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IMPLEMENTATION OF FIBER SUBSTRUCTURING INTO STRAIN

RATE DEPENDENT MICROMECHANICS ANALYSIS OF

POLYMER MATRIX COMPOSITES

Robert K. Goldberg

National Aeronautics and Space Administration
Glenn Research Center

Cleveland, Ohio 44135

SUMMARY

A research program is in progress to develop strain rate dependent deformation and failure models for the

analysis of polymer matrix composites subject to impact loads. Previously, strain rate dependent inelastic constitu-

tive equations developed to model the polymer matrix were incorporated into a mechanics of materials based

micromechanics method. In the current work, the micromechanics method is revised such that the composite unit

cell is divided into a number of slices. Micromechanics equations are then developed for each slice, with laminate

theory applied to determine the elastic properties, effective stresses and effective inelastic strains for the unit cell.

Verification studies are conducted using two representative polymer matrix composites with a nonlinear, strain rate

dependent deformation response. The computed results compare well to experimentally obtained values.

LIST OF SYMBOLS

Aij laminate stiffness matrix components

A) area of fiber portion of slice "i"

D o inelastic material constant representing maximum inelastic strain rate

df fiber diameter

e collected inelastic strain terms in solving for effective inelastic strains

hj thickness ratio of slice "i"

hk thickness of ply k in laminate

J2 second invariant of deviatoric stress tensor

K 2 second invariant of deviatoric overstress terisor

Ndi v number of fiber slices in composite unit cell

Nf number of fiber slices in analysis cell

Nij total effective force resultant components for laminate

NJ components of force resultants due to inelastic strains for laminate

NI number of plies in laminate

n inelastic material constant representing rate dependence of material

Pn variable to be integrated in Runge-Kutta integration algorithm

Q# plane stress stiffness matrix components for slice in material axis system

Q it plane stress stiffness matrix components for lamina in material axis system

QO stiffness matrix components for lamina in structural axis system

q inelastic material constant representing hardening rate of material

Sij compliance matrix components

Sift compliance matrix components for lamina

sij deviatoric stress components
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t current time

At time increment

_- thickness of fiber slice in unit cell

_. fiber volume ratio of the composite or of the composite slice

Yi y-coordinate of top of slice "i" in analysis cell

Z o material constant representing initial isotropic hardness of material

c_ scaling factor for shear components of K 2 effective stress

13 material constant used in scaling shear components of K 2 effective stress

Eij strain tensor components

e_j inelastic strain components

e_/) midplane strain components for laminate
1 effective inelastic strainE e

eI uniaxial inelastic strain in constant strain rate tensile test

eo total applied strain rate in constant strain rate uniaxial tensile test

es( inelastic strain at saturation in constant strain rate uniaxial tensile test

Y0 engineering shear strain components

"_. midplane engineering shear strain components for laminate

0 fiber orientation angle for each ply in laminate

f2ij internal stress component

uniaxial internal stress in constant strain rate tensile test

f_m inelastic material constant representing value of internal stress at saturation

_ij stress tensor components for slice and subslice

oijl stress tensor components for lamina

t_ uniaxial stress in constant strain rate tensile test

c s saturation stress in constant strain rate uniaxial tensile test

_,,1 mean or hydrostatic stress

• quantities with dots above them represent rates with respect to time

Subscripts:

c

f

m

12

11 "r_

33

x,y

xy

stress and strain components for analysis cell

fiber related material property

matrix related material property

in-plane shear stress or strain components in material axis system
normal in-plane stress or strain components in material axis system

normal out-of-plane stress or strain components in material axis system
normal in-plane stress or strain components in structural axis system

in-plane shear stress or strain components in structural axis systems

INTRODUCTION

NASA Glenn Research Center has an ongoing research program to investigate the feasibility of developing jet

engine fan containment systems composed of polymer matrix composite materials. To design such a system, the

ability to correctly predict the deformation and failure behavior of the composite under high rate loading conditions

is required. Specifically, the analysis method must have the ability to account for any strain rate dependence and
nonlinearities that might be present in the deformation response.
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Inpreviousresearch(ref.1),aninelasticconstitutivemodelhasbeendevelopedto predict the nonlinear, rate

dependent deformation response of ductile polymers. The equations have been implemented into a mechanics of

materials based micromechanics model to enable the prediction of the nonlinear, rate dependent deformation

response of carbon fiber reinforced polymer matrix composites. Classical lamination theory has also been imple-

mented within the composite micromechanics (ref. 2) to allow for the analysis of symmetric thin laminates subject

to in-plane loading.

In the original micromechanics, the composite unit cell was subdivided into four subcells, with one subcell

composed of fiber material and the remaining three subcells representing the matrix. Uniform stress and uniform

strain assumptions were applied to the unit cell to obtain the local and effective stress and strain values. This

approach was similar to that taken by Sun and Chen (ref. 3), Robertson and Mall (ref. 4), and Pecknold and Rahman

(ref. 5).

Several efforts have been made to develop more refined versions of this micromechanics approach. By utilizing

a unit cell with a greater number of subcells, presumably more accurate results could be obtained. Pindera and

Bednarcyk (ref. 6) developed a reformulated version of the Generalized Method of Cells (ref. 7), where the unit cell

could be divided up into an arbitrary number of subcells. Uniform stress and uniform strain assumptions were still

applied to the entire unit cell to obtain the local and effective stress and strain values. However, since the equations

for each of the subcells were coupled to the equations for all the remaining subcells, fairly large systems of equa-

tions were obtained which needed to be solved. Whitney (ref. 8) divided the unit cell into a number of slices through

the thickness. Uniform stress and uniform strain assumptions were then applied between the fiber and matrix within

each slice to obtain the effective elastic constants for each slice. Effective elastic constants for the overall composite

were then computed by averaging through the thickness. A similar approach was used by Greszczuk (ref. 9) to

obtain the effective elastic constants of a composite and the interfiber stresses. By using a slicing approach, the

equations for each slice were uncoupled, leading to smaller systems of equations. However, in these analyses the

composites were assumed to have a linear elastic, rate independent deformation response.

Mital, Murthy and Chamis (ref. 10) used a slicing approach to compute the effective elastic constants and

microstresses (fiber and matrix stresses) in ceramic matrix composites. In this work, a mechanics of materials

approach was used to compute the effective elastic constants and microstresses in each slice of the unit cell. Lami-

nate theory was then applied to obtain the effective elastic constants for the unit cell. Laminate theory was also used

to compute the effective stresses in each slice, which was used to compute the microstresses. However, in this model

Poisson effects were neglected in the micromechanics, and the analyses again assumed linear elastic, rate indepen-
dent deformation.

