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I. Introduction

An orbiting laboratory provides the unusual scientific opportunity
to carry out experiments in the absence of gravitational effects. Poten-
tial benefits in the field of aerosol science are the absence of sedi-
mentation and convection. In an experiment carried out under terrestrial
conditions, sedimentation is important for larger areosol particles.
Preventing spurious convective currents is often troublesome in terres-
trial aerosol experiments. In addition to these potential benefits,
the absence of a gravitational field may provide theoretical simplifica-
tion. The feasibility of an orbital aerosol experiment is therefore
of scientific interest. This preliminary investigation was undertaken
to examine the feasibility and scientific benefits for a zero-gravity

aerosol behavior experiment in an orbiting laboratory.

II. GObjectives

A. Examine the theoretical feasibility for a zero-gravity
aerosol behavior experiment.

B, Examine the technological feasibility for a zero-gravity
aerosol behavior experiment.

C. Identify potential scientific benefits for the experiment.

D. Present conclusions.

ITI. Theoretical Feasibility

In the evaluation of experiments concerned with the disappearance
of particles from a confined aerosol, one must in general consider the
simultaneous concentration changes due to coagulation, diffusion, and
sedimentation. The mathematical complexity of this problem has frustrated

attempts to devise totally satisfactory analytical models, even




for initially monodisperse particles in the absence of electrostatic

and convective effects. The conduct of such experiments under the
essentially zero-gravity conditions of an orbiting space laboratory
would provide data in the absence of sedimentation, normally an important
depletion mechanism for particles larger than a few tenths of one
micrometer in radius. A key issue is whether the absence of sedimen-
tation results in a significant reduction in the mathematical complexity
of the problem.

Considerable success has been achieved in describing the behavior
of dilute aerosols in which effects due to coagulation are absent. For
the .one-dimensional problem, the following partial differential equation
giving the numerical particle concentration n as a function of time t
and vertical position z has been solved analytically by Davies (1) and

verified experimentally by Richardson and Wooding (2):

on  _ 9%n an
3% - Dz - Vg (1)

The aerosol considered by these investigators was monodisperse and
confined between perfectly absorbing parallel surfaces of large hori-
zontal extension such that effects due to the vertical walls were
negligible. The particle diffusion coefficient D and settling velocity
v may be evaluated from theoretical considerations given by Fuchs (3).

A major problem associated with achieving a general solution which
includes coagulation is the evolution of the particle size distribution
with time. Hidy and Brock (4) reviewed many investigations of coagulation
and found that the only exact solution is due to Smoluchowski (5) in
which the coagulation constant is independent of time. In the absence

of particle depletion due to diffusion and sedimentation, the basic




equation of coagulation is
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where K is 87RD for spherical particles of radius R. Integration of
équation (2) gives
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where n, is the initial particle concentration at t = 0. Numerous
experi;;htal studies reviewed by Fuchs (3) establish the linear relation-
ship between n'1 and.time although values for K tend to be somewhat
larger than computed values. Hidy and Brock (4) suggested that the
lack of quantitative agreement is attributable to electrical effects,
spurious air currents, increasing polydispersion, and the need for a .
slip correction. The effect of increasing polydispersion was investigated
by Hidy (6) who numerically solved a set of simultaneous nonlinear
differential equations for a discrete particle size distribution. The
numerical results give values for n(t) which closely match those given
by equation (3), although changes in the relative concentrations in
individual particle size categories differ from those for constant
particle collision parameter. Various authors have suggested that the
increase in mean particle size to decrease K is offset by the increasing
polydispersion with its opposite effect. The linear relationship
between n_l and time is used in the present work to develop a macro-
scopic model for the combined effects of diffusion and coagulation.

The equation for the general case which includes coagulation gives

n(x,y,z,t) by -




= = DVn - v - Kn? 4)

where D, v, and K are assumed independent of time and position. The
assumptions of perfectly absorbing walls and uniform initial particle

concentration n, give n(x,y,z,t) = 0 at the walls and n(x,y,z,0) = n, in

the chamber. Equation (4) has been solved analytically by Wilhelm (7)
for the mathematically similar problem of contained plasma particles
undergoing simultaneous recombination, diffusion, and convection.
Wilhelm's approach, which involves a transformation to a differential
equation in which the nonlinear term becomes a small perturbation, was
shown to apply to plasma particles confined by nonreflecting walls.
Application to the coagulating aerosol undergoing simultaneous
depletion by diffusive deposition was made by Benedict (8). The
details of this treatment are given in Appendix I.

The theoretical feasibility for a zero-gravity aerosol study
was examined by carrying out simulated experiments with models developed
by Benedict (8). The purpose of the computations was to determine
whether the requirements for a zero-gravity aerosol study are, at
least in principle, compatible with the time and space limitations
for an orbital experiment. Input to the models consists of the
particle properties and initial concentration, gas properties, and
chamber geometry. Output consists of the particle concentration
as a function of time and location in the chamber. Numerical
results are given in Appendix I.

Two conclusions arise from the theoretical feasibility study.
Firstly, the time and physical space limitations for an orbital

experiment are not prohibitive in terms of obtaining kinetic data.
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For example, experiments of a duration of 1-2 hours in a cylindrical
chamber (r = 25 em, h = 50 cm) can produce meaningful data on the
history of the aerosol confined in the absence of gravitational
effects. Secondly, the model is internally consistent and produces
physically reasonable results.

While the solution procedure resulted in substantial simplification
of the problem, the reduction in complexity is oniy partly attributable
to the absence of the gravitational term. The nonlinear coagulation
term necessitates a transformation of variables, whether or not the
gravitational term is present.

A final point concerns possible limitations of the models
employed in the theoretical analysis. Both D and K have been used
as ensemble parameters. The major limitation of this approach
is that the models do not provide direct information on the evolution
of the particle size distribution. It should also be emphasized that
while equation (1) has been verified experimentally, equation (4)
must still be regarded as a postulate. The experimental conditions

under which it is permissable to treat both D and K as ensemble

parameters in equation (4) are considered in Appendix I.

IV. Technological Feasibility

The technological feasibility was examined by addressing the
following issues:

A. Experiment Definition

B. Requirements for Aerosol Generation

C. Requirements for Measuring Particle Concentrations

D. Requirements for Data Analysis

The major findings are summarized in a previous report (9). Two

areas of concern have been identified. The first is the current absence



of a siﬁgle,'totally'Satisfactory experimental technique for
determining aerosol particle concentrations over the particle size
range of 1077 em to 107> em. Either complementary experimental
techniques would be required or, alternatively, the size range
accessible must be narrowed to be compatible with a single experimental
technique. In view of the potential problems associated with
calibration of complementary techniques under orbital conditions,

the latter altérnative seems more practical.

The second area of concern is that of determining the particle
concentration to the accuracy required. For example, in the absence
of electrostatic and convective effects, calculated and measured
values of the coagulation constant K differ by perhaps 10%. Clearly,
the experimental technique selected must be capable of resolving
differences in particle concentrations smaller than 10% in order
to make meaningful comparisons between experimental and theoretical
data. While considerable progress has been made in recent years
in refining experimental methodologies in aerosol science, the required
accuracy may not be available for the ranges of particle sizes and
concentrations of interest. However, recent developments with
electrostatic classifiers and light-scattering techniques are particularly
encouraging. The required instrumental capabilities may not

be far away, but the situation seems borderline at this time.

