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I. Introduction 

An orbiting laboratory provides the unusual scientific opportunity 

to carry out experiments in the absence of gravitational effects. Poten- 

tial benefits in the field of aerosol science are the absence of sedi- 

mentation and convection. In an experiment carried out under terrestrial 

conditions, sedimentation is important for larger areosol particles. 

Preventing spurious convective currents is often troublesome in terres- 

trial aerosol experiments. In addition to these potential benefits, 

the absence of a gravitational field may provide theoretical simplifica- 

tion. The feasibility of an orbital aerosol experiment is therefore 

of scientific interest. This preliminary investigation was undertaken 

to examine the feasibility and scientific benefits for a zero-gravity 

aerosol behavior experiment in an orbiting laboratory. 

II. Objectives 

A. Examine the theoretical feasibility for a. zero-gravity 

aerosol behavior experiment. 

B. Examine the technological feasibility for a zero-gravity 

aerosol behavior experiment. 

C. Identify potential scientific benefits for the experiment. 

D. Present conclusions. 

III. Theoretical Feasibility 

In the evaluation of experiments concerned with the disappearance 

of particles from a confined aerosol, one must in general consider the 

simultaneous concentration changes due to coagulation, diffusion, and 

sedimentation. The mathematical complexity of this problem has frustrated 

attempts to devise totally satisfactory analytical models, even 

-- -;--- --. 
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for initially monodisperse particles in the absence of electrostatic 

and convective effects. The conduct of such experiments under the 

essentially zero-gravity conditions of an orbiting space laboratory 

would provide data in the absence of sedimentation, normally an important 

depletion mechanism for particles larger than a few tenths of one 

micrometer in radius. A key issue is whether the absence of sedimen- 

tation results in a significant reduction in the mathematical complexity 

of the problem. 

Considerable success has been achieved in describing the behavior 

of dilute aerosols in which effects due to coagulation are absent. For 

the.one-dimensional problem, the following partial differential equation 

giving the numerical parti,cle concentration 11 as a function of time t 

and vertical position z has been solved analytically by Davies (1) and - 

verified experimentally by Richardson and Wooding (2): 

an 
at = D$ - ve (11 

The aerosol considered by these investigators was monodisperse and 

confined between perfectly absorbing parallel surfaces of large hori- 

zontal extension such that effects due to the vertical walls were 

negligible. The particle diffusion coefficient D and settling velocity 

v may be evaluated from theoretical considerations given by Fuchs (3). 

A major problem associated with achieving a general solution which 

includes'coagulation is the evolution of the particle size distribution 

with time. Hidy and Brock (4) reviewed many investigations of coagulation 

and found that the only exact solution is due to Smoluchowski (5) in 

which the coagulation constant is independent of time. In the absence 

of particle depletion due to diffusion and sedimentation, the basic 
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equation of coagulation is 

dn dt= -Q-p (2) 

where K is 8rRD for spherical particles of radius R. Integration of - 

equation (2) gives 

1 1 
n - .ii- 3 Kt 

1 
or : = 1 + 

0 0 noKt (3) 

where no is the initial particle concentration at t = 0. Numerous . 

experimental studies reviewed.by Fuchs. (3) establish the linear relation- 

ship between n and.time although values for &tend to be somewhat 

larger than computed values. Hidy and Brock (4) suggested that the 

lack of quantitative agreement is attributable to electrical effects, 

spurious air currents, increasing polydispersion, and the need for a. 

slip correction. The effect of increasing polydispersion was investigated 

by Hidy (6) who numerically solved a set of simultaneous nonlinear 

differential equations for a discrete particle size distribution. The 

numerical results give values for n(t) which closely match those given 

by equation (3), although changes in the relative concentrations in 

individual particle size categories differ from those for constant 

particle collision parameter. Various authors have suggested that the 

increase in mean particle size to decrease Kis offset by the increasing 

polydispersion with its opposite effect. The linear relationship 

between n -1 and time is used in the present work to develop a macro- 

scopic model for the combined effects of diffusion and coagulation. 