In the present work, the micromechanics method developed in reference 1 is refined in order to apply the slicing

approach developed in reference 10. The unit cell is divided up into a number of slices, and uniform stress and uni-

form strain assumptions are then applied to obtain the constituent and effective stresses for each slice, along with the

effective inelastic strains for each slice. Laminate theory (ref. 2) is then applied to obtain the effective stresses, elas-

tic constants, and effective inelastic strains for the lamina. By an additional application of the laminate theory, the

effective total force resultants and force resultants due to inelastic strains for a symmetric, multilayered laminate can

be computed. By applying this revised approach, the unit cell can be refined to a much greater degree while keeping

the size of the system of equations that need to be solved relatively small.

In this paper, first a review of the inelastic constitutive model used to compute the rate dependent, inelastic

deformation response of the polymer matrix is presented. Next, the revised micromechanics equations are devel-

oped. Additionally, the laminate theory that includes force resultants due to inelastic strains is reviewed. The nu-

merical algorithms used to compute the deformation response of the composite are discussed. Finally, verification

studies conducted using two representative polymer matrix composite systems are presented.

BACKGROUND

Polymer Constitutive Equations Overview

The Ramaswamy-Stouffer state variable constitutive equations (ref. 11), which were originally developed to

analyze the viscoplastic deformation of metals above one-half of the melting temperature, have been modified to

analyze the rate dependent, nonlinear deformation response of ductile polymers. There is some physical motivation

in utilizing constitutive equations that were developed for viscoplastic metals to analyze the deformation response of
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ductilepolymers.Forexample,Ward(ref.12)definedthe"yieldstress"inpolymersidenticallytohowresearchers
(ref.11)havedefinedthe"'saturationstress"inmetals.Specifically,therespectivetermsareusedtodefinethestress
levelinauniaxialtensiletestwherethestress-straincurvebecomesflatandtheinelasticstrainrateequalsthetotal
strainrate.PolymershavebeenmodeledpreviouslyusingviscoplasticequationsbyauthorssuchasValisettyand
Yeply(ref.13),ZhangandMoore(ref.14),whomodifiedBodner'sviscoplasticmodel(ref.15),andBordonaro
(ref.16),whomodifiedKrempl'sViscoplasticityTheoryBasedonOverstress(ref.17).

Instatevariableconstitutiveequations,asingleunifiedstrainvariableisdefinedtorepresentall inelasticstrains
(ref.11).Furthermore,inthestatevariableapproachthereisnodefinedyieldstress.Inelasticstrainsareassumed
tobepresentatallvaluesofstress,onlyataverysmalllevelinthe"elastic"rangeofdeformation.Statevariables,
whichevolvewithstressandinelasticstrain,aredefinedtorepresenttheaverageeffectsofthedeformation
mechanisms.

Severalfimitationsandassumptionshavebeenspecifiedin thedevelopmentoftheconstitutiveequations.Small
strainconditionsareassumedandtemperatureeffectsareneglected.Thenonlinearstrainrecoveryobservedin
polymersonunloadingisnotsimulated,andphenomenasuchascreep,relaxationandhighcyclefatiguearenot
accountedforintheequations.Theequationsarelikelyonlytobevalidforductilepolymers.

PolymerFlowandEvolutionEquations

InthemodifiedRamaswamy-Stouffermodel,theinelasticstrainrateeD is defined as a function of the

deviatoric stress sij and a tensorial intemal stress state variable _zij (defined to have the properties of a deviatoric
stress) in the form

[ zo /°]
 '.=Doex,,ut jis,,. (i)

where D o, Z o and n are material constants. The term K 2 is defined as

(2)

and represents the second invariant of the overstress tensor. The elastic components of strain are added to the inelas-

tic strain to obtain the total strain. The internal stress variable rate is defined by the equation

_] ., .i= q_m e -q_(i8 e (3)

where q is a material constant, f_m is a material constant that represents the maximum value of the internal stress,
and ee/ is the effective inelastic strain, defined in the normal manner used in inelastic analysis (ref. 11). The internal

stress is assumed to be equal to zero when the material is in its virgin state.

The hydrostatic stress state has been found to have a significant effect on the yield behavior of a polymer

(ref. 18). Bordonaro (ref. 16) indicated a possible way of accounting for such effects in a state variable constitutive

model was to modify the effective stress terms. In this work, pressure dependence is included by multiplying the

shear terms in the K2 invariant in equation (2) by the correction factor

a =t-_-2 ) (4)

where a,n is the mean stress, J2 is the second invariant of the deviatoric stress tensor, and [3 is a material constant.

The material constants that need to be determined include D 0, n, 7_.0, _m' q and [3. The values of D 0, n, Z0 and

_'-2m required for equation (1) are characterized as follows. The value of D Ois currently assumed to be equal to a
value of 104 times the maximum applied strain rate, which correlates with the maximum inelastic strain rate. Equa-

tion (1) is simplified into its uniaxial form to model the results of a constant strain rate uuiaxial tensile test, leading
to the following expression
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r,l' f°lo- 

where E1 is the uniaxial inelastic strain rate, _ is the uniaxial stress, and _2 is the uniaxial internal stress. The addi-

tional term of 2/_]3 results from the fact that stress deviators were used and the internal stress was originally defined

as a deviatoric stress. By this definition, Sll equals (2/3)6, and _tl equals (2/3)_.

Next, equation (5) is rearranged as follows

-2 t-7-O- -o) =
(6)

and the natural logarithm of both sides of the resulting expression is taken. The values of the inelastic strain rate,

stress, and state variable f_ at saturation are substituted into the resulting expression, resulting in the following

equation

[ ln('V_° ]]:2nln(Zo) - 2nln(_ s -"ra)ln-2 _2D0 )J
(7)

where Os equals the saturation stress, eoiS the constant applied total strain rate in a constant strain rate uniaxial ten-
sile test, and the remaining terms are as defined earfier.