V. Scientific Benefits

Potential scientific benefits of a zero-gravity aerosol study
include validation of theoretical models for aerosol kinetics and
measurement of D and K in the absence of convective effects. However,

because of existing gaps in both the theoretical and experimental
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aspects, such an experiment would probably be premature at this time.

In order for the potential benefits to be fully realized, more detailed
theoretical models for the combingd effects of coagulation and diffusion
are needed. Moreover, additional refinements in certain experimental
methodalogies would be helpful to assure accurate measurements over

the ranges of particle sizes and concentrations of interest.

Vi. Conclusions

The theoretical feasibility for a zero-gravity aerosol study
has been examined. The mathematical complexity of the problem is
discouraging if one attempts to retain a detailed picture of the
combined effects of coagulation and diffusion upon the evolving
particle size distribution. However, an analytical solution is
possible if one considers only the particle concentration n
and treats D and K as ensemble parameters. Experimental studies
support use of K as an ensemble parameter in many cases. Treating
D as an ensemble parameter imposes some limitations, however. The
results of the macroscopic treatment show that an aerosol decay
experiment is.feasible in a compact chamber for a time duration of
the order of hours. It is concluded that the limitations of physical
space and time for an orbital experiment are not prohibitive in terms
of conducting an aerosol experiment.

Because of the present mathematical difficulties associated
with treating the combined effects of coagulation and diffusion,
reservations are expressed about the scientific urgency for a zero-
gravity aerosol study at this time. The experiment would also
appear to stretch existing capabilities for characterization of

aerosol particles. Nevertheless, the need for reliable and accurate




aerosol behavior data in fhe absence of convective effects is
recognized. Periodic re-examination of the need for a zero-gravity
aerosol study is therefore recommeﬁded. When such a study is |
planned, it will be important to include a complementary terrestrial
investigation. The difficulties associated with carrying out an
experimental aerosol study under favorable terrestrial laboratory
conditions can be formidable. The success of an orbital experiment
will be highly dependent upon managing these difficulties and

anticipating additional problems posed by the orbital situation.
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ABSTRACT OF THESIS

‘'THEORETICAL BEHAVIOR OF A CONFINED AEROSOL

Coagulation, sediméentation and diffusive deposition are the primary
removgl mechanisms for an aerosol confined in a chamber on earth. The
equation describing the depletion rate due to these mechanisms is a
second order nonlinear partial .differential equation. TFor an aerosol
in a zero-gravity environment the sedimentation term drops out, but
this does not change the basic nature of the equation. An analytical
solution to the resulting equation is presented and particle concen-
trations are computed as a function of time and location in a cylin-
drical chamber.

The equation is also solved for an aerosol under the influence of
a gravitational field. There are some difficulties with this solution
vwiizre the removal mechanisms are operating at similar rates. These are
overcome by modelling the decay process as if diffusion were not present.
Results of the two models indicate that sedimentation is the most impor-
tant of the removal mechanisms. Coagulation is next in importance and
diffusion is negligible except within 1 centimeter of the chamber wall.

Bruce John Benedict
Mechanical Engineering Department
Colorado State University

Fort Collins, Colorado
Fall, 1977
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NOMENCLATURE

Constant in mobility equation
Fourier coefficients for solution
Constant in mobility equation
Particle mobility

Cunningham slip Correction

Particle drag coefficient

Variable to which u is transformed
Acceleration of gravity

Height of chamber

Index for eigenvalues associated with JO
Index for eigenvalues associated with sine
Zero order Bessel function

First order Bessel function
Boltzmann's constant

Particle coagulation coefficient
Dimensionless chamber height
Numerical concentration of particles
Dimensionless concentration

Initial concentration of particles
Constant in mobility equation
Radial coordinate

Dimensionless radial coordinate
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NOMENCLATURE (cont')

R Particle radius

R¥ Chamber radius

Re Particle Reynolds number

s(x) Unit step function

t Time

t! Dimensionless time

u Variable to which n is transformed

Ur Function of r' only used in separation of variables
Uz Function of z' ohly used in separation of variables
Ut Function of t' only used in separation of variables
v Terminal settling velocity of particle

v Particle velocity before applying Cunningham slip correction
x' Distance from wall

z Vertical coordinate

z' Dimensionless vertical coordinate

B Dimensionless coefficient

Y Dimensionless coefficient

$ Mean free path of air molecules

e Perturbation on diffusion

Vv First separation constant

o Second separation constant

Ai Eigenvalue associated with J

p Density of air

pp Density of particle

H viscosity of air
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CHAPTER T

EQUATION

Introduction

The principal removal mechanisms for an aerosol confined in a
chamber which is located in a gravitational field are sedimentation,
coagulation, and diffusive deposition at the wall. 1In most situations
of interest sedimentation is the most important. An experiment carried
out in the zero-gravity environment of an orbiting space craft would
provide a unique opportunity to study aerosols. By placing an aerosol
------ le to obtain measurements of the
coagulation coefficient and diffusion coefficient of the particles.

This study provides a model with which such an experiment can be de-
signed. A model which describes the depletion of an aerosol stored in a
gravitational field is also presented.

For the purposes of this modelling effort the following assumptions
were made: 1. The particles are unit density spheres. 2, The system
is monodisperse. 3. Initially, the particles are uniformly distributed
within the chamber. 4. The coagulation coefficient is constant with
respect to time. The particle formed when two particles stick together
should have a coagulation coefficient which is larger than that of a
single particle because the combined particle is larger. However, Fuchs
[1] states that this effect 1s almost balanced by the decreased diffu-

sivity of the larger particle. 5. All collisions, particle-particle



18

and particle-wall, have a sticking coefficient of unity. Fuchs [1]
indicates that as long as the only driving forces in the system are
thermal, the sticking coefficient is nearly one.
Equation

Richardson and Wooding [2] present an equation describing the
depletion of a monodisperse aerosol which is confined in a chamber in a
gravitational field.

g—: = DV?n - v%zzl- - Kn? 1)

where n is the numerical concentration of particles, t is time, D is the
particle diffusion coefficient, v is the terminal settling velocity of
the particle, z is the vertical coordinate of the chamber, and K is the
particle coagulation coefficient. The boundary conditions are implicit
in the assumptions. Because the sticking coefficient for particles
colliding with walls is unity, a particle which strikes a wall sticks to
it and is thus removed from the bulk of the chamber. Thus we have
n(r,z,t) = 0 at the walls. The initial concentration was assumed to be
uniform throughout the chamber, thus the initial condition is n(r,z,0) =
n_.

o

Coefficients

Strauss [3] gives a procedure for calculating the terminal settling
velocity for aerosol particles in terms of the particle Reynolds number,
Re’ and the particle drag coefficient, Cd. The procedure is to first
calculate the product, CdR;, using properties of the particles and the

fluid in which they are dispersed.
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2
R = 320(9p P)Rg

d e 3112

”~~
N
A’

where p is the fluid density, pp is the particle density, g is the
acceleration of gravity, R is the particle radius and y is the viscosity
of aiy. Davies [4] gives a series of empirical formulas for the Reynolds
number in terms of the product CdR;. Once the Reynolds number is deter-
mined the product can be used to find a value for the drag coefficient.
These values are then used in Stokes law to find a velocity, V,

16Rpg(p_ — )
v = 2

3)
3C4R H

The terminal settling velocity is determined from V by applying the

Cunningham slip correction,
8 R
C=1 +-§(1.257 + 0.400exp(rl.10§)) 4)
where C is the Cunningham slip correction, § is the mean free path of
the fluid molecules. Now it is possible to determine a value for the
terminal settling velocity, v.
v = CV (5)

The diffusion coefficient is given in Fuchs [1]

D = kTB ' ' (6)
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where k is Boltzmann's constant, T is absolute temperature, and B is the

particle mobility also given by Fuchs [1].

