20120311113725/http://www.isd.mel.nis...

6 of 6 05/21/13 04:11 PM


