Palynological Evaluation of Cedar Mountain and Burro Canyon Formations, Colorado Plateau
Palynological Evaluation of Cedar Mountain and Burro Canyon Formations, Colorado Plateau

By R. H. Tschudy, B. D. Tschudy, and L. C. Craig

A description of the rocks and age determinations of the formations based upon their pollen and spore content
CONTENTS

Abstract .. 1
Introduction .. 1
Rock units ... 1
Cedar Mountain Formation 2
Burro Canyon Formation 2
Distribution, stratigraphic relations, and interpretation 4
Methods of sample treatment 4
Location of productive samples 6
Cedar Mountain Formation 6
Burro Canyon Formation 6
Upper horizon 6
Lower horizon 7
Palynological analysis—Cedar Mountain Formation 7
Landmark evolutionary events in the development of Angiosperm pollen 9
Age of the upper part of the Cedar Mountain Formation 10
Palynological analysis—Burro Canyon Formation 11
Upper horizon 11
Palynomorph recovery from upper horizon samples 13
Lower horizon 13
Palynomorph recovery from lower horizon samples 15
Age of the upper part of the Burro Canyon Formation 15
Conclusions ... 19
References cited .. 19

ILLUSTRATIONS

[Plates follow index]

PLATES 1-4. Photographs of palynomorphs from Cedar Mountain Formation .
5-9. Photographs of palynomorphs from Burro Canyon Formation .

Figure 1. Graphic sections showing stratigraphic positions of palynomorph collections 3
2. Map of Colorado Plateau area 5
3. Histograms showing percentage distribution of major microfossil groups, Cedar Mountain sample 8
4. Photomicrographs of organic material from Burro Canyon upper horizon samples 12
5. Photomicrograph of thin section of Burro Canyon rock showing bedded nature of organic material 13
6-8. Histograms showing gross palynomorph recovery from:
6. Burro Canyon samples—upper horizon 14
7. Burro Canyon upper and lower horizons—a comparison 14
8. Selected intervals Burro Canyon lower horizon 16

TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Relation of geochronologic terms used and age estimates of boundaries in millions of years before present</td>
<td>2</td>
</tr>
<tr>
<td>2. Stratigraphic ranges of Burro Canyon palynomorph species</td>
<td>18</td>
</tr>
</tbody>
</table>

III
PALYNOLOGICAL EVALUATION OF CEDAR MOUNTAIN AND
BURRO CANYON FORMATIONS, COLORADO PLATEAU

By R. H. Tschudy, B. D. Tschudy, and L. C. Craig

Abstract

By lithologic facies change the Cedar Mountain Formation of eastern Utah passes laterally into the Burro Canyon Formation of western Colorado. Both formations lie between the Dakota Sandstone and Morrison Formation. Few fossils have been found in the Cedar Mountain and Burro Canyon Formations, and consequently the age span attributed to these formations has been uncertain.

The overlying Dakota Sandstone in these two areas is palynologically of early Cenomanian age. The first occurrence of the angiosperm fossil pollen, *Nyssapollenites albertensis* Singh, found in the basal Dakota, is proposed as the palynological indicator of the Early-Late Cretaceous boundary in the Western Interior. Palynomorphs found in the upper parts of both the Cedar Mountain and Burro Canyon Formations are more advanced than are those found in the upper part of the Morrison Formation in the same general area. Consequently, the upper parts of the Cedar Mountain and Burro Canyon Formations that yielded palynomorphs are palynologically of Early Cretaceous age.

The palynomorph assemblage found in the upper part of the Cedar Mountain Formation date this horizon as late Albian. The Burro Canyon assemblages were somewhat less distinctive, exhibiting evidence of sequential biofacies changes, and one sample exhibited an unusual lithotype somewhat suggestive of algal origin. Nevertheless, the palynological age of the upper part of the Burro Canyon Formation is clearly older than that of the Cedar Mountain sample. The age of the Burro Canyon sample is estimated to be Aptian to early Albian with the possibility of being as old as Barremian (latest Neocomian). Thus, samples from the upper parts of these two physically equivalent formations show a difference in age. We speculate that pre-Dakota erosion may have removed beds equivalent to the upper Cedar Mountain at the Burro Canyon locality, and that the Neocomian may be represented in the still undated lower parts of the Cedar Mountain and Burro Canyon Formations.

Introduction

The Burro Canyon Formation of western Colorado and the physically equivalent Cedar Mountain Formation of eastern Utah, both of Early Cretaceous age, have received considerable geologic attention since their definition by Stokes and Phoenix (1948) and Stokes (1944, p. 965-967). Both formations have proved valid as mappable units, yet concern remains about the age and detailed relations of these formations, both to the underlying Morrison Formation of supposed Late Jurassic age and to the overlying Dakota Sandstone of earliest Late Cretaceous age. All students of the Burro Canyon and Cedar Mountain Formations agree that, at least in part, the formations pass laterally by lithologic change into each other.

Upper parts of the Burro Canyon and Cedar Mountain have been interpreted as passing laterally into the overlying Dakota Sandstone (Young, 1960, p. 158) and as separated from it by an erosional disconformity (Craig and others, 1955, p. 161; Carter, 1957, p. 313). The Burro Canyon has also been interpreted as intertonguing with the underlying Brushy Basin Member of the Morrison Formation (Craig and others, 1961, p. 1583) and as separated from the Morrison by a disconformity (Young, 1960, p. 169). These differences of interpretation serve to emphasize the importance of age determinations from either the Cedar Mountain or Burro Canyon Formations and adjoining beds. Unfortunately, both the Cedar Mountain and Burro Canyon Formations contain few fossils. Young (1960, p. 180-181) summarized the knowledge of the limited invertebrate fauna and megaflora. The Aptian or Albian Age (table 1) determined for these fossils accounts for the assignment of the Burro Canyon and Cedar Mountain to the Early Cretaceous.

The recognition of palynomorphs in samples from the Burro Canyon led to the hope that more could be learned from the plant microfossils about the ages of the Burro Canyon and Cedar Mountain Formations and adjacent beds. Considerable search for likely fossiliferous beds resulted in the collection of numerous samples, most of which proved to be barren of palynomorphs. A few samples, however, contained suites of palynomorphs, and these new data and the interpreted ages are presented in this report.

Acknowledgments.—We thank Sharon Van Loenen for her assistance in the preparation of illustrations, the photography of specimens, and other aspects of the preparation of this manuscript.

Rock units

A summary of the characteristics of the Cedar Mountain and Burro Canyon Formations near the fossil sites follows; figure 1 shows the stratigraphic position of the productive palynomorph collections discussed in this paper.

1
Table 1.—Relation of geochronologic terms used in this report and age estimate of boundaries in millions of years before present, based on Lanphere and Jones (1978)

<table>
<thead>
<tr>
<th>PERIOD</th>
<th>EPOCH</th>
<th>AGE</th>
<th>AGE ESTIMATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cretaceous (part)</td>
<td>Late Cretaceous (part)</td>
<td>Cenomanian (part)</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>Early Cretaceous</td>
<td>Aptian</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Barremian</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hauterivian</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valanginian</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Berriasian</td>
<td>138</td>
</tr>
<tr>
<td>Jurassic (part)</td>
<td>Late Jurassic (part)</td>
<td>Portlandian</td>
<td></td>
</tr>
</tbody>
</table>

CEDAR MOUNTAIN FORMATION

The Cedar Mountain consists of a relatively thin basal conglomeratic sandstone unit, the Buckhorn Conglomerate Member, and a relatively thick upper shale unit, the shale member. The shale member consists of silty to sandy swelling mudstones that show relatively thick color zones of pastel shades. Some of the mudstone units contain abundant limestone nodules that cover the weathered slopes of the member. Minor constituents of the member are thin, broadly lenticular limestone beds, and a few sandstone units, which are generally cross bedded, may contain lenticles of granule to pebble conglomerate, and appear fluvial in origin. The carbonaceous mudstone from which the palynomorphs were collected is almost unique in the Cedar Mountain.

The Cedar Mountain differs from the Burro Canyon in that the shale member consists dominantly of pastel-colored claystone, including purples and reds, as well as green; it is composed of swelling clays and it generally contains an abundance of limestone nodules that cover the weathered slopes. The Cedar Mountain Formation differs from the underlying Brushy Basin Member of the Morrison Formation in that it lacks the brilliant colors of the Brushy Basin, it lacks the distinct color banding, and it has abundant limestone nodules. The Cedar Mountain is distinguished from the Dakota Sandstone by the general absence of carbonaceous layers in the mudstone of the Cedar Mountain and the presence of carbonaceous shale and plant remains in the sandstone beds of the Dakota.

The palynomorph collections reported here come from a single carbonaceous unit near the top of the formation (fig. 1) in the SE1/4SW1/4, sec. 17, T. 19 S., R. 9 E., Emery County, Utah. The locality is about 16 km southwest of the type locality of the Cedar Mountain Formation (Stokes, 1952, p. 1773). This carbonaceous unit also has provided a small invertebrate and megaflora suite reported by Katich (1951, p. 2098–2094).

BURRO CANYON FORMATION

The Burro Canyon is a sequence of alternating lenticular conglomeratic sandstone beds and variegated, mostly greenish-gray, nonswelling mudstone beds. The sandstone units generally dominate in the lower part of the formation, whereas the mudstone is more abundant in the upper part of the formation. Minor rock components are limestone and chert beds.

The formation is distinguished from the underlying Brushy Basin Member in that it consists of coarse, generally conglomeratic, sandstone and interbedded dominantly greenish-gray mudstone, composed of nonswelling clay. The Brushy Basin contains only a few conglomeratic sandstone beds, particularly in its upper part, and is composed dominantly of alternating red, green, and gray mudstone that contains swelling clay, and forms distinctly color-banded outcrops. The Burro Canyon Formation is distinguished from the overlying Dakota Sandstone by the greenish mudstone and by the absence of carbonaceous material and organic-rich shale, lignite, or coal. The Dakota consists of interbedded sandstone and carbonaceous shale; the sandstone is in part conglomeratic and generally contains much carbonaceous debris and common impressions of twigs, stems, and branches.

The collections of palynomorphs reported here came from two carbonaceous shale units (fig. 1) in the upper shaly part of the Burro Canyon exposed in a small tributary of Disappointment Creek in the NE1/4, sec. 11, T. 43 N., R. 18 W. The fossil locality is 6.2 km southeast of the type locality of the Burro Canyon Formation (in Burro Canyon, sec. 29, T. 44 N., R. 18 W., San Miguel County, Colo.). Neither of the carbonaceous units have been recognized at the type locality. The upper carbonaceous unit is the same unit that has pro-
Emery County, Utah
Sec. 34, 35, T. 18 S., R. 9 E.
Sec. 3, 4, T. 19 S., R. 9 E.

San Miguel County, Colorado
Sec. 11, T. 43 N., R. 18 W.

CONCLUSION

EXPLANATION

- Conglomeratic sandstone
- Crossbedded sandstone
- Variegated mudstone or claystone
- Carbonaceous mudstone or shale
- Limestone
- Cherty or silicified limestone
- Calcareous mudstone or shale
- Limestone nodules
- Fossil-bearing layers

FIGURE 1. Graphic sections showing stratigraphic positions of palynomorph collections. A, Section of Cedar Mountain Formation near type locality of formation; fossil-bearing carbonaceous lens sketched on basis of position beneath the Dakota Sandstone at fossil locality. B, composite section of Burro Canyon Formation measured at fossil localities.
duced a small invertebrate fauna and megafauna re-

DISTRIBUTION, STRATIGRAPHIC RELATIONS, AND INTERPRETATION

The Burro Canyon formation is recognized over a broad area in southeastern Utah and western Colorado (fig. 2), and recently the name has been extended to similar rocks occupying a similar stratigraphic position in the Chama basin of north-central New Mexico (Saucier, 1974).

The southern limit of the Burro Canyon is an erosional limit where the Burro Canyon is cut out by the regional unconformity at the base of the overlying Dakota Sandstone. This limit is along a northwest-trending line that passes near the Four Corners. South of this limit, the pre-Dakota unconformity progressively bevels the Morrison Formation and older formations southward.

To the east, beds equivalent to the Burro Canyon are believed to be present in central and eastern Colorado (Lytle Formation of Dakota Group along the Front Range foothills and Lytle Sandstone Member of Purgatoire Formation in southeast Colorado). The Burro Canyon itself reaches a poorly known pinchout along an irregular north-south line extending from northwestern Colorado to northwestern New Mexico (fig. 2). The nature of this pinchout is uncertain. In part it is probably the result of pre-Dakota erosion, but in part it also may be due to depositional thinning of the formation. In the poor exposures along the few outcrop belts that cross the pinchout, the sandstone beds in the Burro Canyon appear to thin as the pinchout is approached. However, pre-Dakota erosion seems the most important factor in the pinchout of the formation.

The Cedar Mountain Formation is recognized over much of south-central and northeastern Utah and northwestern Colorado. The southern limit is south of the Henry Mountains and is an erosional limit along which the Cedar Mountain is cut out by the erosional unconformity at the base of the Dakota. The western limit is poorly known but it extends beneath the high plateaus of central Utah. To the north, the formation is identified to the Wyoming State line in both northwestern Utah and northwestern Colorado. Equivalent beds in Wyoming are included in the Cloverly Formation.

The arbitrary lateral limit between the Burro Canyon Formation and the Cedar Mountain Formation is placed along the Colorado River in Utah (Stokes, 1952, p. 1774), although for a distance of about 40 km west of the river the characteristics of the two formations intermingle.

To the north in Colorado, the Burro Canyon Formation passes laterally into the Cedar Mountain Formation. In this area north of the Colorado River, the line of demarcation between the Burro Canyon and Cedar Mountain is placed where Burro Canyon characteristics give way to Cedar Mountain characteristics in the subsurface as interpreted from drillhole logs.

Based on thickness, percentage of sandstone, pebble size, and limited current-direction studies, the Burro Canyon and Cedar Mountain are interpreted as sediments from two alluvial systems deposited across a broad even surface on top of the Morrison Formation; in many respects they appear to represent a continuation of Morrison deposition. The major source for the Burro Canyon was southwest of the Four Corners, perhaps in southern Arizona. Burro Canyon deposits were spread northward and eastward from a major depositional axis along the southern part of the Utah-Colorado State line. The source for the Cedar Mountain Formation was somewhere west of the high plateaus in central Utah, and Cedar Mountain deposits were spread eastward.

METHODS OF SAMPLE TREATMENT

Samples were first cleaned, then broken into fragments about 1–5 mm (millimeters) in diameter. 10–20 g (grams) of broken rock were placed in plastic beakers and tested for the presence of carbonates. If carbonates were present, the samples were then treated with 10-percent HCl to remove carbonates; otherwise they were treated directly with hydrofluoric acid to disaggregate and partly dissolve the inorganic matrix. After thorough washing, the centrifuged residue was treated with the oxidizing Schulze¹ solution (HNO₃ + NaClO₃). After washing, the acid humates were solubilized and removed by a short treatment with 10-percent NaOH solution. Pollen and spores (and insoluble organic matter) were concentrated from the residue by flotation in zinc bromide solution (specific gravity about 2.0) and then “panned” by means of the technique suggested by Funkhouser and Evitt (1959). The palynomorphs were then stained with Bismark Brown, if necessary, and then mixed with Vinyllite AYAF in 90-percent alcohol (polyvinyl acetate plastic, refractive index 1.466).

Several drops of the palynomorph-plastic mixture were placed on a 22×40 mm cover glass and another cover glass was placed on the mixture, thus making a “sandwich.” After the plastic had spread evenly to the margins, the cover glasses were separated by sliding them in opposite directions lengthwise in much the

¹Trade names used in this paper are for descriptive purposes only and do not constitute endorsement by the U.S. Geological Survey.
FIGURE 2.—Map of Colorado Plateau area showing fossil sample localities, sample numbers, and distribution of Cedar Mountain (Kcm) and Burro Canyon (Kbc) Formations. Zero line marks pinchout of Burro Canyon and Cedar Mountain Formations (dashed where uncertain). Dotted line is arbitrary line separating areas in which Burro Canyon and Cedar Mountain are recognized.
same manner as a blood smear is made. After the film on the cover glasses had dried for a few minutes on a warming plate, the cover glasses were inverted and mounted on slides using Histoclad resin. This method provides a thin, evenly dispersed film of pollen and spores in a mountant of favorable refractive index. It serves to anchor the fossils close to the cover glass so that they can be examined conveniently even under high-power oil-immersion lenses.

Slides are identified by locality number (D5510-A), and slide number D5510-A (1) or D5510-A (2); and on occasion processing sequence is also included as preparation 1 (prep. 1, prep. 2) and fraction—heavy fractions, fine fraction (Hvs; fines.): for example, D5785—A, prep. 4, Hvs., slide 5.

Minor modifications of oxidation time, cleaning procedures, and staining were tried with some success in efforts to improve the quality of some preparations.

LOCATION OF PRODUCTIVE SAMPLES
CEDAR MOUNTAIN FORMATION

Two Cedar Mountain samples were obtained from the locality known as the Stokes-Katic locality (Simmons, 1957, p. 2527). Samples were taken from a 1.5-m-thick, dark-gray calcareous shale outcrop in a cliff. The outcrop was about 13.9 m below the Dakota contact. The lower sample, consisting of gray calcareous siltstone interspersed with small calcite crystals, was barren of palynomorphs. The upper sample, consisting of dark-gray laminated shale and black claystone, was productive and was assigned a USGS paleobotany locality number as indicated below:

<table>
<thead>
<tr>
<th>USGS paleobotany loc. No.</th>
<th>Field No.</th>
<th>Locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>D5785</td>
<td>3RT-77-7</td>
<td>SE1/4SW1/4 sec. 17, T. 19 S., R. 9 E., ¼ mi west of the junction of Rock Canyon Creek and Cottonwood Creek, Emery County, Utah. (Stokes-Katic locality in Simmons, 1957, p. 2527).</td>
</tr>
</tbody>
</table>

BURRO CANYON FORMATION
UPPER HORIZON

Productive samples were obtained from two horizons. The upper horizon consisted of a 1.5-m-thick layer of black fissile shale located 7.3 m below the base of the Dakota Sandstone and immediately above a prominent limestone ledge. This is the same general locality from which fossils were collected by Stokes (1952) and the identical locality visited by G. C. Simmons and D. R. Shawe, and later revisited by L. C. Craig and others (Simmons, 1957, p. 2525). Several collections for palynological examination were taken from this locality during the summer of 1976. The yield of palynomorphs from these samples was so poor that resampling was conducted at the same site and along the lateral extent of the outcrop in the summer of 1977 and again in 1978. Sample number and localities for the upper horizon of the Burro Canyon Formation are listed below:

<table>
<thead>
<tr>
<th>USGS paleobotany loc. No.</th>
<th>Field No.</th>
<th>Locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>D5510—A</td>
<td>RT-76-6</td>
<td>¼NW¼NE¼ sec. 11, T. 48 N., R. 18 W., in northwest wall of an intermittent stream bed about 330 m south of its junction with Disappointment Creek, Hamm Canyon quadrangle, San Miguel County, Colo. Approximately 1.5-m-thick ledge of black fissile shale, 7.3 m below Burro Canyon-Dakota contact. Sample 5 cm above limestone ledge at base of shale.</td>
</tr>
<tr>
<td>D5510—B</td>
<td>RT-76-7</td>
<td>Same locality as D5510—A, 81 cm above limestone ledge.</td>
</tr>
<tr>
<td>D5510—C</td>
<td>RT-76-8</td>
<td>Same locality as D5510—A, 61 cm above limestone ledge.</td>
</tr>
<tr>
<td>D5786—A</td>
<td>RT-77-15</td>
<td>Same locality as D5510—A, top part of limestone ledge.</td>
</tr>
<tr>
<td>D5786—B</td>
<td>RT-77-16</td>
<td>90 m S. 5° E., from locality of D5510—A, along strike of black fissile shale. 1-cm-thick basal siltstone layer immediately above limestone ledge.</td>
</tr>
<tr>
<td>D6800</td>
<td>RT-77-17</td>
<td>Same locality as D5786—B. Black, wet mudstone, 60 cm above limestone ledge.</td>
</tr>
<tr>
<td>D6801</td>
<td>RT-77-18</td>
<td>Same locality as D5786—B. Black fissile shale with limestone concretions 18 cm above limestone ledge.</td>
</tr>
<tr>
<td>D6802</td>
<td>RT-77-19</td>
<td>S. 60° W., 200 m from sample D5801; sample from northwest side of drainage. Composite sample from 1.5-m-thick black fissile shale.</td>
</tr>
<tr>
<td>D5974</td>
<td>RT-78-18</td>
<td>NW corner sec. 13, T. 43 N., R. 18 W., along improved road, Hamm Canyon quadrangle, San Miguel County, Colo. About 1.5-m-thick black fissile shale. Same horizon as previous Burro Canyon samples, but only 3 m below the Dakota contact.</td>
</tr>
</tbody>
</table>

The upper horizon of black fissile shale has been traced several kilometers to the northwest and to the southeast of the original locality, but is apparently absent from the type locality of the Burro Canyon Formation in Burro Canyon near the village of Slick Rock, Colo., sec. 29, T. 44 N., R. 18 W., San Miguel County, Colo.
LOWER HORIZON

In 1976 during the course of recollecting samples from the localities just described, a black limy shale horizon was found about 10.4 m below the base of the 1.5-m-thick black fissile upper-shale horizon. This sample yielded a much better assemblage of palynomorphs than was obtained from the upper fissile-shale horizon. The sample consisted of two lithotypes—a fine-grained, hard, calcareous black shale, and a black, soft, friable shale containing small calcite crystals. Palynomorph yield from the two lithotypes was distinctly different, suggesting that biofacies near the site of deposition had changed. The site was recollected in 1978. Six samples were collected from an 87-cm interval (fig. 8). Four of these samples were productive and were given USGS paleobotany locality numbers as indicated below:

<table>
<thead>
<tr>
<th>USGS paleobotany loc. No.</th>
<th>Field No.</th>
<th>Locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>D5803</td>
<td>RT-77-20</td>
<td>SW¼NE¼ sec. 11, T. 43 N., R. 18 W., at approximate location of bench mark 5641, Hamm Canyon quadrangle, 1960, 10.4 m below base of upper fissile-shale horizon. Sample included two lithotypes; soft, black friable shale with small calcite crystals, and hard, dark-gray calcareous shale.</td>
</tr>
<tr>
<td>D5972-A, B, C, D</td>
<td>RT-77-20</td>
<td>Same locality as D5803. See figure 8.</td>
</tr>
<tr>
<td>D5973</td>
<td>RT-78-16</td>
<td>Same locality as D5803 but 10.2 m north along strike of dark-gray and black outcrop. Sample from bentonite zone, friable black shale that grades upward into dark-gray to black limestone. Composite sample from 30-cm interval.</td>
</tr>
</tbody>
</table>

The lower horizon was traced about 150 m along the wash, but apparently is not present or is covered elsewhere.