B GTRY @

The canstants A, Q, and b are given in Millikan [5] for oil drops in air
at 23Q and 1 atmosphere. They are A = 0,864, Q = 0.290, and b = 1.25.

The coagulation coefficient is in Fuchs [1] as follows:

K = 87RD (8)
Solution
The nondimensional variables, r' = r/R*, z' = z/R*, n' = n/no, and

t' = tD/R*? are introduced. R* is the radius of the chamber.

Substituting these into equation (1) results in

1 '
e = V2o - g2 - yn'? )
where
* *2
=Y y = 258, (10)

The boundary conditions become n'(r',z',t') = 0 at the walls and
the initial condition is n'(xr',z',0) = 1.

The nonlinear coagulation term in equpation (9) presents the
greatest difficulty in obtaining a solution thus it is desirable to

remove it using a transformation. This is done by using the solution of



the Smoluchowski coagulation equation as was done by Wilhelm [6]. The

transformation used was

u(r',z',t!)

1 (! ot +1Y o

n'(z',z',t") T +ytu(c',z,t") (11)
This results in the equation

9 9

T = ViU - By € @z
where

_ 2yt' ,,0u .2 ou 2
£ = 1 + Yt'u\(ar') + (azl) ) (13)

The boundary conditions remain the same for the transformed variable,
u, as for the variable, n. That is u(r',z',t') = 0 at the walls and
u(r',z',0) = 1.

The times of 1 and 2 hours, which are used in the calculations,
are very short as compared to the characteristic time for diffusion.
This is born out by the values of t', which range from 7.0 X 10--8 for

large particles to 1.7 X 10—3 for small particles. The values of Y are

relatively large, ranging from 15 for small particles to 1.6 X 106 for
large particles. However, the values are such that for a given particle
the product yt' is of order 1 or smaller. It is further anticipated
that except near the walls the spatial derivatives will be small. Thus
the value for & will be small.

Equation (12) can now be solved by a successive approximation

technique. To do this € is set equal to 0 and equation (12) is solved.
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This 1is the zeroth approximation. Using.the soiution.for the zeroth
approximation a value can be calculated for €. This value is then put
back into equation (12) as a constant and the equation is solved,
resulting In the first approximatioﬁ. This process is repeated using
the value of € calculated from the previous approximation until the

desired accuracy is obtained.
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CHAPTER 1I

ZERO~GRAVITY SOLUTION

Equation

The simplest case for obtaining a solution is the zero-gravity
situation. This is because with zero-gravity the terminal settling

velocity of the particle is zero, thus B = 0 and equation (12) reduces

to

u__ g2y - e (14)

Setting € = 0 for the zeroth approximation results in the diffusion

equation which for a cylindrical chamber is

3 1 3 32 32
A T L P s)

Solution

The solution for equation (15) can be found using the technique of

Separation of Variables as given by Wylie [7]. For this it is assumed
that the solution is the product of three functions, a function of r'

only, a function of z' only, and a function of t' only. Thus
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u(r',z',t') = Ur(r')Uz(Z'>Ut(t') (16)

Substituting this into equation (15) gives

U U 2%u 32U

t 1 r r Z
ot' == 3r' + 3r'* + 3z'? =y (17)
U r U U U

t r r yA

One side of this equation is a function of t' only, while the other is
a function of r' and z'. The only way this can be true is if both sides
are equal to a constant, V. Using this fact it is possible to solve

for Ut' That solution is

Ut = exp(vt') (18)
This equation implies that v < 0 because the solution for u(r',z',t')
cannot increase exponentially with time. ©Now it is possible to take
the part of equation (17) which is a function of r' and z' and rearrange
it so that there is an equation which is a function of r' equal to a

function of z' which again must be equal to a constant.

i) 32U 32U
r r Z

1 or' + 9r'Z - v=+ 93z'2 =g 19)
' U U U
r r z

Taking the z' equation it is possible to solve for Uz'

Uz = sin(Yoz") .(20)
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From the boundary conditlons on the ends of the chamber, o can be de~

termined.
o =A<i§5392 (21)
where H is the height of the chamber.
The solution of the remaining equation is Ur.
U= J (yr") (22)

where the Xi are the zeros of JO(Xi) = 0. Combining all of these solu-

tion results in the complete solution results in
ot ey = §0OF V) ain (ATR* 4 —()2 JTR*y2y
u(r',z',t") igl jglAion(Air )sin( o2 Jexp( (Ai + ( q ))eh)
(23)

Using the initial conditionmn, Aij can be found.

sR*
flfLr'J (A.r')sin(lﬂg—z')dz'dr’
) o i H

, pys—n
Hd f:ftr'J;(Xir')sinz61%5—2')dz'dr'

4L - (-3
JﬂXiJl(Ai)

where L = H/R*.

Inner-Outer Expansion

Results of the solution given by equation (23) are that u(r',z',t')
is almost a constant for most of the chamber, indicating that coagula-
tion is much more important as a removal mechanism for the bulk of the

aerosol than is diffusive deposition. The fact that the higher order
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approximations are very difficult to solve indicates that the solution
might be found using an inner-outer expansion technique. The inner-
outer expansion technique is used on problems which have several
regions iﬁ which the processes occurring are of different nature. The
clasgical example of such a problem is a boundary layer problem such
ag illustrated here. In this technique a solution is found describing
the dominant process in each region. The boundary conditions for the
solution in one region are then modified by using the boundary condi-
tions which were shown to exist in the adjacent region. These modifi-
cations are repeated until the boundary conditions for adjacent regions
match each other.

For the outer expansion, diffusion can be ignored in equation (9).

This leads to
]
_grtl' = —yn'? (25)

which is the well known equation for coagulation developed by Smolu-

chowski and presented in Fuchs [1]. The solution for this equation is
(26)

The inner expansion begins with the assumption that near the wall
the only removal mechanism of any significance is diffusive deposition
on the wall. It is further assumed that the particles are diffusing
only along the x coordinate. These assumptions seem reasonable due to
the extremely large gradient which exists at the walls of the chamber.

