Bibliography of literature from 1990-1997 pertaining to Holocene and fumarolic Pleistocene volcanoes of Alaska, Canada, and the conterminous United States

by Christopher J. Harpel¹ and John W. Ewert¹

Open File Report 00-017

2000

This report is preliminary and has not been reviewed for conformity with U. S. Geological Survey editorial standards. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U. S. Government.

Department of the Interior
U. S. Geological Survey

¹USGS Cascades Volcano Observatory
5400 MacArthur Blvd.
Vancouver WA 98661
This report is only available in digital form on the World Wide Web.
URL: http://wrgis.wr.usgs.gov/open-file/OF00-017
# Table of Contents

Table of Contents..............................................................................................................................3
Illustrations and Tables..........................................................................................................................8

Introduction...........................................................................................................................................9
Methods................................................................................................................................................9
EndNote® Reference Database.............................................................................................................10
Formatted Version...............................................................................................................................12
Discussion..........................................................................................................................................13
Conclusion.........................................................................................................................................16
References.........................................................................................................................................16

Alaska................................................................................................................................................20
Aleutian Islands.................................................................................................................................21
Buldir.................................................................................................................................................21
Kiska................................................................................................................................................21
Segula...............................................................................................................................................22
Davidof............................................................................................................................................22
Little Sitkin.......................................................................................................................................22
Semisopochnoi.................................................................................................................................22
Gareloai...........................................................................................................................................23
Tanaga...............................................................................................................................................24
Takawangha......................................................................................................................................24
Bobrof...............................................................................................................................................24
Kanaga.............................................................................................................................................25
Moffett..............................................................................................................................................27
Adagdak...........................................................................................................................................28
Great Sitkin......................................................................................................................................30
Kasatochi.........................................................................................................................................31
Koniuji...............................................................................................................................................31
Sergief...............................................................................................................................................31
Atka..................................................................................................................................................32
Seguam............................................................................................................................................33
Amukta.............................................................................................................................................36
Chagulak...........................................................................................................................................36
Yunaska.............................................................................................................................................36
Herbert.............................................................................................................................................37
Carlisle.............................................................................................................................................28
Cleveland.........................................................................................................................................38
Uliaga................................................................................................................................................39
Kagamil.............................................................................................................................................39
Vsevidof.............................................................................................................................................39
Recheschnoi.................................................................40
Okmok...............................................................................42
Bogoslof.................................................................43
Makushin.................................................................45
Table Top-Wide Bay......................................................47
Akutan.............................................................................47
Westdahl........................................................................50
Fisher.............................................................................51
Shishaldin.................................................................52
Isanotski...............................................................53
Roundtop........................................................................54
Amak.............................................................................54

Alaska Peninsula.........................................................55
Cold Bay / Frosty..........................................................55
Dutton.............................................................................56
Emmons Lake............................................................56
Pavlof.............................................................................58
Pavlof Sister..............................................................62
Dana.............................................................................63
Kupreanof.....................................................................63
Veniaminof...............................................................63
Black Peak...............................................................65
Aniakchak....................................................................66
Yantarni.......................................................................69
Chiginagak...............................................................70
Kialagvik.....................................................................70
Ugashik-Peulik.............................................................71
Ukinrek Maars...........................................................71
Martin.............................................................................72
Mageik..........................................................................73
Trident..........................................................................75
Katmai.........................................................................78
Novarupta.....................................................................87
Griggs..........................................................................96
Snowy...........................................................................97
Denison.......................................................................98
Stellar..........................................................................99
Kukak.........................................................................100
Devils Desk..............................................................100
Kaguyak.......................................................................101
Fourpeaked.............................................................102
Douglas.......................................................................103
Eagle Lake.................................................................314
Clear Lake.................................................................315
Mono Lake.................................................................324
Mono Craters.............................................................326
Inyo Craters..............................................................330
Long Valley..............................................................335
Red Cones.................................................................374
Ubehebe.................................................................374
Golden Trout Creek..................................................375
Coso..........................................................375
Lavic Lake / Pisgah.....................................................382
Amboy...........................................................384
Interior United States..............................386
Idaho..............................................................387
Shoshone...............................................................387
Craters of the Moon.................................................387
Wapi.................................................................389
Hell’s Half Acre........................................................390
Wyoming..................................................391
Yellowstone.....................................................391
Nevada..............................................................426
Steamboat Springs.................................................426
Lunar Crater.........................................................427
Crater Flat.....................................................432
Utah..............................................................441
Santa Clara...........................................................441
Kolob..............................................................442
Bald Knoll..............................................................443
Markagunt Plateau..................................................444
Black Rock Desert..................................................446
Colorado.....................................................449
Dotsero...............................................................449
Parkview...............................................................449
Arizona..............................................................450
Uinkaret...............................................................450
Sunset Crater / San Francisco..................................451
New Mexico.........................................................456
Carrizozo.............................................................456
Zuni-Bandera.........................................................457
Valles / Jemez........................................................463
Raton-Clayton.........................................................492
Appendix 1.........................................................494
Tables and Illustrations

Table 1. List of physiographic province keywords used in the electronic version.....................11
Table 2. List of discipline keywords used in the electronic version...........................................11
Table 3. List of the nine volcanoes with 100 or more references...............................................14

Figure 1. Pie chart showing the distribution of reference types..................................................13
Figure 2. Graph showing the yearly distribution of references....................................................15
Introduction

The 1980's and 1990's were marked by frequent worldwide destructive volcanic eruptions. Significant loss of life and property during eruptions, and extensive media coverage of volcanic events around the globe have brought volcanic processes and hazards increasingly to the forefront of scientific, governmental, and public attention (e.g., Casadevall, 1994; Pringle, 1994).

A result of these circumstances has been an increasing number of scientific and popular publications dealing with active volcanism. The purpose of this bibliography is to provide a comprehensive source of literature published between 1990 and 1997 relevant to all of the Holocene and fumarolic Pleistocene volcanoes in Alaska, the conterminous United States, and Canada. The period between 1990 and 1997 was chosen for two reasons. First, it was necessary to define a precise period of time to keep the work tractable. Second, research for this project began during the summer of 1996 and lasted through 1998, with minor additions into 1999. Thus, 1997 was chosen as the younger cut-off and 1990 for the older cut-off. Literature pertaining to Hawaiian volcanoes has been assembled into a database maintained by the Hawaiian Volcano Observatory (Wright and Takahashi, 1984; Wright and Takahashi, 1998) and has been excluded from this work.

We hope that this work will be useful in three ways. First, researchers interested in a specific volcano can use the search capability of the electronic version to readily find literature relevant to their work or determine what aspects of the volcano are in need of study. Second, references cited within the included references are guides to older literature. Third, during times of volcanic crisis this reference list can save time for responding scientists.

Methods

Names of volcanoes in this bibliography follow those of Simkin and Siebert (1994). For location maps of the included volcanoes see Simkin and Siebert (1994) or visit the Global Volcanism Network web site (www.volcano.si.edu/gvp). Also, some locations and short overviews of available data can be found in Miller and others (1998) for Alaska volcanoes and Wood and Kienle (1990) for the entire region covered in this work. However, in some cases nomenclature in Wood and Kienle (1990) varies from that used here.

Some specific cases where our nomenclature deviates from Simkin and Siebert (1994) deserve mention. Synonyms are used in conjunction with three of the names assigned by Simkin and Siebert (1994). For instance, Simkin and Siebert (1994) use the name Potato Butte for a small northern California volcano. Potato Butte is one of multiple vents for the more commonly referred to Hat Creek basalt flows. Muffler and others (1994), however, make no specific mention of Potato Butte, rather they discuss the synonymous Hat Creek basalt. Thus, for Potato Butte/Hat Creek (California), Lavic Lake/Pisgah (California), and Frosty/Cold Bay (Alaska Peninsula) volcanoes, both names have been used.
Simkin and Siebert (1994) list Sunset Crater (Arizona) and Valles caldera (New Mexico) as individual vents. However, both are the youngest manifestations of the San Francisco (Wolfe, 1990) and Jemez (Self, 1990) volcanic fields, respectively. Thus, the names used in this work are Sunset Crater/San Francisco and Valles/Jemez, and the bibliography has been expanded to include references on volcanism throughout the history of the volcanic fields.

References were compiled for this work in three ways. First, applicable journals, such as the Journal of Volcanology and Geothermal Research and the Bulletin of Volcanology, were searched issue by issue for pertinent articles. Also, abstracts from the annual meetings of the American Geophysical Union and Geological Society of America were perused in the same fashion. Second, reference lists from journal articles and professional reports were searched and relevant references were entered into the bibliography. Third, the on-line geologic information database GEOREF was used to help find references.

For references to be included into this bibliography they must contain information relating directly to an included volcano, such as geological, geodetic, geophysical, hydrological, seismological, or geochemical data. Literature on volcanic hazards, hazards mitigation, and volcano monitoring is included if the information is applied to or indicates a specific risk at an included volcano. Gray literature, in the form of articles from narrowly distributed journals and field guides, is included, and in some rare cases literature on either older or non-included volcanic systems is reported if an included volcano is used for comparative purposes (e.g., Rose and Criss, 1993; Talbot and others, 1994). Because of the tremendous amount of literature there are qualified references that we have accidently missed. This is especially true for references that contain geochemical analyses or experimental petrology using rocks from an included volcano (e.g. Hurwitz and Navon, 1994). Also, many papers making reference to tephrostratigraphic data may be missing. This is due to the wide geographic distribution of some tephra layers (e.g. the Bishop and Mazama tephras) and their use in a variety of scientific endeavors.

**EndNote® Reference Database**

The reference database is maintained in the EndNote program and is searchable by author, year, title, journal, publication type, keywords, or Catalog of Active Volcanoes of the World (CAVW) number (see Simkin and Siebert, 1994). For the sake of simplicity keywords are limited to: volcano name, state or province, physiographic location (e.g. “Alaska Peninsula”, or “Cascades”) (table 1), and a group of 19 one word discipline descriptions (e.g. “geochemistry”, or “deformation”) (table 2). More than one discipline may be listed for a single reference; for instance, if a paper contains seismic tomography data it will have both “seismology” and “geophysics” listed as keywords. References that lack a specific discipline, overviews of available data, or descriptions of an eruptive event, are listed under the “descriptive” discipline keyword. Prefixes to volcano names such as Mount and Mt. have not been included and should not be used when searching. A complete listing of physiographic location and discipline keywords can be found in tables 1 and 2, respectively. To avoid confusion when searching for keywords it is generally beneficial not to use the “any field” search capability of EndNote®. For example, searching for the volcano Dutton using “any field” will also yield references with authors named Dutton.
**Table 1.**—List of geographic province keywords used for searching the electronic version of this bibliography.

<table>
<thead>
<tr>
<th>Physiographic Keywords</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaska Peninsula</td>
<td>Aleutians</td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>Cascades</td>
<td></td>
</tr>
<tr>
<td>Cook Inlet</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Table 2.**—List of the discipline keywords to be used for searching the electronic version of this bibliography.

<table>
<thead>
<tr>
<th>Discipline Descriptions</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmosphere</td>
<td>Deformation</td>
<td></td>
</tr>
<tr>
<td>Descriptive</td>
<td>Drilling</td>
<td></td>
</tr>
<tr>
<td>Geochemistry</td>
<td>Geochronology</td>
<td></td>
</tr>
<tr>
<td>Geology</td>
<td>Geomorphology</td>
<td></td>
</tr>
<tr>
<td>Geophysics</td>
<td>Geothermal</td>
<td></td>
</tr>
<tr>
<td>Hazards</td>
<td>Hydrology</td>
<td></td>
</tr>
<tr>
<td>Modeling</td>
<td>Monitoring</td>
<td></td>
</tr>
<tr>
<td>Petrology</td>
<td>Remote Sensing</td>
<td></td>
</tr>
<tr>
<td>Seismology</td>
<td>Stratigraphy</td>
<td></td>
</tr>
<tr>
<td>Tectonics</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To search this bibliography via CAVW number it is necessary to use the numbering scheme presented in the second edition of *Volcanoes of the World* (Simkin and Siebert, 1994) rather than the first edition (Simkin and others, 1981) due to numbering changes in some
geographic areas. Also, minor changes have been made to the CAVW numbers of four volcanoes in this bibliography to avoid confusion. As an illustration of the problem, the CAVW number for Kanaga (Aleutians) is 1101-11, however, the CAVW number for the neighboring volcano, Moffett, is 1101-111. Thus, searches for Kanaga will also yield references for Moffett. We have added zeros to the end of the CAVW numbers for Kanaga (1101-110), Makushin (1101-310), Cold Bay/Frosty (1102-010), and Wrangell (1105-020) so that this problem may be avoided.

In the case of Parkview Mountain, Colorado, no official CAVW number exists (Nelson and Oelfke, 1996). Thus, for the purposes of this work, the unofficial number 1208-02 has been assigned. Also, CAVW numbers are listed under the “custom 1” category of the EndNote© reference format.

**Formatted Version**

The formatted version of this work is available in Adobe Portable Document Format (.pdf) and has been organized according to geographic location roughly following Simkin and Siebert (1994). The main regions are; Alaska, Canada, Pacific Coast, and interior U.S. These regions have been further divided into states and provinces with the exception of Alaska. Alaska has been split into the four following physiographic sub-regions; Aleutian Islands, Alaska Peninsula, Cook Inlet, and western, eastern, and southeastern Alaska. Volcanoes have been listed in the bibliography according to CAVW number, and alphabetically in appendix 1.

The interrelated Long Valley caldera, Mono Lake, Mono Craters, Inyo Craters, and Red Cones volcanic fields are listed separately by Simkin and Siebert (1994), and are treated individually in this work. However, these volcanic fields are both spatially and genetically related and many references pertain to more than one field causing ambiguity (e.g. Hill and Bailey, 1990). Thus, in this work references are listed and keyworded (for the EndNote© version) under the Mono Lake, Mono Craters, Inyo Craters, and Red Cones volcanic fields only if they present data that applies directly to the field (e.g. Hu and others, 1994). Whereas, references containing general data for the Long Valley region that is non-specific to a single volcanic field is listed under the Long Valley heading (e.g. Iwatsubo and Swanson, 1992).