PALYNOCLOGICAL ANALYSIS—CEDAR MOUNTAIN FORMATION

Reports of fossils from the Cedar Mountain Formation are exceedingly sparse. The pertinent information concerning those few fossils found is presented by Simmons (1957) who listed fossils from two localities. The first locality, the so-called Stokes-Katich locality, is the same locality mentioned previously that yielded the palynomorphs in the present study. Fossils found include Eupera onestae McLearn, a fresh-water pelecypod of Aptian Age, Tempskya minor Reed and Brown, a tree fern trunk, known from the Aspen Shale (Albian Age) Wyoming and Idaho, ostracods, and ganoid fish scales. “The second locality is in sec. 22, T. 22 S., R. 20 E., on the southwest flank of the Salt Valley anticline, Grand County, Utah” (Simmons, 1957, p. 2527). This locality yielded ostracods, gastropods, microfossil material, and the charophyte Clavator harrisi Peck.

The microfossil material was examined by R. E. Peck who stated: “All of these are common fossils in the Gannett Group, the Cloverly of northwestern Wyoming, and the limestones in the upper Kootenai of Montana. Clavator harrisi Peck is common in the Trinity of the Gulf Coast. None of these species occurs in the Morrison of the Front Range of Colorado, in eastern Wyoming or in the Black Hills. Their occurrence is an excellent indication of the Lower Cretaceous age of the formation” (in Simmons, 1957, p. 2527). The purported age of the Gannett Group is Early Cretaceous, of the Cloverly and Kootenai Formations is Aptian, and of the Trinity Group of the Gulf Coast, is Aptian to early Albian. “In view of the identifications, an Early Cretaceous age seems assured for the shale member of the Cedar Mountain Formation” (Simmons, 1957, p. 2527).

Angiosperm wood was collected from the Cedar Mountain Formation near Castle Dale and Ferron, Utah by Thayn (1973). Genera found were Iocacinoxylon, previously known only from the Tertiary of Europe, and Paraphyllanthoxylon, known from the Cretaceous of Arizona, Idaho, and Alabama. However, these fossils shed no additional light upon the age of the Cedar Mountain Formation.

The samples collected for our study were examined palynologically in an attempt to obtain a more definite age determination and to verify the reported correlations of the Cedar Mountain and Burro Canyon Formations (Simmons, 1957; Craig and others, 1955). Palynomorphs were poorly preserved and somewhat sparse, requiring the intensive examination of many slides in order to obtain a significant assemblage. The palynomorph assemblage consisted of tricolpate angiosperm pollen, bisaccate conifer pollen, monosulcate pollen, Corollina and minor representations of Liliaceae, trilete spores and taxodiaceous pollen (fig. 3). The high percentage of unidentified palynomorphs (averaging 32 percent of the assemblage) attests to the generally poor condition of the palynomorphs present. Figure 3 includes counts of palynomorph types in four separate preparations. Modification of preparation procedures were tried in attempts to obtain better recovery from this sample. That some of the preparations were better than others is evident upon examination of the graph. For example, preparation C (D5758-B, prep. 2) yielded...
only 6 percent bisaccate conifer pollen, and the uniden­
tified palynomorphs accounted for 47 percent of the as­
semblage. In contrast, preparation A (D5758, prep. 1)
yielded 21 percent bisaccate conifer pollen and only 19
percent unidentified palynomorphs. Except for dis­
crepancies accounted for by the varied preparation pro­
cedures, the recovery of the several palynomorph
groups shows a remarkable consistency.

The following genera and species have been identified
from the preparations, and the taxa are shown on plates
1-4.

Laevigatosporites cf. *L. belfordii* Burger 1976
Laevigatosporites gracilis Wilson and Webster 1946
Cyathidites australis Couper 1953
Todisporites sp.
Todisporites minor Couper 1958
Gleicheniidites senonicus Ross 1949
Lygodiumsporites sp.
Deltoidospora hallii Miner 1935

Cyathidites minor Couper 1953
Dictyotrideles granulatus Pocock 1962
Foraminisporis sp.
Foraminisporis cf. *F. wonthaggiensis* (Cookson and
Dettman) Dettmann 1963
Concaissimisporites varierrucatus (Couper) Singh
1964
Concaissimisporites punctatus (Decourt and
Sprumont) Brenner 1963
Leptolepidites sp.
Baculatisporites comaunensis (Cookson) Potonié
1956
Pilosisporites trichopapillosus (Thiergart) Decourt
& Sprumont 1955
Echinatisporis varispinosus (Pocock) Srivastava 1975
Cicatricosisporites hughesii Dettmann 1963
Cicatricosisporites sp.
Cicatricosisporites cf. *C. minutaestriatus* (Bol­
khovitina) Pocock 1964
LOCATION OF PRODUCTIVE SAMPLES

LANDMARK EVOLUTIONARY EVENTS IN THE DEVELOPMENT OF ANGIOSPERM POLLEN

The earliest records of angiosperm pollen include some of the same taxa that were recovered from the Cedar Mountain Formation. The first occurrences of angiosperm pollen in the stratigraphic record and the subsequent diversification of angiosperm pollen is pertinent to the age determinations and conclusions derived from Cedar Mountain samples.

The stratigraphic record has provided the basis for several outlines of the developmental history of angiosperm pollen, particularly in North America (Singh, 1971, 1975; Doyle, 1969; Jarzen and Norris 1975; Norris, Jarzen, and Awai-Thorne, 1975; Muller, 1970; and others). These outlines present data concerning the earliest record of angiosperm pollen, followed successively by the first appearance of tricolpate pollen, tricolporate pollen, triplicate pollen; and in the Cenomanian and later stages, the times of origin of evolutionarily more advanced pollen types.

There are no substantiated pre-Cretaceous records of angiosperm pollen. The most primitive putative angiosperm pollen type is a monosulcate grain with pilate or retipilate sculpture, represented by the genus *Clavatipollenites* Cooper. Cooper (1958), in describing the type species *C. hughesii* from the Barremian of England, pointed out that although the monosulcate aperture condition is prevalent in gymnosperms, pilate or retipilate sculpture is not known outside the angiosperms. Pollen grains of the *Clavatipollenites* type are now considered by the vast majority of palynologists to be of probable angiosperm origin. *Clavatipollenites* pollen has been widely reported in rocks of Aptian-Albian age from diverse parts of the world: Hughes (1958) and Kemp (1968) from England, Cooper (1964) from Central America and Australia, Kemp (1968) and Norris (1967) from western Canada, and Brenner (1963) from eastern United States. Chlonova (1977) reported the first find of *Clavatipollenites* in ?Albian-Cenomanian rocks of Western Siberia. She discussed the pre-Barremian (Jurassic) records of identifications of *Clavatipollenites* (from central Europe and Asia) and rejected them as not being completely reliable. Birkeland, and others (1978) and Vigran and Thusu (1975) reported Clavatipollenites from Jurassic and pre-Jurassic rocks of Norway. Perhaps significantly, Birkeland and others (1978) found Clavatipollenites in their assemblage 1 (Middle Jurassic) but not in younger assemblages—assemblage 2 (Kimmeridgian), assemblage 3 (Kimmeridgian-Volgian), and assemblage 4 (early Neocomian).

In North America, the oldest record of *Clavatipollenites* is from the upper part of the Barremian (Doyle, 1969; Doyle and Robbins, 1977). In western Canada,
the entrance level of *Clavatipollenites* coincides in Alberta with the entrance level of reticulate tricolpate forms (middle Albian). *Clavatipollenites* was not found in Canada in the Loon River Formation, lower mid-Albian (Singh, 1975), nor in the Mannville Group (Singh, 1964; Norris, 1967) of Aptian to early middle Albian age and no older than late Barremian (Singh, 1964). Thus, in western North America there are no records of *Clavatipollenites* earlier than mid-Albian time. The presence of specimens of *Clavatipollenites* in Cedar Mountain rocks therefore suggests an Albian or younger age.

Tricolpate pollen first appears, apparently worldwide, in the Albian. "The appearance of tricolpate pollen seems to have been a major world-wide event, and in all areas which have been carefully studied there is a zone with small reticulate tricolpates but without triporates or typical tricolporates (cf. Krutzsch, 1963; Muller, 1968). This appearance generally may be dated as early or middle Albian, but refinement is needed in most areas." (Doyle, 1969, p. 11). Singh (1971, p. 25) has summarized these data as follows: "The entrance of tricolpate dicotyledonous pollen in Albian strata of North America has been well documented by Brenner (1963), Davis (1963), Pannella (1966), Norris (1967), and Hedlund and Norris (1968). In other parts of the world, the first definite dicotyledonous pollen has been reported from Albian strata of central Russia (Bolkhovitina, 1953), New Zealand (Couper, 1960), Portugal (Groot and Groot, 1962), Central America and Africa (Couper, 1964), Peru (Brenner, 1968), Australia (Dettmann and Playford, 1968) and England (Kemp, 1968). Thus the entrance of tricolpate dicotyledonous pollen in the Lower Cretaceous succession of the Peace River area supports the middle to late Albian age assigned to these beds on faunal evidence (Wickenden, 1961, Stelek, *et al.*, 1966)."

The angiosperm pollen succession in eastern Australia was discussed by Dettmann (1973). She reported that the earliest occurrence of tricolpate pollen was found in the middle Albian of the Great Artesian Basin, whereas tricolpate pollen first appears a little later, in the upper Albian, in the more southerly Otway Basin. The first occurrence of tricolpate angiosperm pollen in Australia appears to coincide in time with its first appearance in Western North American rocks.

Tricolporate pollen first appears in latest? Albian time in western Canada and western United States and in the early Cenomanian in eastern United States (Singh, 1975). Tricolporate pollen has a widespread distribution throughout the Cenomanian of the Western Interior. Singh (1975, p. 377) concluded "It is evident from the above discussion that the Albian-Cenomanian boundary in North America is marked by the appearance of smooth, triangular tricolporates (Table II, III) and angiosperm tetrads."

The tricolporate pollen mentioned by Singh (1975) is the species *Nyssapollicites albertensis* Singh. It appears just below the fish scale member in the Shafter Formation of Alberta (uppermost Albian). The same species identified as *Tricolporopollenites aliquantulus* Hedlund was found in the Red Branch Member of the Woodbine Formation of Oklahoma (Cenomanian) (Hedlund, 1966). Pannella (1966) reported the same species (as *Tricolporites dakotensis*) from the upper part of the Dakota Sandstone and the Huntsman Shale of MacKenzie (1965) (upper Albian-Cenomanian) of the Denver basin, Colorado. The same species (as *Tricolporopollenites aliquantulus* Hedlund) was found in the Dakota Sandstone of Arizona (Cenomanian) by Agasie (1969). We have found pollen of *Nyssapollicites albertensis* Singh to be a common constituent of Cenomanian rocks of Colorado and Utah. In the Front Range near Denver, Colo., the entrance level of this species is in the middle part of the Kassler Sandstone Member of the South Platte Formation (Dakota Group) about 30.5 m below the base of the Benton Formation (Mowry Shale to the north). The Mowry Shale is characterized by abundant fish scales, and is found at approximately the same stratigraphic position as the "fish scale marker bed" ("The traditional Lower-Upper Cretaceous boundary***" (Norris and others, 1975) in the Shafter Formation of Alberta Canada. Significantly, Singh (1971, p. 28) found the entrance level of *Nyssapollicites albertensis* at about 35.0 m below the "fish scale marker bed." With the exceptions of the latest Albian report by Singh (1971) and the late Albian (Dakota) report by Pannella (1966), all other records of tricolporate pollen from western North America are from Cenomanian and younger rocks. The consistent first occurrence of *Nyssapollicites albertensis* at or very near the Albian-Cenomanian boundary provides a reliable indicator in western North America of the palynological boundary between the Early and Late Cretaceous. This palynological marker species coincides with or is close to the Early-Late Cretaceous boundary based on other types of evidence.

AGE OF THE UPPER PART OF THE CEDAR MOUNTAIN FORMATION

The absence of any tricolporate pollen eliminates the possibility of a Cenomanian Age. The presence of small tricolpate pollen indicates an age range from middle to late Albian. The presence of at least 11 identified species of tricolpate pollen suggests that a significant amount of time must have elapsed since the origin of tricolpates in the mid Albian, until the plants had evolved to produce the diverse tricolpate flora including such large forms as *Tetracolpites pulcher* Srivastava.
Thus, this assemblage is clearly of late or latest Albian age.

PALYNOCOLOGICAL ANALYSIS—BURRO CANYON FORMATION

The Burro Canyon Formation also has yielded few fossils. Fossil evidence for the age of the Burro Canyon Formation was presented by Stokes (1952) and Simmons (1957). The fossils were obtained from the NE1/4NW1/4NE1/4 sec. 11, T. 43 N., R. 18 W., San Miguel County, Colo. This locality is the identical locality that yielded palynomorphs from the upper Burro Canyon horizon mentioned previously. The following fossils of possible age significance were reported:

- Plant—Frenelopsis varians Fontaine (Aptian-early Albian)
- Molluscs—Protelliptio douglassi Stanton (Aptian)
- "Unio" farri Stanton (Aptian)
- Nipponaia asinaria Reeside (Early Cretaceous)

No other reports of fossils from the Burro Canyon Formation have come to our attention.

A second locality that yielded palynomorphs, about 10.4 m below the base of the upper Burro Canyon horizon, has been mentioned previously. No other types of fossils are known from this second locality.

As with the Cedar Mountain Formation, the Burro Canyon Formation samples were examined palynologically in an attempt to obtain a more refined age determination, to address the question raised by reported intertonguing of the basal part of the Burro Canyon and upper part of the Morrison Formations (Simmons, 1957, p. 2523), and to attempt to determine whether or not the Burro Canyon and Cedar Mountain Formations are correlative palynologically.

The overlying Dakota Sandstone in this area is palynologically of early Cenomanian age (it has yielded Nyssapollenites albertensis Singh). The Burro Canyon Formation lies between the Dakota and the Morrison. In some places, evidence exists of apparent continuous deposition from the Morrison into the basal part of the Burro Canyon. Samples obtained from the upper or Brushy Basin Member of the Morrison Formation in this general area have yielded a palynological suite of fossils indicative of a Late Jurassic age. Theoretically, the Burro Canyon Formation could represent an age ranging from Late Jurassic to Cenomanian—that is, the entire Early Cretaceous spanning a time interval of some 40 million years.

UPPER HORIZON

As has been indicated, two palynologically productive horizons were found in the upper part of the Burro Canyon Formation. The upper horizon sample, from a 1.5-m-thick layer of black fissile shale about 7.3 m below the base of the Dakota Sandstone, yielded sparse assemblages of palynomorphs. The great majority of the organic matter consisted of what appeared to be short filaments (fig. 4A). On closer examination these filaments proved to be aggregates of amorphous material. At higher magnification, the apparent strands lose their continuity and appear as small strands with somewhat indefinite margins (fig. 4B). In the lower part of the photomicrograph (fig. 4B) a fragment of black woody tissue can be seen. Near the center a palynomorph is obscured by this organic material. At succeeding higher magnifications (fig. 4C, D, and E scanning electron micrographs), the organic material exhibits its amorphous character, and the filamentous attribute effectively disappears. Contrast between upper-horizon preparations containing an abundance of amorphous organic material and more nearly normal preparations is shown on a photomicrograph of a preparation from the lower horizon (fig. 4F). Wood fragments, bits of epidermal and cuticular tissue, and easily recognizable palynomorphs are visible. This preparation is virtually devoid of organic material of the kind found in upper horizon samples. The great abundance of amorphous organic material present in upper horizon samples could not be removed from the samples by oxidation without destroying the accompanying palynomorphs. Thus, the few spores and pollen grains present were commonly obscured by this material. Samples from the upper horizon are unique in this respect in our experience. We have never found samples that reacted in the same manner. The closest observed similarity is to samples of oil shale from the Green River Formation, yet the organic material in the Green River oil shale appears visually to be distinctly different.

Two samples of black fissile shale from the upper horizon were submitted to L. G. Schultz, U. S. Geological Survey, Denver, Colo. for X-ray analysis. He reported that the nonorganic part of the black shale contained 2–10 percent calcite, 1 to 2 percent quartz, and a large percentage of mixed-layer illite-smectite, a swelling clay that could be an altered tuff. Thin sections made from this upper horizon shale show the abundance and bedded nature of the unaltered organic material but give no hint of its original composition (fig. 5). These thin sections, plus macerated sample material from the upper horizon were sent to the late Dr. J. M. Schopf, USGS Coal Geology Laboratory at Columbus, Ohio. He remarked (written commun., Dec. 13, 1977) “The thin sections are excellent I wish I could suggest how such a rock could reasonably be deposited. My next suggestion is that it must be an unusual local occurrence.”

This abundant amorphous organic material possibly could be the residue from some, as yet unidentified,
PALYNOLOGICAL EVALUATION OF CEDAR MOUNTAIN AND BURRO CANYON FORMATIONS
alga, *Botryococcus*, a common lacustrine alga, has been found in all upper horizon samples.

PALYNOLOGICAL ANALYSIS—BURRO CANYON FORMATION

PALYNOMORPH RECOVERY FROM UPPER HORIZON SAMPLES

The palynomorph recovery from upper horizon samples was sparse. The abundant organic matter and the comparatively poor state of preservation made identification extremely difficult. Gross palynomorph recovery from representative upper horizon samples is shown in figure 6. The average number of unidentified forms was 48 percent, attesting to the difficulty posed by the amorphous organic material.

The following identified taxa were obtained from an examination of more than 60 slides.

Burro Canyon upper horizon

Undulatisporites cf. *U. fossulatus* Singh 1971
Cyathidites minor Couper 1953
Todisporites minor Couper 1958
Dictyotriletes pseudoreticulatus (Couper) Pocock 1962
Cadargasporites reticulatus de Jersey and Paten 1964
Staplinisporites caminus (Balme) Pocock 1962
Matthesisporites tumulosus Döring 1964
aff. *Cicatricosisporites phaseolus* (Delcourt and Sprumont) Krutzsch 1959
Converrucosisporites cf. *C. proxigranulatus* Brenner 1963
Cicatricosisporites cf. *C. minor* (Bolkhovitina) Pocock 1964
Cicatricosisporites cf. *C. cuneiformis* Pocock 1964
Cicatricosisporites augustus Singh 1971
Cicatricosisporites cf. *C. potomacensis* Brenner 1963
Cicatricosisporites cf. *C. mediostriatus* (Bolkhovitina) Pocock 1964
Cicatricosisporites sp.
Cicatricosisporites pseudotripartitus (Bolkhovitina) Dettmann 1963
Cicatricosisporites apiteretus Phillips and Felix 1971
Cicatricosisporites cf. *C. subfornonis* Brenner 1963
Cicatricosisporites cf. *C. crassistriatus* Burger 1966
Distaltriangulisporis sp.
Appendicosporites bifurcatus Singh 1971
Appendicosporites jansoni Pocock 1962
Cedripites cf. *C. canadensis* Pocock 1962
Cedripites cf. *C. canadensis* Pocock 1962
Converrucosisporites sp.
Converrucosisporites pseudotripartitus (Bolkhovitina) Dettmann 1963
Converrucosisporites apiteretus Phillips and Felix 1971
Converrucosisporites cf. *C. subfornonis* Brenner 1963
Converrucosisporites cf. *C. crassistriatus* Burger 1966
Distaltriangulisporis sp.
Appendicosporites bifurcatus Singh 1971
Appendicosporites jansoni Pocock 1962
Cedripites cf. *C. canadensis* Pocock 1962
Cedripites cf. *C. canadensis* Pocock 1962
Converrucosisporites sp.
Converrucosisporites pseudotripartitus (Bolkhovitina) Dettmann 1963
Converrucosisporites apiteretus Phillips and Felix 1971
Converrucosisporites cf. *C. subfornonis* Brenner 1963
Converrucosisporites cf. *C. crassistriatus* Burger 1966
Distaltriangulisporis sp.
Appendicosporites bifurcatus Singh 1971
Appendicosporites jansoni Pocock 1962
Cedripites cf. *C. canadensis* Pocock 1962
Cedripites cf. *C. canadensis* Pocock 1962
Converrucosisporites sp.
Converrucosisporites pseudotripartitus (Bolkhovitina) Dettmann 1963
Converrucosisporites apiteretus Phillips and Felix 1971

LOWER HORIZON

This locality was found about 10.4 m below the upper fissile shale horizon. The recovery of palynomorphs was much better than from upper horizon samples even though preservation quality was not the best. The difference in appearance of the slides from the two horizons is shown on figure 4. In figure 4F fusainized wood fragments are prevalent in the photograph, and epidermal tissue and palynomorphs make up the lighter, more translucent material. The appearance of the organic material from the lower horizon is normal, in contrast to...
the appearance of the organic material from the upper horizon.

