Generic HACCP Model for Irradiated, Raw Meat and Poultry Products
Additional copies of the Guidebook for the Preparation of HACCP Plans and the Generic HACCP Models are available from:

U.S. Department of Agriculture
Food Safety and Inspection Service (FSIS)
Office of Policy, Program Development, and Evaluation (OPPDE)
Inspection Systems Development Division
Room 202, Cotton Annex Building
300 12th Street SW
Washington, D.C. 20250-3700
Phone: (202) 720-3219
Fax: (202) 690-0824

This material is also available on the FSIS Homepage:
TO THE USERS OF THESE VOLUMES

As some of you may know, the Food Safety and Inspection Service (FSIS) received a substantial package of comments on its Guidebook for Hazard Analysis and Critical Control Point (HACCP) Plan Development and the 13 Generic HACCP models, from a coalition of industry and trade associations. This package represents a large and thoughtful effort on the part of these organizations. FSIS intends to give it the careful attention and response that it deserves.

The comments included many technical suggestions for improvements in the FSIS documents. It also included reiteration of longstanding differing policy viewpoints that have been frequently discussed by the Agency and the regulated industry. For the first time, the comments revealed substantially differing expectations on the part of these organizations and FSIS with respect to the purpose of the FSIS documents and their intended use. We want to address some aspects of this latter point.

When the Pathogen Reduction/Hazard Analysis and Critical Control Point systems (PR/HACCP) final regulation was published on July 25, 1996, the DRAFT Guidebook was included as an appendix. The Generic Models, developed for FSIS under contract, were available shortly thereafter in April 1997. It was probably inevitable that there were significant differences between the final regulatory language of CFR Part 417 and the DRAFT Generic Models as they were developed independently. It would have been inappropriate for FSIS to discuss its final regulatory language with any outside group. The contractor was appropriately proceeding from what it knew best, the National Advisory Committee on Microbiological Criteria for Foods (NACMCF) documents on the subject of HACCP. Therefore, FSIS accepted that work product with full knowledge that significant revisions would be necessary.

As time passed, FSIS managers became increasingly uncomfortable with the situation in which its major technical assistance documents did not appropriately and completely inform the regulated industry of Agency expectations regarding regulatory compliance. Because the intended audience for these technical assistance materials was primarily the very small establishments, which the Agency believed to have the least HACCP-experience, the Agency began the systematic revision of the documents to overcome this problem. We targeted the summer of 1999 as the completion date for this effort.

FSIS now believes that others had very different ideas about the purpose and use of the documents than it did. As is consistently reiterated in the documents themselves, they are not designed to be used "as is." That is, they cannot be copied and used by an establishment to meet all the regulatory requirements of 9 CFR Part 417. Nor were they designed to be the ultimate teaching and training materials, as some would suggest. The development of ideal generic models is left to others who may have an interest in doing so. The generic models are not
designed to extend or further interpret existing regulations; rather, they are designed to send the user back to the regulations so he/she can become familiar with the requirements as well as the flexibility they permit. The generic models are not designed to present new or alternative methods of producing and processing meat and poultry products. That is also left to others with an interest in doing so.

FSIS envisioned that the generic models might be used in the following way: Suppose a HACCP team leader of a three-person HACCP team in a very small establishment attended a training course, but the others on his/her team were not able to do so. Suppose the HACCP training course met all the requirements of 417.7 but did not provide participants with much in the way of "take away materials" like workbooks, practical questions and answers, access to follow-up resources, etc., which the Research Triangle Institute (RTI) needs assessment indicated were so important to these establishments. The trained HACCP team leader returns to the establishment and begins the process of attempting to develop HACCP plans for the company's products and processes. He/she is quite confident that he/she has grasped the material presented in the training course and begins to work with this team immediately, while the concepts are fresh in his/her mind.

First, he/she has the rest of the team review the Canadian video and the Guidebook from FSIS so that all members of his team have a basic level of information.

The team members begin their work, and as they proceed, some questions arise as to whether what they have developed is appropriate. This is the point when FSIS expects the team to pick up the appropriate generic model and get a sense of whether they are on the right track. They should be able to determine whether the forms that they have developed, while different from the various ones in the generic models and not the same as what other companies use, are acceptable because they include the required information. They will also be able to discover what are some typical food safety hazards that are reasonably likely to occur, as explicitly defined in 417.2, and how to think through the problems that these hazards represent for their own products. They can see how critical limits might arise from existing regulatory requirements like the ones for rapid chilling of poultry products. They can also see that in the absence of settled regulatory requirements, there may be several sources of scientific expertise, and they can choose to make a conservative decision to provide a good margin of safety. They can find out the essential differences between monitoring and verification and have a basis for making their choices about verification activities and their frequencies. FSIS believes that these are useful, beneficial and worthwhile functions for which its generic models can be used.

FSIS is publishing these updated revisions of the generic models, beginning with the Guidebook and the Generic Model for Raw, Ground Product, because a large backlog of requests exists for these two documents. FSIS intends to publish revisions of all the generic models no later than September 30, 1999. Moreover, as a result of public consultation, it may publish an additional revision of some of these models, but given the backlog and the impending HACCP implementation date, we considered it important to get a version of these documents out now.

We hope that these documents are helpful.
Table of Contents

Introduction... 3

Using This Generic Model... 5

Process Flow Diagram and Product Description.. 7

Hazard Analysis.. 8

Developing Your HACCP Plan... 10

Identifying CCPs.. 12

Appendix A

 References for all HACCP Model Teams... 19

 References for Irradiated, Raw Meat and Poultry Products.. 21

Appendix B

 Process Flow Diagram (Figure 1)... 25

 Product Description Form (Figure 2).. 26

 Hazard Analysis Form (Figure 3).. 27

 HACCP Plan Form (Figure 4).. 32

 Form letter requesting Salmonella data (1).. 37

 Form letter requesting Salmonella data (2).. 38

 Generic Establishment X: Product Temperature Log .. 39

 Generic Establishment X: Room Temperature Log .. 40

 Thermometer Calibration Log... 41
Irradiated, Raw Model

Generic Establishment X: Irradiation/Dose Mapping Log 42
Corrective Actions Log. .. 43
Pre-Shipmen Review Log.. 44
INTRODUCTION

The Hazard Analysis Critical Control Point (HACCP) system is a scientific approach to process control. It is designed to prevent the occurrence of problems by assuring that controls are applied at any point in a food production system where hazardous or critical situations could occur. Hazards include biological, chemical, or physical contamination of food products.