The required constants are determined from a set of tensile curves obtained from constant strain rate tests. Each
curve in this set is obtained at a different constant strain rate. Data pairs of the total strain rate and saturation stress

values from each curve are taken. Values for _ra are estimated for the material, with initial estimates ranging from

50 to 75 percent of the highest saturation stress found to work well. These estimates are similar to the values used

for large-grain metals. For each strain rate, the data values are substituted into equation (7), and represent a point on
a master curve. The number of points in the master curve equal the number of strain rates at which tensile tests were

conducted. A least squares regression analysis is then performed on the master curve. As suggested by equation (7),

the slope of the best-fit line is equal to -2n. The intercept of the best-fit line is equal to 2n(ln(Zo)). The value for f2m

is then adjusted until an optimal fit to the data is obtained.
To determine the value for q for equation (3), first the equation is converted into its uniaxial equivalent and

integrated, resulting in the following relation

f2 = _m - _qm exp(-q eI ) (8)

where _2 is once again the uniaxial value of the internal stress and eI is the uniaxial inelastic strain. The elimination

of the 2/3 term seen in equation (3) results from defining the internal stress as having the properties of a deviatoric
stress. At saturation, the value of the internal stress is assumed to approach the maximum value, resulting in the

exponential term approaching zero. Assuming that saturation occurs when the following condition is satisfied

exp(-qe_) = 0.01 (9)

the equation is solved for q, where es/ is the inelastic strain at saturation. If the inelastic strain at saturation is found

to vary with strain rate, the parameter q is computed at each strain rate and regression techniques are utilized to

determine an expression for the variation of q.
Next, the material constant 13in equation (4) is characterized. Since only uniaxial data were available for the

polymers which were considered in this study, the value of the parameter [5 has been determined empirically by fit-

ting data from composites with shear dominated fiber orientation angles, such as [+45°]s . To define the constant

based on polymer data alone, a combination of tensile, torsion, and combined tension/torsion tests would be

required.
Further information on the determination of the material constants can be found in Stouffer and Dame (ref. 11)

and Goldberg (ref. 1).
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CompositeMicromechanicsModelOverview

Micromechanicstechniquesareusedtopredicttheeffectivepropertiesanddeformationresponseoftheindi-
vidualpliesinacompositelaminate.Laminatetheoryis thenusedtocomputetheeffectivedeformationresponseof
theentirecomposite.Inthemicromechanics,theeffectivepropertiesandresponsearecomputedbasedontheprop-
ertiesoftheindividualconstituents.Theunitcell,thesmallestmaterialunitforwhichtheresponsecanbeconsid-
eredtoberepresentativeoftheentirecompositeply,isdefinedtoconsistofasinglefiberanditssurrounding
matrix.Duetosymmetry,onlyone-quarteroftheunitcellneedstobeanalyzed.

Asmentionedearlier,in themicromechanicsmethodsusedinreferences1and2,theportionoftheunitcellthat
wasanalyzedwasdividedintofourrectangularsubcells,oneforthefiberandthreematrixsubcells.Theareaofthe
fibersubcellwassetequaltoone-fourthofthetotalfiberarea.Therelationshipbetweenthecross-sectionofacom-
positeplyin thematerialaxissystem,theunitcell,andtheportionoftheunitcellthatwasanalyzedintheoriginal
micromechanicsisshowninfigure1.

Tocomputethelocalandeffectivestressesintheunitcell,thetotalstrainsappliedtotheunitcellandthe
inelasticstrainsineachsubcellwereassumedtobeknown.Assumptionsofuniformstressanduniformstrainwere
thenappliedtotheunitcell.Forexample,alongthefiberdirection,thestrainsineachsubcellwereassumedtobe
uniform,andthestressescombinedusingvolumeandstiffnessaveraging.Transversetothefiberdirectioninthe
planeofthecomposite,thestressesineachrowofthesubcellsoftheunitcellwereassumedtobeuniform,andthe
strainsineachrowwerecombinedusingvolumeaveraging.Likewise,betweenrowsthestrainswereassumedtobe
uniform,andthestressescombinedusingvolumeaveraging.Similarassumptionswereappliedforin-planeshear
loading.Bycombiningtheseassumptionswiththeconstitutiveequationsforthefiberandmatrix,asystemofsix
coupledsimultaneousequationsresultedwhichwassolvedforthestressesineachsubcell.Thefull setofequations
ispresentedinreferences1and2.

REVISEDMICROMECHANICS MODEL

Overview

In order to obtain more accurate numerical results, the ability to refine the unit cell to allow for a larger

number of subcells is desirable. However, by applying the approach used previously, solving a large number of

simultaneous equations would be required to obtain the subcell stresses. The number of simultaneous equations
would increase as the number of subcells increased.

However, if one considers the combination of laminate theory with the micromechanics, one can observe that in

classical laminate theory the unit cell is assumed to be in a global state of plane stress (since each ply must be in a
state of plane stress). By assuming that each column of subcells in the original micromechanics model has uniform

stresses, one can conclude that each row of the unit cell must also be in a state of plane stress. While the out-of-

plane normal stresses in each subcell might be nonzero, when combined by volume averaging the total out-of-plane

normal stress in each row must be zero. If one defines each row of the unit cell to be a slice, with this assumption,
the behavior of each slice of the unit cell model can be decoupled. By applying uniform stress and uniform strain

assumptions to each slice of the unit cell model, subslice (subcells within a particular slice) and effective stresses for
each slice can be obtained. The results for each slice of the model could then be combined to obtain the effective

stresses for the entire unit cell. The significance of this approach is that the subslice stresses for each row can be

determined independently, allowing for a significant reduction in the number of simultaneous equations that need to

be solved. Furthermore, no matter how many slices are included in the model, the size of the system of equations for

each slice remains constant. Therefore, instead of solving one large set of simultaneous equations, multiple small
sets of equations can be solved, which is much more computationally efficient.

As discussed earlier, Mital, Murthy and Chamis (ref. 10) applied exactly this approach to the analysis of

ceramic matrix composites. They divided up the unit cell into an arbitrary number of horizontal rectangular slices.

The effective elastic constants and microstresses were computed for each slice, and then laminate theory was applied

to obtain the effective elastic constants for the entire unit cell. A similar approach will be applied for this work. The
major difference is that in reference 10 a simplified mechanics of materials approach was applied within each slice

to obtain the elastic constants and microstresses. As a result, Poisson effects were only apphed indirectly, and the

deformation was assumed to be linear elastic. In the current work inelastic strains are included. Additionally, by
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usinguniformstressanduniformstrainassumptionssimilartothoseusedin references1and2withineachshce,
Poissoneffectsarefullyincluded.Ascomparedtoreference10,aslightlydifferentalgorithmisappliedtodetermine
thegeometryofeachslice.Intheslicingalgorithmpresentedhere,aninterfacebetweenthefiberandmatrixisnot
included.Furthermore,adifferentmethodologyfromthatusedin reference10isusedtoensurethatthetotalareaof
thefiberintheslicesequalstheactualareaofthecircularfiber.