A comparison of the gross palynomorph recovery from the upper and lower horizons is shown in figure 7. The contrast is shown vividly by the absence of unidentified forms from the lower horizon. The lower horizon assemblage is dominated by bisaccate conifer pollen and Corollina. The residue of palynomorphs makes up less than 3 percent of the total assemblage.

The first samples collected from the lower horizon showed a marked difference in recovery from hard dark-gray shale and from black friable shale containing small calcite crystals. The hard dark-gray shale (interval C, fig. 8) was dominated by bisaccate conifer pollen and the black friable shale (interval D, fig. 8) by Corollina pollen. The lower horizon was therefore recollected the following year in an attempt to verify these data. The possibly productive interval consisted of 87 cm of...
alternating shale, calcareous shale, and limestone capped by 40 cm of blocky gray limestone. Six samples were taken from the 87-cm interval as shown on figure 8.

PALYNOMORPH RECOVERY FROM LOWER HORIZON SAMPLES

The upper two samples were barren. The gross palynomorph recovery of the four lower samples is shown in figure 8. The sample D5972-D yielded 97 percent bisaccate conifer pollen and only 1 percent Corollina, whereas samples D5972-C, D5972-B and D5972-A yielded 20, 23, and 35 percent bisaccate conifer pollen, respectively, and the assemblages were dominated by abundant Corollina specimens. Bisaccate pollen and pollen of Corollina were produced by conifers. Corollina pollen was produced by the fossil tree genus Cheirolepis. The prominent change in abundance of these two pollen groups in a comparatively short stratigraphic interval indicates a prominent floral change and suggests a prominent biofacies difference between the two groups of samples.

The following taxa were identified from the lower horizon:

- Gleicheniidites senonicus (Ross) Skarby 1964
- Cyathidites minor Couper 1953
- Deltoidospora cf. D. psilostoma Rouse 1959
- Tigrisporites reticulatus Singh 1971
- Interulobites triangularis (Brenner) Phillips and Felix 1971
- Staplinisporites caminus (Balme) Pocock 1962
- Lycopodiumsporites sp.
- Matthesisporites tumulosus Döring 1964
- Leptolepidites verrucatus Couper 1953
- Verrucosisporites cf. V. densus (Bolkhovitina) Pocock 1970a
- Cicatricosisporites sp.
- Cicatricosisporites pseudotripartitus (Bolkhovitina) Dettmann 1963
- Distaltriangulisporis perplexus (Singh) Singh 1971
- Corollina torosa (Reissinger) Cornet and Traverse 1975
- Cycadopites spp.
- Equisetosporites spp.
- Araucariacites sp.
- Euxepistephanites tumulus Balme 1967
- Cerebropollenites mesozoicus (Couper) Nilsson 1958
- Callialasporites segmentatus (Balme) Sukh-Dev 1961
- Vitreisporites pallidus (Reissinger) Nilsson 1958
- Pristinuspollenites sulcatus (Pierce) B. Tschudy 1973
- Clavatipollenites hughesti (Couper) Kemp 1968
- Paleoconiferus asaccatus Bolkhovitina 1956

Pityosporites cf. P. divulgatus (Bolkhovitina) Pocock 1970b
- Alisporites grandis (Cookson) Dettmann 1963
- Pityosporites nigraeformis (Bolkhovitina) Pocock 1970b
- Cedripites cf. C. canadensis Pocock 1962
- Cedripites cretaceus Pocock 1962
- Podocarpidites ornatus Pocock 1962
- Podocarpidites cf. P. ellipticus Cookson 1947
- Podocarpidites cf. P. multesimus (Bolkhovitina) Pocock 1962
- Podocarpidites radiatus Brenner 1963
- Burro Canyon taxa are shown on plates 5-9

The chief distinction between the assemblages from the upper and lower horizons of the Burro Canyon is that many species and specimens of Cicatricosisporites were found in the upper horizon assemblages and very few Cicatricosisporites specimens were found in the lower horizon assemblages.

AGE OF THE UPPER PART OF THE BURRO CANYON FORMATION

Both upper and lower horizon assemblages were from the upper part of the Burro Canyon Formation, so for the purpose of this discussion they will be considered as a unit even though the discrepancies in recovery may appear significant. These discrepancies may be due in part to variations in biofacies existing at the times of deposition, giving rise to the distinctly different organic content of the two groups of samples. It may also be due, in part, to the low frequency of recovery of individual taxa. With the exception of bisaccate conifer pollen and Corollina, many of the remaining taxa were found only as single specimens, or generally as only a few specimens of any single taxon.

Bisaccate conifer pollen is difficult to segregate into generic units. Furthermore, most genera and species are long-ranging and are of little value in age determinations. Corollina pollen is almost omnipresent in Upper Jurassic and Lower Cretaceous continental palynomorph-bearing rocks of North America. Consequently the remaining taxa, even though present in extremely low frequency in the samples, are the significant taxa for the estimation of the ages of the samples. The palynomorphs recovered failed to reveal even a single specimen of tricolpate pollen. The apparent first record of tricolpate (tricolporate) pollen is from the Berriasian-Valanginian of the Netherlands (Burger, 1966). But well-documented tricolpates first appear in the Aptian-Albian worldwide (Doyle, 1969; Muller, 1970; Chlonova, 1977). In North America, tricolpates enter the stratigraphic record no earlier than mid-Albian time.
Lithology	Thickness, in centimeters
Limestone, grey, blocky | 40
Shale, black, hard, calcareous | 7
Limestone, black | 8
Shale, black, hard, calcareous | 14
Limestone, grey | 5
Shale, dark-grey, hard | 18
Thin bentonite layers are represented by dark bands
Shale, black, friable; small calcite crystals | 23
Shale, grey to black, hard, calcareous | 12
Shale, black- to green-weathering calcareous
Shale, green-weathering, calcareous

FIGURE 8.—Gross palynomorph recovery from selected intervals in lower horizon Burro Canyon. A–F, Intervals from which samples (D-numbers) were taken. Samples from intervals A and B were barren of palynomorphs. Numbers at top of bars indicate percentage of each type of palynomorph.

(Singh, 1975). Consequently, palynomorph assemblages lacking tricolpate pollen may be assumed to be no younger than mid-Albian.

Because of the purported interfingering of the Jurassic Brushy Basin Member of the Morrison with the lower part of the Burro Canyon Formation, comparisons of Burro Canyon assemblages with Jurassic and early Early Cretaceous assemblages were made. The Burro Canyon palynomorph assemblages are distinctly more advanced than are Late Jurassic assemblages from the Colorado Plateau, or from Western Canada (Pocock, 1962; 1970a,b). For example, two species of *Appendicisporites* were isolated from the Burro Canyon Formation. This taxon is not present in the Jurassic; it first appears worldwide in the Valanginian (Pocock, 1967; Vakhrameev and others, 1973). Further, many
species of *Cicatricosisporites* are present in the Burro Canyon, and although a few species have been reported from the Upper Jurassic of Europe and Asia, none have been found in the Jurassic of western Canada (Pocock, 1970a), nor have we found any specimens of *Cicatricosisporites* in any of the assemblages from the Brushy Basin, Westwater Canyon, or Recapture Members of the Morrison Formation (Upper Jurassic) of the Colorado Plateau region. Consequently, it is safe to assume that the age of the Burro Canyon Formation is Neocomian to early Albian.

Assemblages from near the Jurassic-Cretaceous boundary in northwest Europe (Döring, 1965; Burger, 1966; Norris, 1969; Döhröfer and Norris, 1977; Dorhöfer, 1977) were compared with those from the Burro Canyon Formation. Little similarity was evident. In fact, little similarity between assemblages of similar age from England and from continental northwest Europe was evident. “Of the 109 trilete spore types described by Döring (1965) from the German Jurassic-Cretaceous sediments, only about 10 species are known in the southern England succession” (Norris, 1973, p. 99). Furthermore, the assemblage from the German Bückeberg Formation (Döhröfer, 1977) (Berriasian-Valkanginian) correlative with the English upper Purbeck and lower Wealden (Döhröfer and Norris, 1977) yielded no bisaccate conifer pollen. Most other Neocomian assemblages yielded significant proportions of bisaccate pollen. Consequently, the differing biofacies conditions in the two European localities and in the Burro Canyon Formation make comparisons more difficult.

The precise position of Lower Cretaceous samples cited in the literature is often not known. Reports refer in general terms to Lower Cretaceous, or to Neocomian rather than to the formal subdivisions. This usage is true of most reports from Australia and Russia. For example, Burger (1973) and Dettmann (1963) referred to the Lower Cretaceous or Neocomian, and Orlova-Turchina (1966) reported on the Hauterivian-Barremian Russian complexes in general terms only.

Another fact that hinders direct correlation is the yield of palynomorphs from the Burro Canyon Formation. The yield of taxa of potential usefulness was minimal. Aside from conifer pollen—mostly long-ranging species and *Corollina*, the remainder of the assemblage as a whole was sparse (see fig. 6). Generally, only a few specimens of any one taxon were found. Many of the genera and species commonly used to subdivide the Neocomian in other regions failed to appear in Burro Canyon samples. These genera include *Conocavissimisporites*, *Trilebosporites*, *Impardecispora*, *Contignisporites*, *Januasporites*, and *Schizosporis*.

Comparison of the Burro Canyon assemblages with Jurassic and Early Cretaceous assemblages from western Canada failed to present evidence for direct correlation. This lack of evidence may be due to the fact that the Lower Cretaceous rocks of western Canada are commonly no older than Barremian (Singh, 1971). Only one report of upper Neocomian palynomorph assemblages from Canada is available. Hopkins (1971) reported an assemblage from the Isachsen Formation, bounded below by upper Valanginian rocks and above by Albian rocks. Hopkins (1977, p. 110) concluded that “The Isachsen Formation is therefore entirely Lower Cretaceous, ranging from Upper Valanginian, including probably Hauterivian and Barremian; possibly also Aptian***”. Hopkins also observed “There appears to be no significant variation of the flora from the top to bottom of the Isachsen Formation suggesting that environmental conditions did not vary greatly during the time represented by Isachsen deposition, ***the flora is remarkably uniform over a comparatively long period of time (about 10 million years).” The palynomorph assemblage from the Isachsen Formation bears the closest resemblance to assemblages from the Burro Canyon Formation yet observed, even though most of the species mentioned did not appear in the Burro Canyon assemblages.

Adequate data are not yet available representing the age-ranges of taxa found in the Burro Canyon Formation owing to the comparatively few reliable reports on Lower Cretaceous rocks, particularly from North America. The currently known ranges of all species figured on plates 5–9 are recorded in table 2.

As shown on table 2, many of the identified species have long ranges, and offer no aid in narrowing down the age of the Burro Canyon Formation. Some of the other species, *Verrucosisporites densus* (Bolkhovitina) Pocock, *Matthesporites tumulosus* Döring, *Callialasporites asaccatus* Bolkhovitina, and *Cadargaspores reticulatus* de Jersey and Paten are limited, as understood at present, to the Jurassic. *Cicatricosisporites apteretus* Phillips and Felix, is limited to the Cenomanian. The ranges of the Jurassic species in our samples possibly may be attributed to redeposition into Lower Cretaceous rocks, although no visual difference in the appearance of the fossils was observed. On the other hand, both the limited ranges of the Jurassic and Cenomanian species may be due to the limited amount of work that has been done on Lower Cretaceous rocks in North America. The true ranges may not yet be evident. For example, the genus *Cadargaspores* and the species *Cadargaspores reticulatus* de Jersey and Paten, have been reported previously, to our knowledge, only from the Early Jurassic of the Surat Basin, Australia (de Jersey and Paten, 1964). Yet the two
Table 2.—Stratigraphic ranges of Burro Canyon palynomorph species

<table>
<thead>
<tr>
<th>JURASSIC</th>
<th>EARLY CRETACEOUS</th>
<th>LATE CRETACEOUS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BERRIASIAN</td>
<td>VALANGIAN</td>
</tr>
<tr>
<td>Glicoenidiotes australis (Ross) Skarb</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Undulatisporites cf. D. fassoulatis Singh</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cyladites minor Couper</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Deltaoidespora of D. palmaeformis House</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Podosporites minor Couper</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kladosporites pseudoreticulatus (Couper) Pockock</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tigrisporites reticulatus Singh</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cedargyasporites reticulatus de Jersey and Paten</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Interulobites triangularis (Brenner) Phillips and Felix</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Staplinisporites caninus (Balm) Pockock</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mastophrasporites tumulosus Diring</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>aff. Cioctroniesporites phosorus (Delcourt and Sprumont) Bruck</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Converrocoxisporites cf. P. prozigranulatus Brenner</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Verrucoisporites densus (Bolkhovitin) Pockock</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cioctroniesporites cf. minor (Bolkhovitin) Pockock</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cioctroniesporites cf. cuneiformis Pockock</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cioctroniesporites augustus Singh</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cioctroniesporites cf. psammonecensis Brenner</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cioctroniesporites pseudocompressus (Bolkhovitin) Dettmann</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cioctroniesporites apiculatus Phillips and Felix</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cioctroniesporites cf. subrotundus Brenner</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cioctroniesporites cf. cassinianus Burger</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Appendicospores bilaterale Singh</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glastrulaconisporites periprinos (Singh) Singh</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Appendicospores januarii Pockock</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Carolina tortosa (Keisinger) Cornell and Traverse</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eureospores tumultus balfi</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cerebrospinisporites megalocicum (Couper) Nilsson</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Calliasporites segmentalis (Balm) Sub-Dev</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vitreospores paloides (Keisinger) Nilsson</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pinnaconspinisporites sulcatus (Pierce) N. Tschudy</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cleavipollenites hughesi (Couper) Kemp</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Paleocentricus anacicus Bolkhovitin</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Allisporites thoracis (Couper) Pockock</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pityosporites cf. P. divagatus (Bolkhovitin) Pockock</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Allisporites grandis (Cookson) Dettmann</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pityosporites nigraformis (Bolkhovitin) Pockock</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cedrataxites cf. C. canadensis Pockock</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cedrataxites cretaceus Pockock</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Podocarpidsina ornatus Pockock</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Podocarpidsina cf. F. ellipticus Cookson</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Podocarpidsina cf. F. multiseriata (Bolkhovitin) Pockock</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Podocarpidsina radiata Brenner</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

specimens from the Burro Canyon Formation with their distinctive distal labyrinthine reticulum, and smooth proximal contact area, appear to be conspecific with the Australian species.

The data presented on table 2 suggest to us a late Neocomian to Aptian-Albian age. A few taxa from table 2 merit further discussion.

Tigrisporites reticulatus Singh.—This species was first reported by Singh (1971) from the middle Albian of Alberta, Canada. Its presently known range is from the mid-Albian to early Cenomanian. Although several specimens of this species were found, the species was not represented in all preparations. This species is not as yet known from anywhere in the world except from western North America. A closely allied species, Tigrisporites scurrundus Norris with an almost identical known range (mid- and late Albian) also appears to be confined to western North America. We have found both species in formations of Albian Age from Colorado and Idaho.

Interulobites triangularis (Brenner) Phillips and Felix.—This species was observed sporadically in Burro Canyon assemblages. It has been reported previously only by Brenner (1963) (as Lycopodiacidites trian-

Appendicisporites jansonii Pocock. — The range of this species according to Singh (1971) is Barremian to Albian. Outside of Canada it has been reported by Hedlund and Norris (1968) from the Albian of Oklahoma. Singh (1971) claimed that Appendicisporites sp. reported by Lantz (1958) from the Albian of England is conspecific with A. jansonii Pocock. The presence of Appendicisporites species suggests that the age of the Burro Canyon samples can be no older than Valanginian. “It is important to note the appearance, in the Valanginian of the genus Appendicisporites also. This genus is unknown in older deposits of Europe and Asia.” (Vakrameev and others, 1973 p. 214). “No species of this genus have been recorded from strata older than this [Valanginian] anywhere in the world.” (Pocock, 1967 p. 135).

Clavatipollenites hughesii (Couper) Kemp. — A single specimen of Clavatipollenites hughesii (Couper) Kemp was found on one of the slides of a sample from the lower horizon. Although literature reports of Triassic and Jurassic occurrences from several parts of the world have appeared (see previous discussion), this species has not been reported from North American rocks older than Barremian and from western North American rocks older than Albian (Singh, 1975). Its earlier appearance elsewhere may mean that the parent plant had not migrated to North America earlier, or palynological investigations have not yet uncovered the data. The plant may have existed for a long time in extremely low frequency and in limited ecological environments, before it expanded its habitat and abundance sufficiently to be represented commonly in Albian and younger rocks.

The taxa discussed, combined with the absence of tricolpate pollen all point to an Aptian-early Albian age, with the remote possibility of a late Barremian age, for the upper part of the Burro Canyon Formation.

CONCLUSIONS

Although all students of these beds are agreed that Burro Canyon and Cedar Mountain beds are physically continuous in large part, the results of the present study of palynomorphs shows a difference in age: the upper part of the Cedar Mountain is younger (late or latest Albian) than the upper part of the Burro Canyon (Aptian to early Albian and perhaps as old as Barremian). We suggest that the thick lower part of the Cedar Mountain, which is undated by fossils, may contain beds that are age equivalent to the older Burro Canyon beds. The beds equivalent to the uppermost Cedar Mountain beds of late or latest Albian age may have been removed by pre-Dakota (pre-earliest Late Cretaceous) erosion at the Burro Canyon locality or are represented in the 6 m of green mudstones (nonproductive of palynomorphs) at the top of the Burro Canyon at the collection locality. A further speculation that may be warranted is that the Neocomian (early Early Cretaceous) may be represented in a still-undated lower part of the Burro Canyon and Cedar Mountain—perhaps even including an upper part of the Brushy Basin Member of the Morrison. The recognition of a fossil (Clavatipollenites hughesii (Couper) Kemp) known to occur as early as the Barremian (latest Neocomian) suggests that the undated older beds of these formations might contain beds of this age, a stage that is almost unrecorded in western North America.

REFERENCES CITED

— 1973, Angiospermous pollen from Albian to Turonian sediments of eastern Australia: Geological Society of Australia, Special Publication 4, p. 2-34.