The Food Safety and Inspection Service (FSIS) published a final rule in July 1996 mandating that HACCP be implemented as the system of process control in all inspected meat and poultry plants. As part of its efforts to assist establishments in the preparation of plant-specific HACCP plans, FSIS determined that a generic model for each process defined in the regulation would be made available for use on a voluntary basis by inspected establishments.

The generic models have been revised since their initial publication and distribution as DRAFTS. The most important change in the revised versions is to make certain that these models are fully consistent with the features of the final regulation. Also, other technical and editorial improvements have been made.

Throughout this generic model, FSIS discusses a HACCP team, with members from different departments. In many very small establishments, there will not be separate departments with different employees. But there will be employees who perform these different functions – often several of them. For purposes of explaining concepts, it is easier to speak as if these were different people, even though in many cases, they may be the same person carrying out more than one responsibility.

Each generic model can be used as a starting point for the development of plant-specific plan(s) reflecting actual plant environments and the processes conducted. The generic model is not intended to be used “as is” for plant specific HACCP plans.

The generic models are designed for use in conjunction with the list of process categories found in the HACCP regulations in section 417.2(b)(1).
(b) The HACCP plan. (1) Every establishment shall develop and implement a written HACCP plan covering each product produced by that establishment whenever a hazard analysis reveals one or more food safety hazards that are reasonably likely to occur, based on the hazard analysis conducted in accordance with paragraph (a) of this section, including products in the following processing categories:

(i) Slaughter--all species.

(ii) Raw product--ground.

(iii) Raw product--not ground.

(iv) Thermally processed--commercially sterile.

(v) Not heat treated--shelf stable.

(vi) Heat treated--shelf stable.

(vii) Fully cooked--not shelf stable.

(viii) Heat treated but not fully cooked--not shelf stable.

(ix) Product with secondary inhibitors--not shelf stable.

This generic model is designed for use with the process subcategory: Irradiated, raw product.

The purpose of the process category listing in 417.2 is to set out the circumstances under which a HACCP team may develop a single HACCP plan for multiple products. This may be done when products are in the same process category, and food safety hazards, critical control points, and other features are essentially the same. There is a generic model for each process category, plus two for subcategories that present special issues: irradiated products and mechanically separated products.

In order to select the model or models that will be most useful for the activities performed in any specific plant, the following steps should be taken:

1) For slaughtering operations, select the model for the appropriate species.

2) For processed products, make a list of all products produced in the plant.
Irradiated, Raw Model

3) Examine the list and group like products, considering common processing steps and equipment used.

4) Compare the grouped products with the list of processes in the regulations; this step should reveal how many and which of the generic models might be useful.

Deciding on a generic model and which products can be covered by a single plan is an important achievement. If the team does it well, it can save a lot of unnecessary effort and paperwork.

Selecting an inappropriate generic model reduces its potential benefits. However, often the HACCP team will discover they have made this error when they develop their process flow diagram or during their hazard analysis. These are early stages in the process when it is relatively easy to make changes.

In any case, establishments must meet all regulatory requirements for their products.

Using This Generic Model

This generic model is designed to be used by establishments that produce irradiated, raw product(s). The model can be used for all irradiated, raw meat and poultry products.

The model will be most useful to a HACCP team that includes access to one trained individual, as specified in 417.7(b).

(b) The individual performing the functions listed in paragraph (a) of this section shall have successfully completed a course of instruction in the application of the seven HACCP principles to meat or poultry product processing, including a segment on the development of a HACCP plan for a specific product and on record review.

Since this generic model entails the use of ionizing radiation, at least one team member must be trained in quality control, food technology, irradiation processing, and radiation health and safety. This team member must have a working knowledge of FSIS regulations on irradiation (e.g. 9 CFR 381.135, 381.147, and 381.149 for poultry), and other requirements set forth by the FDA, National Regulatory Commission, and the Office of Safety and Health Administration.

It would be beneficial for other team members to have reviewed any of the various guidance materials available on how to develop a HACCP plan for your company, including several useful videos, handbooks, or computer programs. Once the HACCP team has prepared itself as thoroughly as possible in general HACCP principles and how to use them, this model should be
Irradiated, Raw Model

helpful.

Note: This generic model includes a number of forms that can be used to record various types of required information. The forms themselves are samples; a company HACCP team can develop whatever forms it finds most useful. All the forms mentioned in this document are included in Appendix B; they appear in the order in which they are discussed in the text.

All FSIS generic models are designed to assist establishments in applying the seven HACCP principles to their meat and poultry processing operations **AND** to meet the regulatory requirements of Part 417. Therefore, the definitions used in this and all other FSIS generic models are those found in 417.1:

§ 417.1 Definitions.

For purposes of this part, the following definitions shall apply:

Corrective action. Procedures to be followed when a deviation occurs.

Critical control point. A point, step, or procedure in a food process at which control can be applied and, as a result, a food safety hazard can be prevented, eliminated, or reduced to acceptable levels.

Critical limit. The maximum or minimum value to which a physical, biological, or chemical hazard must be controlled at a critical control point to prevent, eliminate, or reduce to an acceptable level the occurrence of the identified food safety hazard.

Food safety hazard. Any biological, chemical, or physical property that may cause a food to be unsafe for human consumption.

HACCP System. The HACCP plan in operation, including the HACCP plan itself.

Hazard. SEE Food Safety Hazard.

Preventive measure. Physical, chemical, or other means that can be used to control an identified food safety hazard.

Process-monitoring instrument. An instrument or device used to indicate conditions during processing at a critical control point.