Forthisstudy,thecompositesareassumedtohaveaperiodic,squarefiberpackingandaperfectinterfacial
bond.Smallstrainconditionsareassumed,andtemperatureeffectsareneglected.The fibers are assumed to be

transversely isotropic and linearly elastic. The fibers are also assumed to have a circular cross-section. The matrix is

assumed to be isotropic, with a rate dependent, nonlinear deformation response computed using the constitutive

equations described in the previous section.

The general procedure in conducting an analysis using this methodology is as follows, which is summarized in

figure 2. The strains applied to the composite laminate are assumed to be known, along with the inelastic strains in

each subslice. The in-plane strains in each ply in the structural (laminate) axis system are assumed to be equal to the

composite strains by the assumptions of laminate theory. The lamina (ply) strains are then transformed into the

material axis system for the ply. A schematic demonstrating the difference between the material axis system and the

structural axis system is shown in figure 3. In the figure, a ply at an arbitrary fiber orientation angle 0 is shown. The

material axis system "1-2" is displayed, where the "1" direction is along the fibers. The global "X-Y" structural axis

system is also displayed. All of the plies in the laminate are oriented at various angles related to the structural axis

system.

The in-plane strains in each slice are assumed to be equal to the lamina strains in the material axis system.
Given the total strains in each slice and the inelastic strains in each subslice, the stresses in each subslice are com-

puted. Once the stresses in each subslice are determined, the effective stresses and effective inelastic strains for the

slice are computed. With this information, the effective stresses and inelastic strains for the lamina can be deter-

mined using laminate theory. By once again applying laminate theory, the effective force resultants and force result-

ants due to inelastic strains can be calculated for the laminate. The details of all of the steps of this procedure will be

described in the following sections.

Slicing Algorithm

In the revised micromechanics the unit cell is divided up into several rectangular horizontal slices. The portion

of the unit cell that contains fiber and matrix is divided up into an odd number of slices of equal thickness. The

remaining matrix areas on the top and bottom of the unit cell are contained in individual slices (fig. 4). In figure 4, as

an example the unit cell is divided up into five (5) fiber slices, and the portion of the unit cell which is analyzed

(analysis cell) is divided up into three (3) fiber slices. As mentioned before, only one-quarter of the unit cell needs to

be analyzed due to symmetry considerations. Figure 5 shows the analysis cell geometry in greater detail for an
example of three fiber slices through the thickness and specifies the x-y coordinate system used in the slicing algo-

rithm. Note that this "x-y" coordinate system is not the structural axis system described in the previous section, but

is more closely related to the material axis system. However, to simplify the notation, in this section only the coordi-

nate system axes are labeled "x" and "y". For the purposes of this algorithm, the unit cell is assumed to measure one

unit in length by one unit in height, and the analysis cell is assumed to measure 0.5 units in length by 0.5 units in

height.

The number of slices for the fiber in the entire unit cell (Ncliv) is related to the number of fiber slices in the

analysis cell (Nf) through the following relationship

Ndi v = 2Nf - 1 (10)

where in figures 4 and 5 Ndi v equals five (5) and Nfequals three (3). Note that as shown in the figures, in the analysis
cell the bottom slice has a thickness equal to half that of the other fiber slices due to symmetry considerations.

The diameter of the fiber (df) is related to the fiber volume fraction of the overall composite (Vf) through the
following relationship

df=I4Vf (11)
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andthethicknessofeach fiber slice in the entire unit cell (_) is equal to the fiber diameter (df) divided by the num-
ber of fiber slices in the entire unit cell (Ndiv).

To determine the location of the top of the 'T'th slice in the y-coordinate direction (Yi) in the analysis cell, the
following procedure is used. For the top fiber slice, the value ofy i is set equal to the fiber radius. For the remaining

slices, the y-coordinate of the top of the slice is computed using the following expression

y,=(i;+
where the 1/2 term results from the fact that the bottom slice in the analysis cell is one-half as thick as the remaining
fiber slices.

The next step is to compute the fiber volume ratio and the thickness ratio (the ratio of slice thickness to total

analysis cell thickness) for each slice. An important goal in computing the fiber volume fraction of each slice is to

ensure that the total fiber area in the analysis cell is equal to one-fourth of the area of the actual fiber (assuming the
actual fiber has a circular shape). As part of this process, the actual circular cross-section of the fiber has to be con-

verted into a set of rectangular cross-sections. Furthermore, each rectangular cross-section must have the same area

as the equivalent curvilinear cross-section.

To carry out this process, the following procedure is followed. First, note that for a circular fiber the x-

coordinate of any point on the outer circumference of the actual fiber can be computed using the standard geometric
definition of the radius of a circle and applying equation (11)

(13)

where the x-coordinate varies continuously along the circumference of the fiber. Given the y-coordinates of the top

and bottom of each slice, the area of the portion of the fiber contained within each slice (Aj) can be computed by
using the standard calculus procedures for computing the area under a curve. Since the x-coordinate varies continu-

ously within each slice, the area of the fiber contained within each slice can be obtained by integrating the equation
for the x-coordinate (eq. (13)) between the y coordinates of the top and bottom of slice 'T'

A_= " .y" dv

Yi-I

By carrying out the integration, the following expression results

(14)

• Vf sin-1 V _A_ =0.5 y _y2 + .

Yi-I

(15)

where the value computed at Yi-I is subtracted from the value computed at Yr For the bottom slice, Yi-1 is equal to

zero. By computing the fiber area in each slice in this manner, the total fiber area in the analysis cell is kept equal to

one-quarter of the area of the actual circular fiber. The width of the rectangular fiber subslice can be computed by
dividing the fiber area within the slice by the slice thickness.