INDEX

A Page

Age .. 1, 7, 10, 11, 19
albertensis, Nyxipollis 10, 11
Algae 13
Alisporites grandis 9, 12, 15; pis. 3, 8
Amoxianthus 19
Araucariacites 13; pl. 6
Appendicispores bidentalis 13; pl. 6
Appitretus sp. 16, 19
Arnautiaccites sp. 13, 15, pl. 7
Arundel Formation of Maryland 19
aspiculus, Tricolporopollenites
astroides 10
astraea, Polystigmatea 13, 17, pl. 8
australis, Cyathidites 8; pl. 1

B Page

Baculatisporites comaumensis 8; pl. 1
bordovi, Laurasporites 8; pl. 1
Benton Formation 10
bilateralis, Appendicisporites
bidata 9; pl. 4
Botryococcus 13
Brook Creek Member of the Morrison Formation 1, 11, 16, 17
Buck Creek Formation 17
Buckhorn Conglomerate Member 2

C Page

Cabonaspores
Calcisporites
Calsepia 15
Calyxiasporites segmentatiosus 15, 17; pl. 7
Camiobaculites
Canniflistes
Carpenturi, Cyadopites 9; pl. 4
Castle Dale, Utah 7
Cedraptor conosoles 9, 13, 15; pis. 3, 8
creasites 9, 13, 15; pis. 3, 8
Cerebropollenites mesoconicus 15; pl. 7
Charephyte 7
Cherisperia 15
Cicatriciosporites apicatus 13, 17; pl. 6
australis 13; pl. 6
crasiastrilatus 13; pl. 6
crassifrons
huguetii 8; pl. 2
mediumstrilatus 13; pl. 6
minor 13; pl. 6
megaloustrilatus 13, 15; pl. 6
phanaelos 13; pl. 5
polomacraea 13; pl. 6
pseudosintelettes 13, 15; pl. 6
schoenanderi 13; pl. 6
varvurmaskus 9; pl. 2
sp ... 8, 13, 15, 17; pis. 2, 6
circumandulales, Polystigmates 9; pl. 2
Clavatipollenites Hughesi 9, 15, 19; pis. 4, 7
sp ... 9
Clavator harriisi 7
Clavrit Formation 4, 7
comitesporites, Baculatisporites
Conocerisiasporites 17
punctatus 8; pl. 1
corvarvurmaskus 8; pl. 1

D Page

Dakota Group 4, 10
Dakota Sandstone 1, 10, 11
dakotensis, Triocolporites 10
deltoidopores halli 8; pl. 1
gneissicola, Podocarpidites 13; pl. 15
Densoisporites microwulatus 9; pl. 2
velatus 9; pl. 2
densos, Verrucosporites 16, 17; pl. 5
Distriopinules granulatus 8; pl. 1
pseudoereticulatus 13; pl. 5
Disappointments Creek 13, 15, pl. 6
distriopinules irregularis 9; pl. 2
perrigera 8; pl. 1
sp ... 13; pl. 6
Distribution
divagates, Pitxipores 15; pl. 8
douglasii, Prodelphia 11
E

Echinaspores cattartipora 8; pl. 2
equites, Podocarpidites 15; pl. 9
Equisporites spp. 13, 15; pl. 7
Eucommiidites sp. 9; pl. 3

F

flori, "Unio" 11
Ferros, Utah 7
Forniopinules utahagensis 8; pl. 1
sp ... 8; pl. 1
fusaletes, Undulatipores 13
Four Corners 13
Frenelopsis varians 11

G

Gannett Group 7
georgiensi, Rousei 9; pl. 4
Ginkgoaceae, Rousi 9; pl. 4
Glinskisporites nithausi 9; pl. 4
Gleichenites serimenscus 8; 15; pis. 1, 5
gracilita, Laurasporites 8; pl. 1
gnida, Alisporites 9, 13, 15; pis. 3, 8
gnidales, Dictyotrichites 8; pl. 1
Pityopores 9; pl. 3
Great Artesian Basin 10
Green River Formation 11

H Page

halii, Delicoidospores 8; pl. 1
Hamm Carryon quadrangle 6, 7
hartreii, Clavea 7
Henry Mountains 4
huisus, Truncatocolonidites 8; pl. 2
hugheii, Cicatriciosporites 8; pl. 2
Clavatipollenites 9, 15, 19; pis. 4, 7
Hustman Shale 10

I

Icacinoplistes 7
Hilli-ametlkii 8, 15; pis. 1, 5
Imparipinules 17
Iuralixis trangularis 15, 18; pl. 5
irregularis, Distriodacaipores 9; pl. 2
Isachsen Formation 17

J, K

janssii, Appendixisporites 13, 19; pl. 6
Jassaspores 17
Kaiser Sandstone Member of the South Platte
formation ... 10
Kirkwood Formation of South Africa 19
Kootenai Formation 7

L

Larixiprotites bifordi 8; pl. 1
gracilita 8; pl. 1
Leptospioides venustus 15; pl. 5
sp ... 8; pl. 1
Lilacisporites 7
genuicolis 8; pl. 4
sp ... 9; pl. 4
Loon River Formation 10
Lycopodiacites tricarpus 15
Lycopodiumspermae 9, 15; pis. 1, 5
Lytte Formation of Dakota Group 4
Lytte Sandstone Member of Purgatoire Formation 4

M

Manville Group 10
Mansotransporites transjurassicus 13, 15, 17; pl. 5
micecactriaxis, Cerebrolipotes 13; pl. 5
mecoxaniscus, Cerebrolipotes 15; pl. 7
micoxaniscus, Cerebrolipotes 13; pl. 5
microwulatus, Demosporites 9; pl. 3
miniscul, Podocarpidites 9; pl. 3
minor, Cicatriciosporites 13; pl. 6
Cycladites 8, 13, 15; pis. 1, 5
Tendasea 7
Todisporites 8, 13; pis. 1, 5
minutaestrilatus, Cicatriciosporites 8; pl. 2
minuta, Cephalidipinales 9; pl. 4
Monocarpiporites 9; pl. 4
Morrison Formation 1, 11, 16, 17
Mowry Shale 10
mallesstoma, Podocarpidites 9, 15; pis. 3, 9
mallesstoma, Equispoites 9; pl. 4

N, O

nigraeformis, Pitxipores 9, 15; pis. 3, 8
Nipponaia asinaria 11
nithausi, Ginkgoaceae 9; pl. 4
Nyxipollis albertensis 10, 13
PALYNOLOGICAL EVALUATION OF CEDAR MOUNTAIN AND BURRO CANYON FORMATIONS

Page
onostea, Eupem ... 7
ornatus, Podocarpidites ... 13, 15; pl. 9
Otway Basin ... 10

P
Paleospathites australis ... 15, 17; pl. 8
paltidus, Vitreisporites ... 9, 13, 15; pl. 3, 7
Palex Formation of Louisiana ... 19
peronius, Striatolepidites ... 9; pl. 4
Pompholyxanthonites ... 7
porgas, Capparoniasporites ... 9; pl. 4
Patapoco Formation of Maryland ... 19
Patuxent Formation of Maryland ... 19
Peace River ... 10
peroniticus, Liliacidites ... 9; pl. 4
peripius, Distantriangulisporites ... 15; pl. 6
phaeolus, Cricotricosporites ... 13; pl. 5
Pilosporites thorneiopallidus ... 8; pl. 2
Pippsporites divogalbus ... 15; pl. 8
pogula, ... 9; pl. 3, 8
psilostoma, Deltoidospora ... 15; pl. 6
Psilatriletes circumundulatus ... 9; pl. 4
Psilatriletes pseudotripartitus ... 9; pl. 4
Polemonium multorsus, Matthisporites ... 9; pl. 4
poluteus, Triticocolpites ... 9; 10; pl. 4
pontanus, Conocasporites ... 8; pl. 1
Purbeck Formation ... 4

Q, R
Quartz ... 11
rodrigues, Podocarpidites ... 15; pl. 9
Rasputin Member of the Morrison Formation ... 17
Red Branch Member of the Woodbine Formation ... 10
reticulatus, Cadargasporites ... 15, 7; pl. 5
Tigrisporites ... 15, 18; pl. 5
Retricolpites verminarius ... 9; pl. 4
vegatus ... 9; pl. 4
sp. ... 9; pl. 4

R
Rock Canyon Creek ... 6
Roe Creek ... 6
Roula georganesis ... 9; pl. 4

S
Sampling methods ... 4
Schizosporis ... 17
sp. ... 9; pl. 2
scroensus, Tigrisporites ... 18
segmentatus, Capparoniasporites ... 15, 17; pl. 7
serraticus, Gleicheniisporis ... 8, 15; pl. 1, 5
Shafter Formation of Alberta ... 10
Slick Rock, Colo. ... 6
South Platte Formation ... 10
Stipitatisporis caminosis ... 13, 15; pl. 5
Stahle-Kachel beakly ... 6, 7
Striatoliplepis parvus ... 9; pl. 4
subrotundus, Cricotricosporites ... 12; pl. 6
sulcatus, Priacanthasporis ... 9, 15; pl. 3, 7
Sunbury River Formation of South Africa ... 19
Surat Basin, Australia ... 17

T
Taxodiaceepollenites hiatus ... 15
Tricolpites dakotensis ... 10
Tricolporepellis pristina ... 19
Tricolporepellis pristina ... 17
Trinity Group of the Gulf Coast ... 7
Trinity Group of the Gulf Coast ... 7
Todispites minor ... 8, 13; pl. 1, 5
sp. ... 8; pl. 1
tomas, Cordolio ... 9, 13, 15; pl. 4, 7
triangularus, Interulicites ... 15, 18; pl. 5
Trirhopasporis, Pilosporites ... 8; pl. 2
Tretocolpites crassinus ... 9; pl. 4
micrurus ... 9; pl. 4
varis ... 9; pl. 4
Tricolporepellis dakotensis ... 10
Tricolporepellis aliquantulus ... 16
Trilobopites ... 17
Trisetopites minor ... 8, 13; pl. 1, 5

U, V, W
Undulatisporis fossulatus ... 13; pl. 5
'Unio' furri ... 11
variatus, Fervelopsis ... 11
vartospinaus, Echinatosporis ... 8; pl. 2
vartiverticulatus, Echinatosporis ... 8; pl. 1
deltitalpius, Deltitalpia ... 9; pl. 2
vartspinaus, Cricotricosporites ... 13; pl. 5
vartspinaus, Conocasparites ... 13; pl. 6
vartspinaus, Cricotricosporites ... 13; pl. 6
vartspinaus, Conocasparites ... 13; pl. 6
vartspinaus, Conocasparites ... 13; pl. 6
pulcher, Tetracolpites ... 9, 10; pl. 4
purenus, Conocasparites ... 8; pl. 1
Purbeck Formation ... 4

U.S. GOVERNMENT PRINTING OFFICE: 1984—776-041/4024 REGION NO 8
PLATES 1–9
PLATE 1

Cedar Mountain Formation

[Magnification × 1000. Sample numbers are those of USGS Paleobotany locality numbers (text fig. 2)]

Figure 1. *Laevigatosporites cf. L. belfordii* Burger 1976
Sample D5785-A, prep. 4, floated first, fines, slide 3, coordinates 99.0 × 21.6.

2. *Laevigatosporites gracilis* Wilson and Webster 1946
Sample D5785, slide 1, coordinates 81.0 × 13.7.

3. *Cytidites australis* Couper 1963
Sample D5785-A, prep. 4, floated first, hvs, slide 5, coordinates 112.5 × 8.2.

4. *Todisporites* sp.
Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 89.3 × 14.8.

5. *Todisporites minor* Couper 1968
Sample D5785-A, prep. 4, floated first, fines, slide 3, coordinates 106.2 × 6.7.

Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 100.8 × 17.3.

7. *Lygodiumsporites* sp.
Sample D5785, slide 2, coordinates 76.7 × 10.1.

8. *Deltiodospora hallii* Miner 1935
Sample D5785-A, prep. 2, slide 1, coordinates 91.6 × 6.0.

9. *Cytidites minor* Couper 1953
Sample D5785-A, prep. 4, floated first, fines, slide 3, coordinates 101.6 × 2.0.

10. *Conacavissimisporites vari verrucatus* (Couper) Singh 1964
Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 110.2 × 18.4.

11. *Foraminisporis* sp.
Sample D5785-A, prep. 4, floated first, fines, slide 4, coordinates 96.8 × 6.7.

12. *Conacavissimisporites vari verrucatus* (Couper) Singh 1964
Sample D5785-A, prep. 4, floated first, hvs, slide 6, coordinates 112.5 × 8.2.

Sample D5785-A, prep. 4, floated first, fines, slide 1, coordinates 97.4 × 21.1.

14. *Foraminisporis cf. F. wonthaggiensis* (Cookson and Dettmann) Dettmann 1963
Sample D5785-A, prep. 2, slide 1, coordinates 112.1 × 19.8.

15. *Conacavissimispores puocatus* (Delcourt and Sprumont) Brenner 1963
Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 81.9 × 3.1.

16. Trilete spore undetermined.
Sample D5785-A, prep. 2, slide 1, coordinates 104.2 × 10.4. Ornamented with short blunt verrucae as well as short spines.

17. *Leptolepidites* sp.
Sample D5785-A, prep. 4, floated first, fines, slide 4, coordinates 87.6 × 5.1.

18. *Baculatisporites comaumensis* (Cookson) Potonie 1956
Sample D5785-A, prep. 2, slide 1, coordinates 110.5 × 11.1.
LAEVIGATOSPORITES, CYATHIDITES, TODISPORITES, GLEICHENIIDITES, LYGODIUMSPORITES, DELTOIDOSPORA, CONCAVISSIMISPORITES, FORAMINISPORIS, TRILETE SPORE, LEPTOLEPIDITES, AND BACULATISPORITES
PLATE 2

Cedar Mountain Formation

[Magnification × 1000. Sample numbers are those of USGS Paleobotany locality numbers (text fig. 2)]

Figure 1. *Pilosisporites trichopapillosus* (Thiergart) Delcourt and Sprumont 1965
Sample D6785-A, prep. 4, floated first, fines, slide 1, coordinates 77.7×5.4.

2. Sample D6785-A, prep. 4, floated first, fines, slide 2, coordinates 87.3×5.9.
3. Sample D6785-A, prep. 4, floated first, fines, slide 3, coordinates 73.9×13.0.

5. *Cicatricosisporites hughesii* Dettmann 1963
Sample D6785-A, prep. 4, floated first, fines, slide 3, coordinates 108.4×12.3.

6. *Cicatricosisporites* sp.
Sample D6785-A, prep. 4, floated first, fines, slide 2, coordinates 74.0×7.5.

Sample D6785-A, prep. 4, floated first, fines, slide 4, coordinates 98.6×9.9.

8. *Cicatricosisporites venustus* Deak 1963
Sample D6785-A, prep. 2, slide 1, coordinates 108.0×6.2.

9. *Cicatricosisporites* sp.
Sample D6785-A, prep. 4, floated first, fines, slide 2, coordinates 96.1×21.1.

Sample D6785-A, prep. 4, floated first, fines, slide 2, coordinates 88.0×14.5.

11. *Costatoperforosporites* sp.
Sample D6785-A, prep. 4, hvs., slide 6, coordinates 76.8×8.0.

12. Trilete spore, undetermined.
Sample D6785, slide 2, coordinates 91.1×19.3.

13. *Densoisporites microrugulatus* Brenner 1963
Sample D6785-A, prep. 4, floated first, fines, slide 4, coordinates 75.4×8.0.

Sample D6785-A, prep. 4, floated first, fines, slide 2, coordinates 84.2×20.4.

15. Proximal view.

17. *Densoisporites velatus* Weyland and Krieger 1963
Sample D6785-A, prep. 4, floated first, fines, slide 4, coordinates 83.5×12.4.

18. Undetermined.
Sample D6785-A, prep. 2, slide 1, coordinates 102.9×15.6.

19. cf. *Schizosporis* sp.
Sample D6785-A, prep. 4, floated first, fines, slide 1, coordinates 103.5×16.2
PILOSISPORITES, ECHINATISPORIS, CICATRICOSISPORITES, DISTALTRIANGULISPORITES, COSTATOPERFOROSPORITES, DENSOISPORITES, PSILATRILETES, cf. SCHIZOSPORIS, AND TRILETE SPORE
PLATE 3

Cedar Mountain Formation

[Magnification × 1000. Sample numbers are those of USGS Paleobotany locality numbers (text fig. 2)]

Figure

1. *Alisporites grandis* (Cookson) Dettmann 1963
 Sample D5785–A, prep. 4, floated first, fines, slide 4, coordinates 88.2×4.0.

 Sample D5785–A, prep. 4, floated first, hvs., slide 5, coordinates 95.2×17.6.

 Sample D5785–A, prep. 4, floated first, fines, slide 1, coordinates 77.8×5.2.

 Sample D5785–A, prep. 4, floated first, fines, slide 2, coordinates 97.1×10.1.

 Sample D5785–A, prep. 4, floated first, fines, slide 4, coordinates 93.2×22.3.

 Sample D5785–A, prep. 4, floated first, fines, slide 1, coordinates 104.8×4.1.

7. *Cedripites canadensis* Pocock 1962
 Sample D5785–A, prep. 4, floated first, fines, slide 4, coordinates 87.7×5.4.

 Sample D5785–A, prep. 5, floated first, hvs., slide 5, coordinates 99.1×19.4.

9. *Podocarpidites* sp.
 Sample D5785–A, prep. 4, floated first, fines, slide 2, coordinates 112.2×2.4.

 Sample D5785–A, prep. 4, floated first, fines, slide 4, coordinates 97.4×11.9.

 Sample D5785–A, prep. 4, floated first, fines, slide 4, coordinates 88.3×18.0.
ALISPORITES, PITYOSPORITES, CEDRIPITES, PODOCARPIDITES, PRISTINUSPOLLENITES, AND VITREISPORITES
PLATE 4

Cedar Mountain Formation

[Maginification × 1000. Sample numbers are those of USGS Paleobotany location numbers (text fig. 2)]

FIGURE 1.

1. Cycadopites carpentieri (Delcourt and Sprumont) Singh 1964
Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 110.9×12.1.

2. Cycadopites sp.
Sample D5785-A, prep. 4, floated first, fines, slide 4, coordinates 99.0×13.0.

3. Monocolpophyllites sp.
Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 96.0×4.0.

4. Monocolpophyllites sp.
Sample D5785-B, slide 3, coordinates 101.6×14.2.

5. Ginkgoceycadophytes cf. G. nitidus (Balme) de Jersey 1962
Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 81.4×4.6.

6. Equisetosporites multicostatus (Brenner) Norris 1967
Sample D5785-A, prep. 2, coordinates 106.1×22.5.

Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 92.8×1.6.

8. Eucommioidites sp.
Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 102.7×21.5.

Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 89.7×5.7.

10. Clavatipollenites hughesii (Couper) Kemp 1968
Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 92.8×1.6.

The size of this specimen is on the borderline between C. hughesii (Couper) Kemp and C. minutus Brenner.

Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 104.4×9.4.

11. Low focus showing baculae near equator.

12. High focus.

13. Clavatipollenites hughesii (Couper) Kemp 1968
Sample D5785-A, prep. 4, floated first, fines, slide 4, coordinates 121.0×21.0.

The size of this specimen is on the borderline between C. hughesii (Couper) Kemp and C. minutus Brenner.

14. Lilicicidites sp.
Sample D5785-B, prep. 2, slide 2, coordinates 112.3×14.5.

15. Lilicicidites cf. L. perorictalatus (Brenner) Singh 1971
Sample D5785-B, slide 3, coordinates 106.5×5.7.

16. Tricolpites crassimurus (Groot and Penny) Singh 1971
Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 94.1×7.5.

17. Tricolpites cf. T. crassimurus (Groot and Penny) Singh 1971
Sample D5785-A, prep. 4, floated first, Hvs., slide 5, coordinates 88.2×9.1.

18. Cupuliferoidaepollenites parvulus (Groot and Penny) Dettmann 1973
Sample D5785-A, prep. 4, floated first, Hvs., slide 4, coordinates 90.5×2.1.

Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 83.0×11.8.

20. Retitricolpites vulgaris Pierce 1961
Sample D5785-A, prep. 4, floated first, fines, slide 4, coordinates 104.3×20.0.

21. Retitricolpites vulgaris Pierce 1961
Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 111.4×17.9.

Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 111.4×17.0.

23. Stratotopollis paraneus (Norris) Singh 1971
Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 106.4×5.4.

Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 113.4×13.3.

25. Retitricolpites vermiculanus Brenner 1963
Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 97.5×19.9.

26. Rousea georgensis (Brenner) Dettman 1973
Sample D5785-A, prep. 4, floated first, Hvs., slide 5, coordinates 112.1×11.0.

27. Cupuliferoidaepollenites minutus (Brenner) Singh 1971
Sample D5785-B, prep. 2, slide 2, coordinates 111.5×8.6.

28. Tricolpites cf. T. sp. 1 of Kemp 1968
Sample D5785-A, prep. 4, floated first, fines, slide 4, coordinates 104.1×14.5

29-30. Tricolpites micromunus (Groot and Penny) Singh 1971
Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 110.7×2.0. (Sensu Groot and Penny. This specimen is small and may not be the same species as figured by Singh 1971).

29. High focus.

30. Low focus.

Sample D5785-A, prep. 4, floated first, fines, slide 3, coordinates 105.6×8.0.

32. Tetracolpites sp.
Sample D5785-A, prep. 4, floated first, fines, slide 4, coordinates 89.8×17.9.
CYCADOPITES, MONOCOLPOPOLENITES, GINKGOCYCADOPHYTUS, EQUISETOSPORITES, TAXODIACEAEPOLENITES, EUCOMMIDITES, COROLLINA, EXESIPOLLENITES, ASTEROPOLLIS, CLAVATIPOLENITES, LILIACIDITES, TRICOLPITES, CUPULIFEROIDAEPOLLENITES, RETITRICOLPITES, STRIATOPOLLIS, ROUSEA, AND TETRACOLPITES
PLATE 5

Burro Canyon Formation

[Magnification × 1000. Sample numbers are those of USGS Paleobotany locality numbers. (text fig. 2)]

FIGURE

1. *Gleichenioidites senonicus* Ross 1949
 Sample D5803, slide 22, coordinates 111.6×13.8.
 Sample D5510–B, slide 1, coordinates 103.6×10.5.
3. *Cyathidites minor* Couper 1963
 Sample D5510–C, slide 4, coordinates 105.9×6.8.
 Sample D5803, slide 12, coordinates 91.0×17.8.
5. *Todiosporites minor* Couper 1958
 Sample D5801, prep. 2, slide 4, coordinates 78.1×20.9.
 Sample D5801, slide 2, coordinates 107.2×9.8.
7–8. *Tigriosporites reticulatus* Singh 1971
 Sample D5973, slide 2, coordinates 75.2×14.3.
9–10. *Cedargyasporites reticulatus* de Jersey and Paten 1964
 Sample D5510–B, slide 2, coordinates 93.8×3.0.
 Sample D5803, slide 4, coordinates 107.6×21.7.
 Sample D5973, slide 2, coordinates 81.2×15.6.
 Sample D5803, slide 6, coordinates 96.4×4.4.
 Sample D5803, slide 11, coordinates 82.4×19.8.
15. *lycepodiumsporites* sp.
 Sample D5803, slide 22, coordinates 74.7×1.2.
16. *Mattheisporites tenuisulus* Düring 1964
 Sample D5803, slide 12, coordinates 81.7×21.1.
17. *Leptolepidites cf. L. verrucatus* Couper 1963
 Sample D5803, slide 8, coordinates 90.0×2.2.
18. aff. *Cicatricosaosporites phaseolus* (Deicourt and Sprumont) Krutzsch 1959
 Sample D5801, slide 2, coordinates 76.0×15.5.
 Sample D5510–C, slide 2, coordinates 98.4×15.4.
 Sample D5803, slide 6, coordinates 106.1×4.7.
GLEICHENIIDITES, UNDULATISPORITES, CYATHIDITES, DELTOIDOSPORA, TODISPORITES, DICTYOTRILETES, TIGRISPORITES, CADARGASPORITES, INTERULOBITES, STAPLINISPORITES, LYCOPODIUMSPORITES, MATTHESISPORITES, LEPTOLEPIDITES, CICATRICOSOSPORITES, CONVERUCOSISPORITES, AND VERRUCOSISPORITES
FIGURE 1. Cicatricosisporites cf. C. minor (Bolkhovitina) Pocock 1964
Sample D5510-C, slide 1, coordinates 109.4×11.1.
2. Cicatricosisporites cf. C. cuneiformis Pocock 1964
Sample D5510-C, slide 4, coordinates 100.3×10.0.
3. Cicatricosisporites augustus Singh 1971
Sample D5510-B, slide 1, coordinates 99.0×4.5.
Sample D5510-C, slide 2, coordinates 87.0×5.5.
5. Cicatricosisporites cf. C. mediostriatus (Bolkhovitina) Pocock 1964
Sample D5510-C, slide 1, coordinates 88.8×5.4.
6. Cicatricosisporites sp.
Sample D5510-A, slide 2, coordinates 92.6×14.7.
7. Cicatricosisporites pseudotripartitus (Bolkhovitina) Dettmann 1963
Sample D6801, prep. 2, slide 4, coordinates 106.9×20.8.
8. Cicatricosisporites cf. C. pseudotripartitus (Bolkhovitina) Dettmann 1963
Sample D5510-B, slide 1, coordinates 99.5×16.6.
Sample D5510-C, slide 2, coordinates 88.7×10.5.
Sample D5510-B, slide 1, coordinates 107.2×18.3.
11–12. Cicatricosisporites cf. C. crassistriatus Burger 1966
Sample D5801, prep. 2, slide 2, coordinates 110.3×1.0.
13. Cicatricosisporites cf. C. pseudotripartitus (Bolkhovitina) Dettmann 1963
Sample D5510-C, slide 4, coordinates 108.5×13.0.
Sample D5801, prep. 2, slide 4, coordinates 88.3×10.5.
15. Distaltriangulisporites perplexus (Singh) Singh 1971
Sample D5803, slide 6, coordinates 78.9×10.0.
16. Distaltriangulisporites sp.
Sample D5510-B, slide 1, coordinates 78.0×9.0.
17. Appendicisporites jansonii Pocock 1962
Sample D5801, prep. 2, slide 2, coordinates 109.4×14.1.
CICATRICOSISPORITES, APPENDICISPORITES, AND DISTALTRIANGULISPORITES
PLATE 7