The equation for the general case which includes coagulation gives 

nky,zA by 



_ _.-- - _ - -.-.--A. - ---- 

where g, 2, and K are assumed independent of time and position. The - 

assumptions of perfectly absorbing walls and uniform initial particle 

concentration n o give n(x,y,z,t) = 0 at the walls and n(x,.y,z,O) = no in 
- 

the chamber. Equation (4) has been solved analytically by Wilhelm (7) 

for the mathematically similar problem of contained plasma particles 

undergoing simultaneous recombination, diffusion, and convection. 

Wilhelm's approach, which involves a transformation to a differential 

equation in which the nonlinear term becomes a small perturbation, was 

shown to apply to plasma particles confined by nonreflecting walls. 

Application to the coagulating aerosol undergoing simultaneous 

depletion by diffusive deposition was made by Benedict (8). The 

details of this treatment are given in Appendix I. 

The theoretical feasibility for a zero-gravity aerosol study 

was examined by carrying out simulated experiments with models developed 

by Benedict (8). The purpose of the computations was to determine 

whether the requirements for a zero-gravity aerosol study are, at 

least in principle, compatible with the time and space limitations 

for an orbital experiment. Input to the models consists of the 

particle properties and initial concentration, gas properties, and 

chamber geometry. Output consists of the particle concentration 

as a function of time and location in the chamber. Numerical 

results are given in Appendix I. 

Two conclusions arise from the theoretical feasibility study. 

Firstly, the time and physical space limitations for an orbital 

experiment are not prohibitive in terms of obtaining kinetic data. 

._. - .._. .-_ --T?~- --.- Y-- ---- - --T---- - . -.--- .- -.. - 
-_’ . : , _. ., 
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For example, experiments of a duration of l-2 hours in a cylindrical 

chamber (r = 25 cm, h = 50 cm) can produce meaningful data on the 

history of the aerosol confined in the absence of gravitational 

effects. Secondly, the model is internally consistent and produces 

physically reasonable results. 

While the solution procedure resulted in substantial simplification 

of the problem, the reduction in complexity is only partly attributable 

to the absence of the gravitational term. The nonlinear coagulation 

term necessitates a transformation of variables, whether or not the 

gravitational term is present. 

A final point concerns possible limitations of the models 

employed in the theoretical analysis. Both D and K have been used - - 

as ensemble parameters. The major limitation of this approach 

is that the models do not provide direct information on the evolution 

of the particle size distribution. It should also be emphasized that 

while equation (1) has been verified experimentally, equation (4) 

must still be regarded as a postulate. The experimental conditions 

under which it is permissable to treat both D and K as ensemble - - 

parameters in equation (4) are considered in Appendix I. 

IV. Technological Feasibility 

The technological feasibility was examined by addressing the 

following issues: 

A. Experiment Definition 

B. Requirements for Aerosol Generation 

C. Requirements for Measuring Particle Concentrations 

D. Requirements for Data Analysis 

The major findings are summarized in a previous report (9). Two 

areas of concern have been identified. The first is the current absence 
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of a single,. totally satisfactory experimental technique for 

determining aerosol particle concentrations over the particle size 

range of 10 -7 cm to 10 -3 cm. Either complementary experimental 

techniques would be required or, alternatively, the size range 

accessible must be narrowed to be compatible with a single experimental 

technique. In view of the potential problems associated with 

calibration of complementary techniques under orbital conditions, 

the latter alternative seems more practical. 

The second area of concern is that of determining the particle 

concentration to the accuracy required. For example, in the absence 

of electrostatic and convective effects, calculated and measured 

values of the coagulation constant K differ by perhaps 10%. - Clearly, 

the experimental technique selected must be capable of resolving 

differences in particle concentrations smaller than 10% in order 

to make meaningful comparisons between experimental and theoretical 

data. While considerable progress has been made in recent years 

in refining experimental methodologies in aerosol science, the required 

accuracy may not be available for the ranges of particle sizes and 

concentrations of interest. However, recent developments with 

electrostatic classifiers and light-scattering techniques are particularly 

encouraging. The required instrumental capabilities may not 

be far away, but the situation seems borderline at this time. 