The fiber volume fraction of each slice composed of fiber and matrix is equal to the fiber area in each slice

divided by the slice area (the slice thickness multiplied by 0.5, the assumed width of the total slice). The thickness

ratio for each slice (the ratio of the slice thickness to the total slice thickness) composed of both fiber and matrix (h})
is equal to the slice thickness divided by 0.5, the assumed total height of the analysis cell. The fiber volume fraction

of the top slice consisting of matrix only is set equal to zero. The thickness ratio of the top slice is equal to one
minus the sum of the thickness ratio of the remaining slices.
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SliceMicromechanicsEquations

Eachsliceoftheanalysiscellshownin figures4and5isanalyzedseparately.The responses of each slice are

then combined using laminate theory to obtain the effective response of the corresponding lamina. As mentioned

previously, the advantage of this type of approach is that in analyzing a unit cell with a relatively large number of

slices, multiple sets of four simultaneous equations can be solved instead of one large set of equations. Details and

coordinate systems used for the slice analysis are shown in figure 6. Most of the slices are assumed to have two

subsfices, one subslice composed of fiber material and one subslice composed of matrix material. The top slice is

assumed to be composed of matrix material only, The micromechanics equations presented here are for those slices

composed of both fiber and matrix material. The stresses in the slices composed of pure matrix can be computed

using the matrix elastic properties and inelastic constitutive equations. The fibers are assumed to be transversely

isotropic and linearly elastic, and the matrix is assumed to be isotropic, with a rate dependent, nonlinear deformation

response computed using the constitutive equations described earlier.

The transversely isotropic compliance matrix is used to relate the local strains to the local stresses in the fiber

and matrix using the following relations

_-/< s== (16)

"/12 = $66°'12 +2'c [2 (17)

where all of the stresses and strains are assigned in a Cartesian flame of reference. Note that engineering shear

strains are used in the analysis. A superscript "/" is used to denote inelastic strains. In these equations Sij represents

the components of the compliance matrix, not the components of the deviatoric stress tensor Sly as in the discussion
of the constitutive equations. Transverse shear stresses are neglected in the current analysis. However, since these

stresses nfight turn out to be significant in impact problems, they might be included in the future using methods

similar to those discussed here. Out-of-plane normal stresses are included in the analysis since even though each

slice is assumed to be in a state of global plane stress, the individual subslices of each slice are assumed to be a full
three-dimensional state of stress.

The addition of the inelastic strain components to the standard transversely isotropic elastic constitutive law

allows the incorporation of inelasticity into the constitutive relations. For the fiber, which is assumed to be linear

elastic, these components are neglected. For the matrix material, which is assumed to be isotropic, $23 is set equal to

S12 and $22 is set equal to Sll.
In the equations that follow, the subscript '7" will be used to denote fiber related properties, and the subscript

"m" will be used to denote matrix related properties. Stresses and strains with no subscript will be used to represent

effective stresses and strains for the slice (not the composite ply or laminate). The symbol "Vf' will be used in this
section to represent the fiber volume ratio for the slice, computed using the methods discussed earlier, not the total

fiber volume fraction for the composite.

Along the fiber direction (direction 1 in fig. 6), the strains are assumed to be uniform in each subslice, and the

stresses are combined using volume averaging. The in-plane transverse normal stresses (2 direction) and the in-plane

shear stresses (1-2 direction) are assumed to be uniform in each subslice, and the strains are combined using volume

averaging. The out-of-plane strains (3 direction) are assumed to be uniform in each subslice. The volume average

of the out-of-plane stresses in each subslice is assumed to be equal to zero, enforcing a plane stress condition on the

global level for the slice. These assumptions can be expressed using the following equations, which can be derived

using the slice geometry shown in figure 6, the definition of the slice fiber volume ratio and the basic definitions of

displacement and force equilibrium

t_ll f = ell m = Ell (18)

E22 = VfE22 f + (l- Vf )g22 m (19)
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E33 f = E33 m = 1333

"_12 = Vf'[12f + (1 - Vf)'_12m

(20)

(21)

, =v:,,:+O (22)

(Y22 = (Y22f = CY22m (23)

_33 = 0 = Vf(Y33 f + (1- Vf)0"33 m (24)

(Y12 = _12f = (Yl2m (25)

where the stresses and strains are for the slice only, not for the composite ply or for the laminate as a whole. These

assumptions can be (and were in references 1 and 2) applied to the entire unit cell, but for this work are only applied
to each slice.

By combining the uniform stress and uniform strain assumptions (eqs. (18) to (25)) with the constituent stress-

strain relations (eqs. (16) and (17)), the following system of equations results

S12f
E 11 E/3m =

SI If - SlZ2S/v:) "I_ )Is
$22f + Sl lm

f Sl2fSl2m ]
+ ----Fvs f'

lm + [Sl2f +

s.:(s, s.,:)]
-----/-'--_. _1_22

S22f + Sllm(&J]

(26)

_( gf _ Sl2m I

s,.:,.o ]- 1-__7_ v _l_:

l- Vf S22f + Sllrn(l fvf jj

-- -- --{'-" 7_'1_22

S22f + Sllm( l_fvf J]

-W vf ]/ollm

S22 f q" Sl lm_ l-_l_f ) J

(27)
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_22-(1-_)+_,.

r
_i(S:_i-Sl2m)o, =vsl
-- -- -7-"'_ "_e33m S12f

S22f + SXlm{ l__fvf J l

+

s,:,-(s:3i-s,:,,,)1

J

{+ (l-- Vf)SI2 m + _--------7-V-7----- _/ lint

s_2.,-,-+Sll,,,/__-_jJ]
-1

VfS22f+(l_Vf)S 1 +Vf(S23f_S12m ) Slgm-S23f I
ln., _- T--V a|°22 (28)

712 = [VfS66f + (l - Vf )$66 m 1o12 + 2(1 - Vf)E f2,,., (29)

that can be solved for the unknown stresses in the subslices. Note that t_22 and O"12 in the subslices are equal to the

equivalent slice stresses due to the uniform stress assumptions. The total strains and subslice inelastic strains are

considered to be the known values in solving this problem. These equations correspond to block five (5) in the

analysis process (fig. 2), where the subslice stresses are computed knowing the slice strains and subslice inelastic
strains.