Burro Canyon Formation

[Magnification × 1000. Sample numbers are those of USGS Paleobotany locality numbers. (text fig. 2)]

FIGURE 1. 1. *Corollina torosa* (Reissinger) Cornet and Traverse 1975 (two specimens)
 Sample D5803, slide 19, coordinates 79.0×20.1.
2. *Equisetosporites* sp.
 Sample D5803, slide 12, coordinates 91.8×11.0.
3. *Equisetosporites* sp.
 Sample D5803, slide 8, coordinates 80.4×12.9.
4. *Cycadopites* sp.
 Sample D5803, slide 4, coordinates 90.8×20.2.
5. *Cycadopites* sp.
 Sample D5803, slide 5, coordinates 105.3×13.6.
6. *Cycadopites* sp.
 Sample D5803, slide 6, coordinates 108.8×12.4.
7. *Ereispollenites tusculus* Balme 1957
 Sample D5803, slide 10, coordinates 76.6×6.1.
8. *Araucariacites* sp.
 Sample D5510–C, slide 1, coordinates 72.2×1.1.
 Sample D5803, slide 3, coordinates 84.2×20.5.
 Sample D5803, slide 8, coordinates 93.2×16.0.
11. *Callialasporites* sp.
 Sample D5510–C, slide 1, coordinates 76.9×18.0.
 Sample D5803, slide 22, coordinates 99.8×13.4.
 Sample D5803, slide 21, coordinates 96.5×15.0.
 Sample D5510–C, slide 4, coordinates 105.4×4.3.
15. *Pristinuspollenites sulcatus* (Pierce) B. Tschudy 1973
 Sample D5803, slide 3, coordinates 110.8×20.7.
 Sample D5803, slide 12, coordinates 80.0×23.0.
COROLLINA, EQUISETOSPORITES, CYCADOPITES, EXESIPOLLENITES, ARAUCARIACITES,
CEREBROPOLLENITES, CALLIALASPORITES, VITREISPORITES, PRISTINUSPOLLENITES,
AND CLAVATIPOLLENITES
PLATE 8

Burro Canyon Formation

[Magnification × 1000. Sample numbers are those of USGS Paleobotany locality numbers (text fig. 2)]

Figure 1. *Paleoconiferus asaccatus* Bolkhovitina 1956
Sample D5803, slide 21, coordinates 108.1×17.8.

2. *Alisporites thomasi* (Couper) Pocock 1962
Sample D5510-C, slide 2, coordinates 99.6×1.6.

Sample D5803, slide 21, coordinates 76.2×13.9.

4. *Alisporites grandis* (Cookson) Dettmann 1963
Sample D5803, slide 5, coordinates 85.4×8.2.

Sample D5803, slide 22, coordinates 89.8×21.6.

Sample D5803, slide 22, coordinates 95.1×12.8.

Sample D5803, slide 21, coordinates 80.8×17.5.

8. *Cedripites cretaceus* Pocock 1962
Sample D5803, slide 21, coordinates 109.7×17.6
PALEOCONIFERUS, ALISPORITES, PITYOSPORITES, AND CEDRIPITES
PLATE 9

Burro Canyon Formation

[Magnification × 1000. Sample numbers are those of USGS Paleobotany locality numbers (text fig. 2)]

FIGURE 1. *Podocarpidites ornatus* Pocock 1962
Sample D5803, slide 16, coordinates 110.0×10.1.

Sample D5803, slide 5, coordinates 98.7×19.1.

Sample D5803, slide 4, coordinates 89.3×11.4.

Sample D5803, slide 21, coordinates 102.3×20.4.

Sample D5803, slide 21, coordinates 109.3×17.5.

Sample D5803, slide 5, coordinates 111.5×9.7.
Palynological Evaluation of Cedar Mountain and Burro Canyon Formations, Colorado Plateau

By R. H. Tschudy, B. D. Tschudy, and L. C. Craig

A description of the rocks and age determinations of the formations based upon their pollen and spore content
CONTENTS

Abstract .. 1
Introduction .. 1
Rock units ... 1
 Cedar Mountain Formation 2
 Burro Canyon Formation 2
Distribution, stratigraphic relations, and interpretation 4
Methods of sample treatment 4
Location of productive samples 6
 Cedar Mountain Formation 6
 Burro Canyon Formation 6
 Upper horizon 6
 Lower horizon 7
Palynological analysis—Cedar Mountain Formation 7
 Landmark evolutionary events in the development of Angiosperm pollen 9
 Age of the upper part of the Cedar Mountain Formation 10
Palynological analysis—Burro Canyon Formation 11
 Upper horizon 11
 Palynomorph recovery from upper horizon samples 13
 Lower horizon 13
 Palynomorph recovery from lower horizon samples 15
 Age of the upper part of the Burro Canyon Formation 15
Conclusions ... 19
References cited .. 19

ILLUSTRATIONS

[Plates follow index]

PLATES 1-4. Photographs of palynomorphs from Cedar Mountain Formation.
5-9. Photographs of palynomorphs from Burro Canyon Formation.

FIGURE 1. Graphic sections showing stratigraphic positions of palynomorph collections 3
2. Map of Colorado Plateau area 5
3. Histograms showing percentage distribution of major microfossil groups, Cedar Mountain sample 8
4. Photomicrographs of organic material from Burro Canyon upper horizon samples 12
5. Photomicrograph of thin section of Burro Canyon rock showing bedded nature of organic material 13
6-8. Histograms showing gross palynomorph recovery from:
 6. Burro Canyon samples—upper horizon 14
 7. Burro Canyon upper and lower horizons—a comparison 14
 8. Selected intervals Burro Canyon lower horizon 16

TABLES

Table of geostratigraphic terms used and age estimates of boundaries in millions of years before present 2
2. Stratigraphic ranges of Burro Canyon palynomorph species 18
PALYNOLOGICAL EVALUATION OF CEDAR MOUNTAIN AND BURRO CANYON FORMATIONS, COLORADO PLATEAU

By R. H. TSCHUDY, B. D. TSCHUDY, and L. C. CRAIG

ABSTRACT

By lithologic facies change the Cedar Mountain Formation of eastern Utah passes laterally into the Burro Canyon Formation of western Colorado. Both formations lie between the Dakota Sandstone and Morrison Formation. Few fossils have been found in the Cedar Mountain and Burro Canyon Formations, and consequently the age span attributed to these formations has been uncertain.

The overlying Dakota Sandstone in these two areas is palynologically of early Cenomanian age. The first occurrence of the angiosperm fossil pollen, *Nyssapollenites albertensis* Singh, found in the basal Dakota, is proposed as the palynological indicator of the Early-Late Cretaceous boundary in the Western Interior. Palynomorphs found in the upper parts of both the Cedar Mountain and Burro Canyon Formations are more advanced than are those found in the upper part of the Morrison Formation in the same general area. Consequently, the upper parts of the Cedar Mountain and Burro Canyon Formations that yielded palynomorphs are palynologically of Early Cretaceous age.

The palynomorph assemblage found in the upper part of the Cedar Mountain Formation date this horizon as late Albian. The Burro Canyon assemblages were somewhat less distinctive, exhibiting evidence of sequential biofacies changes, and one sample exhibited an unusual lithotype somewhat suggestive of algal origin. Nevertheless, the palynological age of the upper part of the Burro Canyon Formation is clearly older than that of the Cedar Mountain sample. The age of the Burro Canyon sample is estimated to be Aptian to early Albian with the possibility of being as old as Barremian (latest Neocomian). Thus, samples from the upper parts of these two physically equivalent formations show a difference in age. We speculate that pre-Dakota erosion may have removed beds equivalent to the upper Cedar Mountain at the Burro Canyon locality, and that the Neocomian may be represented in the still undated lower parts of the Cedar Mountain and Burro Canyon Formations.

INTRODUCTION

The Burro Canyon Formation of western Colorado and the physically equivalent Cedar Mountain Formation of eastern Utah, both of Early Cretaceous age, have received considerable geologic attention since their definition by Stokes and Phoenix (1948) and Stokes (1944, p. 965–967). Both formations have proved valid as mappable units, yet concern remains about the age and detailed relations of these formations, both to the underlying Morrison Formation of supposed Late Jurassic age and to the overlying Dakota Sandstone of earliest Late Cretaceous age. All students of the Burro Canyon and Cedar Mountain Formations agree that, at least in part, the formations pass laterally by lithologic change into each other.

Upper parts of the Burro Canyon and Cedar Mountain have been interpreted as passing laterally into the overlying Dakota Sandstone (Young, 1960, p. 158) and as separated from it by an erosional disconformity (Craig and others, 1955, p. 161; Carter, 1957, p. 313). The Burro Canyon has also been interpreted as intertonguing with the underlying Brushy Basin Member of the Morrison Formation (Craig and others, 1961, p. 1583) and as separated from the Morrison by a disconformity (Young, 1960, p. 169). These differences of interpretation serve to emphasize the importance of age determinations from either the Cedar Mountain or Burro Canyon Formations and adjoining beds. Unfortunately, both the Cedar Mountain and Burro Canyon Formations contain few fossils. Young (1960, p. 180–181) summarized the knowledge of the limited invertebrate fauna and megaflora. The Aptian or Albian Age (table 1) determined for these fossils accounts for the assignment of the Burro Canyon and Cedar Mountain to the Early Cretaceous.

The recognition of palynomorphs in samples from the Burro Canyon led to the hope that more could be learned from the plant microfossils about the ages of the Burro Canyon and Cedar Mountain Formations and adjacent beds. Considerable search for likely fossiliferous beds resulted in the collection of numerous samples, most of which proved to be barren of palynomorphs. A few samples, however, contained suites of palynomorphs, and these new data and the interpreted ages are presented in this report.

Acknowledgments.—We thank Sharon Van Loenen for her assistance in the preparation of illustrations, the photography of specimens, and other aspects of the preparation of this manuscript.

ROCK UNITS

A summary of the characteristics of the Cedar Mountain and Burro Canyon Formations near the fossil sites follows; figure 1 shows the stratigraphic position of the productive palynomorph collections discussed in this paper.
TABLE 1.—Relation of geochronologic terms used in this report and age estimate of boundaries in millions of years before present, based on Lanphere and Jones (1978)

<table>
<thead>
<tr>
<th>PERIOD</th>
<th>EPOCH</th>
<th>AGE</th>
<th>AGE ESTIMATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cretaceous</td>
<td>Late</td>
<td>Cenomanian (part)</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Albion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Early</td>
<td>Aptian</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Barremian</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hauterinian</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valanginian</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Berriasian</td>
<td>138</td>
</tr>
<tr>
<td>Jurassic</td>
<td>Late</td>
<td>Portlandian</td>
<td></td>
</tr>
</tbody>
</table>

CEDAR MOUNTAIN FORMATION

The Cedar Mountain consists of a relatively thin basal conglomeratic sandstone unit, the Buckhorn Conglomerate Member, and a relatively thick upper shale unit, the shale member. The shale member consists of silty to sandy swelling mudstones that show relatively thick color zones of pastel shades. Some of the mudstone units contain abundant limestone nodules that cover the weathered slopes of the member. Minor constituents of the member are thin, broadly lenticular limestone beds, and a few sandstone units, which are generally cross bedded, may contain lenticles of granule to pebble conglomerate, and appear fluvial in origin. The carbonaceous mudstone from which the palynomorphs were collected is almost unique in the Cedar Mountain.

The Cedar Mountain differs from the Burro Canyon in that the shale member consists dominantly of pastel-colored claystone, including purples and reds, as well as green; it is composed of swelling clays and it generally contains an abundance of limestone nodules that cover the weathered slopes. The Cedar Mountain Formation differs from the underlying Brushy Basin Member of the Morrison Formation in that it lacks the brilliant colors of the Brushy Basin, it lacks the distinct color banding, and it has abundant limestone nodules. The Cedar Mountain is distinguished from the Dakota Sandstone by the general absence of carbonaceous layers in the mudstone of the Cedar Mountain and the presence of carbonaceous shale and plant remains in the sandstone beds of the Dakota.

The palynomorph collections reported here come from a single carbonaceous unit near the top of the formation (fig. 1) in the SE½SW¼, sec. 17, T. 19 S., R. 9 E., Emery County, Utah. The locality is about 16 km southwest of the type locality of the Cedar Mountain Formation (Stokes, 1952, p. 1773). This carbonaceous unit also has provided a small invertebrate and megaflora suite reported by Katich (1951, p. 2093-2094).

BURRO CANYON FORMATION

The Burro Canyon is a sequence of alternating lenticular conglomeratic sandstone beds and variegated, mostly greenish-gray, nonswelling mudstone beds. The sandstone units generally dominate in the lower part of the formation, whereas the mudstone is more abundant in the upper part of the formation. Minor rock components are limestone and chert beds. The formation is distinguished from the underlying Brushy Basin Member in that it consists of coarse, generally conglomeratic, sandstone and interbedded dominantly greenish-gray mudstone, composed of nonswelling clay. The Brushy Basin contains only a few conglomeratic sandstone beds, particularly in its upper part, and is composed dominantly of alternating red, green, and gray mudstone that contains swelling clay, and forms distinctly color-banded outcrops. The Burro Canyon Formation is distinguished from the overlying Dakota Sandstone by the greenish mudstone and by the absence of carbonaceous material and organic-rich shale, lignite, or coal. The Dakota consists of interbedded sandstone and carbonaceous shale; the sandstone is in part conglomeratic and generally contains much carbonaceous debris and common impressions of twigs, stems, and branches.

The collections of palynomorphs reported here came from two carbonaceous shale units (fig. 1) in the upper shaly part of the Burro Canyon exposed in a small tributary of Disappointment Creek in the NE¼, sec. 11, T. 43 N., R. 18 W. The fossil locality is 6.2 km southeast of the type locality of the Burro Canyon Formation (in Burro Canyon, sec. 29, T. 44 N., R. 18 W., San Miguel County, Colo.). Neither of the carbonaceous units have been recognized at the type locality. The upper carbonaceous unit is the same unit that has pro-
FIGURE 1.—Graphic sections showing stratigraphic positions of palynomorph collections. A, Section of Cedar Mountain Formation near type locality of formation; fossil-bearing carbonaceous lens sketched on basis of position beneath the Dakota Sandstone at fossil locality. B, composite section of Burro Canyon Formation measured at fossil localities.
duced a small invertebrate fauna and megaflora reported by Simmons (1957, p. 2525–2526).

DISTRIBUTION, STRATIGRAPHIC RELATIONS, AND INTERPRETATION

The Burro Canyon formation is recognized over a broad area in southeastern Utah and western Colorado (fig. 2), and recently the name has been extended to similar rocks occupying a similar stratigraphic position in the Chama basin of north-central New Mexico (Saucier, 1974).

The southern limit of the Burro Canyon is an erosional limit where the Burro Canyon is cut out by the regional unconformity at the base of the overlying Dakota Sandstone. This limit is along a northwest-trending line that passes near the Four Corners. South of this limit, the pre-Dakota unconformity progressively bevels the Morrison Formation and older formations southward.

To the east, beds equivalent to the Burro Canyon are believed to be present in central and eastern Colorado (Lytle Formation of Dakota Group along the Front Range foothills and Lytle Sandstone Member of Purgatoire Formation in southeast Colorado). The Burro Canyon itself reaches a poorly known pinchout along an irregular north-south line extending from northwestern Colorado to northwestern New Mexico (fig. 2). The nature of this pinchout is uncertain. In part it is probably the result of pre-Dakota erosion, but in part it also may be due to depositional thinning of the formation. In the poor exposures along the few outcrop belts that cross the pinchout, the sandstone beds in the Burro Canyon appear to thin as the pinchout is approached. However, pre-Dakota erosion seems the most important factor in the pinchout of the formation.

The Cedar Mountain Formation is recognized over much of south-central and northeastern Utah and northwestern Colorado. The southern limit is south of the Henry Mountains and is an erosional limit along which the Cedar Mountain is cut out by the erosional unconformity at the base of the Dakota. The western limit is poorly known but it extends beneath the high plateaus of central Utah. To the north, the formation is identified to the Wyoming State line in both northeastern Utah and northwestern Colorado. Equivalent beds in Wyoming are included in the Cloverly Formation.

The arbitrary lateral limit between the Burro Canyon Formation and the Cedar Mountain Formation is placed along the Colorado River in Utah (Stokes, 1952, p. 1774), although for a distance of about 40 km west of the river the characteristics of the two formations intermingle.

To the north in Colorado, the Burro Canyon Formation passes laterally into the Cedar Mountain Formation. In this area north of the Colorado River, the line of demarcation between the Burro Canyon and Cedar Mountain is placed where Burro Canyon characteristics give way to Cedar Mountain characteristics in the subsurface as interpreted from drillhole logs.

Based on thickness, percentage of sandstone, pebble size, and limited current-direction studies, the Burro Canyon and Cedar Mountain are interpreted as sediments from two alluvial systems deposited across a broad even surface on top of the Morrison Formation; in many respects they appear to represent a continuation of Morrison deposition. The major source for the Burro Canyon was southwest of the Four Corners, perhaps in southern Arizona. Burro Canyon deposits were spread northward and eastward from a major depositional axis along the southern part of the Utah-Colorado State line. The source for the Cedar Mountain Formation was somewhere west of the high plateaus in central Utah, and Cedar Mountain deposits were spread eastward.

METHODS OF SAMPLE TREATMENT

Samples were first cleaned, then broken into fragments about 1–5 mm (millimeters) in diameter. 10–20 g (grams) of broken rock were placed in plastic beakers and tested for the presence of carbonates. If carbonates were present, the samples were then treated with 10-percent HCl to remove carbonates; otherwise they were treated directly with hydrofluoric acid to disaggregate and partly dissolve the inorganic matrix. After thorough washing, the centrifuged residue was treated with the oxidizing Schulze solution (HNO₃ + NaClO₃). After washing, the acid humates were solubilized and removed by a short treatment with 10-percent NaOH solution. Pollen and spores (and insoluble organic matter) were concentrated from the residue by flotation in zinc bromide solution (specific gravity about 2.0) and then “panned” by means of the technique suggested by Funkhouser and Evitt (1959). The palynomorphs were then stained with Bismark Brown, if necessary, and mixed with Vinylite AYAF in 90-percent alcohol (polyvinyl acetate plastic, refractive index 1.466).

Several drops of the palynomorph-plastic mixture were placed on a 22×40 mm cover glass and another cover glass was placed on the mixture, thus making a “sandwich.” After the plastic had spread evenly to the margins, the cover glasses were separated by sliding them in opposite directions lengthwise in much the

1Trade names used in this paper are for descriptive purposes only and do not constitute endorsement by the U.S. Geological Survey.
Figure 2.—Map of Colorado Plateau area showing fossil sample localities, sample numbers, and distribution of Cedar Mountain (Kem) and Burro Canyon (Kbc) Formations. Zero line marks pinchout of Burro Canyon and Cedar Mountain Formations (dashed where uncertain). Dotted line is arbitrary line separating areas in which Burro Canyon and Cedar Mountain are recognized.
same manner as a blood smear is made. After the film
on the cover glasses had dried for a few minutes on
a warming plate, the cover glasses were inverted and
mounted on slides using Histoclad resin. This method
provides a thin, evenly dispersed film of pollen and
spores in a mountant of favorable refractive index. It
serves to anchor the fossils close to the cover glass so
that they can be examined conveniently even under
high-power oil-immersion lenses.

Slides are identified by locality number (D5510–A),
and slide number D5510–A (1) or D5510–A (2); and on
occasion processing sequence is also included as prepa­
ation 1 (prep. 1, prep. 2) and fraction—heavy fractions,
fine fraction (Hvs; fines.): for example, D5785–A, prep.
4, Hvs., slide 5.

Minor modifications of oxidation time, cleaning proce­
dures, and staining were tried with some success in
efforts to improve the quality of some preparations.