Responsible establishment official. The individual with overall authority on-site or a
Irradiated, Raw Model

higher level official of the establishment.

Process Flow Diagram and Product Description

To begin using this model, the company's HACCP team should first describe the product(s), which are part of this process category and covered by this HACCP plan. The product(s) should be described in two ways:

(1) by a simple diagram which shows the steps the company uses when it produces the product, and
(2) in a brief written description which provides key facts about the product and its use.

In this generic model, there is an example for irradiated, raw product - fresh poultry. FSIS has developed certain forms as part of the examples in the generic models; company HACCP teams are not required to use these forms.

Figure 1 is an example of a PROCESS FLOW DIAGRAM for the production of irradiated fresh poultry in generic establishment X. Figure 2 is an example of a PRODUCT DESCRIPTION for the production of irradiated fresh poultry produced by generic establishment X.

Once the company HACCP team in your establishment has prepared your Process Flow Diagram, they should verify it by walking through the establishment following the flow of product and making sure that all the steps of the process are included in the flow diagram. The team should also review the information provided on the Product Description to make sure all the key facts are included, such as identifying consumers, especially those with particular health problems or known to be at risk.

Note: In this generic model, it is assumed that packaged poultry will be transported to another facility for the irradiation process. If in your process, irradiation is to be done in the same establishment that the poultry is received and packaged, then the transporting step may be omitted. That is generally, how you use these generic model examples--just omit the features which do not apply to your operation, or if your operation includes features not included in this example, they should be added.

By completing a Process Flow Diagram and a Product Description, you have met the requirements of 417.2(a)(2). You can use the Process Flow Diagram in particular to help you complete the rest of the hazard analysis. Use the flow diagram to systematically review each
step in the process and ask the question, "Is there a food safety hazard which is reasonably likely to occur which may be introduced at this step?" In answering the question, your HACCP team needs to consider biological (including microbiological), chemical, and physical hazards.

Hazard Analysis

Once your product(s) are accurately described through the flow diagram and product description, the HACCP team should begin work on the HAZARD ANALYSIS. The hazard analysis is fundamental to developing a good HACCP plan and one that meets regulatory requirements. The regulatory requirements for a hazard analysis are found at 417.2(a).

§ 417.2 Hazard Analysis and HACCP Plan.

(a) Hazard analysis. (1) Every official establishment shall conduct, or have conducted for it, a hazard analysis to determine the food safety hazards reasonably likely to occur in the production process and identify the preventive measures the establishment can apply to control those hazards. The hazard analysis shall include food safety hazards that can occur before, during, and after entry into the establishment. A food safety hazard that is reasonably likely to occur is one for which a prudent establishment would establish controls because it historically has occurred, or because there is a reasonable possibility that it will occur in the particular type of product being processed, in the absence of those controls.

(2) A flow chart describing the steps of each process and product flow in the establishment shall be prepared, and the intended use or consumers of the finished product shall be identified.

Generic establishment X, which we are using for our example, is capturing these regulatory requirements on a 6-column Hazard Analysis Form (See Figure 3). A good way to use a form like this is to create the first column by using the Process Flow Diagram and the second by answering the question. Once the HACCP team has considered all the steps in the flow diagram and determined if a food safety hazard could be introduced, it needs to consider whether the hazard is "reasonably likely to occur", using the meaning of this phrase included in 417.2(a). On the 6-column form used by generic establishment X, the third and fourth columns address this issue. If the establishment's HACCP team has decided that the hazard is not reasonably likely to occur, they enter "No" in column three, explain the basis for their determination in column four, and do not need to further consider activity at this point in the process.

If, however, the team has determined there is a "food safety hazard reasonably likely to occur"
Irradiated, Raw Model

introduced at a certain point in the process, column five is used to describe a measure which could be applied to "prevent, eliminate, or reduce to acceptable levels" the food safety hazard identified in column three.

Look at the entries for “Receiving-Raw Poultry” on the first page of the six column form; the HACCP team has determined that Salmonella may be present at high levels in incoming raw product, so it has put a “Yes” in the third column. Column four explains the basis for the team’s determination. In the fifth column, the HACCP team has described the preventive measures it will use to make sure that each hazard has been prevented, eliminated, or reduced to an acceptable level. For the Salmonella hazard, the HACCP team decided to tell its suppliers that product could not be accepted unless it was accompanied by the most recent Salmonella performance standard sampling results which demonstrated that the supplier had not failed two consecutive Salmonella performance standard sets. FSIS does not consider safe handling instructions on labels alone to be an adequate CCP for any pathogenic microorganisms such as bacteria and viruses.

You will notice that in our generic hazard analysis for irradiated fresh poultry, there are five safety hazards in which the HACCP team has identified a point in the process at which a food safety hazard is reasonably likely to occur. For each one of these they have identified a measure which can be used to control the hazard.

When your HACCP team has completed their hazard analysis (whether they use this format or not), it is a good idea to review the flow diagram, the product description and the hazard analysis itself to make sure they are complete. Part 417.2(a)(3) includes a list of sources from which food safety hazards might be expected to arise. Reviewing that list could help the HACCP team check for completeness.

Note: If you are using this generic model to produce a different raw irradiated product or if you use a different process flow, you may have different hazards which are reasonably likely to occur. For these different hazards, there may be different measures that could be used for control purposes.

This, and all other FSIS generic models, contains a list of references which can help your HACCP team in making sure the hazard analysis is complete. The references for raw, irradiated product are found in Appendix A. A member of your HACCP team might want to review at least some of the references to make sure hazards have not been omitted from the hazard analysis.

Completing the hazard analysis is a very significant and important element in developing your HACCP system. Your HACCP team should feel a real sense of accomplishment when they get
Developing Your HACCP Plan

The company HACCP team can now take the materials it developed while doing the hazard analysis and use them to build the HACCP Plan. Remember that one of the important objectives of the FSIS generic models is to provide examples that illustrate how to meet the regulatory requirements of Part 417, as well as to correctly apply the principles of HACCP. Part 417.2 (c) and (d) are the regulatory requirements:

(c) The contents of the HACCP plan. The HACCP plan shall, at a minimum:

(1) List the food safety hazards identified in accordance with paragraph (a) of this section, which must be controlled for each process.