By substituting the subs//ce stresses back into equations (22) to (25), an expression relating the effective
stresses to the effective strains in the slice is obtained

till Qll 0,: o [eli
022 _ = [Qo1 Q22 0//e=2t+le=_
012.1 0 Q66J[T12 J [e3J

(30)

where [Q#] represents the effective plane stress stiffness matrix for the slice and {el} represents the collected inelas-
tic strain terms resulting from the calculations. This equation is important in two respects. First, through the process

of obtaining this equation the effective elastic constants for the slice are computed (the [Qij] effective plane stress
stiffness matrix). Second, this equation represents the first task in block six (6) in the analysis process (fig. 2), com-

puting the effective stresses in the slice given the subslice stresses. Note that due to uniform stress assumptions, only

el 1 for the slice is computed in the algorithm using this expression, since the other slice stresses were computed
earlier. To complete the second task in block six (6), the computation of the effective inelastic strains in the slice, the

{ei} vector is brought to the left hand side of equation (30) and the expression is again inverted. By comparing the
result to the transversely isotropic constitutive relation for the slice (similar to eqs. (16) and (17) for the fiber and

matrix), the effective inelastic strains for the slice can be computed using the following expression

°1{'1
Y(2 1 kO 0 $66 e3

(31)

where [S//], is the effective compliance matrix for the slice, and {e{j} represents the effective inelastic strain vector
for the slice.
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LaminaEffectiveStiffnessMatrixandEffectiveInelasticStrains

Tocomputetheeffectivestiffnessmatrixandeffectiveinelasticstrainsforthelamina(whichisequivalentto
theequivalentpropertiesfortheanalysiscell)fromtheeffectivestiffnessmatrixandinelasticstrainsforeachslice,
thefollowingprocedureisused.First,thein-planestrainsforeachsliceareassumedtobeconstantandequaltothe
in-planestrainsforthelamina.Thetotalin-planestressesforthelaminaareassumedtobeequaltothevolumeaver-
ageofthein-planestressesforeachslice,asfollows

CY22 I = E/_22 h_ (32)

_JlZ]l i=1 (O'12 i

where Nfis the number of fiber slices in the analysis cell, {_ij}l are the effective stresses in the lamina, hj represents
the thickness ratio of each slice as defined earlier, and the summation is over all of the slices (i). This step also

accomplishes the first goal of block seven (7) in the analysis process (fig. 2), computing the effective lamina stresses
given the effective stresses in each slice.

To compute the plane stress stiffness matrix and effective inelastic strains for the lamina, equation (30) for the
slice is rewritten as

°'11I 01I 1,_ ¢:1

where equation (31) is applied to compute the {e/j} vector from the {ei} vector. By substituting equation (33) into

equation (32), the effective plane stress stiffness matrix for the lamina [Qjt]t' required for future steps in the analysis,
is obtained as follows

Nf +1

tej,l,= tej,J;h 
i=1

(34)

where the summation is again over all of the slices. Likewise, by following the same procedures used to go from

equation (30) to equation (31 ), the following expression is obtained for computing the effective inelastic strains for
the lamina

t "tis,,,20)   liOl,°,20 iE ,,o z [I'
"_(2 I 0 $66 ` 0 066 Ji l '_(2 Ji

(35)

where {eI.}l is the effective inelastic strain vector for the lamina and [Sij]t is the effective compliance matrix for the
lamina. The computing of the effective inelastic strains for the lamina also represents the second task of block seven
(7) of the analysis process (fig. 2).

Basic Equations of Laminate Theory

To allow for the analysis of multilayered laminates, where each ply can have a unique fiber orientation, the

micromechanics method described above is combined with classical lamination theory (ref. 19). As will be
described below, the force resultants due to inelastic strains are computed in a manner similar to that used to deter-

mine thermal and moisture resultants in the classical theory. As has been the case throughout this report, small strain
conditions are assumed, and thermal and moisture effects are neglected. The composites are assumed to be thin
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laminates under plane stress and the effective out-of-plane stresses for each ply are assumed to be zero. Only sym-

metric laminates under in-plane loading conditions with no bending effects are analyzed. In the future, the ability to

analyze unsymmetric laminates will be added to the theory. Furthermore, since in the analysis of impact problems

the effects of transverse shear stresses could be significant, the ability to account for these stresses will be added to

the laminate theory in the future.

In the laminate theory for symmetric laminates, the total laminate force resultants {Ni} are related to the mid-

plane laminate strains {eo} and the laminate force resultants due to inelastic strains {N/.} by the following
expression

= A,a, Avv Ays|_e_q_-]Nl_ (36)

N 2 AI,:s A_,; Ass]l?s J° UJ

where the stresses and strains are in the structural (laminate) axis system and [Aij] represents the effective in-plane
stiffness matrix for the laminate. The laminate stiffness matrix is computed using the stiffness matrices for each ply

using standard laminate theory procedures (refs. 2 and 19). The subscripts "x" and "y" represent normal quantities in

the structural axis system and the subscript "s" represents in-plane shear quantities in the structural axis system.

Recall that figure 3 shows the relationship between the structural axis system and the material axis system. As

before, note that engineering shear strains are used in the analytical development. Equation (36) is also used to carry

out block eight (8) of the analysis process (fig. (2)), the computation of effective force resultants for the laminate.

The following summation over all of the plies is used to compute the terms in the force resultants due to inelas-

tic strains {N / }

1Ns/Jk=l k
(37)

where [ QO"] represents the plane stress stiffness matrix [Qij]l transformed into the structural axis system for ply k,
{e_} represents the effective inelastic strain vector in the structural axis system for ply k, N 1represents the total num-

ber of plies in the laminate and hk represents the thickness of each ply. The plane stress stiffness matrix for each ply
is transformed from the material axis system to the structural axis system using standard laminate theory procedures

(refs. 2 and 19). The computation of the force resultants due to inelastic strains for the laminate is part of block eight

(8) of the analysis process (fig. 2).

NUMERICAL IMPLEMENTATION OF ANALYTICAL MODEL

To verify the analytical model, a stand-alone computer code has been developed. A standard fourth order

Runge-Kutta explicit integration routine is used to integrate the rate equations in the polymer constitutive model

(ref. 20). For this class of equations, implicit integration routines have often been used because of their inherent

numerical stability (ref. 11). However, in this case, to facilitate the implementation of these equations into a transient

dynamic finite element code, explicit methods have been used. The Runge-Kutta method has been used due to its

simplicity and ease of implementation. However, in the future more sophisticated integration algorithms may be
used.

To compute the value of a set of variablesPn at time step t + At, where t is the current time and At is the time
increment, the following equations are used

Pn (t + At) = Pn (t) + 1 (k I + 2k 2 + 2k 3 + k4) (38)

kl = P,_(t, Pn )_xt (39)
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(40)

1 ")k3 = [_n(t +2At'pn +l k2 )At.
(41)

(42)

where /_n is the time derivative of variable Pn"

In the stand-alone computer code, first the geometric data and material properties are read in from an input file.

Next, the loading information is input. Both stress and strain controlled loading is permitted. The slice geometry is

computed using the procedures described earlier (eqs. (10) to (15)). The elastic properties for each slice and for the
lamina are determined next (eqs. (30) and (34), respectively). From this information, the laminate stiffness matrix is

computed (based on eq. (36)).