V. Scientific Benefits 

Potential scientific benefits of a zero-gravity aerosol study 

include validation of theoretical models for aerosol kinetics and 

measurement of D and K in the absence of convective effects. However, - - 

because of existing gaps in both the theoretical and experimental 
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aspects, such an experiment would probably be premature at this time. 

In order for the potential benefits to be fully realized, more detailed 

theoretical models for the combined effects of coagulation and diffusion 

are needed. Moreover, additional refinements in certain experimental 

methodologies would be helpful to assure accurate measurements over 

the ranges of particle sizes and concentrations of interest. 

VI. Conclusions 

The theoretical feasibility for a zero-gravity aerosol study 

has been examined. The mathematical complexity of the problem is 

discouraging if one attempts to retain a detailed picture of the 

combined effects of coagulation and diffusion upon the evolving 

particle size distribution. However, an analytical solution is 

possible if one considers only the particle concentration n - 

and treats D and K as ensemble parameters. - - Experimental studies 

support use of K as an ensemble parameter in many cases. Treating - 

D as an ensemble parameter imposes some limitations, however. The - 

results of the macroscopic treatment show that an aerosol decay 

experiment is feasible in a compact chamber for a time duration of 

the order of hours. It is concluded that the limitations of physical 

space and time for an orbital experiment are not prohibitive in terms 

of conducting an aerosol experiment. 

Because of the present mathematical difficulties associated 

with treating the combined effects of coagulation and diffusion, 

reservations are expressed about the scientific urgency for a zero- 

gravity aerosol study at this time. The experiment would also 

appear to stretch existing capabilities for characterization of 

aerosol particles. Nevertheless, the need for reliable and accurate 
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aerosol behavior data in the absence of convective effects is 

recognized. Periodic re-examination of the need for a zero-gravity 

aerosol study is therefore recommended. When such a study is 

planned, it will be important to include a complementary terrestrial 

investigation. The difficulties associated with carrying.out an 

experimental aerosol study under favorable terrestrial laboratory 

conditions can be formidable. The success of an orbital experiment 

will be highly dependent upon managing these difficulties and 

anticipating additional problems posed by the orbital situation. 
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ABSTRACT OF THESIS 

'TEEORETICAL BEHAVIOR OF A CONFINED AEROSOL 

Coagulation, sedimentation and diffusive deposition are the primary 

removal mechanisms for an aerosol confined in a chamber on earth. The 

equation describing the depletion rate due to these mechanisms is a 

second order nonlinear partial.differential equation. For an aerosol 

in a zero-gravity environment t,he sedimentation term drops out, but 

this does not change the basic nature of the equation. An analytical 

solution to the resulting equation is presented and particle concen- 

trations are computed as a function of time and location ina cylin- 

drical chamber. 

The equation is also solved for an aerosol under the influence of 

a gravitational field. There are some difficulties with this solution 

G;:'re the removal mechanisms are operating at similar rates. These are 

overcome by modelling the decay process as if diffusion were not present. 

Results of the two models indicate that sedimentation is the most impor- 

tant of the removal mechanisms. Coagulation is next in importance and 

diffusion is negligible except within 1 centimeter of the chamber wall. 