LOCATION OF PRODUCTIVE SAMPLES
CEDAR MOUNTAIN FORMATION

Two Cedar Mountain samples were obtained from the
locality known as the Stokes-Katich locality (Simmons,
1957, p. 2527). Samples were taken from a 1.5-m-thick,
dark-gray calcareous shale outcrop in a cliff. The out­
crop was about 13.9 m below the Dakota contact. The
lower sample, consisting of gray calcareous siltstone in­
terspersed with small calcite crystals, was barren of
palynomorphs. The upper sample, consisting of dark-
gray laminated shale and black claystone, was produc­
tive and was assigned a USGS paleobotany locality
number as indicated below:

<table>
<thead>
<tr>
<th>USGS paleobotany loc. No.</th>
<th>Field No.</th>
<th>Locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>D5785</td>
<td>3RT–77–7</td>
<td>SE¼SW¼ sec. 17, T. 19 S., R. 9 E., ¼ mi west of the junction of Rock Canyon Creek and Cottonwood Creek, Emery County, Utah. (Stokes-Katich locality in Simmons, 1957, p. 2527).</td>
</tr>
</tbody>
</table>

BURRO CANYON FORMATION
UPPER HORIZON

Productive samples were obtained from two horizons.
The upper horizon consisted of a 1.5-m-thick layer of
black fissile shale located 7.3 m below the base of the
Dakota Sandstone and immediately above a prominent
limestone ledge. This is the same general locality from
which fossils were collected by Stokes (1952) and the
identical locality visited by G. C. Simmons and D. R.
Shawe, and later revisited by L. C. Craig and others
(Simmons, 1957, p. 2525). Several collections for
palynological examination were taken from this locality
during the summer of 1976. The yield of palynomorphs
from these samples was so poor that resampling was
conducted at the same site and along the lateral extent of
the outcrop in the summer of 1977 and again in 1978.
Sample number and localities for the upper horizon of
the Burro Canyon Formation are listed below:

<table>
<thead>
<tr>
<th>USGS paleobotany loc. No.</th>
<th>Field No.</th>
<th>Locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>D5510–A</td>
<td>RT–76–6</td>
<td>¼NW¼NE¼ sec. 11, T. 43 N., R. 20 W., in northwest wall of an intermittent stream bed about 330 m south of its junction with Disappointment Creek, Hamm Canyon quadrangle, San Miguel County, Colo. Approximately 1.5-m-thick ledge of black fissile shale, 7.3 m below Burro Canyon-Dakota contact. Sample 25 cm above limestone ledge at base of shale.</td>
</tr>
<tr>
<td>D5510–B</td>
<td>RT–76–7</td>
<td>Same locality as D5510–A, 51 cm above limestone ledge.</td>
</tr>
<tr>
<td>D5510–C</td>
<td>RT–76–8</td>
<td>Same locality as D5510–A, 61 cm above limestone ledge.</td>
</tr>
<tr>
<td>D5786–A</td>
<td>RT–77–15</td>
<td>Same locality as D5510–A, top part of limestone ledge.</td>
</tr>
<tr>
<td>D5786–B</td>
<td>RT–77–16</td>
<td>90 m S. 5° E., from locality of D5510–A, along strike of black fissile shale. 1-cm-thick basal siltstone layer immediately above limestone ledge.</td>
</tr>
<tr>
<td>D5800</td>
<td>RT–77–17</td>
<td>Same locality as D5786–B. Black, wet mudstone, 60 cm above limestone ledge.</td>
</tr>
<tr>
<td>D5801</td>
<td>RT–77–18</td>
<td>Same locality as D5786–B. Black fissile shale with limestone concretions 18 cm above limestone ledge.</td>
</tr>
<tr>
<td>D5802</td>
<td>RT–77–19</td>
<td>S. 60° W., 200 m from sample D5801; sample from northwest side of drainage. Composite sample from 1.5-m-thick black fissile shale.</td>
</tr>
<tr>
<td>D5974</td>
<td>RT–78–18</td>
<td>NW corner sec. 13, T. 43 N., R. 18 W., along unimproved road, Hamm Canyon quadrangle, San Miguel County, Colo. About 1.5-m-thick black fissile shale. Same horizon as previous Burro Canyon samples, but only 3 m below the Dakota contact.</td>
</tr>
</tbody>
</table>

The upper horizon of black fissile shale has been
traced several kilometers to the northwest and to the
southeast of the original locality, but is apparently ab­
sent from the type locality of the Burro Canyon Forma­
tion in Burro Canyon near the village of Slick Rock, Colo., sec. 29, T. 44 N., R. 18 W., San Miguel County, Colo.
LOWER HORIZON

In 1976 during the course of recollecting samples from the localities just described, a black limy shale horizon was found about 10.4 m below the base of the 1.5-m-thick black fissile upper-shale horizon. This sample yielded a much better assemblage of palynomorphs than was obtained from the upper fissile-shale horizon. The sample consisted of two lithotypes—a fine-grained, hard, calcareous black shale, and a black, soft, friable shale containing small calcite crystals. Palynomorph yield from the two lithotypes was distinctly different, suggesting that biofacies near the site of deposition had changed. The site was recollected in 1978. Six samples were collected from an 87-cm interval (fig. 8). Four of these samples were productive and were given USGS paleobotany locality numbers as indicated below:

<table>
<thead>
<tr>
<th>USGS paleobotany loc. No.</th>
<th>Field No.</th>
<th>Locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>D5803</td>
<td>RT-77-20</td>
<td>SW IV NE 1/4 sec. 11, T. 43 N., R. 18 W., at approximate location of bench mark 5641, Hamm Canyon quadrangle, 1960, 10.4 m below base of upper fissile-shale horizon. Sample included two lithotypes; soft, black friable shale with small calcite crystals, and hard, dark-gray calcareous shale.</td>
</tr>
<tr>
<td>D5972-A, B, C, D</td>
<td>RT-77-20</td>
<td>Same locality as D5803. See figure 8.</td>
</tr>
<tr>
<td>D5973</td>
<td>RT-78-16</td>
<td>Same locality as D5803 but 10.2 m north along strike of dark-gray and black outcrop. Sample from bentonite zone, friable black shale that grades upward into dark-gray to black limestone. Composite sample from 30-cm interval.</td>
</tr>
</tbody>
</table>

The lower horizon was traced about 150 m along the wash, but apparently is not present or is covered elsewhere.

PALYNOLOGICAL ANALYSIS—CEDAR MOUNTAIN FORMATION

Reports of fossils from the Cedar Mountain Formation are exceedingly sparse. The pertinent information concerning those few fossils found is presented by Simmons (1957) who listed fossils from two localities. The first locality, the so-called Stokes-Katich locality, is the same locality mentioned previously that yielded the palynomorphs in the present study. Fossils found include Eupera onestae McLearn, a fresh-water pelecypod of Aptian Age, Tempskya minor Reed and Brown, a tree fern trunk, known from the Aspen Shale (Albian Age) Wyoming and Idaho, ostracods, and goniod fish scales. "The second locality is in sec. 22, T. 22 S., R. 20 E., on the southwest flank of the Salt Valley anticline, Grand County, Utah" (Simmons, 1957, p. 2527). This locality yielded ostracods, gastropods, microfossil material, and the charophyte Clavator harrisi Peck.

The microfossil material was examined by R. E. Peck who stated: "All of these are common fossils in the Gannett Group, the Cloverly of northwestern Wyoming, and the limestones in the upper Kootenai of Montana. Clavator harrisi Peck is common in the Trinity of the Gulf Coast. None of these species occurs in the Morrison of the Front Range of Colorado, in eastern Wyoming or in the Black Hills. Their occurrence is an excellent indication of the Lower Cretaceous age of the formation" (in Simmons, 1957, p. 2527). The purported age of the Gannett Group is Early Cretaceous, of the Cloverly and Kootenai Formations is Aptian, and of the Trinity Group of the Gulf Coast, is Aptian to early Albian. "In view of the identifications, an Early Cretaceous age seems assured for the shale member of the Cedar Mountain Formation" (Simmons, 1957, p. 2527).

Angiosperm wood was collected from the Cedar Mountain Formation near Castle Dale and Ferron, Utah by Thayn (1973). Genera found were Icacinoxylon, previously known only from the Tertiary of Europe, and Paraphyllanthoxylon, known from the Cretaceous of Arizona, Idaho, and Alabama. However, these fossils shed no additional light upon the age of the Cedar Mountain Formation.

The samples collected for our study were examined palynologically in an attempt to obtain a more definite age determination and to verify the reported correlations of the Cedar Mountain and Burro Canyon Formations (Simmons, 1957; Craig and others, 1955).

Palynomorphs were poorly preserved and somewhat sparse, requiring the intensive examination of many slides in order to obtain a significant assemblage. The palynomorph assemblage consisted of tricolpate angiosperm pollen, bisaccate conifer pollen, monosulcate pollen, Corollina and minor representations of Liliaceae, trilete spores and taxodiaceous pollen (fig. 3). The high percentage of unidentified palynomorphs (averaging 32 percent of the assemblage) attests to the generally poor condition of the palynomorphs present. Figure 3 includes counts of palynomorph types in four separate preparations. Modification of preparation procedures were tried in attempts to obtain better recovery from this sample. That some of the preparations were better than others is evident upon examination of the graph. For example, preparation C (D5758-B, prep. 2) yielded...
only 6 percent bisaccate conifer pollen, and the unidentified palynomorphs accounted for 47 percent of the assemblage. In contrast, preparation A (D5758, prep. 1) yielded 21 percent bisaccate conifer pollen and only 19 percent unidentified palynomorphs. Except for discrepancies accounted for by the varied preparation procedures, the recovery of the several palynomorph groups shows a remarkable consistency.

The following genera and species have been identified from the preparations, and the taxa are shown on plates 1-4.

- *Laevigatosporites gracilis* Wilson and Webster 1946
- *Cyathidites australis* Couper 1953
- *Todisporites* sp.
- *Todisporites minor* Couper 1958
- *Gleicheniidites senonicus* Ross 1949
- *Lygodiumsporites* sp.
- *Deltoidospora hallii* Miner 1935

- *Cyathidites minor* Couper 1953
- *Dictyotriletes granulatus* Pocock 1962
- *Foraminisporis* sp.
- *Foraminisporis* cf. *F. wonthaggiensis* (Cookson and Dettman) Dettmann 1963
- *Concaviissimisporites varierrucatus* (Couper) Singh 1964
- *Concaviissimisporites punctatus* (Delcourt and Sprumont) Brenner 1963
- *Leptolepidites* sp.
- *Baculatisporites comaunensis* (Cookson) Potonie 1956
- *Pilosisporites trichopapillosus* (Thiergart) Delcourt & Sprumont 1955
- *Echinatisporis variispinosus* (Pocock) Srivastava 1975
- *Cicatricosisporites hughesii* Dettmann 1963
- *Cicatricosisporites* sp.
- *Cicatricosisporites* cf. *C. minutaestriatus* (Bolkhovitina) Pocock 1964
LOCATION OF PRODUCTIVE SAMPLES

LANDMARK EVOLUTIONARY EVENTS IN THE DEVELOPMENT OF ANGIOSPERM POLLEN

The earliest records of angiosperm pollen include some of the same taxa that were recovered from the Cedar Mountain Formation. The first occurrences of angiosperm pollen in the stratigraphic record and the subsequent diversification of angiosperm pollen is pertinent to the age determinations and conclusions derived from Cedar Mountain samples.

The stratigraphic record has provided the basis for several outlines of the developmental history of angiosperm pollen, particularly in North America (Singh, 1971, 1975; Doyle, 1969; Jarzen and Norris 1975; Norris, Jarzen, and Awai-Thorne, 1975; Muller, 1970; and others). These outlines present data concerning the earliest record of angiosperm pollen, followed successively by the first appearance of tricolpate pollen, tricolporate pollen, triporate pollen; and in the Cenomanian and later stages, the times of origin of evolutionarily more advanced pollen types.

There are no substantiated pre-Cretaceous records of angiosperm pollen. The most primitive putative angiosperm pollen type is a monosulcate grain with pilate or retipilate sculpture, represented by the genus Clavatipollenites Couper. Couper (1958), in describing the type species C. hughesii from the Barremian of England, pointed out that although the monosulcate aperture condition is prevalent in gymnosperms, pilate or retipilate sculpture is not known outside the angiosperms. Pollen grains of the Clavatipollenites type are now considered by the vast majority of palynologists to be of probable angiosperm origin. Clavatipollenites pollen has been widely reported in rocks of Aptian-Albian Age from diverse parts of the world: Hughes (1958) and Kemp (1968) from England, Couper (1964) from Central America and Australia, Kemp (1968) and Norris (1967) from western Canada, and Brenner (1963) from eastern United States. Chlonova (1977) reported the first find of Clavatipollenites in ?Albian-Cenomanian rocks of Western Siberia. She discussed the pre-Barremian (Jurassic) records of identifications of Clavatipollenites (from central Europe and Asia) and rejected them as not being completely reliable. Birklund, and others (1978) and Vigran and Thusu (1975) reported Clavatipollenites from Jurassic and pre-Jurassic rocks of Norway. Perhaps significantly, Birklund and others (1978) found Clavatipollenites in their assemblies assemblage 1 (Middle Jurassic) but not in younger assemblages—assemblage 2 (Kimmeridgian), assemblage 3 (Kimmeridgian-Volgian), and assemblage 4 (early Neocomian).

In North America, the oldest record of Clavatipollenites is from the upper part of the Barremian (Doyle, 1969; Doyle and Robbins, 1977). In western Canada,
the entrance level of *Clavatipollenites* coincides in Alberta with the entrance level of reticulate tricolpate forms (middle Albian). *Clavatipollenites* was not found in Canada in the Loon River Formation, lower mid-Albian (Singh, 1975), nor in the Mannville Group (Singh, 1964; Norris, 1967) of Aptian to early middle Albian age and no older than late Barremian (Singh, 1964). Thus, in western North America there are no records of *Clavatipollenites* earlier than mid-Albian time. The presence of specimens of *Clavatipollenites* in Cedar Mountain rocks therefore suggests an Albian or younger age.

Tricolpate pollen first appears, apparently worldwide, in the Albian. "The appearance of tricolpate pollen seems to have been a major world-wide event, and in all areas which have been carefully studied there is a zone with small reticulate tricolpates but without triporates or typical tricolporates (cf. Krutzsch, 1963; Muller, 1968). This appearance generally may be dated as early or middle Albian, but refinement is needed in most areas." (Doyle, 1969, p. 11). Singh (1971, p. 25) has summarized these data as follows: "The entrance of tricolpate dicotyledonous pollen in Albian strata of North America has been well documented by Brenner (1963), Davis (1963), Pannella (1966), Norris (1967), and Hedlund and Norris (1968). In other parts of the world, the first definite dicotyledonous pollen has been reported from Albian strata of central Russia (Bolkhovitina, 1953), New Zealand (Couper, 1960), Portugal (Groot and Groot, 1962), Central America and Africa (Couper, 1964), Peru (Brenner, 1968), Australia (Dettmann and Playford, 1968) and England (Kemp, 1968). Thus the entrance of tricolpate dicotyledonous pollen in the Lower Cretaceous succession of the Peace River area supports the middle to late Albian age assigned to these beds on faunal evidence (Wickenden, 1951, Stelck, et al., 1966)."

The angiosperm pollen succession in eastern Australia was discussed by Dettmann (1973). She reported that the earliest occurrence of tricolpate pollen was found in the middle Albian of the Great Artesian Basin, whereas tricolpate pollen first appears a little later, in the upper Albian, in the more southerly Otway Basin. The first occurrence of tricolpate angiosperm pollen in Australia appears to coincide in time with its first appearance in Western North American rocks.

Tricolpate pollen first appears in latest Albian time in western Canada and western United States and in the early Cenomanian in eastern United States (Singh, 1975). Tricolpate pollen has a widespread distribution throughout the Cenomanian of the Western Interior. Singh (1975, p. 377) concluded "It is evident from the above discussion that the Albian-Cenomanian boundary in North America is marked by the appearance of smooth, triangular tricolporates (Table II, III) and angiosperm tetrads."

The tricolpate pollen mentioned by Singh (1975) is the species *Nyssapollenites albertensis* Singh. It appears just below the fish scale member in the Shaftesbury Formation of Alberta (uppermost Albian). The same species identified as *Tricolporopollenites aliquantulus* Hedlund was found in the Red Branch Member of the Woodbine Formation of Oklahoma (Cenomanian) (Hedlund, 1966). Pannella (1966) reported the same species (as *Tricolporites dakotensis*) from the upper part of the Dakota Sandstone and the Huntsman Shale of MacKenzie (1965) (upper Albian-Cenomanian) of the Denver basin, Colorado. The same species (as *Tricolporopollenites aliquantulus* Hedlund) was found in the Dakota Sandstone of Arizona (Cenomanian) by Agasie (1969). We have found pollen of *Nyssapollenites albertensis* Singh to be a common constituent of Cenomanian rocks of Colorado and Utah. In the Front Range near Denver, Colo., the entrance level of this species is in the middle part of the Kassler Sandstone Member of the South Platte Formation (Dakota Group) about 30.5 m below the base of the Benton Formation (Mowry Shale to the north). The Mowry Shale is characterized by abundant fish scales, and is found at approximately the same stratigraphic position as the "fish scale marker bed" ("The traditional Lower-Upper Cretaceous boundary***" (Norris and others, 1975) in the Shaftesbury Formation of Alberta Canada. Significantly, Singh (1971, p. 28) found the entrance level of *Nyssapollenites albertensis* at about 35.0 m below the "fish scale marker bed." With the exceptions of the latest Albian report by Singh (1971) and the late Albian (Dakota) report by Pannella (1966), all other records of tricolpate pollen from western North America are from Cenomanian and younger rocks. The consistent first occurrence of *Nyssapollenites albertensis* at or very near the Albian-Cenomanian boundary provides a reliable indicator in western North America of the palynological boundary between the Early and Late Cretaceous. This palynological marker species coincides with or is close to the Early-Late Cretaceous boundary based on other types of evidence.

AGE OF THE UPPER PART OF THE CEDAR MOUNTAIN FORMATION

The absence of any tricolpate pollen eliminates the possibility of a Cenomanian Age. The presence of small tricolpate pollen indicates an age range from middle to late Albian. The presence of at least 11 identified species of tricolpate pollen suggests that a significant amount of time must have elapsed since the origin of tricolpates in the mid Albian, until the plants had evolved to produce the diverse tricolpate flora including such large forms as *Tetracolpites pulcher* Srivastava.
Thus, this assemblage is clearly of late or latest Albian age.

PALYNOLOGICAL ANALYSIS—BURRO CANYON FORMATION

The Burro Canyon Formation also has yielded few fossils. Fossil evidence for the age of the Burro Canyon Formation was presented by Stokes (1952) and Simmons (1957). The fossils were obtained from the NE¼NW¼NE¼ sec. 11, T. 43 N., R. 18 W., San Miguel County, Colo. This locality is the identical locality that yielded palynomorphs from the upper Burro Canyon horizon mentioned previously. The following fossils of possible age significance were reported:

- **Plant**—*Frenelopsis varians* Fontaine (Aptian-early Albian)
- **Molluscs**—*Protelliopitio douglassi* Stanton (Aptian)
- **“Unio” farri Stanton (Aptian)**
- **Nipponoa asinaria** Reeside (Early Cretaceous)

No other reports of fossils from the Burro Canyon Formation have come to our attention.

A second locality that yielded palynomorphs, about 10.4 m below the base of the upper Burro Canyon horizon, has been mentioned previously. No other types of fossils are known from this second locality.

As with the Cedar Mountain Formation, the Burro Canyon Formation samples were examined palynologically in an attempt to obtain a more refined age determination, to address the question raised by reported intertonguing of the basal part of the Burro Canyon and upper part of the Morrison Formations (Simmons, 1957, p. 2523), and to attempt to determine whether or not the Burro Canyon and Cedar Mountain Formations are correlative palynologically.

The overlying Dakota Sandstone in this area is palynologically of early Cenomanian age (it has yielded *Nyssapollenites albertensis* Singh). The Burro Canyon Formation lies between the Dakota and the Morrison. In some places, evidence exists of apparent continuous deposition from the Morrison into the basal part of the Burro Canyon. Samples obtained from the upper or Brushy Basin Member of the Morrison Formation in this general area have yielded a palynological suite of fossils indicative of a Late Jurassic age. Theoretically, the Burro Canyon Formation could represent an age ranging from Late Jurassic to Cenomanian—that is, the entire Early Cretaceous spanning a time interval of some 40 million years.

UPPER HORIZON

As has been indicated, two palynologically productive horizons were found in the upper part of the Burro Canyon Formation. The upper horizon sample, from a 1.5-m-thick layer of black fissile shale about 7.3 m below the base of the Dakota Sandstone, yielded sparse assemblages of palynomorphs. The great majority of the organic matter consisted of what appeared to be short filaments (fig. 4A). On closer examination these filaments proved to be aggregates of amorphous material. At higher magnification, the apparent strands lose their continuity and appear as small strands with somewhat indefinite margins (fig. 4B). In the lower part of the photomicrograph (fig. 4B) a fragment of black woody tissue can be seen. Near the center a palynomorph is obscured by this organic material. At succeeding higher magnifications (fig. 4C, D, and E scanning electron micrographs), the organic material exhibits its amorphous character, and the filamentous attribute effectively disappears. Contrast between upper-horizon preparations containing an abundance of amorphous organic material and more nearly normal preparations is shown on a photomicrograph of a preparation from the lower horizon (fig. 4E). Wood fragments, bits of epidermal and cuticular tissue, and easily recognizable palynomorphs are visible. This preparation is virtually devoid of organic material of the kind found in upper horizon samples. The great abundance of amorphous organic material present in upper horizon samples could not be removed from the samples by oxidation without destroying the accompanying palynomorphs. Thus, the few spores and pollen grains present were commonly obscured by this material. Samples from the upper horizon are unique in this respect in our experience. We have never found samples that reacted in the same manner. The closest observed similarity is to samples of oil shale from the Green River Formation, yet the organic material in the Green River oil shale appears visually to be distinctly different.