Ambiguity also exists in the references pertaining to the volcanoes within Katmai National Park and Preserve. A total of 14 volcanoes are contained within the park and preserve boundaries, including five that have been historically active (Simkin and Siebert, 1994). Thus, in a fashion similar to Long Valley, references are listed and keyworded separately only if they specifically deal with a particular volcano. Non-specific studies within Katmai National Park and Preserve are listed under the Katmai section, and references pertaining to the 1912 eruptions of Novarupta dome and Mount Katmai (the majority of references in these sections) are listed under both volcanoes.
Reference Distribution

Figure 1.—Pie chart showing the distribution of reference types.

Discussion

A total of 3,328 references are reported in this work. References are categorized as abstracts, journal articles, books and book sections, professional reports, and theses (Fig. 1). Abstracts make up the majority (43%) of the references closely followed by journal articles (31%). Book and book sections compose 15% of the references, and the remaining 11% are professional reports and theses. Interestingly, this distribution of reference types closely resembles that found for Hawaiian literature by Wright and Takahashi (1998), with one exception: they found that the dominant reference type is journal articles rather than abstracts. However, they reported abstracts from the American Geophysical Union and Geological Society of America meetings as journal articles rather than abstracts. In this work abstracts from both of these groups of meetings are reported as abstracts, and compose the majority of the references (76%) in the abstract section. Thus, if this difference is accounted for the trend found by Wright and Takahashi (1998) is similar to the trend in this work.
The reference distribution during the eight years covered is stable throughout most of the years, with an average of 418 references published per year (Fig. 2). However, two significant peaks exist at 1990 and 1994. Three publications can help explain the large number of references during 1990. The Geoscience Canada volume commemorating the 10th anniversary of the Mount St. Helens eruption (Hickson and Peterson, 1990), the Geological, Geophysical, and Tectonic Settings of the Cascade Range Special Section of the Journal of Geophysical Research (Muffler, 1990), and the comprehensive volume “Volcanoes of the North America” (Wood and Kienle, 1990) were all published during 1990, bolstering the average amount of publications by a significant amount. If the 1990 peak is removed the average number of publications per year drops to 372. The 1994 peak can be explained by the publication of both the Redoubt special volume of the Journal of Volcanology and Geothermal Research (Miller and Chouet, 1994), and U.S. Geological Survey Bulletin 2047, “The Proceedings of the First International Symposium on Volcanic Ash and Aviation Safety” (Casadevall, 1994).

The distribution of references among the 181 included volcanoes is not balanced and varies from 424 references for Long Valley to zero references for five volcanoes. Nine well studied volcanoes (table 3), each having 100 or more references, can be broken into two groups and a single volcano. The first group is made up of St. Helens, Redoubt, Augustine, and Spurr. These volcanoes have all had recent eruptions that have effected large populations, are relatively easy to access, and are proximal to volcano observatories. This first group of volcanoes have served as backyard laboratories for many scientists to carry out process-related research and to test and develop new volcano monitoring techniques.

Figure 2.—Graph showing the yearly distribution of references. Note the significant peaks at 1990 and 1994.
Table 3.—List of the nine volcanoes with 100 or more references.

<table>
<thead>
<tr>
<th>Volcano</th>
<th>Number of References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long Valley</td>
<td>424</td>
</tr>
<tr>
<td>St. Helens</td>
<td>411</td>
</tr>
<tr>
<td>Yellowstone</td>
<td>369</td>
</tr>
<tr>
<td>Valles</td>
<td>287</td>
</tr>
<tr>
<td>Redoubt</td>
<td>250</td>
</tr>
<tr>
<td>Spurr</td>
<td>141</td>
</tr>
<tr>
<td>Rainier</td>
<td>137</td>
</tr>
<tr>
<td>Crater Lake</td>
<td>121</td>
</tr>
<tr>
<td>Augustine</td>
<td>100</td>
</tr>
</tbody>
</table>

The second group consists of four large calderas: Long Valley, Yellowstone, Valles, and Crater Lake. Extensive research in many disciplines has been done at these calderas, including on-going monitoring, geothermal exploration and development, hazards mitigation, and investigations of the proximal deposits. Also, all of these calderas have produced widely dispersed pyroclastic fall deposits that form important horizons throughout the Pleistocene and Holocene stratigraphy of western North America.

The single remaining volcano is Mount Rainier. Mount Rainier has been designated a “Decade Volcano” by the International Association of Volcanology and Geochemistry of the Earth’s Interior, indicating that the volcano poses a significant risk to a large population and was not well studied at the time of designation (Swanson and others, 1992; National Research Council, 1994). Thus, Mount Rainier has been the subject of increased study since the early 1990’s.

Volcanoes that have only a few or no references in the 1990-1997 time period are generally small, remote, dormant, or are otherwise unexceptional. Buldir Island located in the far western extremity of the Aleutian Islands is a good example. Only three references were found pertaining to Buldir; two of these were general maps showing the location (Motyka and others, 1993; Nye, 1995), and the third was a small synopsis of the location and previous studies (Marsh, 1990). Several examples of small volcanoes that do not have any references published between 1990-1997 are Brushy Butte, Big Cave, and Twin Buttes volcanoes in northern California.
In several cases, numerous references from a single scientific discipline exist for a volcano, but no other areas of investigation have been covered. For instance, the Lunar Crater (Nevada) and Lavic Lake/Pisgah (California) volcanic fields have a significant number of remote sensing references related to the national space program (e.g., Campbell and others, 1993), but a general lack of physical volcanology references.

It is important to keep the time scale involved with this work in mind, as some of the included volcanoes have been the subject of numerous studies prior to 1990. For instance, extensive basic geological research was carried out in the Aleutian Islands during the 1950's and was published as the U.S. Geological Survey Bulletin 1028 series (e.g., Byers, 1959). The references cited within the references in this bibliography can be used to lead the reader back to any “landmark” studies published before 1990. Also, pertinent literature is continuing to be published after the cut off date for this bibliography (e.g. Miller and others, 1998).

Thus, we hope to extend this bibliography both backward and forward in time with the goal of creating a truly comprehensive bibliography of relevant volcanological literature for Alaska, the conterminous United States, and Canada.

**Conclusion**

In conclusion, the most relevant use of this report will be as a reference tool in the event of volcanic unrest at one of the included volcanoes. Responding scientists may be able to save time by having an on-hand list of current literature pertaining to the restless volcano. However, during periods of quiescence this work will be a useful aid to researchers in their scientific pursuits. The EndNote® reference database allows easy searching and can be used to highlight disciplines in need of further examination.

Both the formatted .PDF and EndNote® versions of this bibliography are available on-line through the USGS Western Region geologic information server (http://wrgis.wr.usgs.gov/open-file/of00-017). For those people who do not have the EndNote® program, a free trial version is available at http://www.endnote.com/.
References


Nelson, J.S., and Oelfke, S.M., 1996, Parkview mountain, Quaternary volcanism in the Rabbit Ears range, north-central Colorado (Grand and Jackson Counties) [abs]: Geological Society of America, Abstracts with Programs, v. 28, no. 7, p. 503.


Alaska
Aleutian Islands

Buldir


Kiska


Segula


Davidof


Little Sitkin


Semisopochnoi


Gareloi


Tanaga


Takawangha


Bobrof


**Kanaga**


Waythomas, C.F., 1994, Hydrologic processes at Alaska volcanoes [abs]: Geological Society of

Whittington, C.M., and Brophy, J.G., 1996, A petrogenetic study of low-alumina to high-alumina basalts from Kanaga Island, Aleutian Islands; implications for the origin of high-alumina arc basalt [abs]: Eos, Transactions, American Geophysical Union, v. 77, p. 843.


Moffett


Romick, J.D., 1990, Silicic volcanism and granulite xenoliths from the Aleutian Islands, Alaska; petrologic constraints for the evolution of the Aleutian Arc crust: Cornell University,


**Adagdak**


Great Sitkin


**Kasatochi**


**Koniuj**


**Sergief**


Atka


**Seguam**


McGeary, S., 1997, A multichannel seismic reflection image of part of the Aleutian seismogenic zone [abs]: Eos, Transactions, American Geophysical Union, v. 78, no. 46, p. 627.


Singer, B.S., and Myers, J.D., 1990, Intra-arc extension and magmatic evolution in the central
Aleutian arc, Alaska: Geology, v. 18, p. 1050-1053.


Singer, B.S., Myers, J.D., and Frost, C.D., 1992, Mid-Pleistocene lavas from the Seguam Island volcanic center, central Aleutian arc: Closed-system fractional crystallization of a basalt to rhyodacite eruptive suite: Contributions to Mineralogy and Petrology, v. 110, p. 87-112.


Amukta


Chagulak


Yunaska


**Herbert**


**Carlisle**


**Cleveland**


Uliaga


Kagamil


Vsevidof


Recheschnoi


Okmok


Miller, T.P., 1995, Late Quaternary caldera formation along the Aleutian arc: Distribution, age, and volume [abs]: Eos, Transactions of the American Geophysical Union, v. 76, no. 46, p. 680.
Motyka, R.J., Liss, S.A., Nye, C.J., and Moorman, M.A., 1993, Geothermal resources of the
Aleutian arc: Alaska Division of Geological and Geophysical Surveys Professional

Mouginis-Mark, P.J., Rowland, S.K., and Smith, G.A., 1992, ERS-1 radar data for Aleutian and
Alaskan volcanoes [abs]: Eos, Transactions of the American Geophysical Union, v. 73,
no. 43, p. 613-614.


Information Circular 38.

Reeder, J.W., 1990, Okmok, in Katsui, Y., Aramaki, S., Matsuo, S., Oshima, O., Tiba, T., and
Society of Japan, p. 44-46.

Reeder, J.W., 1991, Okmok, in Katsui, Y., Aramaki, S., Matsuo, S., Oshima, O., Tiba, T., and
Society of Japan, p. 58-60.

Okmok and Recheshnoi volcanoes, Umnak Island, Aleutians [abs]: Geological Society of
Australia, Seventh International Conference on Geochronology, Cosmochronology and
Isotope Geology, v. 27, p. 86.

**Bogoslof**


Makushin


Bean, K.W., and Beget, J.E., 1996, Frequent Holocene explosive eruptions at Makushin Volcano, Aleutian Islands, Alaska [abs]: Eos, Transactions, American Geophysical Union, v. 77, no. 46, p. 771.


Table Top-Wide Bay


Akutan


Westdahl


Fisher Caldera


**Shishaldin**


**Isanotski**


Roundtop


Amak


Alaska Peninsula

Cold Bay / Frosty


**Dutton**


Taber, J., 1991, Dutton, in Katsui, Y., Aramaki, S., Matsuo, S., Oshima, O., Tiba, T., and


**Emmons Lake**


Matthews, J.V., Jr., Evans, M.E., and Wang, Y., 1992, A paleomagnetic study of sections containing the Old Crow Tephra, northern Yukon Territory (a contribution to project CELIA) [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 287.


Pavlof


Neal, T., 1996, Pavlof volcano darkens the Alaskan sky: Eos, Transactions, American Geophysical Union, v. 77, p. 519-520.


**Pavlof Sister**


**Dana**


**Kupreanof**


**Veniaminof**


Rowland, S.K., Smith, G.A., and Mougins-Mark, P.J., 1994, Preliminary ERS-1 observations of


**Black Peak**


Aniakchak


**Yantarni**


Chiginagak


Kialagvik


Ugashik-Peulik


Ukinrek Maars


Martin


**Mageik**


**Trident**


Hildreth, W., 1990, The Katmai eruption of 1912; was the magma stored beneath Novarupta, Trident, or Mount Katmai? Petrochemical and temporal evidence [abs]: American Geophysical Union, v. 71, p. 1691.


Katmai


Eichelberger, J.C., and Westrich, H.R., 1992, Volatile behavior in silicic magmas during and after eruption [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 371.


Fierstein, J., and Hildreth, W., 1990, Contemporaneity of pyroclastic flows and falls; evidence from the eruption at Novarupta (Alaska) in 1912 [abs]: Eos, Transactions, American Geophysical Union, v. 71, p. 1690.


Hildreth, W., 1990, The Katmai eruption of 1912; was the magma stored beneath Novarupta, Trident, or Mount Katmai? Petrochemical and temporal evidence [abs]: American Geophysical Union, v. 71, p. 1691.


Hildreth, W., and Fierstein, J., 1992, Hydrothermal explosion breccia emplaced during caldera collapse of Mount Katmai, Alaska, on 6 June, 1912 [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 635.


Kienle, J., 1991, Depth of the ash flow deposit in the Valley of Ten Thousand Smokes, Katmai


Lowenstern, J.B., 1990, Pre-eruptive water content of high-silica rhyolite and dacite from the 1912 eruption at the Valley of Ten Thousand Smokes, Alaska [abs]: Eos, Transactions, American Geophysical Union, v. 71, p. 1690.


Motyka, R.J., Liss, S.A., Nye, C.J., and Moorman, M.A., 1993, Geothermal resources of the


Shearer, C.K., Papike, J.J., and Shimizu, N., 1990, The role of crystal-chemical controls and melt characteristics in the behavior of trace elements: Evidence from pyroxenes from the Valley of Ten Thousand Smokes (VTTS) [abs]: Eos, Transactions, American Geophysical Union, v. 71, no. 17, p. 664.


Novarupta


Avery, V.F., and Swanson, S.E., 1990, Petrology and chemistry of the banded pumices from the 1912 eruption of Novarupta, Katmai National Park, Alaska [abs]: Eos, Transactions, American Geophysical Union, v. 71, p. 1690.


Bates, T.L., and Eichelberger, J.C., 1992, Vent processes during the 1912 eruption at Novarupta, Katmai National Park, Alaska [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 635.


Eichelberger, J.C., and Westrich, H.R., 1992, Volatile behavior in silicic magmas during and after eruption [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 371.


Fierstein, J., and Hildreth, W., 1990, Contemporaneity of pyroclastic flows and falls; evidence from the eruption at Novarupta (Alaska) in 1912 [abs]: Eos, Transactions, American Geophysical Union, v. 71, p. 1690.

Fierstein, J., and Hildreth, W., 1992, The plinian eruptions of 1912 at Katmai National Park,


Hildreth, W., 1990, The Katmai eruption of 1912; was the magma stored beneath Novarupta, Trident, or Mount Katmai? Petrochemical and temporal evidence [abs]: American Geophysical Union, v. 71, p. 1691.


Lowenstern, J.B., 1990, Pre-eruptive water content of high-silica rhyolite and dacite from the 1912 eruption at the Valley of Ten Thousand Smokes, Alaska [abs]: Eos, Transactions, American Geophysical Union, v. 71, p. 1690.