Bruce John Benedict 
Mechanical Engineering Department 
Colorado State University 
Fort Collins, Colorado 
Fall, 1977 
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NOMENCLATURE 

A 

Aij 
b 

B 

C 

'd 
f 

j 

JO 

J1 
k 

K 

L 

n 

n' 

n 
0 

Q 

r 

r' 

Constant in mobility equation 

Fourier coefficients for solution 

Constant in mobility equation 

Particle mobility 
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Variable to which u is transformed 
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NOMENCLATURE (cant') 

R 

R* 

Re 

s (xl 

t 

tl 

U 

'r 

% 

Ut 

V 

V 

X’ 

z 

2’ 

B 

Y 

6 

e 

V 

u 

x i 
P 

pP 
lJ 

Particle radius 

Chamber radius 

Particle Reynolds number 

Unit step function 

Time 

Dimensionless time 

Variable to which n is transformed 

Function of r' only used in separation of variables 

Function of z' otily used in separation of variables 

Function of t' only used in separation of variables 

Terminal settling velocity of particle 

Particle velocity before applying Cunningham slip correction 

Distance from wall 

Vertical coordinate 

Dimensionless vertical coordinate 

Dimensionless coefficient 

Dimensionless coefficient 

Mean free path of air molecules 

Perturbation on diffusion 

First separation constant 

Second separation constant 

Eigenvalue associated with Jo 

Density of air 

Density of particle 

viscosity of air 
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CHAPTER I 

EQUATION 

Introduction 

The principal removal mechanisms for an aerosol confined in a 

chamber which is located in a gravitational field are sedimentation, 

coagulation, and diffusive deposition at the wall. In most situations 

of interest sedimentation is the most important. An experiment carried 

out in the zero-gravity environment of an orbiting space craft would 

provide a unique opportunity to study aerosols. By placing an aerosol 

in such an environment it is possible to obtain measurements of the 

coagulation coefficient and diffusion coefficient of the particles. 

This study provides a model with which such an experiment can be de- 

signed. A model which describes the depletion of an aerosol stored in a 

gravitational field is also presented. 

For the purposes of this modelling effort the following assumptions 

were made: 1. The particles are unit density spheres. 2. The system 

is monodisperse. 3. Initially, the particles are uniformly distributed 

within the chamber. 4. The coagulation coefficient is constant with 

respect to time. The particle formed when two particles stick together 

should have a coagulation coefficient which is larger than that of a 

single particle because the combined particle is larger. However, Fuchs 

[l] states that this effect is almost balanced by the decreased diffu- 

sivity of the larger particle. 5. All collisions, particle-particle 
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and particle-wall, have a sticking coefficient of unity. Fuchs [l] 

indicates that as long as the only driving forces in the system are 

thermal, the sticking coefficient is nearly one. 

Equation 

Richardson and Wooding 123 present an equation describing the 

depletion of a monodisperse aerosol which is confined in a chamber in a 

gravitational field. 

an an 
at= DV2n .- vz - ~2 

where n is the numerical concentration of particles, t is time, D is the 

particle diffusion coefficient, v is the terminal settling velocity of 

the particle, z is the vertical coordinate of the chamber, and K is the 

particle coagulation coefficient. The boundary conditions are implicit 

in the assumptions. Because the sticking coefficient for particles 

colliding with walls is unity, a particle which strikes a wall sticks to 

it and is thus removed from the 

n(r,z,t) = 0 at the walls. The 

uniform throughout the chamber, 

n 
0’ 

bulk of the chamber. Thus we have 

initial concentration was assumed to be 

thus the initial condition is n(r,z,O) = 

Coefficients 

Strauss [3] gives a procedure for calculating the terminal settling 

velocity for aerosol particles in terms of the particle Reynolds number, 

Rey and the particle drag coefficient, Cd. The procedure is to first 

calculate the product, CdRi, using properties of the particles and the 

fluid in which they are dispersed. 
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CdRE = 
32~(~ - P)R2g 

3112 
(2) 

where p is the fluid density, p 
P 

is the particle density, g is the 

acceleration of gravity, R is the particle radius and u is the viscosity 

of air. Davies [43 gives a series of empirical formulas for the Reynolds 

number in terms of the product CdRz. Once the Reynolds number is deter- 

mined the product can be used to find a value for the drag coefficient. 