Thus the equation describing the depletion of the aerosol near the wall
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is

3T T 32 @7

where x is the distance from the wall. Carslaw and Jaeger [8] give a

solution to this equation.
n'(x',t') = erf (5,7 (28)

This solution technique is presented as a possible alternative to
the successive approximation technique presented earlier. However,
the inner-outer expansion technique is a somewhat less desirable ap-
proach. For the inner-outer expansion technique it is necessary to
solve two problems while for the successive approximation technique
only one problem need be solved. Further, matching the two solutions
repeatedly is likely to be a problem whose difficulty is comparable to
that of solving for the higher order approximations in the successive

approximation technique.
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CHAPTER III

GRAVITY SOLUTION

Equation

A somewhat more difficult case is the solution of equation (12) in
the presence of a gravitational field. A transformation is made which

removes the sedimentation term. This transformation is due to Wilhelm

[6] and is
82
u(r',z',t') = f(r',z',t')exp(iz' - Z—t') (29)
This transformation yields
if___ 20 _ _Bl 821
v Vf - € exp( 22 + Z—t ) (30)

The boundary conditions then become f£(r',z',t') = 0 at the wall and
f(x',2',0) = exp(- %%').
Solution
Equation (30) is solved by separation of variables in the same man-
ner as was equation (15), resulting in

f(r',z"t') = i(gl jzlAion(Air')Sin(j%Btz')EXP(—(X;‘_ + (J;R* ')2)

(31)
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where

f;fﬁr'exp(— %z')Jo(Air')sin(jggiz')dz'dr'

1] f:fﬁr'Jé(Air')sinz(1%552')dz‘dr'

43m( - (-1)7exp(- £1)) (32)

B*L% 2,2
ATy Q) G+ 351

Solution Near the Wall

There are several areas in which this solution has difficulties.
An examination of equation (29) will show where these difficulties oc-
cur. Values for B range from 3.58 X 10"3 for small particles to
1.11 X 1012 for large particles. Thus for certain particle sizes, the
transformation given by equation (29) becomes so large that the results
are meaningless. The solution does work for particles smaller than
0.04 micrometers where sedimentation is much less important that dif-
fusion, and for particles larger than 0.7 micrometers where diffusion
is much less important than sedimentation and for long times when sed-
imentation has essentially depleted the chamber.

Results from the zero-gravity solution indicate that the effects of
diffusive deposition are limited to a thin boundary layer. Thus dif-
fusive deposition has a negligible effect on the concentration of the
bulk of the chamber and i1t seems reasonable to expect that the problems
of the above solution can be overcome by ignoring diffusion altogether.

This leads to the equation

| !
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now applying the transformation in equation (11) the result is

0
g% = By, T (34)

The solution to this is in terms of a unit step function, s(x).

The unit step function is defined as follows

So the solution to equation (34) is
L 1 L . H t 1
U(I‘ 2 ’t ) = S(E; -z = Bt ) (35)

This solution can be combined with the inner expansion solution of

equation (28) to give the solution for the entire chamber.
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CHAPTER 1V

RESULTS AND DISCUSSION

Zero-Gravity

Figure 1 gives the results of the settling velocity calculations
for unit density spheres in air at 23C and 1 atmosphere.

Figures 2 - 5 give the results of equation (23) which describes the
depletion of a confined aerosol which is acted on only by coagulation
aéd diffusive deposition. The first two figures give the concentration
as a function of particle size for a location near the center of the
chamber and times of 1 and 2 hours. These figures do not show any ef-
fects of diffusive deposition on the aerosol concentration and are
therefore identical to a curve for coagulation alone. Figures 4 and 5
give similar information but for a location near the wall of the cham-
ber. The dotted lines on the curves for the smaller particles show what
the concentration would be if only coagulation were acting on the aero-
sol at that point. Thus 1t can be seen that diffusive deposition is
not very effective as a removal mechanism for the bulk of the chamber.
Near the wall, however, the situation 1is reversed. There is a steep
gradient in concentration which drives diffusive deposition. Thus for
a thin boundary layer the dominant removal mechanism is diffusive de-
position. The steep gradient near the wall will reduce equation (14)

to a one dimensional equation except at the corners. The solution to
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the one dimensional diffusion equation (28). Figures 6 and 7 are con-
centration profiles for the region near the wall of the chamber and
show the extent of the action of diffusive deposition for times of 1
and 2 hours respectively. Thus for the zeroth approximation, equation
(15) gives the concentration for the entire chamber.

The zeyoth approximation is sufficiently accurate for all but the
most demanding applications. The higher order solutions are very dif-
ficult to obtain and contain only a small correction to the solution
given by equation (23). Table I gives the values of the terms of equa-
tion (14) for various locations within the chamber and times of 1 and 2
hours. The values for locations near the center of the chamber are
large relative to the other terms in equation (14) but are quite small.
The size of € for these locations is a further indication that there
are no gradients and thus diffusive deposition is not important. The
values are so large because of truncation error in evaluating equation
(23) and not any fluctuations in aerosol concentration at those points.
If the truncation error were not present it is expected that the value
of € would be zero. Substituting € = 0 into equation (14) for the first
approximation would yield exactly the same result as the zeroth approx-
imation. Thus for those situations where € = 0 the zeroth approxiamtion
is exact.

The inner-outer expansion solution embodied in equations (25)
through (28) give further evidence that the zeroth approximation is ac-
curate because this solution technique gives the same results as those
of equation (15). That one dimensional diffusion is the dominant re-—
moval mechanism near the wall is also shown by the fact that the solu-

tion to equation (27) predicted the difference between the curves for
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Table L

VALUES OF TERMS IN EQUATION (14)

R(cm) r (cm) t (hr) T v2u £

1E-6 5 1 0. 3.05E-6 3.05E-6
1E-6 22.5 1 18.96 18.97 5.80E-3
1E-6 5 2 0. 4.18E-16 4.18E-16
1E-6 22.5 2 87.69 88.03 0.340
1E-5 5 1 0. 4 .09E-9 4 .09E-9
1E-5 22.5 1 0. 4.09E-9 4.09E-9
1E-5 5 2 0. 2.26E-12 2.26E-12
1E-5 22.5 2 Q. 2.26E-12 2.26E-12
1E-4 5 1 0. 5.18E-6 5.18E-6
1E-4 22,5 1 0. 5.40E-6 5.40E-6
1E-4 5 2 0. _6.47E-6 6.47E-6
1E-4 22.5 2 0. _6.48E-6 6.48E-6
1E-3 5 1 0. 7.46E-6 7.46E-6
1E-3 22.5 1 0. 1.35E-5 1.35E-5
1E-3 5 2 0. 1.41E-5 1.41E-5
1E-3 22.5 2 0. 2.24E-5 2.24E-5




41

coagulation alone, depicted by the dotted lines, and the cufves for
both céagulation and diffusive deposition in figures 4 and 5 to within
1Z.

Table T shows that the values for € for locations near the wall are
quite large relative to those far from the wall. Comparison with the
values of the other terms in equation (14) shows that they are negli-
gible. Thus the approximation calculated by ignoring € for those re-
gions was good.