For each load step, the total strain rates or stress rates in the loading directions are calculated. The Runge-Kutta
integration routine is then carried out to determine the inelastic strains and internal stresses in each subslice in the

laminate, as well as the midplane strains and force resultants due to inelastic strains for the laminate. The procedure

for the Runge-Kutta integration is described below and is carried out four times for each time step as indicated by
equations (38) to (42). The total force resultants for the laminate are computed using equation (36). If the laminate is

assigned a total thickness of one (1), the force resultants are equal to the stresses. Appropriate values are written to

an output file, and the code proceeds to the next time step.

Within the Runge-Kutta integration routine, the strains in each lamina are converted into the material axis sys-
tem. Within each ply, the stresses in the subslices of each slice are computed (eqs. (26) to (29)). At this point, the

polymer constitutive equations (eqs. (1) to (4)) are applied to calculate the inelastic strain rate and internal stress rate

for each matrix subslice. Next, the effective inelastic strain rate for each ply is computed in the material axis system

(using rate forms of eqs. (31) and (35)) and converted to the structural axis system.

The next step in the Runge-Kutta routine is to compute the laminate force resultant rate due to inelastic strains
for the laminate (eq. (37) in rate form). From this information, the laminate strain rate in each coordinate direction is

determined. This procedure varies depending on whether the loading is strain controlled or stress controlled. For

strain controlled loading, a partial inversion of the rate form of equation (36) is carried out, while for stress con-

trolled loading a full inversion of the rate form of equation (36) is required.

MODEL VALIDATION

To verify the micromechanics equations, a series of analyses have been carried out using two polymer matrix

composite systems. Both material systems exhibit a strain rate dependent, nonlinear deformation response.

Material Properties

The first material examined, supplied by Fiberite, Inc., consists of carbon IM7 fibers in a 977-2 toughened

epoxy matrix. Tensile tests have been conducted on the neat resin and composite laminates with fiber orientations of

[45°], [90°], and [+45°]s . Tensile tests were conducted at Ohio State University. Tests were conducted at strain rates

of about 5xl0-5/sec and about 1.0/sec. Dog-bone shaped specimens were used with a gage length of approximately

0.9525 cm. The testing was conducted using an Instron hydraulic testing machine. Further details of the test speci-

mens and testing procedures will be described in a future report (ref. 21), along with a discussion of high strain rate
tests that were conducted.

The IM7/977-2 composite has a fiber volume ratio of 0.60. The material properties used in this study for the

IM7 fiber are listed in table I. The longitudinal modulus, longitudinal Poisson's ratio and in-plane shear modulus

are as given in reference 22. The transverse modulus of the fiber was reduced slightly from the value given in

NASA/TM--2001-210822 14



reference22inordertoprovideagoodcorrelationin theelastic range with the [90 °] data. Since the transverse

modulus given in reference 22 was also a correlated value, a variation of this sort was considered acceptable. The
value for the transverse Poisson's ratio was taken from reference 23 based on representative carbon fiber data.

The material properties for the 977-2 resin were determined using the procedures described earlier in this report

from the experimental uniaxial stress-strain curves shown in figure 7. Note that since this resin did not reach a "satu-

ration" stress before failure, appropriate values were extrapolated from the tensile data and used to obtain the mate-

rial properties. The value for the constant "13" required for the correction factor given in equation (4) was determined

to be strain rate dependent. In addition, the material constant "q" from equation (3) was found to be rate dependent
for this material. The values of the material constants for the 977-2 resin are given in table II. Stress-strain curves

computed using the material constants given in table II are shown in figure 7 along with the experimental values. As

can be seen in the figure, there is a good correlation between the experimental and computed curves.

The second material system examined consists of carbon AS4 fibers embedded in a PEEK thermoplastic matrix.

Tensile stress strain curves were obtained by Weeks and Sun (ref. 24) for composites with a variety of fiber orienta-

tions and laminate configurations at strain rates of 1x 10-5 and 0.1/sec. Only low strain rate composite data were

examined since only low strain rate data were available for the PEEK matrix.
The fiber volume fraction of the AS4/PEEK composites is 0.62. The elastic properties of the AS4 fibers were

taken from reference 23 and are given in table I. The material properties of the PEEK matrix were determined using

tensile stress-strain curves obtained by Bordonaro (ref. 16) over strain rates ranging from lxl0 -6 to l×10--3/sec. The

computed constants are shown in table II. Again the value for the constant "_" required for the correction factor

given in equation (4) was found to be strain rate dependent. The constant "q" for this material is assumed to be rate

independent. In actuality, the value of "q" was found to vary slightly with strain rate, but for the strain rates consid-
ered a constant value of "q" was acceptable. If a wider range of strain rates would be examined (like for the 977-2

resin), most likely the value of "q" for PEEK would also turn out to be rate dependent. Experimental and computed
curves for the PEEK matrix are shown in figure 8. As can be seen in the figure, there is an excellent correlation

between the experimental and computed curves.

Analysis Results

Experimental and computed stress-strain curves for the IM7/977-2 system are shown in figures 9 to 11. Three

fiber slices were used in the analysis cell (Nf = 3) for the computations. This value was found to yield sufficiently
converged answers. In figure 9, results for the [45 °] laminates at strain rates of 4.75×10-5/sec and 1.0/sec are shown.

In figure 10, results for the [90 °] laminates at 4.44×10-5/and 1.06/sec are shown. In figure 1 l, results for the [-+45°]s
laminates at 9×10 -5 and 2.0/sec are shown. Note that for the [90 °] laminates the experimental results show minimal

rate dependence and the computed results for both strain rates overlap each other. The lack of rate dependence in the

[90 °] laminates is most likely due to the specimens fairing while the effective stresses in the matrix were still in the

elastic range. The fact that the computed results also predict a mostly linear deformation response seems to support

this hypothesis. As can be seen in figure 7, all of the strain rate dependence in the matrix deformation is in the in-

elastic range of the stress-strain curve. As can be seen in the figures, the rate dependence (or lack thereof as in the
case of the [90 ° ] laminates) and nonlinearity of the experimental stress-strain curves are captured by the analytical

model. Furthermore, the comparison between the experimental and computed results is quite good.

Experimental and computed results for the AS4/PEEK composite are shown in figures 12 to 14. Three fiber

slices were again used in the analysis cell (Nf = 3) for the computations. In figure 12, results for the [45 °] laminates
at strain rates of l×10 -5 and 0.1/sec are shown. In figure 13, results for the [90 °] laminates at lxl0 -5 and 0.1/sec are

shown. In figure 14, results for the [+-45°]s laminates at lxl0 -5 and 1.0/sec are shown. Note that for the [90 °] lami-

nates the experimental and computed results are once again strain rate independent, for the reasons discussed earlier.