These values are then used in Stokes law to find a velocity, V, 

16Rpg(p - P> 
V= (3) 

3CdR,p 

The terminal settling velocity is determined from V by applying the 

Cunningham slip correction, 

C = 1 + $1.257 + 0.400exp(-l.lO$) 

where C is the Cunningham slip correction, 6 is the mean free path of 

the fluid molecules. Now it is possible to determine a value for the 

terminal settling velocity, v. 

v = cv 

The diffusion coefficient is given in Fuchs [l] 

D = kTB 

(5) 

(6) 
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where k is Boltzmann's constant, T is absolute temperature, and B is the 

particle mobility also given by Fuchs IlJ. 

B= 
l+~+Q$xp(+ 

67TRl.l (7) 

The constants A, Q, and b are given in Millikan [5] for oil drops in air 

at 23Q and 1 atmosphere. They are A = 0,864, Q = 0.290, and b = 1.25. 

The coagulation coefficient is in Fuchs [lj as follows: 

K= ~ITRD 03) 

Solution 

The nondimensional variables, rt = r[R*, z' = z/R*, n' = n/n 
0 

, and 

t.' = tD/R*2 are introduced. R* is the radius of the chamber. 

Substituting these into equation (1) results in 

ant an1 
at!’ 

V2n’ - fi- 7- 
ad yn 

r2 

where 

R*v 
B-, 

R*2KIl 
Y= Do 

(9) 

The boundary conditions become n'(r',z',t') = 0 at the walls and 

the initial condition is n'(r',z',O) = 1. 

The nonlinear coagulation term in eqZlation (9) presents the 

greatest difficulty in obtaining a solution thus it is desirable to 

remove it using a transformation. This is done by using the solution of 
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the Smoluchowski coagulation equation as was done by Wilhelm [6]. The 

transformation used was 

n'(r',z',t') = ( ',z',t') 
1+ yt:u(r',z',t') 

This results in the equation 

au 
atl =V2u-g+E 

where 

2yt' au 
E = 1.+ yt’u ((artI + (a=1 i&-)2) 

(11) 

(12) 

(13) 

The boundary conditions remain the same for the transformed variable, 

u, as for the variable, n. That is u(r',z',t') = 0 at the walls and 

u(r',z',O) = 1. 

The times of 1 and 2 hours, which are used in the calculations, 

are very short as compared to the characteristic time for diffusion. 

This is born out by the values of t', which range from 7.0 X 10 -8 for 

large particles to 1.7 X low3 for small particles. The values of y are 

relatively large, ranging from 15 for small particles to 1.6 X lo6 for 

large particles. However, the values are such that for a given particle 

the product yt' is of order 1 or smaller. It is further anticipated 

that except near the walls the spatial derivatives will be small. Thus 

the value for E will be small. 

Equation (12) can now be solved by a successive approximation 

technique. To do this E is set equal to 0 and equation (12) is solved. 
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This is the zeroth approximation. Using the solution for the zeroth 

approximation a value can be calculated for E. This value is then put 

back into equation (12) as a constant and the equatian is solved, 

resulting in the first approximation. This process is repeated using 

the value of E calculated from the previous approximation until the 

desired accuracy is obtained. 
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CHAPTER II 

ZERO-GRAVITY SOLUTION 

Equation 

The simplest case for obtaining a solution is the zero-gravity 

situation. This is because with zero-g,ravity the terminal settling 

velocity of the particle is zero, thus 6 = 0 and equation (12) reduces 

to 

au 
at( = v2u - E 

Setting E = 0 for the zeroth approximation results in the diffusion 

equation which for a cylindrical chamber is 

au i au a2u a2u 
1= p- ar.l at -+m+ azf’ (15) 

Solution 

The solution for equation (15) can be found using the technique of 

Separation of Variables as given by Wylie [7J. For this it is assumed 

that the solution is the product of three functions, a function of r’ 

only, a function of z' only, and a function of t' only. Thus 
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u(r',z',t') = Ur(r')Uz(z')Ut(t') 