Gravity

Equation (33) is the model of a confined aerosol which is acted on
by sedimentation as well as coagulation and diffusive deposition. Fig-
ures 8 and 9 give the results of this model. Figures 8 and 9 are
graphs of the concentration as a function of particle size for a loca-
tion near the bottom of the chamber. An inportant result of this model
is the sharp gradient which appears in the vertical extent of the cham-
ber as a result of the action of gravity. This gradient moves downward
with a velocity equal to the terminal settling velocity of the particles.
Above the line of the gradient there are no particles. Below the line
the concentration changes as 1f the particles were being acted on by

coagulation and diffusive deposition.
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CHAPTER V

CONCLUSIONS

The aerosol depletion model given by equation (14) represents the
action of a confined aerosol both in the presence and absence of gravity
for the entire chamber. It was found that in the presence of a gravi-
tational field, sedimentation was the dominant mechanism, even for small
particles. When there is no gravitatiomal field, coagulation is the
most significant mechanism for removing particles from the bulk of the
chamber.

An advantage of the zero-gravity model is that it embodies the so-
lution for the entire chamber. The more conventional technique of in-
ner-outer expansions requires that two different problems be solved and
the solutions then matched. The matching problem is likely to present
difficulties comparable to those of solving for the higher order approx-
imations.

The results presented are those of the zeroth approximation.
However, the higher order approximations would only yield a small cor-
rection to the zeroth approximation and thus may not be worthwhile in
most cases.

The situation in the presence of gravity yields an important re-
sult in the sharp boundary which moves downward through the chamber.
This result is not unreasonable and is substantiated by the results of

the one dimensional diffusion work. This work indicated that aerosol
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particles do not diffuse very far from the location of the gradient
which drives the diffusion. Nonetheless, diffusion is present and the
boundary would be more or less blurred by it.

The model is not complete in that it does not directly deal with
the shifting size distribution of particles caused by coagulation.
Fuchs [1] indicates that there has been no significant time dependence
in the coagulation coefficient detected in the terrestrial experiments
done to date. This is because the expected increase in the coagulation
coefficient due to the increased particle size is almost exactly offset
by the decrease in diffusivity of the larger particle. The diffusion
coefficient for the new particle would be less, but this would have the
effect of decreasing the effect of diffusive deposition on the particle
concentration. Thus this effect should not require a major correction.
The terminal settling velocity of the new particles would be greater
and this could cause a problem for the gravity model. It is expected
that for the lower initial concentrations and short times that the re-
sults of the gravity model would be valid because there would only be a
few of these larger particles formed. An attempt to deal with this
problem would follow the lines of research presented by Tolfo [9]. This
would involve writing a model such as this for each size class and sol-
ving them simultaneously. Some further work that would be instructive
would be to find the higher order approximations, although it is ex-
pected that they will not provide much additional informationm.

There is much experimental work that needs to be done. Data are
needed to validate this model. These data should take the form of
aerosol concentrations for various times and locations within the cham-

ber, both in the presence and absence of gravity. The values of the
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coagulation coefficient and diffusion coefficient used in this model
were theoretical. A zero-gravity experiment would be instrumental in
obtaining measurements of these quantities. These measurements are
severely hampered in terrestrial experiments by the action of gravity.
Zero-gravity experiments could be designed which would provide direct
measurements of these quantities, thus validating that portion of this

mode} and advancing our knowledge of aerosol science.
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PROGRAM SOLUTN (INPUTsQUTPUT»TAPES=INPUT«TAPE6=0UTPUT)

PROGRAM CALCULATES THE ZEROTH APPROXIMATION TO THE SOLUTION
OF THE AEROSOL DECAY EQUATION FOR A ZERO GRAVITY ENVIRONMENT

IS CONTROLLED

AND PROGRAM OPERATION

DIMENSION FU11ls11)sU(L1911)oEPSLON(LIo11)9Z(2]1)sCONCNULILsLL)
1 SERSIN(I1)sNUDZ(L1e11)eDUDR(L1Is11)sSERJO(LL)

COMMON/ZZ/RETAWPIPIOZyPI02SQIBTASQIEXPBTA

COMMON/RR/TIME
® * & o INITIALIZE

TIMPRM=3600,
CHMRAD=25,
CHMWT=50,
CONC1I=].Ea
IF=11

12=11

RIMNC=.1
ZINC=.2
PI=4,°ATAN(],)
P102=P1l/2.
P102SG=P102*Pl02
ITERMI=350

ITERMR=500

CONTINUE

IFASS=]

HEAD (5920) Rs+VsCOAGD

FORMAT (4F10,0)

IF tEOF (5)) 2704930270

CONTINUE

WRITE (64+440) ReyVeDsCOAGTIMPRMVCONCI
FORMAT (1H1e¢//+10Xy

le1SXs1PE@.19 /015Xy
2USION COEFFICIENT«TX»IPE1l,49/415K,
31PELle49 /915X
47X {PEB,1e//)
BETA=CHMRAD®V/D
GAMMA=SCHMRAD®CHMRAD®COAG=®CONCI/D
TIME=TIMPRM9D/ (CHMRAD®CHMRAD)
BTASO=RETA®BETA/4,.

BRTAQVE=BETA/2,
EXPRTA=EXP(~RETA?CHMHT/ (2, *CHMRAD) )
BTATIM=RTASQeTIME

XPTIME=EXP (ATATIM)
GMATIM=GAMMA®T [ ME

TOGMAT=2,9GMATIM

® & # @ SUM SERIES FOR Z

Z(l1r=0,

DO S0 I=2v12
Z(I)=2(I~1)eZINC

CONTINUE

DO 60 I=1».12
CALL SIMES

CONT[NUE

(Z(I)»SERSIN(1) +ITERMZ)

¢ & &« & SUM SERIES FOR R

RAD=0,

DO 70 I=1+1IR
CALL BESSEL
RQD:RADoRINC

{RAD+SERJO(]I) » ITERMR)

70 CONTINUE

C ® » & o & o CALCULATE TOTAL SOLUTION

1BHTHIS QUTRPUT IS FORe//»l5X,
TTHSETTLING VELOCITYsl1XelPELlLlede/91bX,

soL
SOoL
soL
soL
soL
SoL
SOL
soL
soL
SsoL
soL
soL
soL
soL
soL
Sou
SOL
SOoL
soL
soL
SOL
soL
soL
soL
SOoL
soL
soL
soL
soL
SOoL
soL
soL
soL
SOL
soL
SoL
soL

13HPARTICLE SIZESOL
21IHDIFFSOL
23HCOAGULATION COEFFICIENT +SXsSOL
GHTIME+264X»UPFB.1s/415Xy 21HINITIAL CONCENTRATION,SOL

Sou
SOL
soL
SoL
soL
soL
SoL
soL
SoL
EDIR
SoL
SOL
SoL
soL
soL
SOL
soL
soL
SOu
SoL
soL

< r.
JUk

SOL
soL
sSoL
SoL
SoL
SoL
SOL
SOoL
SOt

180
190
200
210
229

240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
$30
540
550
560
570
580
590
600
610