Another interesting point to note is that the failure strain for the [90 ° ] laminates is relatively low. This result may be
due to a low interface strength in the composite. The rate dependence and nonlinearity of the composite response are

again captured by the analysis. Furthermore, the comparison between the experimental and computed results is again

quite good.
To demonstrate the improvement in results obtained by using the new micromechanical formulation, figures 5

and 7 from reference 2 are reproduced in figures 15 and 16. These figures show results computed using the original

micromechanics methodology, which was described in the Background section. As a reminder, in the original

micromechanics method (fig. l) the unit cell was divided into four subcells and the slicing technique was not used.

NASA/TM--2001-210822 15



Figure15containsexperimental and computed results for the AS4/PEEK [45 °] laminates and figure 16 contains

results for the AS4/PEEK [+45°]s laminates described earlier. By comparing figures 15 to 12 and figures 16 to 14,

using the revised micromechanics formulation results in a slight improvement in the quality of the predictions (com-

pared to the experimental results) in the elastic range, and a significant improvement in the quality of the predictions

in the inelastic range of the deformation. Furthermore, using a more refined unit cell did not significantly decrease
the computational efficiency.

CONCLUSIONS

In this study, a previously developed micromechanics method has been revised in order to more accurately pre-

dict the nonlinear, strain rate dependent deformation response of polymer matrix composites composed of ductile

matrix materials. In the revised micromechanics model, the unit cell is divided up into several slices, and micro-

mechanics equations are then developed for each slice. The results from each slice are then combined using laminate

theory to obtain the effective elastic properties, stresses, and inelastic strains for the unit cell. Laminate theory can

be applied again to obtain the deformation response for a multilayered laminate. Tensile stress-strain curves have

been computed for two representative polymer matrix composites for several laminate configurations and strain

rates, and the results compared well to experimentally obtained values. Furthermore, results computed using the

revised approach compared better to experimentally obtained values than results computed using the original micro-

mechanics approach without a decrease in computational efficiency. Therefore, the revised micromechanics

approach appears to be more advantageous to use.

Future efforts will include expanding the laminate theory formulations to account for unsymmetric laminates

and laminates subject to bending loads. The ability to account for thermal effects will also be added to the micro-

mechanics and laminate theory. The characterization of high strain rate tests on the IM7/977-2 system will be com-

pleted and documented. Failure theories will be added to the analytical model, and the resulting models will be

incorporated within appropriate finite element codes. Furthermore, the analytical methods will be extended to the

analysis of filament wound and woven composites.
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IM7
AS4

TABLE I.--MATERIAL PROPERTIES FOR IM7 AND AS4 FIBERS

Longitudinal Transverse
modulus, modulus,

GPa GPa

Longitudinal
Poisson's

ratio

Transverse
Poisson's

ratio

In-plane shear
modulus,

GPa

276 12.4 0.25 0.25 20.0
214 14.0 0.20 0.25 28.0

977-2

PEEK

TABLE II.--MATER1AL PROPERTIES FOR FIBERrrE 977-2

(STRAIN RATES OF 5x10 -5 AND l/sec) AND PEEK (STRAIN

RATES OF 1×104 AND 0.1/sec_. FOR RATE DEPENDENT

PROPERTIES, TOP CELL EQUALS VALUE AT LOWER

STRAIN RATE, BOTTOM CELL EQUALS VALUE AT

HIGHER STRAIN RATE

E, v Do, N Zo, Q _2m,

GPa 1/see MPa MPa
3.52 0.40 1E+06 0.42 2180 85 76 1.05

160 0.90

4.00 0.40 IE+04 0.70 630 310 52 0.40
0.30
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Cross-section of unidirectional

composite ply

Unit cell

Fiber

Portion of unit cell analyzed

Figure 1._Schematic showing relationship between composite ply,
unit cell and portion of unit cell which is analyzed for original
micromechanics model.

Given: laminate strains in

structural axis system and
subslice inelastic strains

Compute subslice stresses
(Equations (26)-(29))

Set lamina strains in

structural axis system
equal to laminate strains

Transform lamina strains

into material axis system

2

Set slice strains in each

lamina equal to lamina
strains

Compute effective stresses
and effective inelastic strains

for slice (Equations (30) and (31))

Compute effective stresses
and effective inelastic strains

for lamina (Equations (32)-(35))

Compute effective force resultants
and force resultants due to
inelastic strains for laminate

(Equations (36) and (37))

7

1
Figure 2.mFIowchart showing analysis process for revised micromechanics model.
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Figure 3.--Schematic showing global laminate structural axis
system (X-Y axes), local material axis system (1-2 axes) and
fiber orientation angle 0 for a composite ply.
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Figure 4.--Schematic showing relationship between unit cell, portion
of unit cell which is analyzed and slices for revised micromechanics.
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Figure 6._chematic showing slice geometry and layout for
revised micromechanics model.
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Figure 7.--Experimental and computed results for 977-2 resin at
strain rates of 5.7xl O-5/sec and 1.31/sec.
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Figure 8.--Experimental and computed results for PEEK at strain
rates of lxlO-6/sec and lxlO-3/sec.
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Figure 9.mExperimental and computed results for IM7/977-2 [45 °]
laminates at strain rates of 4.75x10-5/sec and 1.0/sec.
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Figure lO.mExpedmental and computed results for IM7/977-2
[90°] laminates at strain rates of 4.44x10-5/sec and 1.06/sec.
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Figure 11 .--Experimental and computed results for IM7/977-2
[_+45°]slaminates at strain rates of 9xl0-5/sec and 2.0/sec.
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Figure 12._Experimental and computed results for AS4/PEEK
[45 °] laminates at strain rates of lxl0-5/sec and 0.1/sec.
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Figure 13.mExpedmental and computed results for AS4/PEEK
[90°] laminates at strain rates of lxl 0-5/sec and 0.1/sec.
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Figure 14.--Experimental and computed results for AS4/PEEK
[+45°]s laminates at strain rates of I xl0-5/sec and 0.1/sec.
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Figure 15.--Experimental values for AS4/PEEK [45 °] laminates at
strain rates of I xl 0-5/sec and 0.1/sec and results computed

using original micromechanics model.
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Figure 16.mExperimental values for AS4/PEEK [:1:45°]slaminates
at strain rates of I xl 0-5/sec and 0.1/sec and results computed

using original micromechanics model.
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