Two samples of black fissile shale from the upper horizon were submitted to L. G. Schultz, U. S. Geological Survey, Denver, Colo. for X-ray analysis. He reported that the nonorganic part of the black shale contained 2–10 percent calcite, 1 to 2 percent quartz, and a large percentage of mixed-layer illite-smectite, a swelling clay that could be an altered tuff.

Thin sections made from this upper horizon shale show the abundance and bedded nature of the unaltered organic material but give no hint of its original composition (fig. 5). These thin sections, plus macerated sample material from the upper horizon were sent to the late Dr. J. M. Schopf, USGS Coal Geology Laboratory at Columbus, Ohio. He remarked (written commun., Dec. 13, 1977) “The thin sections are excellent . . . I wish I could suggest how such a rock could reasonably be deposited. My next suggestion is that it must be an unusual local occurrence.”

This abundant amorphous organic material possibly could be the residue from some, as yet unidentified,
alga. Botryococcus, a common lacustrine alga, has been found in all upper horizon samples.

PALYNOMORPH RECOVERY FROM UPPER HORIZON SAMPLES

The palynomorph recovery from upper horizon samples was sparse. The abundant organic matter and the comparatively poor state of preservation made identification extremely difficult. Gross palynomorph recovery from representative upper horizon samples is shown in figure 6. The average number of unidentified forms was 48 percent, attesting to the difficulty posed by the amorphous organic material.

The following identified taxa were obtained from an examination of more than 60 slides.

Burro Canyon upper horizon

- Undulatisporites cf. U. fossulatus Singh 1971
- Cyathidites minor Couper 1953
- Todisporites minor Couper 1958
- Dictyotriletes pseudoreticulatus (Couper) Pocock 1962
- Cadargasporites reticulatus de Jersey and Paten 1962
- Staplinaisporites caminus (Balme) Pocock 1962
- Mattheisporites tumulosus Döring 1964
- aff. Cicatricosisporites phaseolus (Delcourt and Sprumont) Krutzsch 1959
- Convexicosporites cf. C. proxigranulatus Brenner 1963
- Cicatricosisporites cf. C. minor (Bolkhovitina) Pocock 1964
- Cicatricosisporites cf. C. cuneiformis Pocock 1964
- Cicatricosisporites augustus Singh 1971
- Cicatricosisporites cf. C. potomacensis Brenner 1963
- Cicatricosisporites cf. C. mediostriatus (Bolkhovitina) Pocock 1964
- Cicatricosisporites sp.
- Cicatricosisporites pseudotripartitus (Bolkhovitina) Dettmann 1963
- Cicatricosisporites apiteretus Phillips and Felix 1971
- Cicatricosisporites cf. C. subfrofusus Brenner 1963
- Cicatricosisporites cf. C. crassistriatus Burger 1966
- Distaltriangulisporis sp.
- Appendicisporites bilateralis Singh 1971
- Appendicisporites jansoni Pocock 1962
- Corollina torosa (Reissinger) Cornet and Traverse 1975
- Equisetosporites spp.
- Araucariacites sp.
- Callialasporites sp.
- Vitreisporites pallidus (Reissinger) Nilsson 1958
- Alisporites thomastii (Couper) Pocock 1962
- Alisporites grandis (Cookson) Dettmann 1963
- Cedripites cf. C. canadensis Pocock 1962
- Cedripites cretaceus Pocock 1962
- Podocarpidites ornatus Pocock 1962

LOWER HORIZON

This locality was found about 10.4 m below the upper fissile shale horizon. The recovery of palynomorphs was much better than from upper horizon samples even though preservation quality was not the best. The difference in appearance of the slides from the two horizons is shown on figure 4. In figure 4F fusinized wood fragments are prevalent in the photograph, and epidermal tissue and palynomorphs make up the lighter, more translucent material. The appearance of the organic material from the lower horizon is normal, in contrast to
the appearance of the organic material from the upper horizon.

A comparison of the gross palynomorph recovery from the upper and lower horizons is shown in figure 7. The contrast is shown vividly by the absence of unidentified forms from the lower horizon. The lower horizon assemblage is dominated by bisaccate conifer pollen and *Corollina*. The residue of palynomorphs makes up less than 3 percent of the total assemblage.

The first samples collected from the lower horizon showed a marked difference in recovery from hard dark-gray shale and from black friable shale containing small calcite crystals. The hard dark-gray shale (interval C, fig. 8) was dominated by bisaccate conifer pollen and the black friable shale (interval D, fig. 8) by *Corollina* pollen. The lower horizon was therefore recollected the following year in an attempt to verify these data. The possibly productive interval consisted of 87 cm of
alternating shale, calcareous shale, and limestone capped by 40 cm of blocky gray limestone. Six samples were taken from the 87-cm interval as shown on figure 8.

PALYNOMORPH RECOVERY FROM LOWER HORIZON SAMPLES

The upper two samples were barren. The gross palynomorph recovery of the four lower samples is shown in figure 8. The sample D5972-D yielded 97 percent bisaccate conifer pollen and only 1 percent Corollina, whereas samples D5972-C, D5972-B and D5972-A yielded 20, 23, and 35 percent bisaccate conifer pollen, respectively, and the assemblages were dominated by abundant Corollina specimens. Bisaccate pollen and pollen of Corollina were produced by conifers. Corollina pollen was produced by the fossil tree genus Cheirolepis. The prominent change in abundance of these two pollen groups in a comparatively short stratigraphic interval indicates a prominent floral change and suggests a prominent biofacies difference between the two groups of samples.

The following taxa were identified from the lower horizon:

- *Gleicheniidites senonicus* (Ross) Skarby 1964
- *Cyathidites minor* Couper 1953
- *Deltoidospora* cf. *D. psilostoma* Rouse 1959
- *Tigrisporites reticulatus* Singh 1971
- *Staplinisporites caminus* (Balme) Pocock 1962
- *Lycopodiumsporites* sp.
- *Matthesiopsorites tumulosus* Döring 1964
- *Leptolepidites verrucatus* Couper 1953
- *Verrucosisporites* cf. *V. densus* (Bolkhovitina) Pocock 1970a
- *Cicatricosisporites* sp.
- *Cicatricosisporites pseudotripartitus* (Bolkhovitina) Dettmann 1963
- *Distaltriangulisporis perplexus* (Singh) Singh 1971
- *Corollina torosa* (Reissinger) Cornet and Traverse 1975
- *Cycadopites* spp.
- *Equisetosporites* spp.
- *Araucariacites* sp.
- *Ezestipollenites tumulus* Balme 1967
- *Cerebropollenites mesozoicus* (Couper) Nilsson 1958
- *Callialasporites segmentatus* (Balme) Sukh-Dev 1961
- *Vitreisporites pallidus* (Reissinger) Nilsson 1958
- *Pristinis pollenites sulcatus* (Pierce) Tschudy 1973
- *Clavatipollenites Hughesi* (Couper) Kemp 1968
- *Paleoconiferus asaccatus* Bolkhovitina 1956

The chief distinction between the assemblages from the upper and lower horizons of the Burro Canyon is that many species and specimens of *Cicatricosisporites* were found in the upper horizon assemblages and very few *Cicatricosisporites* specimens were found in the lower horizon assemblages.

AGE OF THE UPPER PART OF THE BURRO CANYON FORMATION

Both upper and lower horizon assemblages were from the upper part of the Burro Canyon Formation, so for the purpose of this discussion they will be considered as a unit even though the discrepancies in recovery may appear significant. These discrepancies may be due in part to variations in biofacies existing at the times of deposition, giving rise to the distinctly different organic content of the two groups of samples. It may also be due, in part, to the low frequency of recovery of individual taxa. With the exception of bisaccate conifer pollen and Corollina, many of the remaining taxa were found only as single specimens, or generally as only a few specimens of any single taxon.

Bisaccate conifer pollen is difficult to segregate into generic units. Furthermore, most genera and species are long-ranging and are of little value in age determinations. *Corollina* pollen is almost omnipresent in Upper Jurassic and Lower Cretaceous continental palynomorph-bearing rocks of North America. Consequently the remaining taxa, even though present in extremely low frequency in the samples, are the significant taxa for the estimation of the ages of the samples.

The palynomorphs recovered failed to reveal even a single specimen of tricolpate pollen. The apparent first record of tricolpate (tricolporate) pollen is from the Berriasian-Valanginian of the Netherlands (Burger, 1966). But well-documented tricolpates first appear in the Aptian-Albian worldwide (Doyle, 1969; Muller, 1970; Chlonova, 1977). In North America, tricolpates enter the stratigraphic record no earlier than mid-Albian time.
(Singh, 1975). Consequently, palynomorph assemblages lacking tricolpate pollen may be assumed to be no younger than mid-Albian.

Because of the purported interfingering of the Jurassic Brushy Basin Member of the Morrison with the lower part of the Burro Canyon Formation, comparisons of Burro Canyon assemblages with Jurassic and early Early Cretaceous assemblages were made. The Burro Canyon palynomorph assemblages are distinctly more advanced than are Late Jurassic assemblages from the Colorado Plateau, or from Western Canada (Pocock, 1962; 1970a, b). For example, two species of *Appendicisporites* were isolated from the Burro Canyon Formation. This taxon is not present in the Jurassic; it first appears worldwide in the Valanginian (Pocock, 1967; Vakhrameev and others, 1973). Further, many
species of Cicatricosisporites are present in the Burro Canyon, and although a few species have been reported from the Upper Jurassic of Europe and Asia, none have been found in the Jurassic of western Canada (Pocock, 1970a), nor have we found any specimens of Cicatricosisporites in any of the assemblages from the Brushy Basin, Westwater Canyon, or Recapture Members of the Morrison Formation (Upper Jurassic) of the Colorado Plateau region. Consequently, it is safe to assume that the age of the Burro Canyon Formation is Neocomian to early Albian.

Assemblages from near the Jurassic-Cretaceous boundary in northwest Europe (Döring, 1965; Burger, 1966; Norris, 1969; Döröfer and Norris, 1977; Döröfer, 1977) were compared with those from the Burro Canyon Formation. Little similarity was evident. In fact, little similarity between assemblages of similar age from England and from continental northwest Europe was evident. “Of the 109 trilete spore types described by Döring (1965) from the German Jurassic-Cretaceous sediments, only about 10 species are known in the southern England succession” (Norris, 1973, p. 99). Furthermore, the assemblage from the German Bückeberg Formation (Döröfer, 1977) (Berriasian-Valanginian) correlative with the English upper Purbeck and lower Wealden (Döröfer and Norris, 1977) yielded no bisaccate conifer pollen. Most other Neocomian assemblages yielded significant proportions of bisaccate pollen. Consequently, the differing biofacies conditions in the two European localities and in the Burro Canyon Formation make comparisons more difficult.

The precise position of Lower Cretaceous samples cited in the literature is often not known. Reports refer in general terms to Lower Cretaceous, or to Neocomian rather than to the formal subdivisions. This usage is true of most reports from Australia and Russia. For example, Burger (1973) and Dettmann (1963) referred to the Lower Cretaceous or Neocomian, and Orlova-Turchina (1966) reported on the Hauterivian-Barremian Russian complexes in general terms only.

Another fact that hinders direct correlation is the yield of palynomorphs from the Burro Canyon Formation. The yield of taxa of potential usefulness was minimal. Aside from conifer pollen—mostly long-ranging species and Corollina, the remainder of the assemblage as a whole was sparse (see fig. 6). Generally, only a few specimens of any one taxon were found. Many of the genera and species commonly used to subdivide the Neocomian in other regions failed to appear in Burro Canyon samples. These genera include Concavissimisporites, Trilobosporites, Impardecispora, Contignetisporites, Januasporites, and Schizosporis.

Comparison of the Burro Canyon assemblages with Jurassic and Early Cretaceous assemblages from western Canada failed to present evidence for direct correlation. This lack of evidence may be due to the fact that the Lower Cretaceous rocks of western Canada are commonly no older than Barremian (Singh, 1971). Only one report of upper Neocomian palynomorph assemblages from Canada is available. Hopkins (1971) reported an assemblage from the Isachsen Formation, bounded below by upper Valanginian rocks and above by Albian rocks. Hopkins (1971, p. 110) concluded that “The Isachsen Formation is therefore entirely Lower Cretaceous, ranging from upper Valanginian, including probably Hauterivian and Barremian; possibly also Aptian***”. Hopkins also observed “There appears to be no significant variation of the flora from the top to bottom of the Isachsen Formation suggesting that environmental conditions did not vary greatly during the time represented by Isachsen deposition, the flora is remarkably uniform over a comparatively long period of time (about 10 million years).” The palynomorph assemblage from the Isachsen Formation bears the closest resemblance to assemblages from the Burro Canyon Formation yet observed, even though most of the species mentioned did not appear in the Burro Canyon assemblages.

Adequate data are not yet available representing the age-ranges of taxa found in the Burro Canyon Formation owing to the comparatively few reliable reports on Lower Cretaceous rocks, particularly from North America. The currently known ranges of all species figured on plates 5–9 are recorded in table 2.

As shown on table 2, many of the identified species have long ranges, and offer no aid in narrowing down the age of the Burro Canyon Formation. Some of the other species, Verrucosisporites densus (Bolkhovitina) Pocock, Matthesiosporites tumulosus Döring, Callialaspores segmentatus (Balme) Sukh-Dev, Paleoconiferus asaccatus Bolkhovitina, and Cadargasporites reticulatus de Jersey and Paten are limited, as understood at present, to the Jurassic. Cicatricosisporites apiteretus Phillips and Felix, is limited to the Cenomanian. The ranges of the Jurassic species in our samples possibly may be attributed to redeposition into Lower Cretaceous rocks, although no visual difference in the appearance of the fossils was observed. On the other hand, both the limited ranges of the Jurassic and Cenomanian species may be due to the limited amount of work that has been done on Lower Cretaceous rocks in North America. The true ranges may not yet be evident. For example, the genus Cadargasporites and the species Cadargasporites reticulatus de Jersey and Paten, have been reported previously, to our knowledge, only from the Early Jurassic of the Surat Basin, Australia (de Jersey and Paten, 1964). Yet the two
Table 2.—Stratigraphic ranges of Burro Canyon palynomorph species

<table>
<thead>
<tr>
<th>JURASSIC</th>
<th>EARLY CRETACEOUS</th>
<th>LATE CRETACEOUS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BERRIANIAN</td>
<td>VALANGINIAN</td>
</tr>
<tr>
<td>Glycochloridites sumomonic (Ross) Skarb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ondhiatopsites cf. d. fossillatus Singh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caythlisites minor Cooper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deltoidiopsis of d. palissadous House</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Podtopsites minor Cooper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klukisporites pseudoreticulatus (Cooper) Pocock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tigrisporites reticulatus Singh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cedargsporites reticulatus de Jersey and Paten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interulobites triangularis (Brenner) Phillips and Felix</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staphilosporites caminus (Balm) Pocock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methethiosporites tumulus Spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aff. Coccidiasporites phaseolus (Delcourt and Sprumont) Krutsch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convertoconosporites cf. P. proxigranulatus Brenner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verrucosporites densus (Boltkhoftina) Pocock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coccidiasporites cf. minor (Bolkhoftina) Pocock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coccidiasporites cf. cuneiformis Pocock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coccidiasporites augustus Singh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coccidiasporites cf. c. pseudocuniculus (Bolkhoftina) Dettmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coccidiasporites spicetus Phillips and Felix</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coccidiasporites cf. c. subrotundus Brenner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coccidiasporites cf. c. crassistratus Burger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appendicosporites bilateralis Singh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gigatulobisporites periphasis (Singh) Singh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appendicosporites janenii Pocock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carolina toreous (Reissinger) Cordt and Traverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eremispollenites tubulus Balm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerebropollenites meboxulcus (Cooper) Nilsson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Callialasporites segmentatus (Balm) Sub-Dey</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitreosporites pallidus (Reissing) Nilsson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pristosporites subulastrus (Pierce) R. Tschudy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clavatipollenites hughesi (Cooper) Kemp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paleoconodon anacostus (Bolkhovitina)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alixaspores cbomensi (Cooper) Pocock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pityosporites cf. P. diversatus (Bolkhovitina) Pocock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alixaspores grandis (Cookson) Dettmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pityosporites nigrescens (Bolkhovitina) Pocock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cedrogamites cf. c. camadenesis Pocock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cedrogamites cretaceus Pocock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Podocarpidites chuniicus Pocock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Podocarpidites cf. P. alligaticus Cookson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Podocarpidites cf. P. multiformis (Bolkhovitina) Pocock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Podocarpidites radiatus Brenner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

specimens from the Burro Canyon Formation with their distinctive distal labyrinthine reticulum, and smooth proximal contact area, appear to be conspecific with the Australian species.

The data presented on table 2 suggest to us a late Neocomian to Aptian-Albian age. A few taxa from table 2 merit further discussion.

Tigrisporites reticulatus Singh.—This species was first reported by Singh (1971) from the middle Albian of Alberta, Canada. Its presently known range is from the mid-Albian to early Cenomanian. Although several specimens of this species were found, the species was not represented in all preparations. This species is not as yet known from anywhere in the world except from western North America. A closely allied species, _Tigrisporites scurrundus_ Norris with an almost identical known range (mid- and late Albian) also appears to be confined to western North America. We have found both species in formations of Albian Age from Colorado and Idaho.

_ Interulobites triangularis_ (Brenner) Phillips and Felix.—This species was observed sporadically in Burro Canyon assemblages. It has been reported previously only by Brenner (1963) (as Lycopodiacidites trian-
Appendicisporites jansonii Pocock.—The range of this species according to Singh (1971) is Barremian to Albian. Outside of Canada it has been reported by Hedlund and Norris (1968) from the Albian of Oklahoma. Singh (1971) claimed that Appendicisporites sp. reported by Lantz (1958) from the Albian of England is conspecific with A. jansonii Pocock. The presence of Appendicisporites species suggests that the age of the Burro Canyon samples can be no older than Valanginian. “It is important to note the appearance, in the Valanginian of the genus Appendicisporites also. This genus is unknown in older deposits of Europe and Asia.” (Vakrameev and others, 1973 p. 214). “No species of this genus have been recorded from strata older than this [Valanginian] anywhere in the world.” (Pocock, 1967 p. 135).

Clavatipollenites hughesii (Couper) Kemp.—A single specimen of Clavatipollenites hughesii (Couper) Kemp was found on one of the slides of a sample from the lower horizon. Although literature reports of Triassic and Jurassic occurrences from several parts of the world have appeared (see previous discussion), this species has not been reported from North American rocks older than Barremian and from western North American rocks older than Albian (Singh, 1975). Its earlier appearance elsewhere may mean that the parent plant had not migrated to North America earlier, or palynological investigations have not yet uncovered the data. The plant may have existed for a long time in extremely low frequency and in limited ecological environments, before it expanded its habitat and abundance sufficiently to be represented commonly in Albian and younger rocks.

The taxa discussed, combined with the absence of tricolpate pollen all point to an Aptian-early Albian age, with the remote possibility of a late Barremian age, for the upper part of the Burro Canyon Formation.

CONCLUSIONS

Although all students of these beds are agreed that Burro Canyon and Cedar Mountain beds are physically continuous in large part, the results of the present study of palynomorphs shows a difference in age: the upper part of the Cedar Mountain is younger (late or latest Albian) than the upper part of the Burro Canyon (Aptian to early Albian and perhaps as old as Barremian). We suggest that the thick lower part of the Cedar Mountain, which is undated by fossils, may contain beds that are age equivalent to the older Burro Canyon beds. The beds equivalent to the uppermost Cedar Mountain beds of late or latest Albian age may have been removed by pre-Dakota (pre-earliest Late Cretaceous) erosion at the Burro Canyon locality or are represented in the 6 m of green mudstones (nonproductive of palynomorphs) at the top of the Burro Canyon at the collection locality. A further speculation that may be warranted is that the Neocomian (early Early Cretaceous) may be represented in a still-undated lower part of the Burro Canyon and Cedar Mountain—perhaps even including an upper part of the Brushy Basin Member of the Morrison. The recognition of a fossil (Clavatipollenites hughesii (Couper) Kemp) known to occur as early as the Barremian (latest Neocomian) suggests that the undated older beds of these formations might contain beds of this age, a stage that is almost unrecorded in western North America.

REFERENCES CITED

———, 1973, Angiospermous pollen from Albian to Turonian sediments of eastern Australia: Geological Society of Australia, Special Publication 4, p. 3-34.