Miller, T.P., 1995, Late Quaternary caldera formation along the Aleutian arc: Distribution, age, and volume [abs]: Eos, Transactions, American Geophysical Union, v. 76, no. 46, p. 680.


Shearer, C.K., Papike, J.J., and Shimizu, N., 1990, The role of crystal-chemical controls and melt characteristics in the behavior of trace elements: Evidence from pyroxenes from the Valley of Ten Thousand Smokes (VTTS) [abs]: Eos, Transactions, American Geophysical Union, v. 71, no. 17, p. 664.


Griggs


Snowy


Riehle, J.R., and Detterman, R.L., 1993, Quaternary geologic map of the Mount Katmai


Denison


Shew, N.B., and Lanphere, M.A., 1992, Map showing potassium-argon ages from the Mount Katmai and adjacent parts of the Naknek and Afognak quadrangles, Alaska Peninsula,

Stellar


Kukak


Devils Desk


Information Circular 38.


**Kaguyak**


Riehle, J.R., Church, S.E., Detterman, R.L., and Miller, J.W., 1994, Mineral-resource assessments in Alaska; background information to accompany maps and reports about


Fourpeaked


Riehle, J.R., Church, S.E., Detterman, R.L., and Miller, J.W., 1994, Mineral-resource assessments in Alaska; background information to accompany maps and reports about


Douglas


Cook Inlet

Augustine


Beget, J.E., 1992, Tephrochronolgy of Mt. St. Augustine volcano, southern Cook Inlet, Alaska [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 613.


Beget, J.E., 1996, Dendrochronologic, archeologic, and radiocarbon data on recent eruptions of Iliamna and Augustine volcanoes, Alaska [abs]: Eos, Transactions, American Geophysical Union, v. 77, no. 46, p. 814.


Friedman, J.D., Realmuto, V.J., and Frank, D., 1991, Comparison of thermal features of


March, G.D., and Murray, T.L., 1992, VOLPLOT; a PC-based program for viewing Cook Inlet


Mt. St. Augustine eruption, Alaska [abs]: Eos, Transactions, American Geophysical
Union, v. 71, p. 1699.

McNutt, S.R., 1994, Volcanic tremor amplitude correlated with eruption explosivity and its
potential use in determining ash hazards to aviation, in Casadevall, T.J., ed., Volcanic ash
and aviation safety: Proceedings of the first international symposium on volcanic ash and

Geological Society of America, Abstracts with Programs, v. 27, no. 5, p. 64.

McNutt, S.R., Benoit, J., Christensen, D., Estes, S., Tytgat, G., Stihler, S., Weimer, S., Jolly, A.,
Robinson, M., Hansen, R., Lindquist, K., Garces, M., Lahr, J., Hammond, R., Power, J.,
and Paskievitch, J., 1997, Broadband Seismology at the Alaska Volcano Observatory,

Michaels, G., and Greeley, R., 1997, Debris flows or lava flows on Mars? Shapes of terrestrial
counterparts may help identify flows imaged in upcoming missions [abs]: Abstracts of
949-950.


Motyka, R.J., Liss, S.A., Nye, C.J., and Moorman, M.A., 1993, Geothermal resources of the
Aleutian arc: Alaska Division of Geological and Geophysical Surveys Professional

Mouginis-Mark, P.J., Rowland, S.K., and Smith, G.A., 1992, ERS-1 radar data for Aleutian and
Alaskan volcanoes [abs]: Eos, Transactions, American Geophysical Union, v. 73, no. 43,
p. 613-614.


Swanson, S.E., 1993, Crustal storage of andesite magma in the eastern Aleutian arc [abs]: Geological Society of America, Abstracts with Programs, v. 25, no. 6, p. 327.


Iliamna


Beget, J.E., 1996, Dendrochronologic, archeologic, and radiocarbon data on recent eruptions of Iliamna and Augustine volcanoes, Alaska [abs]: Eos, Transactions, American Geophysical Union, v. 77, no. 46, p. 814.


Redoubt


Anonymous, 1990, Eruption plume from Redoubt volcano: Eos, Transactions, American Geophysical Union, v. 71, no. 1, p. 4.


Hufford, G.L., and Bauer, C.I., 1992, Rapid response to Cook Inlet volcano eruptions [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 68.


Jirikowic, J.L., and Sonett, C.P., 1993, comment on "'Varve' counting vs. tephrachronology and
137Cs and 210Pb dating: A comparative test at Skilak Lake, Alaska": Geology, v. 21, p. 763.


McNutt, S.R., 1994, Volcanic tremor amplitude correlated with eruption explosivity and its


Pierson, T.C., and Janda, R.J., 1994, Volcanic mixed avalanches; a distinct eruption-triggered


Swanson, S.E., 1993, Crustal storage of andesite magma in the eastern Aleutian arc [abs]: Geological Society of America, Abstracts with Programs, v. 25, no. 6, p. 327.


Trabant, D.C., 1994, Measured propagation of a kinematic wave through a small piedmont lobe near Redoubt volcano, Alaska [abs]: Eos, Transactions, American Geophysical Union, v. 75, no. 44, p. 224.

Trabant, D.C., and Brabets, T.P., 1990, Estimates of the snow and ice volumes directly
influenced by the 1989-90 eruption of Redoubt volcano [abs]: Eos, Transactions, American Geophysical Union, v. 71, p. 1705.


Walder, J.S., 1990, Melt-induced modification of contacts between pyroclastic deposits and snow or ice [abs]: Eos, Transactions, American Geophysical Union, v. 71, no. 43, p. 1673.


**Spurr**


Dorava, J.M., 1994, Water generation and lahar formation from melting snow and ice during


Ellis, J.S., 1993, Ash cloud transport from September 17 Spurr eruption [abs]: Federal Aviation Administration Workshop on Old Volcanic Ash Clouds, p. 15.


Hickson, C.J., and Spurgeon, T.C., 1992, Volcanic ash plume warning - A Canadian example [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 73.


Hoslli, R., Rose, W.I., Schneider, D.J., and Sprod, I., 1993, Simultaneous use of AVHRR and TOMS for remote sensing of volcanic clouds [abs]: Eos, Transactions, American Geophysical Union, v. 74, p. 74.

Hufford, G.L., and Bauer, C.I., 1992, Rapid response to Cook Inlet volcano eruptions [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 68.


March, G.D., and Murray, T.L., 1992, A method to provide recent earthquake hypocenter data to geographically-dispersed groups [abs]: Eos, Transactions, American Geophysical Union, v. 73, no. 43, p. 348.


Motyka, R.J., and Nye, C.J., 1992, 1982 fumarole gas chemistry, Crater Peak, Mount Spurr, Alaska [abs]: Eos, Transactions, American Geophysical Union, v. 73, no. 43, p. 346.


Swanson, S.E., 1993, Crustal storage of andesite magma in the eastern Aleutian arc [abs]: Geological Society of America, Abstracts with Programs, v. 25, no. 6, p. 327.


Wen, S., and Rose, W.I., 1993, Retrieval of particle sizes and masses in volcanic clouds using AVHRR bands 4 and 5 [abs]: Eos, Transactions, American Geophysical Union, v. 74, no. 43, p. 133.


**Hayes**


Western, Eastern, and Southeastern Alaska

Espenberg


Beget, J.E., and Mann, D., 1992, "Caldera" formation by unusually large phreatomagmatic eruptions through permafrost in arctic Alaska [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 636.


Imuruk Lake


Kookooligit


St. Michael


Ingakslugwat Hills


Nunivak Island


St. Paul Island


Buzzard Creek


Sanford


Wrangell

Beget, J.E., 1995, Multiple Quaternary eruptive centers and widespread tephra s in Alaska [abs]: Geological Society of America, Abstracts with Programs, Cordilleran Section, v. 27, no. 5, p. 5.


Gordon


**Bona-Churchill**


163


**Edgcumbe**


Beget, J.E., 1995, Multiple Quaternary eruptive centers and widespread tephras in Alaska [abs]: Geological Society of America, Abstracts with Programs, Cordilleran Section, v. 27, no. 5, p. 5.


Riehle, J.R., Budahn, J.R., Lanphere, M.A., and Brew, D.A., 1994, Rare earth element contents


**Duncan Canal**


**Tlevak Strait-Suemez Island**


Revillagigedo Island


Canada
Yukon Territory

Fort Selkirk


Trupia, S., and Nicholls, J., 1996, Petrology of recent lava flows, Volcano Mountain, Yukon Territory, Canada: Lithos, v. 37, p. 61-78.


Alligator Lake

Bevier, M.L., 1992, A dominant asthenospheric mantle source for Late Miocene-Quaternary volcanic rocks, Stikine Volcanic Belt, British Columbia and Yukon Territory, Canada [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 334.


British Columbia

Ruby Mountain

Bevier, M.L., 1992, A dominant asthenospheric mantle source for Late Miocene-Quaternary volcanic rocks, Stikine Volcanic Belt, British Columbia and Yukon Territory, Canada [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 334.


Heart Peaks

Bevier, M.L., 1992, A dominant asthenospheric mantle source for Late Miocene-Quaternary volcanic rocks, Stikine Volcanic Belt, British Columbia and Yukon Territory, Canada [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 334.


**Level Mountain**

Bevier, M.L., 1992, A dominant asthenospheric mantle source for Late Miocene-Quaternary volcanic rocks, Stikine Volcanic Belt, British Columbia and Yukon Territory, Canada [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 334.


Hickson, C.J., 1994, Volcanism in the Canadian Cordillera: Canada's hazard response


Edziza

Bevier, M.L., 1992, A dominant asthenospheric mantle source for Late Miocene-Quaternary volcanic rocks, Stikine Volcanic Belt, British Columbia and Yukon Territory, Canada [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 334.


**Spectrum Range**

Bevier, M.L., 1992, A dominant asthenospheric mantle source for Late Miocene-Quaternary volcanic rocks, Stikine Volcanic Belt, British Columbia and Yukon Territory, Canada [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 334.


**Hoodoo Mountain**

Bevier, M.L., 1992, A dominant asthenospheric mantle source for Late Miocene-Quaternary volcanic rocks, Stikine Volcanic Belt, British Columbia and Yukon Territory, Canada [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 334.


**Iskut-Unuk River**


Bevier, M.L., 1992, A dominant asthenospheric mantle source for Late Miocene-Quaternary volcanic rocks, Stikine Volcanic Belt, British Columbia and Yukon Territory, Canada [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 334.


**Tseax River Cone**


**Crow Lagoon**


**Milbanke Sound**


**Satah Mountain**


**Nazko**


Wells Gray-Clearwater


**Silverthrone**


Green, N.L., and Harry, D.L., 1996, The influence of subducted plate age on basalt geochemistry in "hot" subduction zones; a case study from the High Cascades and Garibaldi volcanic arcs [abs]: Eos, Transactions, American Geophysical Union, v. 77, no. 46, p. 791.


**Bridge River Cones**


Green, N.L., and Harry, D.L., 1996, The influence of subducted plate age on basalt geochemistry in "hot" subduction zones; a case study from the High Cascades and Garibaldi volcanic arcs [abs]: Eos, Transactions, American Geophysical Union, v. 77, no. 46, p. 791.


Hickson, C.J., 1990, Can it happen here? A major volcanic eruption could occur in the Canadian

187
Cordillera; it might significantly affect our environment: Geos, v. 19, p. 1-7.


**Meager**


D'Amours, R., 1994, Current and future capabilities in forecasting the trajectories, transport, and dispersion of volcanic ash clouds at the Canadian Meteorological Centre, in Casadevall,


Green, N.L., and Harry, D.L., 1996, The influence of subducted plate age on basalt geochemistry in "hot" subduction zones; a case study from the High Cascades and Garibaldi volcanic arcs [abs]: Eos, Transactions, American Geophysical Union, v. 77, no. 46, p. 791.


**Garibaldi Lake**


Green, N.L., and Harry, D.L., 1996, The influence of subducted plate age on basalt geochemistry in "hot" subduction zones; a case study from the High Cascades and Garibaldi volcanic arcs [abs]: Eos, Transactions, American Geophysical Union, v. 77, no. 46, p. 791.


Waddell, B., and Green, N.L., 1993, Loggers Lake volcanic complex, S.W. British Columbia, Canada: An example of shallow-level crustal contamination in continental margin calc-alkaline magmas [abs]: Eos, Transactions, American Geophysical Union, v. 74, no. 43, p. 681.

**Mt. Garibaldi**


Green, N.L., 1990, Late Cenozoic volcanism in the Mount Garabaldi and Garabaldi Lake


Green, N.L., and Harry, D.L., 1996, The influence of subducted plate age on basalt geochemistry in "hot" subduction zones; a case study from the High Cascades and Garibaldi volcanic arcs [abs]: Eos, Transactions, American Geophysical Union, v. 77, no. 46, p. 791.


Pacific Coast
Washington

Baker


Glacier Peak


Mariner, R.H., Presser, T.S., Evans, W.C., and Pringle, M.K.W., 1990, Discharge rates of fluid
and heat by thermal springs of the Cascade range, Washington, Oregon, and northern California: Journal of Geophysical Research, v. 95, p. 19,517-19,531


Rainier


Driedger, C.L., and Smith, M., 1997, Response of educators in a vulnerable community to threats posed by lahars from Mount Rainier, Washington [abs]: IAVCEI General Assembly Abstracts, p. 120.


volcano hazards [abs]: Eos, Transactions, American Geophysical Union, v. 76, p. 643.


Garvin, J.B., Harding, D.J., Blair, J.B., Bufton, J., Realmuto, V., and Zebker, H., 1995,
Topographic remote sensing of Mount Rainier [abs]: Eos, Transactions, American Geophysical Union, v. 76, p. 645.


Heine, J.T., 1995, Glacier advances on Mount Rainier volcano at the termination of the Pleistocene [abs]: Eos, Transactions, American Geophysical Union, v. 76, p. 199.


Jonientz-Trisler, C., and Driedger, C.L., 1990, Seismic evidence of historic debris flows and dry-season floods on Mount Rainier, Washington, 1961-1990 [abs]: Eos, Transactions,
American Geophysical Union, v. 71, p. 1145.


American Geophysical Union, v. 77, p. 466.


Norris, R.D., 1995, Seismic detection of debris avalanches at Mount Rainier and other Cascade volcanoes: Successes and limits [abs]: Eos, Transactions, American Geophysical Union, v. 76, no. 46, p. 651.