(2) List the critical control points for each of the identified food safety hazards, including, as appropriate:

(i) Critical control points designed to control food safety hazards that could be introduced in the establishment, and

(ii) Critical control points designed to control food safety hazards introduced outside the establishment, including food safety hazards that occur before, during, and after entry into the establishment;

(3) List the critical limits that must be met at each of the critical control points. Critical limits shall, at a minimum, be designed to ensure that applicable targets or performance standards established by FSIS, and any other requirement set forth in this chapter pertaining to the specific process or product, are met;

(4) List the procedures, and the frequency with which those procedures will be performed, that will be used to monitor each of the critical control points to ensure compliance with the critical limits;

(5) Include all corrective actions that have been developed in accordance with §417.3(a) of this part, to be followed in response to any deviation from a critical limit at a critical control point; and

(6) Provide for a recordkeeping system that documents the monitoring of the critical
Irradiated, Raw Model

control points. The records shall contain the actual values and observations obtained during monitoring.

(7) List the verification procedures, and the frequency with which those procedures will be performed, that the establishment will use in accordance with § 417.4 of this part.

(d) Signing and dating the HACCP plan. (1) The HACCP plan shall be signed and dated by the responsible establishment individual. This signature shall signify that the establishment accepts and will implement the HACCP plan.

(2) The HACCP plan shall be dated and signed:

(i) Upon initial acceptance;

(ii) Upon any modification; and

(iii) At least annually, upon reassessment, as required under § 417.4(a)(3) of this part.

Generic establishment X has prepared its HACCP plan for irradiated fresh poultry on a six column form (See Figure 4). You do not need to use this form, although some kind of a form is probably the easiest way to present your HACCP plan.

Identifying CCPs

The first column on this particular form is used to enter information developed and contained on the hazard analysis form. Part 417.2(c)(1) and (2) require that the food safety hazards identified in the hazard analysis be listed on the HACCP plan and that there be a CCP for each identified hazard. You will notice that there are five points on the hazard analysis form where food safety hazards reasonably likely to occur were identified: Salmonella on raw poultry at receiving, pathogen proliferation at packaging and labeling, pathogen proliferation at storage (cold)/transporting, pathogen survival and/or proliferation after irradiation, and pathogen proliferation at finished product storage (cold).

The establishment HACCP team has chosen to have five CCPs to address these five hazards: Salmonella certification, use of approved packaging material for irradiation and clear product label features to indicate the product is irradiated, raw, and must be fully cooked, proper temperature maintenance during transport and storage, compliance with FSIS/FDA requirements for the process of irradiation, and proper temperature maintenance at finished product storage (cold).
After identifying its CCPs, the HACCP team proceeded to consider critical limits, monitoring procedures and their frequencies, and verification procedures and their frequencies, and HACCP records.

In deciding what would be the critical limits, the HACCP team first considered whether there were any regulatory requirements which had to be met and would function as critical limits.

The team was aware of regulatory requirements for the packaging material and labeling of irradiated products as stated in 9 CFR 381.135 and 21 CFR 179.45. For their critical limit, the HACCP team decided that air permeable packaging material, and a label with features to indicate a raw, irradiated product has the irradiation logo, the radura, along with the statement “Treated with radiation” or “Treated by Irradiation”, handling statement, clear cooking instructions, and safe handling instructions.

The team set the critical limits for the minimum and maximum absorbed dose for irradiation of poultry as found in 9 CFR 381.147. For developing a HACCP plan for irradiation of pork, the required absorbed dose will be different.

Once they had decided on their critical limits, they needed to identify how the monitoring procedures would be carried out and at what frequency.

The HACCP team decided that receiving personnel check the packaging and labeling materials for irradiated products at Receiving-packaging materials. At this location, receiving personnel also routinely check all letters of guarantee and incoming packaging materials to make sure they met specifications. Since labels are manufactured in large lots by a single company, the receiving clerks would randomly sample each arriving lot. Some packaging materials do not have their labels and safe handling instructions printed on them and therefore these need to be applied to the packaging material later in the process. Monitoring at the packaging and labeling step ensures that the necessary pressure sensitive sticker labels are applied to the package.

For the CCP on the irradiation process, the HACCP team decided that the production supervisor would be in the best position to assure that the irradiation unit was functioning properly by checking the data log printout from the irradiation control board or “process monitoring instrument” as the product goes through the irradiation process. The irradiation control board shows all function movement which take place within the irradiation chamber during the irradiation process. It will indicate whether the unit is functioning properly, and will alert the operator for any abnormal movements.

These decisions by the HACCP team regarding critical limits, plus monitoring procedures and
Irradiated, Raw Model

their frequencies are written up in columns two and three of the HACCP Plan.

The team then went on to consider appropriate verification procedures; the team knew that there were different types of verification and that Part 417.4(a)(2) included specific regulatory requirements for each. The regulatory requirements for ongoing verification are:

(2) Ongoing verification activities. Ongoing verification activities include, but are not limited to:

(i) The calibration of process-monitoring instruments;

(ii) Direct observations of monitoring activities and corrective actions; and

(iii) The review of records generated and maintained in accordance with § 417.5(a)(3) of this part.

The HACCP team decided that they could verify the raw poultry irradiation step through the following procedures and frequency:

1. QA will verify the irradiation data log printout.
2. QA will verify the letter of guarantee for calibration of the dosimeter every 12 months.
3. QA will verify that absorbed doses received by product are within the minimum and maximum limits from results of dose mapping.

The HACCP team described the verification procedures and their frequencies in the fifth column of their HACCP plan.

The HACCP team for generic establishment X knew that their HACCP Plan needed to provide for a recordkeeping system. They wanted their records to be easy to create and understand. They wanted to be sure their records met regulatory requirements, so they reviewed part 417.5(a) and (b):

§ 417.5 Records.