620
£2n

-

640
650
660
670
680
690
700
Tle
720
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soL

DO 11@ 1=a1.]IR SoL

00 100 U=1+12 soL
F{1+J)=SERJO(]) *SERSIN(I) SoL
XEXP=BTAOVZ24Z (U)~BTATIM Sou

IF (XEXP.GT.600.) GO TO 80 SoL

Ueled)=F (TeJ) *EXP(XEXP) SoL
CONCN{TJ)=U(Lsd}/ (1 e*GMATIMOU(TIsU)) SoL

G0 Tn 100 soL

80 CONTINUE SOoL
WRITE (6+90) IsJsF(IsJ)eXEXP : SoL

90 FORMAT (15Xs 4HI = +13+3Xs 4HJ 3 »13+3X» 9HF(IsJ) = ¢IPELL.493XSOL
le THXEXP = y1PEll.4) SoL
IPASS==1 SoL

100 CONTINUE SoL
110 CONTINUE soL
IF tIRASS,.LT.0) GO TO 200 SOL

soL

e & & & & & CALCULATE DERIVATIVES FOR EPSILON SoL
SOL

00 120 I=1+IR SoL
DUDBR 1, I)=(U(1s])=U(2s1))}/(~RINC) soL

120 CONTINUE Sou
DO 1340 I=2,+1IR SoL

DO 130 u=1s12 soL
DUDRIT«J)=(U(l=1eJ)=UlIsJ))/(=RINC) soL

130 CONTINUE 50L.
140 CONTINUE SoL
DO 150 f=1.17Z SoL
BUDZ(Ts1)=(U(Tol)=U(14+2))/(=2INC) SoL

150 CONTINUE SoL
00 170 I=1,+IR soL

D0 160 J=2,12 soL

DUDZ (LI+J)=(U(LeJ=2)=UllsJ) )7 (=ZINC) soL

160 CONTINUE SOoL
170 CONTINUE SoL
SoL

¢ & & & & & CALCULATE EPSILON SOL
Sou

DO 190 I=1+1R SOL

VO 180 u=1s1Z soL
EPSLON(IsJ)=(TOGMAT/ (1,+GMATIM®U(I+J)))®(DUDR(IsJ)*DUDR(TI+J)SOL

1 sDUDZ (T J)4DUDZ(IWY)) SoL
180 GONTINUE sSoL
190 CONTINUE SoL
SoL

® @ & & » & QUTPUT VARIABLES sSoL
soL

200 CONTINUE soL
wRITE (6+210) soL

210 FOKMAT (15Xs SHCOMNCN) soL
CALL TERMS (IRs»IZ»CONCN) SoL
WRITE (64220) SOoL

220 FORMAT (15Xs THEPSILON) SOt
CALL TERMS (IRsIZsEPSLON) S0L
WRITE (6+230) S0t

230 FORMAT (15Xs 1HU) soL
CALL TERMS (IRyIZ»U) SOL
WRITE (6+240) SOoL

240 FORMAT (1S5Xs 4HDUDR) SOoL
CALL TERMS (IR»IZ+DUDR) soL
WRITE (6+250) soL

250 FORMAT (15Xs 4HDUDZ) soL
CALL TERMS (IR.1Z2sDUDZ) SOl
WRITE (64260} SoL

260 FORMAT (15Xs 1HF) SoL
CALL TFRMS (IR+12sF) SOoL

G0 ¥0 10 SoL

270 CONTINUE SoL
STOP soL

SoL

END 'soL

730
740
750
760
170
780
790
800
810
820
830
840
850

870

880

890

900

910

920

930

940

950

960

970

980

990
1000
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1020
1030
1040
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1080
1090
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SUBROUTINE HESSL (GNUsX+sBESSEL) BES

BES
I......Q..'.QQQQIQQ.IQDGOQQQODIDQCCHES
THIS SR CALCULATES THE HBESSEL FUNCTIONs J(X)s OF ORDER GNU BES
.Qi.....h..l.d.’.dl.l.'QOQIOOQ.CIlDHES
BES

DATA AA21/.25/1AA41/=0375/AAG27,.15625/9AA61/1,875/, BES

1 AA62/~).15625/vAA63/.117T18757,AA81/-19,6875/¢AAB2/14.,2265625/ BES

2 AAB3/=2,3B6T1875/9AA847,0952148437/¢AA101/354,3715/» BES

3 AAL02/~277.8757¢AA103/58.224060938/1AA104/=4,100585938/ BES

4 AALOS/.0809326171/1BB21/.57sBH417=.25/1BH42/.,041666666666/ BES

8§ PBG1/ .75/ 18B62/-.35/4BB63/.0125/+8861/-5.625/+8B82/3,6026788571/+BES

6 BBAY/-,4264107162978B84/5,980357443/s8B101778.7574B8102/~58.7» BES

7 BG108/10,28645833/9BB104/~.3472222222227/+BBLl0573.038194444E-3/ RES
BES

® » o » » » INITIALIZE HES
BES

Pl=a,"ATAN(].) RES
P102=P1/2, BES
ALPHAEGNU®GNU=,25 BES

Tzl /X BES
TSQuT*T BES

RES

e & & & & » CA{CULATE COEFFICIENTS BRES
BES

AZ=ALPHA®AA2] BES
A4=tAAG2VALPHASAAL]L) ®ALPHA RES
AG={ (AAGIUALPHA+AAGZ) PALPHA*AAG]L) *ALPHA BES

AB= ¢t { (AABLOALPHA+AAB3) cALLPHA-AAB2) CALPHA+AAB]L) 2ALPHA BES
ATOF({((AALOS"ALPHASAALO4) #AL PHACAALO3) *ALPHA+AALU2) *ALPHA+AALO0]) *BES
1A1.PHA HES
H2=HR21%ALPHA BES
A4=tRAR422ALPHA+BB4 1) 2ALPHA BES
B6=t (HBGISALPHA+BR62) *ALPHA+BH6L) *ALPHA 8Fs
BB=(((BAR4>ALPHA+BBE3) “ALPHA+BBB2) "ALPHA+BBB1) ®ALPHA BES
Bl0=({((BR1OSCALPHA+BR104)“ALPHA*BB103) *ALPHA+BB1U2)*ALPHA+BB101) 2BES
1ALPHA BES
BES

# & s & » » CALCULATE INTERMEDIATE FUNCTIONS BES
BES

Bz (¢((AlOSTSQ+AB)®TSU+AL)*TSQeAL) #TSQ+AR2)I*TSQ+1, BES
PRTPHI=(({(Bl0®TSQ+88)*TSQ+B6)*TSQ+B4)*TSU+B2) *TSUel, BES
PHI3PRTPHI/T~(GNU*,5)¢P102 ’ BES

BES

e o« & & » ® CALCULATE BESSEL FUNCTION HES
BES

BESSEL=B*SQRT(T/P102)9COS(PHI) BES
RETURN BES

8ES

END BES

340

500
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SUBROUTINE BLAMDA (XLAMDAITEHM)