Vallance, J.W., and Scott, K.M., 1994, The Osceola Mudflow as a type example of the
sedimentology and hazard implications of a huge clay-rich debris flow: Geological  

for syneruptive and earlier mixing events [abs]: Eos, Transactions, American Geophysical  
Union, v. 74, no. 43, p. 685.

Venezky, D.Y., and Rutherford, M.J., 1994, Mafic magma injection into an evolving storage  
system at Mt. Rainier: Evidence from Recent pumice layers [abs]: Eos, Transactions, American  
Geophysical Union, v. 75, no. 44, p. 749.

at Mt. Rainier [abs]: Eos, Transactions, American Geophysical Union, v. 76, no. 46, p. 644.

magma mixing in the 2.2 ka eruption at Mount Rainier: Journal of Geophysical Research,  
v. 102, no. B9, p. 20,069-20,086.


Walder, J.S., and Dreidger, C.L., 1993, Glacier-Generated debris flows at Mount Ranier: U.S.  

Walder, J.S., and Dreidger, C.L., 1994, Geomorphic change caused by outburst floods and debris  
flows at Mount Rainier, Washington with emphasis on Tahoma Creek valley: U.S.  

Walder, J.S., and Dreidger, C.L., 1994, Rapid geomorphic change caused by glacial outburst  
floods and debris flows along Tahoma Creek, Mount Rainier, Washington, U.S.A.: Arctic  
and Alpine Research, v. 26, p. 319-327.

Walder, J.S., and Dreidger, C.L., 1995, Frequent outburst floods from South Tahoma Glacier,  
Mount Rainier, U.S.A.: relation to debris flows, meteorological origin and implications  

Weaver, C.S., and Guffanti, M.C., 1990, The fabric of late Cenozoic volcanism in the Cascade Range, Mount Rainier to Mount Hood; crustal blocks, crustal tectonics and subduction zone considerations [abs]: Eos, Transactions, American Geophysical Union, v. 71, p. 948.


Adams


Green, N.L., 1994, Mount St. Helens; potential example of the partial melting of the subducted lithosphere in a volcanic arc; discussion: Geology, v. 22, p. 188-189.


Weaver, C.S., and Guffanti, M.C., 1990, The fabric of late Cenozoic volcanism in the Cascade Range, Mount Rainier to Mount Hood; crustal blocks, crustal tectonics and subduction zone considerations [abs]: Eos, Transactions, American Geophysical Union, v. 71, p. 948.


St. Helens


Alidibirov, M.A., 1993, Laboratory simulations of highly viscous magma fragmentation during volcanic blasts [abs]: Eos, Transactions, American Geophysical Union, v. 74, p. 621.


Anderson, S.W., Fink, J.H., and Rose, W.I., 1990, Volatile content and eruptive behavior of silicic lava domes: A comparison of Santiaguito (Guatemala) and Mount St. Helens (WA.) [abs]: Eos, Transactions, American Geophysical Union, v. 71, p. 1720.


Ashley, R.P., and Evarts, R.C., 1996, Geology of the Mount St. Helens National Volcanic Monument, Washington [abs]: Geological Society of America, Abstracts with Programs, North-Central Section, v. 28, no. 6, p. 44.


Barberi, F., Bertagnini, A., Landi, P., and Principe, C., 1992, A review on phreatic eruptions and


Branch, W.E., 1991, Hydrologic change caused by the eruption of Mount St. Helens, in Ritter,


163-165.


Defant, M.J., and Drummond, M.S., 1991, Mount St. Helens: A potential example of the partial melting of the subducted lithosphere [abs]: Eos, Transactions, American Geophysical Union, v. 72, p. 524.


Defant, M.J., and Drummond, M.S., 1994, reply to comment on "Mount St. Helens: Potential
example of the partial melting of the subducted lithosphere in a volcanic arc": Geology, v. 22, p. 189-190.


Evarts, R.C., 1990, Before Mount St. Helens: The Eocene to Miocene cascade volcanic arc in


Fink, J.H., and Anderson, S.W., 1994, Patterns of degassing in active silicic lava domes [abs]: Eos, Transactions, American Geophysical Union, v. 75, p. 357.

Fink, J.H., and Anderson, S.W., 1994, Patterns of degassing in active silicic lava domes [abs]: Eos, Transactions, American Geophysical Union, v. 75, p. 357.


Fink, J.H., and Kieffer, S.W., 1992, Pyroclastic flows generated by explosive decompression during lava dome collapse [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 628.


Fiske, R.S., and Cashman, K.V., 1990, Terminal velocity partitioning in submarine eruption columns: experiments with real and artificial tephra [abs]: Eos, Transactions, American Geophysical Union, v. 71, p. 1721.


Frenzen, P.M., and Crisafulli, C.M., 1990, Mount St. Helens ten years later; past lessons and


Gardner, J.E., Carey, S., Rutherford, M.J., and Sigurdsson, H., 1995, Petrologic diversity in Mount St. Helens dacites during the last 4,000 years; implications for magma mixing: Contributions to Mineralogy and Petrology, v. 119, p. 224-238.


Garvin, J.B., 1996, Topographic characterization and monitoring of volcanoes via airborne laser


Green, N.L., 1994, comment on "Mount St. Helens: Potential example of the partial melting of the subducted lithosphere in a volcanic arc": Geology, v. 22, p. 188-189.


Hopson, C.A., 1990, Pre-1980 Mount St. Helens volcanic center [abs]: Geological Association of


Kanamori, H., Mori, J., and Harkrider, D.G., 1992, Excitation of atmospheric oscillations by volcanic eruptions [abs]: Eos, Transactions, American Geophysical Union, v. 73, no. 43, p. 634.

Klug, C., and Cashman, K.V., 1992, Vesiculation of May 18, 1980 Mount St. Helens magma [abs]: Eos, Transactions, American Geophysical Union, v. 73, no. 43, p. 628.


Komorowski, J.-C., Glicken, H.X., and Sheridan, M.F., 1991, Secondary electron imagery of


Murray, T.L., 1992, A system for acquiring, storing, and analyzing low-frequency time-series data


Norris, R.D., 1995, Seismic detection of debris avalanches at Mount Rainier and other Cascade volcanoes: Successes and limits [abs]: Eos, Transactions, American Geophysical Union, v. 76, no. 46, p. 651.


assessment [abs]: Eos, Transactions, American Geophysical Union, v. 71, no. 43, p. 1693.


179, 117 p.


Rice, A., 1990, Recent objections to suggestions of high over-pressures in volcanic explosion; their flaws [abs]: Eos, Transactions, American Geophysical Union, v. 71, p. 952.

Rice, A., 1990, Recent objections to suggestions of high overpressures in volcanic explosions and recent experiments purporting to replicate mantle plumes yielding periodic volcanism: Their flaws [abs]: Geological Society of America, Abstracts with Programs, Rocky Mountain Section, v. 22, no. 6, p. 43.


Rosenfeld, C.L., 1992, Natural hazards of the Pacific Northwest, past, present, and future; a field trip guide for western Oregon and Mount St. Helens: Oregon Geology, v. 54, p. 75-86.


Simonds, C.H., and Kieffer, S.W., 1994, Mount St. Helens Volcano (Washington) and Manicouagan impact crater (Quebec); impact and volcanism revisited [abs]: Geological Association of Canada, Program with Abstracts, v. 19, p. 103.


Stanley, W.D., Mooney, W.D., and Fuis, G.S., 1990, Deep crustal structure of the Cascade range
and surrounding regions from seismic refraction and magnetotelluric data: Journal of Geophysical Research, v. 95, p. 19,419-19,438.


Ui, T., 1990, Debris avalanches: their source areas and modes of formation [abs]: Eos, Transactions, American Geophysical Union, v. 71, no. 28, p. 958.


Voight, B., and Sousa, J., 1990, Computational fluid dynamic modeling of volcanic avalanches at Ontake, Japan, and Mount St. Helens, USA [abs]: Eos, Transactions, American Geophysical Union, v. 71, no. 28, p. 959.


Weaver, C.S., and Guffanti, M.C., 1990, The fabric of late Cenozoic volcanism in the Cascade Range, Mount Rainier to Mount Hood; crustal blocks, crustal tectonics and subduction zone considerations [abs]: Eos, Transactions, American Geophysical Union, v. 71, p. 948.


**West Crater**


Indian Heaven


Oregon

Hood


Cribb, J.W., and Barton, M., 1992, The geochemistry of Mt. Hood, Oregon, lavas and pyroclasts: Significance of crustal assimilation and source region characteristics [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 341.


Cribb, J.W., and Barton, M., 1997, Significance of magma mixing on the evolution of compositionally similar lavas and pyroclastic deposits, Mt. Hood, Oregon [abs]: Eos, Transactions, American Geophysical Union, v. 78, no. 17, p. 333.


Natheson, M., and Tilling, R.I., 1992, Conductive heat transfer from an isothermal magma chamber and its application to the measured heat flow distribution from Mount Hood, Oregon [abs]: Eos, Transactions, American Geophysical Union, v. 73, no. 43, p. 647-648.


Weaver, C.S., and Guffanti, M.C., 1990, The fabric of late Cenozoic volcanism in the Cascade Range, Mount Rainier to Mount Hood; crustal blocks, crustal tectonics and subduction zone considerations [abs]: Eos, Transactions, American Geophysical Union, v. 71, p. 948.


Jefferson


Blue Lake Crater

Bacon, S., Balzer, V., Batten, C., and Gere, T., 1996, Quaternary volcanic and glacial stratigraphy on the east flank of the high Cascades near Sisters, Oregon [abs]: Geological Society of America, Abstracts with Programs, Cordilleran Section, v. 28, no. 5, p. 45.


Sand Mountain


Washington

Bacon, S., Balzer, V., Batten, C., and Gere, T., 1996, Quaternary volcanic and glacial stratigraphy on the east flank of the high Cascades near Sisters, Oregon [abs]: Geological Society of America, Abstracts with Programs, Cordilleran Section, v. 28, no. 5, p. 45.


Belknap


North Sister


Glenn, G., 1994, Osumilite, hortonalite, Obsidian Cliffs, McKenzie Pass, Sisters Mountains, Lane County, Oregon: Micronews, v. 28, p. 3-4.


**South Sister**


Glenn, G., 1994, Osumilite, hortonalite, Obsidian Cliffs, McKenzie Pass, Sisters Mountains, Lane County, Oregon: Micronews, v. 28, p. 3-4.


**Bachelor**


Goff, F., 1996, Vesicle cylinders in vapor-differentiated basalt flows: Journal of Volcanology and


**Davis Lake**


Newberry


Fiske, R.S., and Cashman, K.V., 1990, Terminal velocity partitioning in submarine eruption columns: experiments with real and artificial tephra [abs]: Eos, Transactions, American Geophysical Union, v. 71, p. 1721.


Morgan, D.S., Tanner, D.Q., and Crumrine, M.D., 1997, Hydrologic and water-quality conditions


**Devils Garden**


**Squaw Ridge**


**Four Craters**

No references found.

**Cinnamon Butte**


**Crater Lake**

Adam, D.P., 1994, Correlation of Quaternary climate records from the upper Klamath Basin, Oregon and California, with the eastern Pacific marine record [abs]: Geological Society of America, Abstracts with Programs, v. 26, no. 7, p. 256.


Bacon, C.R., 1995, Cascade magmatism at Crater Lake, Oregon [abs]: Geological Society of America, Abstracts with Programs, Cordilleran Section, v. 27, no. 5, p. 3.


Clark, D.H., Bierman, P.R., and Gillespie, A.R., 1995, New cosmogenic 10Be and 26Al measurements of glaciated surfaces, Sierra Nevada, California; they're precise but are they accurate? [abs]: Geological Society of America, Abstracts with Programs, v. 27, no. 6, p. 170.


Dymond, J., and Collier, R.W., 1992, Particle flux measurements in Crater Lake, Oregon; a tool for defining lake budgets and processes [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 197.


McKnight, S.B., and Bacon, C.R., 1992, Olivine speedometry of multi-stage magma mixing at Williams Crater, Crater Lake, Oregon [abs]: Geological Society of America, Abstracts with Programs, Cordilleran Section, v. 24, no. 5, p. 69.


Nakada, S., Bacon, C.R., and Gartner, A.E., 1993, Origin of phenocrysts in porphyritic lavas; the example of pre-Mazama rhyodacites, Crater Lake, Oregon [abs]: Geological Society of America, Abstracts with Programs, v. 25, no. 6, p. 43.


Natheson, M., 1990, Temperatures of springs versus elevation in the vicinity of Crater Lake, Oregon [abs]: Eos, Transactions, American Geophysical Union, v. 71, no. 43, p. 1674.


Weiss, R.F., 1992, Rates and variability of deep water renewal and biological production in deep temperate lakes; Lake Baikal and Crater Lake [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 198.


**Goosenest**


Sisson, T.W., and Layne, G.D., 1992, H₂O contents of basalt and basaltic andesite glass inclusions from four subduction-related volcanoes [abs]: Eos, Transactions, American Geophysical Union, v. 73, no. 14, p. 349.


**Big Bunchgrass**

Imagination Peak

No references found.

Diamond Craters


Sevigny, J.H., 1990, Petrogenesis of alkali olivine basalts, Diamond Craters, Oregon [abs]: Geological Association of Canada, Program with Abstracts, v. 15, p. 120.


Saddle Butte

**Jordan Craters**


**Jackies Butte**

California

Shasta


Lin, J.C., and DePaolo, D.J., 1997, U-Th-Pb Systematics of minerals from Columbia River Basalt: Implications for magma chamber processes [abs]: Eos, Transactions, American Geophysical Union, v. 78, no. 46, p. 804.


Phippen, S.J., 1996, Petrography and geochemistry of a section of the high Cascades of southern Oregon [abs]: Geological Society of America, Abstracts with Programs, North-Central Section, v. 28, no. 6, p. 60.


Sisson, T.W., and Layne, G.D., 1992, H2O contents of basalt and basaltic andesite glass inclusions from four subduction-related volcanoes [abs]: Eos, Transactions, American Geophysical Union, v. 73, no. 14, p. 349.


**Medicine Lake**


Bargar, K.E., 1992, Video-tape of bacteria-like moving particles in fluid inclusions from Medicine Lake volcano, northern California [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 640.


compositional (micro- and ion-probe) study of plagioclase crystals in cummulate gabbroic inclusions from Medicine Lake volcano, CA [abs]: Geological Society of America, Abstracts with Programs, v. 25, no. 6, p. 260.