(a) The establishment shall maintain the following records documenting the establishment's HACCP plan:

(1) The written hazard analysis prescribed in § 417.2(a) of this part, including all
Irradiated, Raw Model

supporting documentation;

(2) The written HACCP plan, including decision making documents associated with the selection and development of CCPs and critical limits, and documents supporting both the monitoring and verification procedures selected and the frequency of those procedures.

(3) Records documenting the monitoring of CCPs and their critical limits, including the recording of actual times, temperatures, or other quantifiable values, as prescribed in the establishment's HACCP plan; the calibration of process-monitoring instruments; corrective actions, including all actions taken in response to a deviation; verification procedures and results; product code(s), product name or identity, or slaughter production lot. Each of these records shall include the date the record was made.

(b) Each entry on a record maintained under the HACCP plan shall be made at the time the specific event occurs and include the date and time recorded, and shall be signed or initialed by the establishment employee making the entry.

The HACCP team decided that their records would be kept on some simple forms, some of which the team itself devised. The HACCP team decided that three records were necessary: Irradiation Data Log, Irradiation/Dose Mapping Log, and Letter of guarantee for dosimeter calibration.

The forms(logs) were designed to provide spaces for all entries necessary for the monitoring and verification activities at the raw poultry irradiation step.

On its HACCP Plan, generic establishment X has listed the names of the forms it will be using for monitoring and verification records.

There is one other form included in column four, where the establishment has described its recordkeeping system. That is the Corrective Actions Log; it is used to create the records of any corrective actions taken because of deviations from critical limits at CCPs. Column six references the planned corrective actions for each CCP. The HACCP team carefully reviewed the regulatory requirements for planned corrective actions, found at 417.3(a):

§ 417.3 Corrective actions.

(a) The written HACCP plan shall identify the corrective action to be followed in response to a deviation from a critical limit. The HACCP plan shall describe the corrective action to be taken, and assign responsibility for taking corrective action, to
Irradiated, Raw Model

ensure:

(1) The cause of the deviation is identified and eliminated;

(2) The CCP will be under control after the corrective action is taken;

(3) Measures to prevent recurrence are established; and

(4) No product that is injurious to health or otherwise adulterated as a result of the deviation enters commerce.

The HACCP team has developed a specific corrective action plan which will be followed whenever there is a deviation from a critical limit at a CCP; each of the planned corrective actions meets the four regulatory requirements of 417.3(a).

Planned Corrective Actions for CCP 4:

1. QA supervisor takes control of and segregates all products processed when the irradiation unit was not functioning properly.

2. QA condemns affected products and dispose according to standard operating procedures.

3. Certified irradiation maintenance personnel identify problem with the irradiation unit and repair it so that the integrity of the unit is restored and the same problem does not recur.

4. QA implements preventive maintenance checks.

The HACCP team also develops planned corrective actions for each of the other CCPs and attaches them to the HACCP plan. Whenever a deviation from a critical limit occurs, company employees follow the corrective action plan and use the Corrective Action Log to create a record of their actions. The Corrective Action Log forms are available at CCPs, so they can be used immediately when an employee performing a monitoring check discovers and records a deviation. All Corrective Action Logs, which have been used during the day, are turned in to the HACCP coordinator.

There is one final verification/recordkeeping requirement which the company must perform; it is found at 417.5(c):

(c) Prior to shipping product, the establishment shall review the records associated with the production of that product, documented in accordance with this section, to ensure
completeness, including the determination that all critical limits were met and, if
appropriate, corrective actions were taken, including the proper disposition of product.
Where practicable, this review shall be conducted, dated, and signed by an individual
who did not produce the record(s), preferably by someone trained in accordance with §
417.7 of this part, or the responsible establishment official.

In generic establishment X, product is shipped out, often in small lots, throughout the day. This
means that pre-shipment verification checks must be as complete as possible when finished
product is in storage, so that a shipment can be made up quickly and moved into distribution
channels.

The establishment uses a half day lotting system and a midshift cleanup. While the midshift
cleanup is being performed, QA personnel or the HACCP coordinator review results of
monitoring and verification checks applied to that lot; if there were deviations from critical
limits, they review the Corrective Action Logs to make sure all appropriate planned responses
were carried out. If everything is in order and there are complete records showing that the
establishment has controlled production of this product through its HACCP system, the HACCP
coordinator will sign the pre-shipment review form which the HACCP team devised for this
purpose.

Note: It is not a regulatory requirement that a separate form be used for pre-shipment review; in
addition, FSIS has indicated that it will be very flexible in accepting a variety of arrangements
for accomplishing pre-shipment review to reflect the variety of commercial practices which it
has encountered in the industry. It is, however, important to remember that pre-shipment review
is a regulatory requirement that must be met, as it indicates that the establishment is taking full
responsibility for the product having been produced under a well-functioning HACCP system.

The HACCP team believes it has now completed preparation of the documents which are
necessary to meet regulatory requirements for a Hazard Analysis and a HACCP Plan for their
irradiated, raw production process. They have secured a copy of FSIS Directive 5000.1,
Enforcement of Regulatory Requirements in Establishments Subject to HACCP System
Requirements, the HACCP Basic Compliance Checklist which will be used by inspection
program personnel. The HACCP team has modified the inspection form to make the statements
into positives, and now has a checklist for its own use to make sure they have not omitted
anything in their plan development and preparation. When they are confident that they have done
what is necessary, they will turn their Hazard Analysis and HACCP Plan over to the
establishment owner for decisions about implementation.
References for all HACCP Model Teams

 Useful sections in particular are:
 - Chapter 3 – microbiological hazards, pp. 15-26
 - Chapter 4 – chemical hazards, pp. 27-32
 - Chapter 5 – physical hazards, pp. 33-35
 - Appendix A – NACMCF HACCP
 - Appendix C – Model HACCP plans (beef slaughter, roaster beef, ham, chicken slaughter, etc.)