“DIMENSION XLAMDA(ITERM)

svenss INITIALIZE

10

20

30

40

50

60

10

PI=4.8ATAN(],)
A=2,4
ERROR=1,E~-8"
DO 60 I=1¢ITERM
B=A+1,
x=B

IF (A.LE.10.) CALL BESJY (As0sXUOFAs1.E~621ER)
IF (BJLE.]04} CALL BESJY (Re0sXJOFBolE=69IER)
IF (A.GT.104) CALL BESSL (0.sA+XJOFA)
IF (B.GT.10.) CALL BESSL (U,+BaXJ0FB)

CONTINUE

IF (X,GT.10.) CALL BESSL (b.’XoXJOFX)
IF (XeLE.10.) CALL BESJ (XeOsXUQF Xy ]leE=6r]ER)

IF (XJOFA®XJOFX) 20+:50,30
CONTINUE

B=X

XJOFA=XJOF X

GO TO &0

CONTINUE

A=X

XJOF A= XJQF X

CONT INUE

IF (ARS(XJOFX).LE.ERROR) GO TO 50
X=(ACXJINFB-BOXJOFA)/ (XJOFB=-XJOFA)

GO TO lo

CONTINUE

A=Xe3,

XLAMDA (1) =X
CONTINUE
RETURN

END

SUBROVUTINE SINES (ZsFsITERM)

® N 0 @ & K @ 0B B OB G 0 Q& "B LN 8 n

THIS SR CALCULATES THE SIN SERIES»

P I I R T T T S S SR JEE R NN BN RAR SN SRR Y R R A

DIMENSTION A(350 ) +SINE(350 )H»TERM(350

COMMON/RR/TIME

COMMON/ZZ/BETAWPIsP102+PI102SQsBTASQIEXPBTA

F=03

XMNl=1,

DO 10 ITRM=1,ITERM
XMN1=XMN] @ (~1,)
XTAM=FLOAT(ITRM)

EXPTIM=EXP (~XTRMO®XTRM®PI025Q°TIME)

ARG=XTRMeP[O2*Z

A(TTRM)=XTRM®PI02% (1,~XMN1®EXPBTA)/ (BTASQeXTRM®XTRM*P1025Q)

SINEC(ITRM)=SIN(ARG)

TERM(TTRM)TA(ITRM)*SINE(ITRM) ®EXPTIM

F=F+TERM(ITRM)
CONTINUE
RETURN

END

TR N S A
FOR POSITION Z

BLA
BLA
8LA
BLA
BLA
BLA
BLA
BLA
BLA
BLA
BLA
BLA
BLA
RLA
RLA
BLA
BLA
BLA
BLA
BLA
BLA
ALA
BLA
BLA
BLA
BLA
BLA
BLA
HLA
BLA
BLA
RLA
BLA
BLA
BLA
BLA
BLA

BLA
BLA
BLA
BLA

SIN
SIN
SIN
SIN
SIN
SIN
SIN
SIN
SIN
SIN
SIN
SIN
SIN
SIN
SIN
SIN
SIN
SIN
SIN
SIN
SIN
SIN
SIN
SIN

420
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SUBROUTINE BESSEL (Re+F s ITERM) BSS 10

c nss 20
C....I....I.l’..!.l......o...I.I.Q..BSS 30
c THES SR CALCULATES THE JU SERIESs Fe FOR POSITION R BSS 40
c.lD....I.Q“!.Q'....{Q..Q..Q...I.Q.!BSS 50
c BSS 60
~DIMENSTON XLMDA (500 ) +BESSL1I500 )sBESSLO(SO0 1 +TERM(S00 ) RaSS 70

1 A(500 85S 80
COMHON/RR/TIME 8SS 90

F=0, BSS 100
ERAQR31.E=6 BSS 110

CALL BLAMDA (XLMDA»ITERM) BSS 120

DO 80 ITRM=).ITERM 8SS 130

IF (XLMDA(ITRM) .GT,.10.) GO TO 20 BSS 140

CALL RESJ (XLMDA(ITRM) +19BESSLLI(ITRM) +ERRORWIER) BSS 1%0

IF (JER.NELO) WRITE (6910) TERsXLMDA(ITRM) +BESSLY(ITRM) BSS 160

10 FORMaT (10Xs; SHIER= $I3:; 9M LAMDA = 1PEll.és 6H Ul = 1PELL,4)88s 170

GO To 30 ASS 180

20 CONTIHUE #ss 190
CALL HESSL (1,¢XLMDA{ITRM) +BESSL1(ITRM)) #SS 200

30 CONTINUE 8ss 210
ARG=REXLMDA (ITRM) 8ss 220

IF (ARG.EN.0.) GO TO 60 BSS 230

IF (ARG.GT.10.) GO 7O %0 BSS 240

CALL RESJ (ARGs0+BESSLO(ITRM) +ERROR1ER) BSS 250

IF (IER.NE40) WRITE (6940} IERsARGsBESSLO(ITRM) BSS 260

40 FORMAT (10Xs G6HIER = 4139 TH ARG = +1PElle4sy 6H JO = 41PELl.4) BSS 270

G0 TO 70 BSS 280

S0 CONTINUE BSS 290
CaLL RESSL (0.sARG+BESSLU(ITRM)) BRSS 300

GO TO 70 Bss 310

60 CONTINUE BSS 320
BESSLO(ITRM) =1, BSS 330

70 CONTINUE : RSS 340

80 CONTINUE 8SS 350

DO 90 I=1+1TERM 0ss 360
A(I)=2.,/(BESSLL(I)®XLMDA(])) BRSS 370

90 CONTIMNUF HSS 380

DO 100 JTRM=1+ITERM BSS 390
FXRTIM=EXP (=XLMDA (I TRM) #XLMDA (I TRM) T IME) BSS 400
TERM(JTRM) A (I TRM) *BESSLO(ITRM) ®EXPTIM BSS 410
F=F+TFRM(ITRM) BSS 420

100 CONTINUE RSS 430
RETURN- RSS 440

c BSS 450

END BSS 460
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SUBROUTINE TERMS (ITERMy»JTERMsA)
DIMENSION A(ITERMyJTERM)
WRITE (6,10}
FORMAT (/)
DO 30 K=1+JTERM
WwRITE (6120) (A(JeK)eJ=lrell)
FORMAT (3Xs11(1PES.,2y3X))
CONT INUE
IF tITERM,LE.L]1) GO TO 70
WHITE (6510)
DO 40 K=1sJTERM
WRITE (6+20) (A(JrK)eJ=12422)
CONTINUF
IF tITERM.LE.22) GO TO 70
WRITE (6+10)
DO S0 K=leJTERM
wWRITE (6+420) (A(JsK) 9 d323933)
CONTINUF
IF C(ITERM.LE.33) GO 10 70
WHEITE (6+10)
DO 60 K=1+,JTERM
WRITE (6+20) (A(JrK) o J=34944)
CONT INUE
CONTINUE
WRITE (6+80)
FORMAT (/7)
RETURN