Grove, T.L., 1993, Corrections to expressions for calculating mineral components in origin of calc-alkaline series lavas at Medicine Lake Volcano by fractionation, assimilation and mixing and experimental petrology of normal MORB near the Kane fracture zone; 22 degrees-25 degrees N, Mid-Atlantic Ridge; discussion: Contributions to Mineralogy and Petrology, v. 114, p. 422-424.


Keen, R.H., 1990, Geological Society of the Oregon Country president's campout (or geological tour), mostly southeastern Oregon; September 7-16, 1990; field guide, 28 p.


Ondrusek, J., Christensen, P.R., and Fink, J.H., 1991, The effects of vesicular textures on TIMS imagery of silicic lava flows [abs]: Eos, Transactions, American Geophysical Union, v. 72, no. 44, p. 523.


Poland, M.P., Buergmann, R.B., and Dzurisin, D., 1996, Crustal deformation at Medicine Lake Volcano, Northern California [abs]: Eos, Transactions, American Geophysical Union, v. 77, p. 146.


Rogers, B.W., and Rice, P.H., 1991, Geology and mineralogy of lava tube caves in Medicine


Sisson, T.W., and Layne, G.D., 1992, H2O contents of basalt and basaltic andesite glass inclusions from four subduction-related volcanoes [abs]: Eos, Transactions, American Geophysical Union, v. 73, no. 14, p. 349.


Wagner, T.P., Grove, T.L., and Donnelly-Nolan, J.M., 1991, Water saturated melting of Lake high-alumina basalts from Medicine Lake volcano (MLV), northern California [abs]: Eos,
Transactions, American Geophysical Union, v. 72, no. 44, p. 548.


Waters, A.C., 1992, Captain Jack's Stronghold; the geologic events that created a natural fortress; Siskiyou County: California Geology, v. 45, p. 135-144.


**Brushy Butte**

No references found.
Big Cave

No references found.

Twin Buttes

No references found.

Tumble Buttes


Potato Butte / Hat Creek


**Lassen**


Berger, G.W., 1991, The use of glass for dating volcanic ash by thermoluminescence: Journal of


Friedman, J.D., Realmuto, V.J., and Frank, D., 1991, Comparison of thermal features of Cordilleran volcanoes using airborne sensing systems, with special reference to Mount St. Helens, WA. [abs]: Geological Society of America, Abstracts with Programs, Cordilleran...


Green, N.L., 1994, Mount St. Helens; potential example of the partial melting of the subducted lithosphere in a volcanic arc; discussion: Geology, v. 22, p. 188-189.


Norris, R.D., 1995, Seismic detection of debris avalanches at Mount Rainier and other Cascade volcanoes: Successes and limits [abs]: Eos, Transactions, American Geophysical Union, v. 76, no. 46, p. 651.


B., 1993, Seismic and field observations of the 26 August, 1993 rockfall at Lassen Peak, California [abs]: Eos, Transactions, American Geophysical Union, v. 74, no. 43, p. 649.


Sorey, M.L., and Ingebritsen, S.E., 1990, Comparison of steam and hot-water discharge rates from hydrothermal system in and adjacent to Lassen Volcanic National Park; California [abs]: Eos, Transactions, American Geophysical Union, v. 71, no. 43, p. 1674.


313
Eagle Lake


Clear Lake


Blakely, R.J., and Stanley, W.D., 1992, The Geysers magma chamber revisited; constraints from ideal-body theory and new density measurements [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 348-349.


Griscom, A., Jachens, R.C., Halvorson, P.F., and Blakely, R.J., 1993, Regional geophysical
setting of gold deposits in the Clear Lake region, California, in Rytuba, J.J., ed., Active
geothermal systems and gold-mercury deposits in the Sonoma-Clear Lake volcanic fields,
289-311.

Griscom, A., Jachens, R.C., Halvorson, P.F., and Blakely, R.J., 1993, A transverse structural belt
associated with gold mineralization and geothermal systems at latitude 39 degrees in the
Coast Ranges of Northern California [abs]: Eos, Transactions, American Geophysical
Union, v. 74, p. 550.

Gross, S., and Rundle, J., 1997, Repeating earthquakes on heterogeneous faults [abs]: Eos,
Transactions, American Geophysical Union, v. 78, no. 46, p. 473.

90, Proceedings, v. 2, p. 401-408.

Hearn, B.C., Jr., Donnelly-Nolan, J.M., and Goff, F.E., 1995, Geologic map and structure
sections of the Clear Lake Volcanics, Northern California: U.S. Geological Survey
Miscellaneous Investigations Series I-2362.

Henstock, T.J., Levander, A., Trehu, A.M., Meltzer, A.S., Beaudoin, B.C., Godfrey, N.J.,
Experiment; anomalously bright reflections in the "slab-gap" region east of the San
Andreas Fault [abs]: Geological Society of America, Abstracts with Programs, v. 28, no.
7, p. 196.

Hulen, J.B., and Walters, M.A., 1993, The Geysers felsite and associated geothermal systems,
alteration, mineralization, and hydrocarbon occurrences, in Rytuba, J.J., ed., Active
geothermal systems and gold-mercury deposits in the Sonoma-Clear Lake volcanic fields,
141-152.

Iyer, H.M., 1992, Seismological detection and delineation of magma chambers: Present status
with emphasis on the western USA, in Johnson, R.W., Mahood, G.A., and Scarpa, R.,

Clear Lake region, northern California Coast ranges [abs]: Eos, Transactions, American
Geophysical Union, v. 74, no. 43, p. 690.

The Geysers geothermal area, California: Report to IRIS-PASSCAL, 4 p.


Mendocino 94 Working Group, 1994, The 94 Mendocino Triple Junction Seismic Experiment; onshore high resolution profiling [abs]: Eos, Transactions, American Geophysical Union, v. 75, p. 474.

Moore, J.N., and Hulen, J.B., 1995, Igneous, thermal, and chemical evolution of The Geysers hydrothermal system, California [abs]: Geological Society of America, Abstracts with


Pulka, F., 1990, Age and character of an ash flow discovered in the subsurface at West Ford Flat, Geysers geothermal field, Northern California [abs]: Eos, Transactions, American Geophysical Union, v. 71, p. 1692.


Stimac, J.A., 1991, Evolution of the silicic magmatic system at Clear Lake, California, from 0.6 to 0.3 Ma.: Queen's University, Ph.D. Thesis, 434 p.


Stimac, J.A., Goff, F.E., and Glassley, W.E., 1992, Crustal xenoliths in the Clear Lake volcanics, California: Transformation of Franciscan assemblage rocks to continental crust? [abs]: Eos, Transactions, American Geophysical Union., v. 73, no. 43, p. 505.


Thompson, R.C., 1992, Structural stratigraphy and intrusive rocks at The Geysers geothermal field: Geothermal Resources Special Report 17, p. 59-64.


Mono Lake

Bursik, M., 1992, How to predict an eruption at Long Valley caldera [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 343.


Hill, D.P., and Pitt, A.M., 1992, Long period earthquakes at mid-crustal depths beneath the western margin of Long Valley caldera, California [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 343.


Stine, S.W., 1990, Late Holocene fluctuations of Mono Lake, eastern California: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 78, no. 3-4, p. 333-381.

Techmer, K.S., Echer, C., and Wenk, H.R., 1996, SEM and TEM/AEM studies of crystallization processes in some natural glasses (pseudotachylytes of the Ivrea-Verbano Zone, northern Italy and quenched volcanic rocks from Mono Lake, California) [abs]: Chemie der Erde, v. 56, no. 4, p. 373-378.

Mono Craters


Bursik, M., 1992, How to predict an eruption at Long Valley caldera [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 343.


Hill, D.P., and Pitt, A.M., 1992, Long period earthquakes at mid-crustal depths beneath the western margin of Long Valley caldera, California [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 343.


Thompson, G.A., Parsons, T., and Smith, R., 1990, Examples of magma overpressure suppressing normal faulting and inhibiting seismicity; Snake River plain, Idaho, Yucca Mountain, Nevada, and Mono Craters, California [abs]: Eos, Transactions, American Geophysical Union, v. 71, no. 43, p. 1622.


Zhang, Y., Stolper, E.M., and Ihinger, P.D., 1995, Kinetics of the reaction $H_2O+O = 2OH$ in rhyolitic and albitic glasses; preliminary results: American Mineralogist, v. 80, no. 5-6, p. 593-612.


**Inyo Craters**


Bryce, J.G., Furman, T., and Reid, J.B., Jr., 1993, Transport of pumice during an extreme hydrologic event; a case study from the Owens River, Eastern California [abs]: Geological Society of America, Abstracts with Programs, v. 25, no. 4, p. 5.

Bursik, M., 1992, How to predict an eruption at Long Valley caldera [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 343.


Connolly, N.T., Jessup, M.J., Pack, S.M., Polissar, P.J., Reynolds, J.L., Reid, J.B., Jr., and Hainsworth, L.J., 1996, A pumice filled oxbow in the floodplain of the Owens River, Long Valley Caldera, California; clues to the events around the 600 yr BP Inyo Crater eruptions [abs]: Eos, Transactions, American Geophysical Union, v. 77, no. 46, p. 802.


Hill, D.P., and Pitt, A.M., 1992, Long period earthquakes at mid-crustal depths beneath the western margin of Long Valley caldera, California [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 343.


Ryerson, F.J., and Harrison, T.M., 1990, Degassing of argon from microclines within the thermal


Long Valley


Behr, J., Bilham, R., and Beavan, J., 1992, Monitoring of magma chamber inflation using a biaxial michelson tiltmeter in Long Valley caldera, California [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 347.


Berry, M.E., 1992, Fault scarp morphology and amount of surface offset on late Quaternary surficial deposits, eastern escarpment of the central Sierra Nevada, CA [abs]: Geological Society of America, Abstracts with Programs, v. 24, no. 7, p. 102.


Bryce, J.G., Furman, T., and Reid, J.B., Jr., 1993, Transport of pumice during an extreme hydrologic event; a case study from the Owens River, Eastern California [abs]: Geological Society of America, Abstracts with Programs, v. 25, no. 4, p. 5.

Bursik, M., 1992, How to predict an eruption at Long Valley caldera [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 343.


Chesterman, C.W., and Kleinhamlpl, F.J., 1991, Travertine Hot Springs, Mono County,


Cousens, B.L., 1992, Geochemistry and isotopic composition of post-caldera basaltic lavas from Long Valley, California [abs]: Eos, Transactions, American Geophysical Union, v. 73, p.
Cousens, B.L., 1995, Sources of Quaternary basaltic magmas of the western Great Basin, USA; Long Valley Caldera and Devils Postpile, California [abs]: Geological Association of Canada, Program with Abstracts, v. 20, p. 20.

Cousens, B.L., 1995, Mantle sources and mantle vs. crustal contributions to Quaternary basaltic volcanism at Long Valley caldera and Devils Postpile National Monument [abs]: Eos, Transactions, American Geophysical Union, v. 76, p. 687.


Diment, W.H., and Urban, T.C., 1990, Temperatures and natural gamma-ray logs obtained in


Fink, J.H., and Kieffer, S.W., 1992, Pyroclastic flows generated by explosive decompression during lava dome collapse [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 628.


Foster, J.G., and Reid, J.B., Jr., 1993, Crustal deformation in eastern Long Valley Caldera, California during the last 600,000 yrs [abs]: Geological Society of America, Abstracts with Programs, v. 25, no. 6, p. 72.


Gardner, J.E., Tait, S., Jaupart, C., and Thomas, R., 1996, Fragmentation of magma during explosive volcanic eruptions; the pumice record [abs]: Eos, Transactions, American Geophysical Union, v. 77, no. 46, p. 818.


Glazner, A.F., and Coleman, D.S., 1994, Cretaceous crustal construction around the Owens 344
Valley between Bishop and Independence, California [abs]: Eos, Transactions, American Geophysical Union, v. 75, p. 583.


Glen, J.M., Coe, R.S., and Boughn, S., 1992, Preliminary estimate of the age of the Matuyama/Bruhnes reversal based on a sedimentary record from Owens Lake, CA. [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 632.


Hill, D.P., and Pitt, A.M., 1992, Long period earthquakes at mid-crustal depths beneath the western margin of Long Valley caldera, California [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 343.


Holt, E.W., and Taylor, H.P., Jr., 1997, $^{18}$O/$^{16}$O mapping and hydrogeology of a short-lived (<25 yr) fumarolic (>500 degrees C) meteoric-hydrothermal event in the upper, partially-welded, 0.76 Ma Bishop Tuff [abs]: Geological Society of America, Abstracts with Programs, v. 29, no. 6, p. 449.


Iyer, H.M., and Dawson, P.B., 1992, Interpreting magma chamber models derived using teleseismic tomography; application to Long Valley, California [abs]: Eos, Transactions, American Geophysical Union, v. 73, no. 25, p. 60.


Izett, G.A., and Obradovich, J.D., 1991, Dating of the Matuyama-Brunhes boundary based on


Johnston, M.J.S., Mueller, R.J., and Langbein, J.O., 1992, Ongoing volcanomagnetic, geodetic and seismicity anomalies observed from mid 1989 in Long Valley Caldera, California


Liddicoat, J.C., 1990, Aborted reversal of the palaeomagnetic field in the Brunhes Normal Chron


Lindley, G.T., and Archuleta, R.J., 1990, Modeling the Fourier amplitude spectrum of local earthquakes from the Coalinga and Mammoth Lakes areas of California [abs]: Eos, Transactions, American Geophysical Union, v. 71, no. 43, p. 1635-1636.


355
Valley Caldera, California, Basin and Range strain, and possible Mono Craters' dike opening from 1990 to 1994 GPS surveys: Geophysical Research Letters, v. 24, no. 9, p. 1003-1006.


Mayeda, K., Koyanagi, S., and Aki, K., 1990, Temporal correlation between Coda Q(-1) and extension rate in the Long Valley caldera, California [abs]: Eos, Transactions, American Geophysical Union, v. 71, p. 1466.


Mayeda, K.M, Koyanagi, S., Hoshiba, M., and Aki, K., 1991, A comparative study of scattering, intrinsic and coda Q(-1) for Hawaii, Long Valley and Central California regions between 1.5 and 15.0 Hz [abs]: Eos, Transactions, American Geophysical Union, v. 72, no. 17, p. 198.