Irradiated, Raw Model

 Useful sections in particular are:
 Chapter 10 – raw meat and poultry, pp. 176-193
 Chapter 11 – roast beef, pp. 234-238
 Chapter 11 – canned ham, pp. 238-242

 Useful sections in particular are:
 Chapter 4 – microbiological hazards, pp. 72-103
 Chapter 9 – raw meat, pp. 193-199
 Chapter 9 – processed meats, pp. 199-216

 Useful sections in particular are:
 Chapter 4 – meat and poultry slaughter, pp. 58-71
 Chapter 5 – processed meats, pp. 72-107
 Chapter 7 – risk analysis, pp. 134-154
 Chapter 13 – predictive modeling, pp. 330-354

Irradiated, Raw Model

 Useful section in particular is:
 Chapter 11 – forms for hazard analysis, CCP, limits, HACCP master sheet, example HACCP for breaded chicken

References for Irradiated, Raw Meat and Poultry Products

6. FDA. *Irradiation in the Production, Processing and Handling of Food*. In Federal
Irradiated, Raw Model

18. Thayer, D. W. Use of Irradiation to Kill Pathogens on Meat and Poultry. J. Food

APPENDIX B
Processes separated by dotted line may actually occur in separate storage facilities. This model considers receiving of fresh raw product to distribution; however, product may enter at this process step for contract irradiators.
<table>
<thead>
<tr>
<th>Process Category: Irradiated, Raw Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODUCT DESCRIPTION</td>
</tr>
<tr>
<td>PRODUCT: Fresh Poultry</td>
</tr>
</tbody>
</table>

1. **Common Name?** Fresh Poultry
2. **How is it to be used?** Cooked and consumed
3. **Type of Package?** Bulk-pack/resealable pouch or retail package (with air permeable and approved packaging material for irradiation)
4. **Length of shelf life, at what temperature?** Approx. 1-3 weeks at 27-40°F
5. **Where will it be sold?** Retail and HRI, wholesale consumers; general public
6. **Labeling instructions?** Radura sign, “Treated with radiation” or “Treated by irradiation”; keep refrigerated; cooking instructions; safe handling instructions.
7. **Is special distribution control needed?** Keep refrigerated
HAZARD ANALYSIS – IRRADIATED, RAW PRODUCT

<table>
<thead>
<tr>
<th>Process Step</th>
<th>Food Safety Hazard</th>
<th>Reasonably Likely to Occur?</th>
<th>Basis</th>
<th>If Yes in Column 3, What Measures Could be Applied to Prevent, Eliminate, or Reduce the Hazard to an Acceptable Level?</th>
<th>Critical Control Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiving – Raw Poultry</td>
<td>Biological: Pathogens - microbial (Salmonella)</td>
<td>Yes</td>
<td>Salmonella may be present on incoming raw product.</td>
<td>Certification from suppliers that product has been sampled for Salmonella and passed standards.</td>
<td>1B</td>
</tr>
<tr>
<td></td>
<td>Chemical – None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physical – Foreign materials</td>
<td>No</td>
<td>Plant records show that there has been no incidence of foreign materials in products received into the plant.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HAZARD ANALYSIS – IRRADIATED, RAW PRODUCT

<table>
<thead>
<tr>
<th>Process Step</th>
<th>Food Safety Hazard</th>
<th>Reasonably Likely to Occur?</th>
<th>Basis</th>
<th>If Yes in Column 3, What Measures Could be Applied to Prevent, Eliminate, or Reduce the Hazard to an Acceptable Level?</th>
<th>Critical Control Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiving – Packaging Materials</td>
<td>Biological – None</td>
<td>No</td>
<td>Letters of guarantee for air permeable direct food contact packaging material and labels with required features approved for irradiation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical – Not acceptable for intended use</td>
<td>No</td>
<td>Physical – Foreign materials (insects, dirt, etc.)</td>
<td>Plant records demonstrate that foreign material contamination has not occurred during the past several years.</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3
HAZARD ANALYSIS – IRRADIATED, RAW PRODUCT

<table>
<thead>
<tr>
<th>Process Step</th>
<th>Food Safety Hazard</th>
<th>Reasonably Likely to Occur?</th>
<th>Basis</th>
<th>If Yes in Column 3, What Measures Could be Applied to Prevent, Eliminate, or Reduce the Hazard to an Acceptable Level?</th>
<th>Critical Control Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage (Cold) - Raw Poultry</td>
<td>Biological - Pathogens</td>
<td>No</td>
<td>Temperature of product and storage area will be maintained below a level to prevent pathogen growth.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical – None</td>
<td>Physical – None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage – Packaging Materials</td>
<td>Biological – None</td>
<td>Chemical – None</td>
<td>Physical - None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packaging/Labeling</td>
<td>Biological - Pathogens</td>
<td>Yes</td>
<td>Improper packaging materials and labeling may allow pathogen growth including anaerobes.</td>
<td>Plant will use approved packaging materials for irradiation. Labels with radura, and required features will clearly indicate an irradiated, raw product.</td>
<td>2B</td>
</tr>
</tbody>
</table>
HAZARD ANALYSIS – IRRADIATED, RAW PRODUCT

<table>
<thead>
<tr>
<th>Process Step</th>
<th>Food Safety Hazard</th>
<th>Reasonably Likely to Occur?</th>
<th>Basis</th>
<th>If Yes in Column 3, What Measures Could be Applied to Prevent, Eliminate, or Reduce the Hazard to an Acceptable Level?</th>
<th>Critical Control Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage (Cold)/ Transporting</td>
<td>Biological - Pathogens</td>
<td>Yes</td>
<td>Pathogens are reasonably likely to grow in this product if temperature is not maintained at or below a level sufficient to prevent growth.</td>
<td>Maintain product temperature at or below a level sufficient to prevent pathogen growth.</td>
<td>3B</td>
</tr>
<tr>
<td></td>
<td>Chemical – None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physical – None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw Poultry Irradiation</td>
<td>Biological – Pathogens</td>
<td>Yes</td>
<td>Improper use of irradiation may not reduce/kill pathogens as intended.</td>
<td>Correct dose range as per FSIS regulation (according to approved treatment protocol in 9 CFR 381.147, 381.149) will be used.</td>
<td>4B</td>
</tr>
<tr>
<td></td>
<td>Chemical- None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physical – None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3
HAZARD ANALYSIS – IRRADIATED, RAW PRODUCT