PALYNOLOGICAL EVALUATION OF CEDAR MOUNTAIN AND BURRO CANYON FORMATIONS

Page

orficis, Eupora .. 7
ornatus, Podocarpoidea 13, 15; pl. 9
 Ostway Basin .. 10

P
Palaeoenvipites auricostus 15, 17; pl. 8
Pallidus, Vitrinosporites 9, 13, 16; pl. 3, 7
Paha S McCumber Formation of Louisville 19
Parahyposia, Striatopolis 9; pl. 4
Pamphlygiphysis .. 7
Penuulus, Cuculliferospornellacea 9; pl. 4
Patapaco Formation of Maryland 19
Patuxent Formation of Maryland 19
Peace River .. 10
Pervolvatus, Liliacidites 9; pl. 4
Periplopus, Distaltriangulisporites 15; pl. 6
PГеиосус, Cricotiscoiiosisporites 13; pl. 5
Pilosisporites siihgopus 8; pl. 2
Pilosisporites divovulata 15; pl. 8
Pinovalus, Vignaformis 9, 15; pl. 3, 8
Podocarpoidea elliptica 15; pl. 9
Pseudonexulatus ... 9; pl. 3
Prisunisporites ... 9, 15; pl. 3, 7
Ptilosiroides douglassi 11; pl. 5
Proteliptis douglassi 11
Pseudoteliptis, Cuculliferospornellacea 13; pl. 5
Pseudoteliptis, Cricotiscoiiosisporites 13; pl. 16; pl. 6
Ptolemaicosporites circunulatus 9; pl. 2
Pterolomus, Deltaloidosporus 15; pl. 5
Puleucher, Tetracolpites 9, 10; pl. 4
Pyrocatus, Concavissimisporites 8; pl. 1
Purbeck Formation .. 17
Purgatnire Formation 4

Q, R
Quartz ... 11
Quercus, Podocarpoidea 15; pl. 9
Rasputin Member of the Morrison Formation 17
Red Branch Member of the Woodbine Formation ... 10
reticulatus, Calagasporeidae 10, 16; pl. 5
Tigrisporites ... 9; pl. 4
vermiculatus, Callicladosporites 15, 17; pl. 7
xenomitus, Glicchenidites 8, 15; pl. 1, 5
Shaffer Formation of Alberta 10
Slick Rock, Colo. ... 6
South Plate Formation 10
Splatus, Cricotiscoiiosisporites 13, 15; pl. 5
Stahls-Kelige locality 6, 7
Striapertites parvulus 9; pl. 4
subulatus, Cricotiscoiiosisporites 12; pl. 6
suulatus, Prinnaupollenites 9, 15; pl. 3, 7
Suniva River Formation of South Africa 19
Surat Basin, Australia 17

T
Tudiosporites radiatus 11
Tumulosus, Tigrisporites 9; pl. 2
Towinnesia 13, 15; pis. 3, 7
Trilobosporites .. 10
Tricolporopollenites aliquantulus 10
Tricolporopollenites aliquantulus 17
Trinity Group of the Gulf Coast 7
Putorius, Matthesia 13, 15, 17; pl. 5
Putorius, Psilocarpaceae 9, 15; pl. 4

U, V, W
Undulatisporites fossulatus 13; pl. 5
"Unio" furri 11
varius, Prenelopsis 11
varriospinosus, Echinosporeid 8; pl. 2
verrerverratio, Conioisporeidae 8; pl. 1
varvata, Dendryctisporites 9; pl. 2
veneratus, Cricotiscoiiosisporites 9; pl. 2
vermiculatus, Retitricolpites 9; pl. 4
vervanta, Leptolepidites 15; pl. 5
Verrucosisporites denmar 15, 17; pl. 5
vermiculatus, Retitricolpites 9; pl. 4
Vetrinsporites pallidus 9, 13, 15; pl. 3, 7
vulgaris, Retitricolpites 9; pl. 4
Westdiden Formation 17
Westwater Canyon Member of the Morrison ... 17

Woodbine Formation of Oklahoma 10
PLATES 1–9
PLATE 1

Cedar Mountain Formation

[Magnification × 1000. Sample numbers are those of USGS Paleobotany locality numbers (text fig. 2)]

Figure 1. *Laevigatosporites* cf. *L. belfordii* Burger 1976
 - Sample D5785-A, prep. 4, floated first, fines, slide 3, coordinates 99.0×21.6.
2. *Laevigatosporites gracilis* Wilson and Webster 1946
 - Sample D5785, slide 1, coordinates 81.0×13.7.
3. *Cycadites australis* Couper 1953
 - Sample D5785-A, prep. 4, floated first, fines, slide 3, coordinates 112.5×8.2.
4. *Todisporites* sp.
 - Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 89.3×14.8.
5. *Todisporites minor* Couper 1958
 - Sample D5785-A, prep. 4, floated first, fines, slide 3, coordinates 106.2×6.7.
 - Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 100.8×17.3.
7. *Lygodiumsporites* sp.
 - Sample D5785, slide 2, coordinates 76.7×10.1.
8. *Deltoidospora hallii* Miner 1935
 - Sample D5785-A, prep. 2, slide 1, coordinates 91.6×6.0.
9. *Cycadites minor* Couper 1953
 - Sample D5785-A, prep. 4, floated first, fines, slide 3, coordinates 101.6×2.0.
10. *Concavissimisporites vari verrucatus* (Couper) Singh 1964
 - Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 110.2×18.4.
11. *Foraminisporis* sp.
 - Sample D5785-A, prep. 4, floated first, fines, slide 4, coordinates 96.8×6.7.
12. *Concavissimisporites vari verrucatus* (Couper) Singh 1964
 - Sample D5785-A, prep. 4, floated first, hvs, slide 6, coordinates 112.5×8.2.
 - Sample D5785-A, prep. 4, floated first, fines, slide 1, coordinates 97.4×21.1.
14. *Foraminisporis cf. F. wonthaggiensis* (Cookson and Dettmann) Dettmann 1963
 - Sample D5785-A, prep. 2, slide 1, coordinates 112.1×19.8.
15. *Concavissimisporites puocatus* (Deliourt and Sprumont) Brenner 1963
 - Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 81.9×3.1.
16. Trilete spore undetermined.
 - Sample D5785-A, prep. 2, slide 1, coordinates 104.2×10.4. Ornamented with short blunt verrucae as well as short spines.
17. *Leptolepidites* sp.
 - Sample D5785-A, prep. 4, floated first, fines, slide 4, coordinates 87.6×5.1.
18. *Baculatisporites comatus* (Cookson) Potonie 1956
 - Sample D5785-A, prep. 2, slide 1, coordinates 110.5×11.1.
LAEVIGATOSPORITES, CYATHIDITES, TODISPORITES, GLEICHENIIDITES, LYODIUMSPORITES, DELTOIDOSPORA, CONCAVISSIMISPORITES, FORAMINISPORIS, TRILETE SPORE, LEPTOLEPIDITES, AND BACULATISPORITES
PLATE 2

Cedar Mountain Formation

1. *Pilosisporites trichopapillosus* (Thiergart) Delcourt and Sprumont 1965
 Sample D5785-A, prep. 4, floated first, fines, slide 1, coordinates 77.7×5.4.

 2. Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 87.3×5.9.
 3. Sample D5785-A, prep. 4, floated first, fines, slide 3, coordinates 73.9×13.0.

5. *Cicatricosisporites hughesii* Dettmann 1963
 Sample D5785-A, prep. 4, floated first, fines, slide 3, coordinates 106.4×12.3.

6. *Cicatricosisporites* sp.
 Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 74.0×7.5.

 Sample D5785-A, prep. 4, floated first, fines, slide 4, coordinates 98.6×9.9.

8. *Cicatricosisporites venustus* Deak 1963
 Sample D5785-A, prep. 2, slide 1, coordinates 110.0×6.2.

9. *Cicatricosisporites* sp.
 Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 96.1×21.1.

 Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 88.0×14.5.

11. *Costatoperforosporites* sp.
 Sample D5785-A, prep. 4, hvs., slide 6, coordinates 76.8×8.0.

12. Trilete spore, undetermined.
 Sample D5785, slide 2, coordinates 91.1×19.3.

13. *Densoisporites microrugulatus* Brenner 1963
 Sample D5785-A, prep. 4, floated first, fines, slide 4, coordinates 75.4×8.0.

 Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 84.2×20.4.

 15. Proximal view.

17. *Densoisporites velatus* Weyland and Krieger 1963
 Sample D5785-A, prep. 4, floated first, fines, slide 4, coordinates 83.5×12.4.

18. Undetermined.
 Sample D5785-A, prep. 2, slide 1, coordinates 102.9×15.6.

19. cf. *Schizoecosporis* sp.
 Sample D5785-A, prep. 4, floated first, fines, slide 1, coordinates 103.5×16.2.
PILOSPORITES, ECHINATISPORIS, CICATRICOSISPORITES, DISTALTRIANGULISPORITES, COSTATOPERFOROSPORITES, DENSISPORITES, PSILATRILETES, cf. SCHIZOSPORIS, AND TRILETE SPORE
FIGURE 1. *Alisporites grandis* (Cookson) Dettmann 1963
Sample D5785-A, prep. 4, floated first, fines, slide 4, coordinates 88.2x4.0.

Sample D5785-A, prep. 4, floated first, hvs., slide 5, coordinates 95.2x17.6.

Sample D5785-A, prep. 4, floated first, fines, slide 1, coordinates 77.8x5.2.

Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 97.1x10.1.

Sample D5785-A, prep. 4, floated first, fines, slide 4, coordinates 83.2x22.3.

Sample D5785-A, prep. 4, floated first, fines, slide 1, coordinates 104.8x4.1.

7. *Cedripites canadensis* Pocock 1962
Sample D5785-A, prep. 4, floated first, fines, slide 4, coordinates 87.7x5.4.

Sample D5785-A, prep. 4, floated first, hvs., slide 5, coordinates 99.1x19.4.

9. *Podocarpidites* sp.
Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 112.2x2.4.

Sample D5785-A, prep. 4, floated first, fines, slide 4, coordinates 74.8x11.9.

Sample D5785-A, prep. 4, floated first, fines, slide 4, coordinates 110.3x18.0.
ALISPORITES, PITYOSPORITES, CEDRIPITES, PODOCARPIDITES, PRISTINUSPOLLENITES, AND VITREISPORITES
PLATE 4

Cedar Mountain Formation

(Magnification × 1000. Sample numbers are those of USGS Paleobotany location numbers (text fig. 2))

FIGURE 1. Cycadopites carpentieri (Delcourt and Sprumont) Singh 1964
Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 110.9×12.1.

2. Cycadopites sp.
Sample D5785-A, prep. 4, floated first, fines, slide 4, coordinates 99.0×13.0.

3. Monocolpopollenites sp.
Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 96.0×4.0.

4. Monocolpopollenites sp.
Sample D5785-B, slide 3, coordinates 101.6×14.2.

5. Ginkgocecadophytus cf. G. nitidus (Balme) de Jersey 1962
Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 81.4×4.6.

6. Equisetosporites multicostatus (Brenner) Norris 1967
Sample D5785-A, prep. 2, coordinates 106.1×22.5.

Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 92.8×1.6.

8. Eucommiidites sp.
Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 102.7×21.5.

Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 80.7×5.7.

10. Exesipollenites tumulus Balme 1957
Sample D5785-A, prep. 4, floated first, fines, slide 4, coordinates 78.3×2.1.

11. Low focus showing baculae near equator.

12. High focus.

13. Clavatipollenites hughesii (Couper) Kemp 1968
Sample D5785-A, prep. 4, floated first, fines, slide 4, coordinates 112.0×14.5.

14. Liliacidites sp.
Sample D5785-B, slide 2, coordinates 112.3×14.5.

15. Liliacidites cf. L. peroreticulatus (Brenner) Singh 1971
Sample D5785-B, slide 3, coordinates 106.5×5.7.

16. Tricolpites crusimarus (Groot and Penny) Singh 1971
Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 94.1×7.5.

17. Tricolpites cf. T. crusimarus (Groot and Penny) Singh 1971
Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 88.2×9.1.

18. Culpufileroidapollenites parrulus (Groot and Penny) Dettmann 1973
Sample D5785-A, prep. 4, floated first, fines, slide 4, coordinates 90.5×2.1.

Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 83.0×11.8.

20. Retitricolpites vulgaris Pierce 1961
Sample D5785-A, prep. 4, floated first, fines, slide 4, coordinates 104.3×20.0.

21. Retitricolpites vulgaris Pierce 1961
Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 111.4×17.0.

Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 111.4×17.0.

23. Striatopollis paraneus (Norris) Singh 1971
Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 88.0×16.2.

Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 106.4×5.4.

25. Retitricolpites verminimus Brenner 1963
Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 97.5×19.8.

26. Rousea georgensis (Brenner) Dettman 1973
Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 112.1×11.0.

27. Culpufileroidapollenites minutus (Brenner) Singh 1971
Sample D5785-B, prep. 2, slide 2, coordinates 111.5×8.6.

28. Tricolpites cf. T. sp. 1 of Kemp 1968
Sample D5785-A, prep. 4, floated first, fines, slide 4, coordinates 104.1×14.5

29-30. Tricolpites micromunus (Groot and Penny) Singh 1971
Sample D5785-A, prep. 4, floated first, fines, slide 2, coordinates 110.7×2.0. (Sensu Groot and Penny. This specimen is small and may not be the same species as figured by Singh 1971).

29. High focus.

30. Low focus.

31. Tetracolpites cf. T. pulcher Srivasteva 1969
Sample D5785-A, prep. 4, floated first, fines, slide 3, coordinates 105.5×8.0.

32. Tetracolpites sp.
Sample D5785-A, prep. 4, floated first, fines, slide 4, coordinates 89.8×17.9.
CYCADOPITES, MONOCOLPOPOLENITES, GINKGOCYCADOPHYTUS, EQUISETOSPORITES, TAXODIACEAEPOLENITES, EUCOMMIDITES, COROLLINA, EXESIPOLLENITES, ASTEROPOLLIS, CLAVATIPOLLENITES, LILIACIDITES, TRICOLPITES, CUPULIFEROIDAEPOLLENITES, RETITRICOLPITES, STRIATOPOLLIS, ROUSEA, AND TETRACOLPITES
PLATE 5

Burro Canyon Formation

[Magnification \(\times 1000 \). Sample numbers are those of USGS Paleobotany locality numbers. (text fig. 2)]

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Species</th>
<th>Sample Numbers</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Gleicheniidites senonicus Ross 1949</td>
<td>D5803, slide 22, 111.6x13.8</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Undulatisporites cf. U. fossulatus Singh 1971</td>
<td>D5510-B, slide 1, 103.6x10.5</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Cyathidites minor Couper 1963</td>
<td>D5510-C, slide 4, 106.9x6.8</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Deltoidospora cf. D. psilostoma Rouse 1959</td>
<td>D5803, slide 12, 91.0x17.8</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Todisporites minor Couper 1968</td>
<td>D5801, prep. 2, 78.1x20.9</td>
<td></td>
</tr>
<tr>
<td>7–8.</td>
<td>Tigrisporites reticulatus Singh 1971</td>
<td>D5973, slide 2, 75.2x14.3</td>
<td></td>
</tr>
<tr>
<td>9–10.</td>
<td>Cadorgasporites reticulatus de Jersey and Paten 1964</td>
<td>D5510-B, slide 2, 93.8x3.0</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Interulobites triangularis (Brenner) Phillips and Felix 1971</td>
<td>D5973, slide 2, 81.2x15.6</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Staplinisporites caminus (Balme) Pocock 1962</td>
<td>D5803, slide 6, 96.4x4.4</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>Staplinisporites caminus (Balme) Pocock 1962</td>
<td>D5803, slide 11, 82.4x19.8</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Lycopodiumsporites sp.</td>
<td>D5803, slide 22, 74.7x1.2</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Mattheisporites tumulosus Düring 1964</td>
<td>D5803, slide 12, 81.7x21.1</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Leptolepidites cf. L. verrucatus Couper 1963</td>
<td>D5803, slide 8, 90.0x2.2</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>aff. Cicatricosporites phaseolus (Delcourt and Sprumont) Krutzsch 1959</td>
<td>D5801, slide 2, 76.0x15.5</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>Converrucosporites cf. C. proxigranulatus Brenner 1963</td>
<td>D5510-C, slide 2, 89.4x5.4</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Verrucosporites densus (Bolkhevitina) Pocock 1970</td>
<td>D5803, slide 6, 106.1x4.7</td>
<td></td>
</tr>
</tbody>
</table>
GLEICHENIIDITES, UNDULATISPORITES, CYATHIDITES, DELTOIDOSPORA, TODISPORITES,
DICYTOTRILETES, TIGRISPORITES, CADARGASPORITES, INTERULOBITES, STAPLINISPORITES,
LYCOPODIUMSPORITES, MATTHESISPORITES, LEPTOLEPIDITES, CICATRICOSOSPORITES,
CONVERUCOSISPORITES, AND VERRUCOSISPORITES
PLATE 6
Burro Canyon Formation

[Magnification x 1000. Sample numbers are those of USGS Paleobotany locality numbers. (text fig. 2)]

Figure 1. *Cicatricosisporites* cf. *C. minor* (Bolkhovitina) Pocock 1964
Sample D5510-C, slide 1, coordinates 109.4x11.1.

2. *Cicatricosisporites* cf. *C. cuneiformis* Pocock 1964
Sample D5510-C, slide 4, coordinates 100.3x10.0.

3. *Cicatricosisporites* *augustus* Singh 1971
Sample D5510-B, slide 1, coordinates 99.0x4.5.

Sample D5510-C, slide 2, coordinates 87.0x5.5.

Sample D5510-C, slide 1, coordinates 88.8x5.4.

6. *Cicatricosisporites* sp.
Sample D5510-A, slide 2, coordinates 92.6x14.7.

7. *Cicatricosisporites* *pseudotripartitus* (Bolkhovitina) Dettmann 1963
Sample D5501, prep. 2, slide 4, coordinates 105.9x20.8.

Sample D5510-B, slide 1, coordinates 99.5x16.6.

9. *Cicatricosisporites* *apiteretus* Phillips and Felix 1971
Sample D5510-C, slide 2, coordinates 88.7x10.5.

Sample D5510-B, slide 1, coordinates 107.2x13.3.

Sample D5501, prep. 2, slide 2, coordinates 110.3x1.0.

Sample D5510-C, slide 4, coordinates 106.5x13.0.

14. *Appendicisporites* *bilateralis* Singh 1971
Sample D5501, prep. 2, slide 4, coordinates 88.3x10.5.

15. *Distaltriangulisporites* *perplexus* (Singh) Singh 1971
Sample D5503, slide 6, coordinates 75.9x10.0.

16. *Distaltriangulisporites* sp.
Sample D5510-B, slide 1, coordinates 73.0x9.0.

17. *Appendicisporites* *jansonii* Pocock 1962
Sample D5501, prep. 2, slide 2, coordinates 109.4x14.1.
CICATRICOSISPORITES, APPENDICISPORITES, AND DISTALTRIANGULISPORITES
PLATE 7

Burro Canyon Formation

[Maginification x 1000. Sample numbers are those of USGS Paleobotany locality numbers. (text fig. 2)]

FIGURE

1. *Corollina torosa* (Reissinger) Cornet and Traverse 1975 (two specimens)
 Sample D5803, slide 19, coordinates 79.0×20.1.

2. *Equisetosporites* sp.
 Sample D5803, slide 12, coordinates 91.8×11.0.

3. *Equisetosporites* sp.
 Sample D5803, slide 8, coordinates 80.4×12.9.

4. *Cycadopites* sp.
 Sample D5803, slide 4, coordinates 90.8×20.2.

5. *Cycadopites* sp.
 Sample D5803, slide 5, coordinates 106.3×13.6.

6. *Cycadopites* sp.
 Sample D5803, slide 6, coordinates 106.8×12.4.

7. *Ezoesipollenites tumulus* Balme 1957
 Sample D5803, slide 16, coordinates 76.6×6.1.

8. *Araucariacites* sp.
 Sample D5510–C, slide 1, coordinates 72.2×1.1.

 Sample D5803, slide 3, coordinates 84.2×20.5.

 Sample D5803, slide 8, coordinates 93.2×16.0.

11. *Callihasporites* sp.
 Sample D5510–C, slide 1, coordinates 76.9×18.0.

 Sample D5803, slide 22, coordinates 99.8×13.4.

 Sample D5803, slide 21, coordinates 96.5×15.0.

 Sample D5510–C, slide 4, coordinates 105.4×4.3.

15. *Pristinuspollenites sulcatus* (Pierce) B. Tschudy 1973
 Sample D5803, slide 3, coordinates 110.8×20.7.

 Sample D5803, slide 12, coordinates 80.0×23.0.
Corollina, Equisetosporites, Cycadopites, Exesipollenites, Araucariacites, Cerebropollenites, Callialasporites, Vitreisporites, Pristinuspollenites, and Clavatipollenites
PLATE 8

Burro Canyon Formation

[Magnification \(\times 1000 \). Sample numbers are those of USGS Paleobotany locality numbers (text fig. 2)]

Figure 1. *Paleoconiferus asaccatus* Bolkhovitina 1956

Sample D5803, slide 21, coordinates 108.1 x 17.8.

2. *Alisporites thomasi* (Couper) Pocock 1962

Sample D5510-C, slide 2, coordinates 99.6 x 1.6.

Sample D5803, slide 21, coordinates 76.2 x 13.9.

4. *Alisporites grandis* (Cookson) Dettmann 1963

Sample D5803, slide 5, coordinates 85.4 x 8.2.

Sample D5803, slide 22, coordinates 98.4 x 21.6.

Sample D5803, slide 22, coordinates 98.1 x 12.8.

Sample D5803, slide 21, coordinates 89.8 x 17.5.

8. *Cedripites cretaceus* Pocock 1962

Sample D5803, slide 21, coordinates 109.7 x 17.6
PALEOCONIFERUS, ALISPORITES, PITYOSPORITES, AND CEDRIPITES
PLATE 9

Burro Canyon Formation

[Magnification × 1000. Sample numbers are those of USGS Paleobotany locality numbers (text fig. 2)]

FIGURE 1. *Podocarpidites ornatus* Pocock 1962
Sample D5803, slide 16, coordinates 110.0 × 10.1.

Sample D5803, slide 5, coordinates 98.7 × 19.1.

Sample D5803, slide 4, coordinates 89.3 × 11.4.

Sample D5803, slide 21, coordinates 102.3 × 20.4.

Sample D5803, slide 21, coordinates 109.3 × 17.5.

Sample D5803, slide 6, coordinates 111.5 × 9.7.
PODOCARPIDITES