McConnell, V.S., 1993, Post-emplacement alteration beneath the resurgent dome of the Long Valley caldera, California [abs]: Eos, Transactions, American Geophysical Union, v. 74, no. 43, p. 670.

McConnell, V.S., 1994, Applying Sr isotope geochemistry to interpreting the history of the Long Valley caldera, California [abs]: Eos, Transactions, American Geophysical Union, v. 75,


Moos, D., and Zoback, M.D., 1992, Stresses in the Long Valley Caldera, California, from analysis of wellbore breakouts in geothermal exploratory wells [abs]: Eos, Transactions, American Geophysical Union, v. 73, no. 43, p. 559.


Nixon, L.D., and Sanders, C.O., 1992, S-wave attenuation structure of Long Valley Caldera,
using three-component s/p amplitude ratio data [abs]: Eos, Transactions, American Geophysical Union, v. 73, no. 43, p. 347.


Pinter, N., 1995, Faulting on the volcanic tableland, Owens Valley, California: Journal of Geology, v. 103, no. 1, p. 73-83.


Ponko, S.C., and Sanders, C.O., 1992, Inversion for P and S wave differential attenuation structure using the spectral ratio technique, Long Valley, California [abs]: Eos, Transactions, American Geophysical Union, v. 73, no. 43, p. 347.


Poreda, R.J., Ku, T.C.W., and Cerling, T.E., 1995, Cosmogenic ³He exposure ages of June Lake basalts; application to Sierra Nevadan glacial geochronology [abs]: Eos, Transactions, American Geophysical Union, v. 76, no. 46, p. 685.


Reid, J.B., 1990, How long has Long Valley Caldera been swelling?: Evidence from the floodplain of the Owens River [abs]: Eos, Transactions, American Geophysical Union, v. 71, no. 43, p. 1684.


Scotti, O., Grasso, J.R., Bossu, R., and Cotton, F., 1996, Tectonic strain rate as the control parameter for earthquake interactions [abs]: Eos, Transactions, American Geophysical Union, v. 77, no. 46, p. 516.


Shearer, C.K., Connolly, J.R., and Papike, J.J., 1991, Deciphering the volcanic and hydrothermal history recorded in magma exploratory hole LVF51-20, Long Valley, California: A
perspective from isotopic and trace element analysis using secondary ion mass spectrometry [abs]: Eos, Transactions, American Geophysical Union, v. 72, no. 44, p. 550.


Soles, S., 1993, Age of the Tahoe Moraine at Bloody Canyon, Mono County, California, based on tephrochronology: San Jose State University, Master's Thesis, 166 p.


Tiampo, K.F., Hofton, M., Rundle, J.B., and Minster, J.B., 1996, Inversion for the volcanic source at Long Valley, California, using a genetic algorithm technique [abs]: Eos, Transactions, American Geophysical Union, v. 77, no. 46, p. 146.


Verosub, K.L., and Summa, L.L., 1992, Effect of diagenesis on magnetic minerals as determined from unaltered and altered tephra layers [abs]: Eos, Transactions, American Geophysical Union, v. 73, no. 14, p. 94.


Waits, J.R., and Glazner, A.F., 1995, Isotopic and geochemical variations in mantle xenolithic basalts from eastern California [abs]: Geological Society of America, Abstracts with Programs, Cordilleran Section, v. 27, no. 5, p. 82.


Williams, C.A., Rundle, J.B., and Wawersik, W., 1993, Finite element modeling of stresses and deformation in Long Valley, California [abs]: Eos, Transactions, American Geophysical Union, v. 74, no. 43, p. 609.


Red Cones

Cousens, B.L., 1995, Sources of Quaternary basaltic magmas of the western Great Basin, USA; Long Valley Caldera and Devils Postpile, California [abs]: Geological Association of Canada, Program with Abstracts, v. 20, p. 20.


Ubehebe Craters


Evans, D.L., and Arvidson, R.E., 1991, An overview of the geologic remote sensing field experiment (GRSFE) [abs]: Eos, Transactions, American Geophysical Union, v. 72, p. 176.


Golden Trout Creek

Farmer, G.L., Glazner, A.F., and Manley, C.R., 1997, Sources of Late Cenozoic basalts at the Golden Trout Creek volcanic field, southern Sierra Nevada, California [abs]: Eos, Transactions, American Geophysical Union, v. 78, no. 46, p. 815.

Coso


Caruso, C.W., and Malin, P.E., 1993, Structure of the Coso geothermal field, Southern California, from seismic reflection and refraction data [abs]: Eos, Transactions, American Geophysical Union, v. 74, p. 413.


375


Glazner, A.F., and Miller, J.S., 1997, A major lithospheric boundary in eastern California defined by isotope ratios in Cenozoic basalts from the Coso range and surrounding areas [abs]: Geological Society of America, Abstracts with Programs, v. 29, no. 6, p. 69.


Hall, D.L., and Cohen, L.H., 1990, Complex carbonate veins in the Coso geothermal field [abs]:


Lakings, J.D., Malin, P., and Hanks, T.C., 1996, Close-in measurements of microearthquake source parameters at Coso [abs]: Eos, Transactions, American Geophysical Union, v. 77, p. 513.


Miller, J.S., Groves, K.R., and Whitmarsh, R.S., 1996, Sources of the Pleistocene Coso rhyolites; a Nd isotopic perspective [abs]: Eos, Transactions, American Geophysical Union, v. 77, p. 791.

Monastero, F.C., 1997, Evidence for a nascent metamorphic core complex at the Coso Geothermal Area, California [abs]: Eos, Transactions, American Geophysical Union, v. 78, no. 46, p. 659.


Roquemore, G.R., 1997, Update on geologic investigations of recent seismicity in Indian Wells Valley and the Coso Range, California [abs]: Geological Society of America, Abstracts with Programs, Cordilleran Section, v. 29, no. 5, p. 61.

earthquake; northern Mojave Desert to the Coso volcanic field, California: Bulletin of the Seismological Society of America, v. 84, p. 854-862.


Shalev, E., 1993, Vp/Vs tomographic inversion in the Coso region, California [abs]: Eos, Transactions, American Geophysical Union, v. 74, no. 43, p. 420.


Simila, G.W., and Roquemore, G.R., 1995, Post Landers seismicity along the eastern California shear zone from Barstow to the Coso Range, Mojave Desert: Quarterly of San Bernardino County Museum Association, v. 42, p. 43.


Whitmarsh, R.S., Walker, J.D., and Montasero, F.C., 1996, Mesozoic and Cenozoic structural
framework of the Coso range and adjacent areas of eastern California [abs]: Geological Society of America, Abstracts with Programs, Cordilleran Section, v. 28, no. 5, p. 124.


Lavic Lake / Pisgah


Ramos, F.C., and Reid, M.R., 1993, Delineating contamination of basaltic magma by mafic crust
via U/Th disequilibrium determined by TIMS, Pisgah Craters, Mojave desert, California [abs]: Geological Society of America, Abstracts with Programs, Cordilleran and Rocky Mountain Sections, v. 25, no. 5, p. 136-137.


Ross, T.M., 1992, Geologic and paleomagnetic constraints on the timing of initiation and amount of slip on the Rodman and Pisgah faults, central Mojave Desert, California: San Bernardino County Museum Association Special Publication 92-1, p. 75-77.


**Amboy Crater**


384

Interior United States
Idaho

Shoshone


Craters of the Moon


Wapi


Hell’s Half Acre


Wyoming

Yellowstone


Barnosky, E.A., 1992, A positive role for taphonomy and time-averaging as illustrated by mammalian fossils from Lamar Cave, Yellowstone National Park, WY [abs]: Geological Society of America, Abstracts with Programs, Rocky Mountain Section, v. 24, no. 6, p. 2.


Blank, C.E., Cady, S.L., and Pace, N.R., 1997, A new lineage of hyperthermophilic bacteria from Octopus Spring; the deepest divergence in the bacterial line of descent [abs]: Eos, Transactions, American Geophysical Union, v. 78, no. 46, p. 808.


Craig, H., 1997, Helium isotope ratios in Yellowstone Park and along the Snake River Plain: Backtracking the Yellowstone Hotspot [abs]: Eos, Transactions, American Geophysical Union, v. 78, no. 46, p. 801.


Dueker, K., and Humphreys, E., 1993, Relationships between upper mantle velocity structure and the tectonic parabola along the Yellowstone volcanic trend [abs]: Eos, Transactions, American Geophysical Union, v. 74, p. 602-603.

Dueker, K., and Humphreys, E., 1990, Upper mantle velocity structure along the Yellowstone volcanic trend [abs]: Eos, Transactions, American Geophysical Union, v. 71, p. 1558.


Dzurisin, D., 1993, Uplift and subsidence, the deep hydrothermal system, and possible magmatic intrusions at the Yellowstone Caldera, Wyoming [abs]: Eos, Transactions, American Geophysical Union, v. 74, p. 63.


Friedman, I., 1994, Effect of potential geothermal development on the thermal features of Yellowstone National Park; Part 1, Perspective 3; Possible effect of nearby geothermal development on Yellowstone National Park: GSA Today, v. 4, no. 12, p. 297-299.


on NW-trending faults in SW Montana; middle Proterozoic to Neogene history [abs]: Geological Society of America, Abstracts with Program, v. 28, p. 509.


Humphreys, E., Dueker, K., McNamara, D., and Palmer, R., 1993, Anisotropic properties across the Yellowstone Volcanic Track derived from SKS splitting [abs]: Eos, Transactions, American Geophysical Union, v. 74, p. 592.


Kleinman, J.W., and Otway, P.M., 1992, Lake-level monitoring as a tool for studies of crustal


Locke, W.W., 1995, Modelling of an equilibrium Yellowstone icecap [abs]: Geological Society of America, Abstracts with Programs, Rocky Mountain Section, v. 27, no. 4, p. 44.


Meyer, G.A., 1995, Tailings impoundment failure and floodplain sediment contamination along Soda Butte Creek, Yellowstone National Park, MT-WY [abs]: Geological Society of America, Abstracts with Programs, Rocky Mountain Section, v. 27, no. 4, p. 47.


Minor, D.R., and Hamilton, W.L., 1992, Deposits and landforms produced by the Mary Bay and Turbid Lake hydrothermal explosions, Yellowstone National Park [abs]: Eos, Transactions, American Geophysical Union, v. 73, no. 43, p. 637.


Nash, W.P., and Perkins, M.E., 1994, Time-dependant frequency of eruption from the Yellowstone hotspot from 16.5 Ma to the present [abs]: Eos, Transactions, American Geophysical Union, v. 75, no. 44, p. 739.


Nash, W.P., Perkins, M.E., and Brown, F.H., 1993, Frequency and composition of explosive eruptions from the Yellowstone hotspot from 14 to 0 Ma [abs]: Eos, Transactions, American Geophysical Union, v. 74, no. 43, p. 593.


Ribe, N.M., 1993, A 3D dynamical model of the Yellowstone hotspot [abs]: Eos, Transactions, American Geophysical Union, v. 74, no. 43, p. 603.


Rinehart, J.S., 1995, Role of long period lunar tidal forces on geyser activity [abs]: Eos, Transactions, American Geophysical Union, v. 76, p. 660.


Russakazov, S.V., 1994, Comparison of volcanism and Late Cenozoic structures of hot spots in Yellowstone and eastern Sayan: Russian Geology and Geophysics, v. 35, p. 54-60.


Shafer, R.E., and Marrs, R.W., 1997, Utilizing hyperspectral imagery for the relating of surficial hydrothermal mineralization to water chemistry [abs]: Geological Society of America, Abstracts with Programs, v. 29, no. 6, p. 41.


Smith, R.B., 1990, Evolution and kinematics of the Yellowstone hotspot [abs]: Geological 
Society of America, Abstracts with Programs, Rocky Mountain Section, v. 22, no. 6, p. 
45.

Smith, R.B., 1991, Earthquake and geodetic surveillance of Yellowstone [abs]: Seismological 
Research Letters, v. 62, p. 27.

Smith, R.B., 1991, Earthquake and geodetic surveillance of Yellowstone [abs]: Geological 

Smith, R.B., and Braile, L.W., 1993, Topographical signature, space-time evolution, and physical 
properties of the Yellowstone-Snake River plain volcanic system; the Yellowstone 
hotspot, in Snoke, A.W., Steidtmann, J.R., and Roberts, S.M., eds., Geology of 

Smith, R.B., and Braile, L.W., 1993, The Yellowstone hotspot: Physical properties, topographic 
and seismic signature, and space-time evolution [abs]: Eos, Transactions, American 
Geophysical Union, v. 74, no. 43, p. 602.

Smith, R.B., and Braile, L.W., 1994, The Yellowstone Hotspot: Journal of Volcanology and 
Geothermal Research, v. 61, p. 121-187.

active faulting, topography, and seismicity of the intermountain region [abs]: Eos, 
Transactions, American Geophysical Union, v. 74, p. 63.

active processes of the Yellowstone Hotspot [abs]: Eos, Transactions, American 
Geophysical Union, v. 78, no. 46, p. 801.

hotspot: Evolution and its topographic, deformation and earthquake signatures [abs]: 
Geological Society of America, Abstracts with Programs, v. 29, no. 6, p. 166.

Smith, R.B., Meertens, C.M., Rubin, A.M., and Ribe, N.M., 1994, Active tectonic processes of 
the Yellowstone Hotspot imaged by topography, earthquakes and GPS [abs]: Geological 
Society of America, Abstracts with Programs, v. 26, no. 7, p. 313.

Smith, R.B., Miller, D.S., and Meertens, C.M., 1994, Active tectonics of the Yellowstone 
Hotspot imaged by earthquakes and GPS [abs]: Eos, Transactions, American Geophysical 
Union, v. 75, p. 65.

volcanic features of the Yellowstone volcanic field. [abs]: IAVCEI General Assembly
Abstracts, p. 135.


Smith, R.B., and Rubin, A.M., 1994, Rapid reversal of uplift to subsidence at the Yellowstone Caldera by magmatic processes imaged by earthquakes [abs]: Seismological Research Letters, v. 65, p. 56.