<table>
<thead>
<tr>
<th>Process Step</th>
<th>Food Safety Hazard</th>
<th>Reasonably Likely to Occur?</th>
<th>Basis</th>
<th>If Yes in Column 3, What Measures Could be Applied to Prevent, Eliminate, or Reduce the Hazard to an Acceptable Level?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finished Product Storage (Cold)</td>
<td>Biological – Pathogens</td>
<td>Yes</td>
<td>Pathogens are reasonably likely to grow in this product if temperature is not maintained at or below a level to maintain process integrity.</td>
<td>Maintain product temperature at or below a level sufficient to prevent pathogen growth.</td>
</tr>
<tr>
<td></td>
<td>Chemical – None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physical – None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shipping</td>
<td>Biological – None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical – None</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physical - None</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Critical Control Point
5B

Figure 3
HACCP PLAN

PROCESS CATEGORY: IRRADIATED, RAW PRODUCT
PRODUCT EXAMPLE: FRESH POULTRY

<table>
<thead>
<tr>
<th>CCP # and Location</th>
<th>Critical Limits</th>
<th>Monitoring Procedures and Frequency</th>
<th>HACCP Records</th>
<th>Verification Procedures and Frequency</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1B Receiving – Raw Poultry</td>
<td>Supplier certification that product has been sampled for Salmonella must accompany shipment.</td>
<td>Receiving personnel will check each shipment for Salmonella certification.</td>
<td>Receiving Log</td>
<td>Every two months QA will request Salmonella testing results from FSIS for at least 2 suppliers.</td>
<td>Will not receive product unaccompanied by Salmonella certification.</td>
</tr>
</tbody>
</table>

Signature: ___________________________
Date: ___________________________

Figure 4
HACCP PLAN

PROCESS CATEGORY: IRRADIATED, RAW PRODUCT
PRODUCT EXAMPLE: FRESH POULTRY

<table>
<thead>
<tr>
<th>CCP # and Location</th>
<th>Critical Limits</th>
<th>Monitoring Procedures and Frequency</th>
<th>HACCP Records</th>
<th>Verification Procedures and Frequency</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2B Packaging/Labeling</td>
<td>Approved packaging material listed in 21 CFR 179.45 and 9 CFR 381.149. Label with radura, “Treated with radiation”, or “Treated by irradiation” Handling Statement, Cooking Instructions, Safe Handling Instructions.</td>
<td>Packaging line supervisor will randomly sample packages of product once per shift and ensure packaging material and labeling requirements are met.</td>
<td>Packaging/Labeling Log Corrective Actions Log</td>
<td>QA will observe packaging line supervisor perform monitoring activity once per shift. QA will sample labels intended for use from label storage area twice weekly to ensure label accuracy. QA will check labels once a day on packaged product to ensure label accuracy on packaged product.</td>
<td>QA will segregate and hold incorrectly packaged and/or labeled product. Follow SOPs for product disposition. QA will identify the cause of the deviation and prevent reoccurrence.</td>
</tr>
</tbody>
</table>

Signature: _______________________________ Date: ___________________________ Figure 4
HACCP PLAN

PROCESS CATEGORY: IRRADIATED, RAW PRODUCT

PRODUCT EXAMPLE: FRESH POULTRY

<table>
<thead>
<tr>
<th>CCP # and Location</th>
<th>Critical Limits</th>
<th>Monitoring Procedures and Frequency</th>
<th>HACCP Records</th>
<th>Verification Procedures and Frequency</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>3B Storage (Cold)/Transporting</td>
<td>Temperature of product, storage and transport at 27-38° F.</td>
<td>QA personnel will check raw product temperature every two hours. Maintenance personnel will check storage area temperature every two hours.</td>
<td>Product Temperature Log Room Temperature Log Thermometer Calibration Log Corrective Actions Log</td>
<td>QA supervisor will check Product Temperature Log and Room Temperature Log twice per shift. Maintenance supervisor will verify accuracy of the Room Temperature Log once per shift. QA will check all thermometers used for monitoring and verification for accuracy daily and calibrate to within 1° F accuracy as necessary.</td>
<td>QA will reject or hold product until temperature is achieved: dependent on time and temperature deviation. Follow standard operating procedures for product disposition. QA and maintenance personnel will identify the cause of the deviation and prevent reoccurrence.</td>
</tr>
</tbody>
</table>

Signature: ________________________________ Date: ________________________________ Figure 4
HACCP PLAN

PROCESS CATEGORY: IRRADIATED, RAW PRODUCT
PRODUCT EXAMPLE: FRESH POULTRY

<table>
<thead>
<tr>
<th>CCP # and Location</th>
<th>Critical Limits</th>
<th>Monitoring Procedures and Frequency</th>
<th>HACCP Records</th>
<th>Verification Procedures and Frequency</th>
<th>Corrective Actions</th>
</tr>
</thead>
</table>
| 4B Raw Poultry Irradiation | Minimum absorbed dose: 1.5 kilogram (150 kilorads)
Maximum absorbed dose: 3.0 kilogram (300 kilorads) as found in 9 CFR 381.147 and 381.149 | Production supervisor will monitor the data log printout from the irradiation control board for each irradiated batch.
Production supervisor will take dosimeter readings for each irradiated batch. | Irradiation Data Log printout
Irradiation/Dose Mapping Log
Letter of guarantee for dosimeter calibration
Corrective Actions Log | QA will verify irradiation data log printout.
QA will verify letter of guarantee for calibration of the dosimeter every 12 months.
QA will verify that absorbed doses received by product are within the minimum and maximum limits from results of dose mapping. | QA supervisor will segregate and hold affected products.
QA will condemn affected products.
Follow standard operating procedures for disposition of irradiated products.
Certified irradiation maintenance personnel will identify and correct the problem with the irradiation unit and ensure no reoccurrence of the problem.
QA will implement a preventive maintenance program. |