END

TER
TER
TER
TER
TER
TER
TER
TER
TER
TER
TER
TER
TER
TER
TER
TER
TER
TER
TER
TER
TER
TER
TER
TER
TER
TER
TER
TER
TER

299
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PROGRAM SOLUTN (INPUTsQUTPUTsTAPES=INPUT»TAPE6=0UTPUT) SoL
soL

2 % 8 & 8 8 8 4 8 UG NS S E SN O DN E RSN S E e s e s e 8 s SOL
PROGRAM CALCULATES THE ZEROTH APPROXIMATION TO THE SOLUTION SOt

OF THE AEROSOL DECAY EQUATION FOR A GRAVITY ENVIRONMENT SoL

LR B R I A I A I IR R R N A I N I R I I A N A A Y
IN THIS PART VARJABLES AHE INITIALIZED AND PROGRAM OPERATION SoL

}S CONTROLLED soL

L N A A I R A B AR 2R R A I 2 I AR 2E B RN I IR Y R Y I N I I N TR
SOL

DIMENSION F(11s11)+UC1]o11)eEPSLON(LIL1e11)92(11)+CONCN{L11sl1l)y SoL

1 SERSIN(11)+DUDZ(11911)DUDR(LLs11}+SERJO(L]) SoL
COMMON/Z2Z/RETAPI+P102+PI02SQyBTASGIEXPBTA SoL
COMMON/RR/TIME SOL
SoL

® & & & & INITIALIZE SOoL
SoL

TIMPRAN=T200, SOL
CONCI=1,.ES SOL
CHMRAD=2S5, soL
CHMHTB50, SOoL
H=CHMWT/CHMRAD SOoL
IR=11 soL
1Z=11 SOoL
RINC=.1 SoL
ZING=.2 SoL
PI=4,2ATAN(]1,]} SoL
P102=Pl/2. SoL
P102S0=P102%P102 sou
ITERM2=350 SOL
I1TERMR=500 sou
2(11=0, SoL

DO 10 [=2,12 SoL
Z(I)=Z(1I=1)e¢ZINC soL

10 CONTINUE SoL
20 CONTINUE soL
READ (S5+30) RsVeCOAGD SoL

30 FORMAT (4F10,.0) SoL
IF (FOF(5)) 210440,210 SOL

40 CONTINUE soL
WHITE (6450) RaVsDsCOAGs» TIMPRMsCONCI soL

S0 FORMAT (1Hle//910Xs 1BHTHIS QUTPUT IS FORe//s15Xy 13HPARTICLE SIZESOL

1015Xe1PFA,19/915Ky 1THSETTLING VELOCITYs11Xs1PEL1le4s/¢15Xs 2IHDIFFSOL
2USION COFFFICIENT7Xe1PEY1L.4+/915Ky 23HCOAGULATION COEFFICIENT «5XeSOL
JIPEL1le49/915Xs  4HTIME224Xs0PFBala/+15Xe ZIHINITIAL CONCENTRATION»SOL

&TX1PEB,10//) R
RETA=QHMRAD®V/D soL
GAMMA=CHMRAD*CHMRAD®COAG®»CONCI/D soL
TIME=TIMPRM*D/ (CHMRAD®CHMRAD) Sou
BTASOYRETAHETA/4, SOL
HTYAOV2=RFTA/?. SoL
EXPBTA=EXP(-BETASCHMHT/ (2,*CHMRAD)) soL
BTATIM=RATASQ®T IME SOL
BTTIME=1ETACT [ME sSOL
XPTIME=EXP(BTATIM) SoL
GMATIN=GAMMA®T IME SOL
TOGMAT=2,#GMATIM Sou

SOL

® ¢ & o & CALCULATE TOTAL SOLUTION SOoL
SoL

Ng 10 1=1.1R SOL
00 60 Jsls1Z soL
STPFNI1=Z(J)=BTT[ME SOL
STPFNZ2=STPFNLl~-H SOL

IF (STPFN1.LT,0.) SPFNL=0, soL

IF (STPFN1.GE.0.) SHFN]1=1. SOoL

IF (STPFN2.LT.0.) SPFN2=0, SoL

IF (STPFN2.GE.U.) SPFN2=1, SoL
Ui1»Jd)=SPFNI=-SPFN2 soL
CONCNIIsJ)=U(TLsJ) /7 (1,4GHATIM®U(IJ)) soL

60 CONTINUE ’ soL

70 CONTINUE SoL

600
610
620
630
640
650
660
670
680
690
7100
710
1720
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D0 80 121,11
Utlsllr=o,
UilleI) =0,
CONCM(Is11)=0,
CONCN(11+1)%0,

CONTINUE

¢ & & # CALCULATE DERIVATIVES FOR EPSILON

DO 90 I=1sIR
DURBR (1) =(U(1lo1}=U(2+]))7(~RINC)
CONTINUE
00 110 1=2.]R
6O )00 J=1e1l2
OUDRII+J)2(U(I=1sU)=U(I»J)){(=RINC)
CONTINUE
CONTINUE
DO 120 1=1.12
DUDZ (To1)=(U(Is1)=U(1e2))/7(~2Z]INC)
CONTINUE
DO 140 I=1.IR
DO 1230 u=2+12
‘=

nuUNziet.
1Y

unzZielsd

(Ul e d=l =il {Ta 1))t aZINC)
ViaPtuTasrTUNAtUur L AT LAY,

GONTINUE
CONTINUE

® & & » CALCULATE EPSILON

D0 160 J=141R
DO 150 U=1+12

IF (ABS(DUDR(IeJ) ) oeGEs14E270,0R.ABS(DUDLZ(1eJ)) ,GELl4E270)

T0 150

SoL
SoL
S0L
SOL
SOL
SOL
SoL
SOoL
SOt
soL
SoL
SOL
SoL
SoL
soL
SoL
soL
SOL
soL
SOoL
soL
soL

<Ny
SvUL

SOL
soL
SoL
soL
SOL
SOt
SoL

GOSOL

SoL

EPSLON(I+J)=(TOGMAT/ (1. +GMATIMAU(L1+J)))®(DUDR(I+J)*DUDR(I+J)SOL

sDUNZ(TeJ)*DUDZ(10J))
CONT INUE
CONTINUE

¢ & & & QUTPUT VARIABLES

CALL TERMS (IR+IZ»CONCN)
WRITE (64170)

FORMAT (15X THEPSILON)
CALL TERMS (IRsIZ+EPSLON)
WRITE (64180)

FORMAT (15X 1HU)

CALL TERMS (IR»IZ2:U)
WRITE (6+190)

FORMAT (19K 4HDUDR)
CaLt TERMS (IRs1Z90UDR)
WRITE (6+200)

FORMAT (15X, 4HOUDZ)
CALL TERMS (IRsIZ»0DUDZ)
GO 10 20

CONTINUE

STOP

FND

SoL
SOt
soL
SOL
SOL
SOoL
SoL
soL
SoL
SoL
SOL
SOoL
soL
SOL
SoL
sOoL
SoL
SoL
sou
SoL
SOoL
soL
SoL
SNt

730
740
750
760
770
T80
790
800
8lo
820
830
840
850
860
870
-1-1H]
890
900
910
920
930
940

acn
T3V

960

970

980

990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
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