Sorey, M.L., Evans, W.C., and Kharaka, Y.K., 1995, Effects of potential geothermal development on the thermal features of Yellowstone National Park; Part 2, Perspective 4;


Tiller, C.C., and Kelts, K.R., 1995, Tectonism or climate? Unraveling the primary mechanism
affecting sediments stratigraphy in greater Yellowstone's large lakes [abs]: Geological Society of America, Abstracts with Program, v. 27, p. 58.


Walsh, J., 1994, Yellowstone Park; the first of many, the grandest of all: Exploration and mapping of the national parks, American Library Association, Map and Geography Round Table Occasional Paper 4, 252-285 p.


Waschbush, P.J., 1994, Models of continental deformation; studies of foredeep basins, continental hot spots and intracratonic basins: Massachusetts Institute of Technology, Ph.D. Thesis.


Werner, C., Brantley, S., and Boomer, K., 1997, Application of stratified adaptive sampling to measure CO2 emissions in the Mud Volcano Thermal Area, Yellowstone [abs]: Eos, Transactions, American Geophysical Union, v. 78, no. 46, p. 831.


Wilson, J.T., 1990, In the Southwestern United States hot spot plumes vertically uplift mountains, producing unusual structures; this suggests a major revision of tectonic theory [abs]: Geological Society of America, Abstracts with Programs, v. 22, no. 7, p. 226.


Nevada

Steamboat Springs


**Lunar Crater**


Evans, D.L., and Arvidson, R.E., 1991, An overview of the geologic remote sensing field experiment (GRSFE) [abs]: Eos, Transactions, American Geophysical Union, v. 72, p. 176.


Farrand, W.H., 1991, Reduction and analysis of geologic remote sensing field experiment AVIRIS data; examples from the Lunar Crater volcanic field, Nevada [abs]: Eos, Transactions, American Geophysical Union, v. 72, p. 177.


Shepard, M.K., 1994, Application of cosmogenic exposure age dating and remote sensing


Crater Flat


deformation of the Yucca Mountain (Nevada) region [abs]: Geological Society of
America, Abstracts with Programs, v. 28, no. 7, p. 192.

volcanism in Crater Flat, Nevada [abs]: Geological Society of America, Abstracts with
Programs, Cordilleran Section, v. 22, no. 3, p. 23.

through active tectonic research [abs]: Geological Society of America, Abstracts with

Fridrich, C., and Price, J., 1992, Tectonic framework of Crater Flat Basin, adjacent to Yucca
Mountain, Nevada; a preliminary report [abs]: Geological Society of America, Abstracts
with Programs, v. 24, no. 7, p. 189-190.

Structural control of basaltic volcanism in a region of oblique extension, Southwest
Nevada volcanic field [abs]: Eos, Transactions, American Geophysical Union, v. 75, p.
603.

Frizzell, V.A., and Shulters, J., 1990, Geologic Map of the Nevada Test Site, southern Nevada:

Harrington, C.D., Krier, D.J., Raymond, R., Jr., and Reneau, S.L., 1991, Barium concentration in
rock varnish; implications for calibrated rock varnish dating curves: Scanning

Harrington, C.D., Whitney, J.W., Jull, A.J.T., and Burr, G.S., 1993, Preliminary analysis of
erosionally enhanced scarps associated with faults in Crater Flat, Nevada [abs]: Eos,
Transactions, American Geophysical Union, v. 74, p. 403.

Heizler, M.T., McIntosh, W.C., Wilch, T.I., and Stroud, J., 1997, 40Ar/39Ar dating of basalts
younger than 100 ka [abs]: Eos, Transactions, American Geophysical Union, v. 78, no.
46, p. 771.

Heizler, M.T., Perry, F.V., Peters, L., and Applet, R., 1995, A compilation of xenolith and whole
rock 40Ar/39Ar dating results from Lathrop Wells, near the proposed Yucca Mountain
radioactive waste site, Nevada [abs]: Geological Society of America, Abstracts with
Programs, v. 27, no. 6, p. 108.


Perry, F.V., and Crowe, B.M., 1990, Polycyclic volcanism and waning magmatism at a small-volume volcanic field, Crater Flat, Nevada [abs]: Eos, Transactions, American Geophysical Union, v. 71, no. 43, p. 1683.


Poths, J., and Crowe, B.M., 1992, Surface exposure ages and noble gas components of volcanic units at the Lathrop Wells volcanic center, Nevada [abs]: Eos, Transactions, American Geophysical Union, v. 73, no. 43, p. 610.


Thompson, G.A., Parsons, T., and Smith, R., 1990, Examples of magma overpressure suppressing normal faulting and inhibiting seismicity; Snake River plain, Idaho, Yucca Mountain, Nevada, and Mono Craters, California [abs]: Eos, Transactions, American Geophysical Union, v. 71, no. 43, p. 1622.


Williams, W.J.W., Poths, J., Anthony, E., Olinger, C.T., Whitelaw, M., and Geissman, J., 1992, Magmatic 3He/4He signatures, 3He surface exposure dating and paleomagnetism of Quaternary volcanics in the Rio Grande Rift, New Mexico [abs]: Eos, Transactions, American Geophysical Union, v. 73, no. 43, p. 610.


Utah

Santa Clara


Kolob


Nelson, S.T., 1993, Geochemical variations along a hot spot trace, southwest Utah [abs]: Eos, Transactions, American Geophysical Union, v. 74, no. 43, p. 632.


**Bald Knoll**


Markagunt Plateau


Mattox, S.R., 1992, Source and process control of the geochemical variation in Late Cenozoic basalts across the Utah transition zone [abs]: Eos, Transactions, American Geophysical Union, v. 73, no. 43, p. 657.


Millings, V.T., III, Green, J.D., and Nusbaum, R.L., 1993, Latest Quaternary volcanism in the St. George Basin, southwestern Utah [abs]: Geological Society of America, Abstracts with Programs, Southeastern Section, v. 25, no. 4, p. 58


Sarkisian, D., and Nelson, S.T., 1992, Tectonomagnetic transitions and basalt geochemistry, southwest Utah [abs]: Eos, Transactions, American Geophysical Union, v. 73, no. 43, p. 657.


Black Rock Desert


Colorado

Dotsero


Parkview Mountain

Nelson, J.S., and Oelfke, S.M., 1996, Parkview mountain, Quaternary volcanism in the Rabbit Ears range, north-central Colorado (Grand and Jackson Counties) [abs]: Geological Society of America, Abstracts with Programs, v. 28, no. 7, p. 503.
Arizona

Uinkaret


Anonymous, 1995, Conflict of water and fire; remote sensing imagery of the Uinkaret volcanic field, Grand Canyon, Arizona: Fifth Annual Jet Propulsion Laboratory Airborne Earth Science Workshop, p. 5.


**Sunset Crater / San Francisco Field**


Crater, Arizona; implications for the fossil record [abs]: American Quaternary Association, Conference, Program and Abstracts, v. 14, p. 64.


Finnemore, S.L., and Self, S., 1991, Fire Mountain behavior determined from basaltic spatter deposit, the Sproul, San Francisco volcanic field, Flagstaff, AZ. [abs]: Eos, Transactions, American Geophysical Union, v. 72, p. 566.


New Mexico

Carrizozo


Zuni-Bandera

Andrew, J.E., 1995, Chemical and spatial evolution of the Northern Chain of Craters: Implications for the history of the Quaternary basaltic Zuni-Bandera volcanic field and the volcanism around the Colorado Plateau: University of New Mexico, Masters Thesis, 137 p.


Andrew, J.E., and Kudo, A.M., 1994, Temporal, spatial, and chemical pattern of Quaternary basaltic volcanism in the Zuni-Bandera volcanic field Cibola County, New Mexico [abs]: New Mexico Geology, v. 16, no. 3, p. 60.


Cooper, J.L., 1990, Xenoliths and basaltic lavas from the Colorado Plateau transition zone: a combined investigation [abs]: Eos, Transactions, American Geophysical Union, v. 71, p. 661.


Dunbar, N.W., and Phillips, F.M., 1994, $^{36}$Cl surface exposure determinations of eruption ages for Quaternary lava flows of the Zuni-Bandera volcanic field [abs]: New Mexico Geology, v. 16, no. 4, p. 80.


Laughlin, A.W., Perry, F.V., and WoldeGabriel, G., 1994, Geochronology and geochemistry of basalts of the Zuni-Bandera volcanic field; a review and update [abs]: New Mexico Geology, v. 16, p. 60.


McIntosh, W.C., 1994, 40Ar/39Ar Geochronology of Late Miocene to Pleistocene basalts of the Zuni-Bandera, Red Hill-Quemado, and Potrillo volcanic fields, New Mexico [abs]: New


basaltic lava flows; central Zuni-Bandera volcanic field, NM [abs]: Geological Society of America, Abstracts with Programs, v. 28, no. 7, p. 378.


Sims, K.W.W., DePaolo, D.J., Murrell, M.T., and Baldridge, W.S., 1994, \(^{238}\text{U-}^{230}\text{Th}\) disequilibrium in young basalts: Implications for eruptive ages, residence times and petrogenesis [abs]: New Mexico Geology, v. 16, no. 4, p. 79-80.


Valles Caldera / Jemez Mountains


Albrecht, A., Herzog, G.F., Klein, J., Middelton, R., Dezfooly-Arjomandy, B., Goff, F., and Caress, M.E., 1992, Quaternary exposure and erosion history of the eastern flank of the Valles Caldera (New Mexico) inferred from cosmogenic nuclide measurements [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 129.


Austin, G.S., 1994, Pumice mining and environmental concerns in New Mexico [abs]: New Mexico Geology, v. 16, p. 60.


Baldridge, W.S., Vaniman, D.T., and Brunfelt, A.O., 1997, Magmagenesis and crustal underplating beneath the Jemez Volcanic Field, New Mexico (USA) [abs]: Eos, Transactions, American Geophysical Union, v. 78, no. 46, p. 826.


Binns, P.R., 1992, Geophysical interpretation of the central Rio Grande Rift, Abiquiu to Santa Fe, New Mexico: University of California, Riverside, Master's Thesis, 103 p.


464

Caress, M.E., 1994, Feldspar compositions from the Bandelier Tuff, New Mexico; insights into magma chamber processes [abs]: Eos, Transactions, American Geophysical Union, v. 75, p. 748-749.


Heiken, G., 1990, Scientific proposals for a continuing scientific drilling program in the Valles-


Holliday, V.T., 1990, Stop 6; Age of the lower Blackwater Draw Formation at Blanco Canyon, in Gustavson, T.C., ed., Tertiary and Quaternary Stratigraphy and Vertebrate Paleontology of Parts of Northwestern Texas and Eastern New Mexico, University of Texas at Austin, Bureau of Economic Geology, Guidebook 24, p. 52-55.


Horn, M., 1997, Vitric-sillar zonation in the Bandelier Tuff [abs]: Eos, Transactions, American Geophysical Union, v. 78, no. 46, p. 179.


Lavine, A., 1994, Sedimentologic and temporal relationships between volcanic and volcaniclastic rocks of the Keres Group, Jemez Mountains, New Mexico [abs]: Eos, Transactions, American Geophysical Union, v. 75, p. 732.

Lavine, A., 1995, Sedimentologic and temporal relationships between volcanic and volcaniclastic rocks of the Keres Group, Jemez mountains, New Mexico [abs]: New Mexico Geology, v. 17, no. 2, p. 25.


Lutter, W., Thurber, C., Roberts, P., Fehler, M., and Steck, L., 1994, Teleseismic P-wave image of crustal structure beneath Valles Caldera, New Mexico; initial results from the 1993 JTEX passive array [abs]: Eos, Transactions, American Geophysical Union, v. 75, p. 242.


McIntosh, W.C., and Dunbar, N.W., 1996, Chronology of tephra deposits in Rio Grande basin-fill sequences, central and southern New Mexico [abs]: New Mexico Geology, v. 18, no. 2, p. 50.


Newman, B.D., and Campbell, A.R., 1995, Examination of the spatial and temporal order of
calcite precipitation in Bandelier Tuff fractures, Los Alamos, New Mexico [abs]: Geological Society of America, Abstracts with Programs, v. 27, no. 6, p. 423.


Rogers, J.B., 1994, Terraces of the Jemez River; preliminary constraints on Quaternary incision, terrace ages, and breaching of the Valles Caldera, Jemez Mountains, New Mexico [abs]: Geological Society of America, Abstracts with Programs, Rocky Mountain Section, v. 26, no. 6, p. 61-62.


482


Shevenell, L., and Goff, F., 1995, The use of tritium in groundwater to determine fluid mean...

483


Spell, T.L., Kyle, P.R., McDougall, I., and Doulgeris, A.P., 1994, 40Ar/39Ar ages and geochemistry of the Cerro Toledo Rhyolite and associated tephra, Jemez volcanic field, New Mexico [abs]: New Mexico Geology, v. 16, p. 36-37.


Spell, T.L., and McDougall, I., 1996, $^{40}$Ar/$^{39}$Ar dating of the Cerro Toledo rhyolite, Jemez volcanic field, New Mexico: Timing of eruptions between two caldera collapse events [abs]: New Mexico Geology, v. 18, no. 2, p. 49-50.


Spell, T.L., McDougall, I., and Harrison, T.M., 1992, Implications of 40Ar/39Ar dating of postcollapse rhyolites in Valles Caldera (New Mexico) for the Pleistocene geomagnetic polarity timescale [abs]: Eos, Transactions, American Geophysical Union, v. 73, no. 43, p. 632.


Wannamaker, P.E., 1992, Tensor controlled-source audiomagnetotellurics; methodology and
comparison with scalar and natural field results [abs]: Eos, Transactions, American Geophysical Union, v. 73, p. 305.


Wilson, J.T., 1990, In the southwestern United States hot spot plumes vertically uplift mountains, producing unusual structures; this suggests a major revision of tectonic theory [abs]: Geological Society of America, Abstracts with Programs, v. 22, no. 7, p. 226.