Signature: ________________________________
Date: ________________________________

Figure 4
HACCP PLAN

PROCESS CATEGORY: IRRADIATED, RAW PRODUCT
PRODUCT EXAMPLE: FRESH POULTRY

<table>
<thead>
<tr>
<th>CCP # and Location</th>
<th>Critical Limits</th>
<th>Monitoring Procedures and Frequency</th>
<th>HACCP Records</th>
<th>Verification Procedures and Frequency</th>
<th>Corrective Actions</th>
</tr>
</thead>
</table>
| 5B Finished Product Storage (Cold) | Finished product and storage area shall be maintained at 27-38°F. | QA personnel will check raw product temperature every two hours.
Maintenance personnel will check storage area temperature every two hours. | Product Temperature Log
Room Temperature Log
Thermometer Calibration Log
Corrective Actions Log | QA supervisor will check Product Temperature Log and Room Temperature Log twice per shift.
Maintenance supervisor will verify accuracy of the Room Temperature Log once per shift.
QA will check all thermometers used for monitoring and verification for accuracy daily and calibrate to within 1°F accuracy as necessary. | QA will reject or hold product until temperature is achieved: dependent on time and temperature deviation. Follow standard operating procedures for product disposition.
QA and maintenance personnel will identify the cause of the deviation and prevent reoccurrence. |

Signature: ________________________________
Date: ________________________________

Figure 4
FORM LETTER requesting *Salmonella* Data

To: FSIS
 FOIA Coordinator
 USDA

This is to request results of any *Salmonella* performance standard sample sets completed during the past two months from establishments listed below.

Thank you.

<table>
<thead>
<tr>
<th>File Copy</th>
<th>Date Results Received</th>
<th>Two Consecutive Failed Sets?</th>
<th>If Yes, Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Est. YYY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Est. ZZZ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Est. AAA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FORM LETTER requesting *Salmonella* Data

To: FSIS
 FOIA Coordinator
 USDA

This is to request results of any *Salmonella* performance standard sample sets completed during the past two months from establishments listed below.

Thank you.

Est. YYY

Est. ZZZ

Est. AAA
GENERIC ESTABLISHMENT X: PRODUCT TEMPERATURE LOG

PRODUCT: ________________________________ DATE: _______

<table>
<thead>
<tr>
<th>TIME</th>
<th>TEMP</th>
<th>Deviation from CL? (Check if yes)</th>
<th>If Yes, Corrective Action?</th>
<th>Monitored by</th>
<th>Verified by</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:36 AM</td>
<td>34°F</td>
<td></td>
<td></td>
<td>PS</td>
<td></td>
</tr>
<tr>
<td>8:30 AM</td>
<td>33°F</td>
<td></td>
<td></td>
<td>PS</td>
<td></td>
</tr>
<tr>
<td>10:32 AM</td>
<td>34°F</td>
<td></td>
<td></td>
<td>PS</td>
<td></td>
</tr>
<tr>
<td>12:30 PM</td>
<td>36°F</td>
<td>✔</td>
<td>Notify maint. supv., CB & QA</td>
<td>PS</td>
<td>CB</td>
</tr>
</tbody>
</table>

TIME/TEMPERATURE CRITICAL LIMIT: 39
GENERIC ESTABLISHMENT X: ROOM TEMPERATURE LOG

<table>
<thead>
<tr>
<th>TIME</th>
<th>TEMP</th>
<th>Deviation from CL? (Check if yes)</th>
<th>If Yes, Corrective Action?</th>
<th>Monitored by:</th>
<th>Verified by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:36 AM</td>
<td>34°F</td>
<td></td>
<td></td>
<td>PS</td>
<td></td>
</tr>
<tr>
<td>8:30 AM</td>
<td>33°F</td>
<td></td>
<td></td>
<td>PS</td>
<td></td>
</tr>
<tr>
<td>10:32 AM</td>
<td>34°F</td>
<td></td>
<td></td>
<td>PS</td>
<td>CB</td>
</tr>
<tr>
<td>12:30 PM</td>
<td>36°F</td>
<td>✓</td>
<td>Notify maint. supv., CB & QA</td>
<td>PS</td>
<td></td>
</tr>
</tbody>
</table>

TIME/TEMPERATURE CRITICAL LIMIT:

40
THERMOMETER CALIBRATION LOG

Criteria Within 1° F of Control Thermometer

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Department or Area</th>
<th>Thermometer ID#</th>
<th>Control Thermometer Reading</th>
<th>Personal Thermometer Reading</th>
<th>Adjustment Required (Yes or No)</th>
<th>Initials</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/15</td>
<td>1:00 PM</td>
<td>Chiller</td>
<td>2A</td>
<td>32°F</td>
<td>32°F</td>
<td>No</td>
<td>HK</td>
<td></td>
</tr>
</tbody>
</table>

* If a thermometer is broken or taken out of service, document this in the comment column.

Verified by: _______________________

Date/Time: _______________________

Irradiated, Raw Model

GENERIC ESTABLISHMENT X: IRRADIATION/ DOSE MAPPING LOG

DATE: ________________

<table>
<thead>
<tr>
<th>Lot or Irradiation ID</th>
<th>Dosimeter Positions</th>
<th>Absorption</th>
<th>Dose (KGY)</th>
<th>Verified By:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CORRECTIVE ACTIONS LOG

<table>
<thead>
<tr>
<th>CCP</th>
<th>Deviation/Problem</th>
<th>Disposition of Product</th>
<th>Corrective Action Procedures/Explain</th>
<th>Measures to Prevent Recurrence</th>
<th>Responsible Person</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Product: ________________________________

SIGNATURE: __________________________ **DATE:** ______________________
Irradiated, Raw Model

Pre-shipment Review Log

<table>
<thead>
<tr>
<th>LOT ID</th>
<th>TIME RECORDS REVIEWED</th>
<th>BY WHOM</th>
<th>LOT RELEASED FOR SHIPMENT? SIGNATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:10 a.m.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:10 p.m.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>