WoldeGabriel, G., 1990, Diagenetic minerals and Illite/Smectite K/Ar ages from CSDP core hole VC-2B, Valles Caldera, New Mexico [abs]: Eos, Transactions, American Geophysical


Raton-Clayton


### Appendix 1

Alphabetical listing of volcanoes

#### Alaska

#### Aleutian Islands

<table>
<thead>
<tr>
<th>Volcano</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adagdak</td>
<td>28</td>
</tr>
<tr>
<td>Akutan</td>
<td>47</td>
</tr>
<tr>
<td>Amak</td>
<td>54</td>
</tr>
<tr>
<td>Amukta</td>
<td>36</td>
</tr>
<tr>
<td>Atka</td>
<td>32</td>
</tr>
<tr>
<td>Bobrof</td>
<td>24</td>
</tr>
<tr>
<td>Bogoslof</td>
<td>43</td>
</tr>
<tr>
<td>Buldir</td>
<td>21</td>
</tr>
<tr>
<td>Carlisle</td>
<td>38</td>
</tr>
<tr>
<td>Chagulak</td>
<td>36</td>
</tr>
<tr>
<td>Cleveland</td>
<td>38</td>
</tr>
<tr>
<td>Davidof</td>
<td>24</td>
</tr>
<tr>
<td>Fisher</td>
<td>51</td>
</tr>
<tr>
<td>Gareloi</td>
<td>23</td>
</tr>
<tr>
<td>Great Sitkin</td>
<td>30</td>
</tr>
<tr>
<td>Herbert</td>
<td>37</td>
</tr>
<tr>
<td>Isanotski</td>
<td>53</td>
</tr>
<tr>
<td>Kagamil</td>
<td>39</td>
</tr>
<tr>
<td>Kanaga</td>
<td>25</td>
</tr>
<tr>
<td>Kasatochi</td>
<td>31</td>
</tr>
<tr>
<td>Kiska</td>
<td>21</td>
</tr>
<tr>
<td>Koniuji</td>
<td>31</td>
</tr>
<tr>
<td>Little Sitkin</td>
<td>22</td>
</tr>
<tr>
<td>Makushin</td>
<td>45</td>
</tr>
<tr>
<td>Moffett</td>
<td>27</td>
</tr>
<tr>
<td>Okmok</td>
<td>42</td>
</tr>
<tr>
<td>Recheschnoi</td>
<td>40</td>
</tr>
<tr>
<td>Roundtop</td>
<td>54</td>
</tr>
<tr>
<td>Seguam</td>
<td>33</td>
</tr>
<tr>
<td>Segula</td>
<td>22</td>
</tr>
<tr>
<td>Semisopochnoi</td>
<td>22</td>
</tr>
<tr>
<td>Sergieff</td>
<td>31</td>
</tr>
<tr>
<td>Shishaldin</td>
<td>52</td>
</tr>
<tr>
<td>Table Top-Wide Bay</td>
<td>47</td>
</tr>
<tr>
<td>Takawangha</td>
<td>24</td>
</tr>
</tbody>
</table>
Tanaga.............................................................................................................................................24
Uliaga.............................................................................................................................................39
Vsevidof.........................................................................................................................................39
Westdahl........................................................................................................................................50
Yunaska.........................................................................................................................................36

**Alaska**  
**Alaska Peninsula**

<table>
<thead>
<tr>
<th>Volcano</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aniakchak</td>
<td>66</td>
</tr>
<tr>
<td>Black Peak</td>
<td>65</td>
</tr>
<tr>
<td>Chiginagak</td>
<td>70</td>
</tr>
<tr>
<td>Cold Bay</td>
<td>55</td>
</tr>
<tr>
<td>Dana</td>
<td>63</td>
</tr>
<tr>
<td>Denison</td>
<td>98</td>
</tr>
<tr>
<td>Devils Desk</td>
<td>100</td>
</tr>
<tr>
<td>Douglas</td>
<td>103</td>
</tr>
<tr>
<td>Dutton</td>
<td>56</td>
</tr>
<tr>
<td>Emmons Lake</td>
<td>56</td>
</tr>
<tr>
<td>Fourpeaked</td>
<td>102</td>
</tr>
<tr>
<td>Frosty</td>
<td>55</td>
</tr>
<tr>
<td>Griggs</td>
<td>96</td>
</tr>
<tr>
<td>Kaguyak</td>
<td>101</td>
</tr>
<tr>
<td>Katmai</td>
<td>78</td>
</tr>
<tr>
<td>Kialagvik</td>
<td>70</td>
</tr>
<tr>
<td>Kukak</td>
<td>100</td>
</tr>
<tr>
<td>Kupreanof</td>
<td>63</td>
</tr>
<tr>
<td>Mageik</td>
<td>73</td>
</tr>
<tr>
<td>Martin</td>
<td>72</td>
</tr>
<tr>
<td>Novarupta</td>
<td>87</td>
</tr>
<tr>
<td>Pavlof</td>
<td>60</td>
</tr>
<tr>
<td>Pavlof Sister</td>
<td>62</td>
</tr>
<tr>
<td>Snowy</td>
<td>97</td>
</tr>
<tr>
<td>Stellar</td>
<td>98</td>
</tr>
<tr>
<td>Trident</td>
<td>75</td>
</tr>
<tr>
<td>Ugashik-Peulik</td>
<td>71</td>
</tr>
<tr>
<td>Ukinrek Maars</td>
<td>71</td>
</tr>
<tr>
<td>Veniaminof</td>
<td>63</td>
</tr>
<tr>
<td>Yantarni</td>
<td>69</td>
</tr>
</tbody>
</table>
Alaska
Cook Inlet, Western, Eastern, and Southeastern Alaska

<table>
<thead>
<tr>
<th>Volcano</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Augustine</td>
<td>106</td>
</tr>
<tr>
<td>Bona-Churchill</td>
<td>163</td>
</tr>
<tr>
<td>Buzzard Creek</td>
<td>158</td>
</tr>
<tr>
<td>Duncan Canal</td>
<td>166</td>
</tr>
<tr>
<td>Edgecumbe</td>
<td>155</td>
</tr>
<tr>
<td>Espenberg</td>
<td>158</td>
</tr>
<tr>
<td>Gordon</td>
<td>162</td>
</tr>
<tr>
<td>Hayes</td>
<td>153</td>
</tr>
<tr>
<td>Iliamna</td>
<td>155</td>
</tr>
<tr>
<td>Imuruk Lake</td>
<td>155</td>
</tr>
<tr>
<td>Ingakslugwat</td>
<td>156</td>
</tr>
<tr>
<td>Kookooligit</td>
<td>156</td>
</tr>
<tr>
<td>Nunivak Island</td>
<td>156</td>
</tr>
<tr>
<td>Redoubt</td>
<td>117</td>
</tr>
<tr>
<td>Revillagigedo Island</td>
<td>168</td>
</tr>
<tr>
<td>Sanford</td>
<td>158</td>
</tr>
<tr>
<td>Spurr</td>
<td>140</td>
</tr>
<tr>
<td>St. Paul Island</td>
<td>158</td>
</tr>
<tr>
<td>St. Michael</td>
<td>156</td>
</tr>
<tr>
<td>Tlevak Strait-Suemez Island</td>
<td>166</td>
</tr>
<tr>
<td>Wrangell</td>
<td>160</td>
</tr>
</tbody>
</table>
# Canada
## Yukon Territory and British Columbia

<table>
<thead>
<tr>
<th>Volcano</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alligator Lake</td>
<td>171</td>
</tr>
<tr>
<td>Bridge River Cones</td>
<td>187</td>
</tr>
<tr>
<td>Crow Lagoon</td>
<td>182</td>
</tr>
<tr>
<td>Edziza</td>
<td>175</td>
</tr>
<tr>
<td>Fort Selkirk</td>
<td>170</td>
</tr>
<tr>
<td>Garibaldi, Mount</td>
<td>195</td>
</tr>
<tr>
<td>Garibaldi Lake</td>
<td>193</td>
</tr>
<tr>
<td>Heart Peaks</td>
<td>173</td>
</tr>
<tr>
<td>Hoodoo</td>
<td>178</td>
</tr>
<tr>
<td>Iskut-Unuk River</td>
<td>179</td>
</tr>
<tr>
<td>Level Mountain</td>
<td>174</td>
</tr>
<tr>
<td>Meager</td>
<td>188</td>
</tr>
<tr>
<td>Milbanke Sound</td>
<td>183</td>
</tr>
<tr>
<td>Nazko</td>
<td>184</td>
</tr>
<tr>
<td>Ruby Mountain</td>
<td>173</td>
</tr>
<tr>
<td>Satah Mountain</td>
<td>183</td>
</tr>
<tr>
<td>Silverthrone</td>
<td>186</td>
</tr>
<tr>
<td>Spectrum Range</td>
<td>177</td>
</tr>
<tr>
<td>Tseax River</td>
<td>181</td>
</tr>
<tr>
<td>Wells Gray-Clearwater</td>
<td>185</td>
</tr>
</tbody>
</table>
## Western United States
### Washington

<table>
<thead>
<tr>
<th>Volcano</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adams</td>
<td>217</td>
</tr>
<tr>
<td>Baker</td>
<td>200</td>
</tr>
<tr>
<td>Glacier Peak</td>
<td>203</td>
</tr>
<tr>
<td>Indian Heaven</td>
<td>257</td>
</tr>
<tr>
<td>Rainier</td>
<td>205</td>
</tr>
<tr>
<td>St. Helens</td>
<td>220</td>
</tr>
<tr>
<td>West Crater</td>
<td>256</td>
</tr>
</tbody>
</table>

## Oregon

<table>
<thead>
<tr>
<th>Volcano</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor</td>
<td>271</td>
</tr>
<tr>
<td>Belknap</td>
<td>266</td>
</tr>
<tr>
<td>Big Bunchgrass</td>
<td>290</td>
</tr>
<tr>
<td>Blue Lake Crater</td>
<td>264</td>
</tr>
<tr>
<td>Cinnamon Butte</td>
<td>278</td>
</tr>
<tr>
<td>Crater Lake</td>
<td>278</td>
</tr>
<tr>
<td>Davis Lake</td>
<td>272</td>
</tr>
<tr>
<td>Devils Garden</td>
<td>277</td>
</tr>
<tr>
<td>Diamond Craters</td>
<td>291</td>
</tr>
<tr>
<td>Four Craters</td>
<td>278</td>
</tr>
<tr>
<td>Goosenest</td>
<td>290</td>
</tr>
<tr>
<td>Hood</td>
<td>258</td>
</tr>
<tr>
<td>Imagination Peak</td>
<td>291</td>
</tr>
<tr>
<td>Jackies Butte</td>
<td>292</td>
</tr>
<tr>
<td>Jefferson</td>
<td>263</td>
</tr>
<tr>
<td>Jordan Craters</td>
<td>292</td>
</tr>
<tr>
<td>Newberry</td>
<td>273</td>
</tr>
<tr>
<td>North Sister</td>
<td>266</td>
</tr>
<tr>
<td>Saddle Butte</td>
<td>291</td>
</tr>
<tr>
<td>Sand Mountain</td>
<td>265</td>
</tr>
<tr>
<td>Squaw Ridge</td>
<td>278</td>
</tr>
<tr>
<td>South Sister</td>
<td>268</td>
</tr>
<tr>
<td>Washington</td>
<td>265</td>
</tr>
</tbody>
</table>
## Western United States
### California

<table>
<thead>
<tr>
<th>Volcano</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amboy</td>
<td>384</td>
</tr>
<tr>
<td>Big Cave</td>
<td>305</td>
</tr>
<tr>
<td>Brushy Butte</td>
<td>304</td>
</tr>
<tr>
<td>Clear Lake</td>
<td>315</td>
</tr>
<tr>
<td>Coso</td>
<td>375</td>
</tr>
<tr>
<td>Eagle Lake</td>
<td>314</td>
</tr>
<tr>
<td>Golden Trout Creek</td>
<td>375</td>
</tr>
<tr>
<td>Hat Creek</td>
<td>305</td>
</tr>
<tr>
<td>Inyo Craters</td>
<td>330</td>
</tr>
<tr>
<td>Lassen</td>
<td>306</td>
</tr>
<tr>
<td>Lavic Lake</td>
<td>382</td>
</tr>
<tr>
<td>Long Valley</td>
<td>335</td>
</tr>
<tr>
<td>Medicine Lake</td>
<td>296</td>
</tr>
<tr>
<td>Mono Craters</td>
<td>326</td>
</tr>
<tr>
<td>Mono Lake</td>
<td>324</td>
</tr>
<tr>
<td>Pisgah</td>
<td>382</td>
</tr>
<tr>
<td>Potato Butte</td>
<td>305</td>
</tr>
<tr>
<td>Red Cones</td>
<td>374</td>
</tr>
<tr>
<td>Shasta</td>
<td>293</td>
</tr>
<tr>
<td>Tumble Buttes</td>
<td>305</td>
</tr>
<tr>
<td>Twin Buttes</td>
<td>305</td>
</tr>
<tr>
<td>Ubehebe</td>
<td>374</td>
</tr>
</tbody>
</table>
## Interior United States

*Idaho, Wyoming, Nevada, Utah, Colorado, Arizona, and New Mexico*

<table>
<thead>
<tr>
<th>Volcano</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bald Knoll</td>
<td>443</td>
</tr>
<tr>
<td>Black Rock Desert</td>
<td>446</td>
</tr>
<tr>
<td>Carrizooste</td>
<td>456</td>
</tr>
<tr>
<td>Crater Flat</td>
<td>432</td>
</tr>
<tr>
<td>Craters of the Moon</td>
<td>387</td>
</tr>
<tr>
<td>Dotsero</td>
<td>449</td>
</tr>
<tr>
<td>Hell’s Half Acre</td>
<td>390</td>
</tr>
<tr>
<td>Jemez</td>
<td>463</td>
</tr>
<tr>
<td>Kolob</td>
<td>442</td>
</tr>
<tr>
<td>Lunar Crater</td>
<td>427</td>
</tr>
<tr>
<td>Markagunt</td>
<td>444</td>
</tr>
<tr>
<td>Parkview</td>
<td>449</td>
</tr>
<tr>
<td>Raton-Clayton</td>
<td>492</td>
</tr>
<tr>
<td>San Francisco</td>
<td>451</td>
</tr>
<tr>
<td>Santa Clara</td>
<td>441</td>
</tr>
<tr>
<td>Shoshone</td>
<td>387</td>
</tr>
<tr>
<td>Steamboat Springs</td>
<td>426</td>
</tr>
<tr>
<td>Sunset Crater</td>
<td>451</td>
</tr>
<tr>
<td>Uinkaret</td>
<td>450</td>
</tr>
<tr>
<td>Valles</td>
<td>463</td>
</tr>
<tr>
<td>Wapi</td>
<td>389</td>
</tr>
<tr>
<td>Yellowstone</td>
<td>391</td>
</tr>
<tr>
<td>Zuni-Bandera</td>
<td>457</td>
</tr>
</tbody>
</table>