Substituting this into equation (15) gives 

aut aur a2u a2u 
+ p 

r Z 

att +arl'+azi'=v -- 
ut 'r '1: U 

Z 

(16) 

(17) 

One side of this equation is a function of t' only, while the other is 

a function of r' and z'. The only way this can be true is if both sides 

are equal to a constant, V. Using this fact it is possible to solve 

for Ut. That solution is 

Ut 
= exp(vt') 08) 

This equation implies that v < 0 because the solution for u(r',z',t') 

cannot increase exponentially with time. Now it is possible to take 

the part of equation (17) which is a function of r' and z' and rearrange 

it so that there is an equation which is a function of r' equal to a 

function of z' which again must be equal to a constant. 

au a2u a2u 
1 ar: + y+ -v,= c Q+ '0 
P-----i-- r 'r uz 

Taking the z' equation it is possible to solve for U . 
Z 

(19) 

U = 
Z 

sin(Gz') (20) 
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From the boundary conditions on the ends of the chamber, o can be de- 

termined. 

jrR* u= ( 2 
H ) 

where H is the height of the chamber. 

The solution of the remaining equation is Ur. 

'r = Jo(hir') 

(21) 

(22) 

where the Xi are the zeros of Jo(Xi) = 0. Combining all of these solu- 

tion results in the complete solution results in 

u(r',z',t') = Y ? A J (X r')sin(yA')exp(-(Xi f (y)2)t1) i=l j=l ij 0 i 

(23) 

Using the initial condition, A.. can be found. 
J-J 

A 
/'jLrl.To(hir')sin(~')dz'dr' 

= O" 
ij I~I~r'J~(Air')sin2(~')dz'dr' 

= 4(1 - (-l>j) 
jnXiJ1 (Ai) 

where L = H/R*. 

Inner-Outer -Expansion 

Results of the solution given by equation 

is almost a constant for most of the chamber, 

(23) are that u(r',z',t') 

indicating that coagula- 

tion is much more important as a removal mechanism for the bulk of the 

aerosol than is diffusive deposition. The fact that the higher order 
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approximations are very difficult to solve indicates that the solution 

might be found using an inner-outer expansion technique. The inner- 

outer expansion technique is used on problems which have several 

regions in which the processes occurring are of different nature. The 

classical example of such a problem is a boundary layer problem such 

aa illustrated here. In this technique a solution is found describing 

the dominant process in each region. The boundary conditions for the 

solution in one region are then modified by using the boundary condi- 

tions which were shown to exist in the adjacent region. These modifi- 

cations are repeated until the boundary conditions for adjacent regions 

match each other. 

For the outer expansion, diffusion can be ignored in equation (9). 

This leads to 

(25) 

which is the well known equation for coagulation developed by Smolu- 

chowski and presented in Fuchs [l]. The solution for this equation is 

n'(t') = 1 
1+yt' (26) 

The inner expansion begins with the assumption that near the wall 

the only removal mechanism of any significance is diffusive deposition 

on the wall. It is further assumed that the particles are diffusing 

only along the x coordinate. These assumptions seem reasonable due to 

the extremely large gradient which exists at the walls of the chamber. 

Thus the equation describing the depletion of the aerosol near the wall 



27 

is 

i3nr a2n1 
F’ ax,’ 

where x is the distance from the wall. Carslaw and Jaeger [8] give a 

solution to this equation. 

n'(x',t') = erf(*) 

This solution technique is presented as a possible alternative to 

the successive approximation technique presented earlier. However, 

the inner-outer expansion technique is a somewhat less desirable ap- 

proach. For the inner-outer expansion technique it is necessary to 

solve two problems while for the successive approximation technique 

only one problem need be solved. Further, matching the two solutions 

repeatedly is likely to be a problem whose difficulty is comparable to 

that of solving for the higher order approximations in the successive 

approximation technique. 
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CHAPTER III 

GRAVITY SOLUTION 

Equation 

A somewhat mOre difficult case is the solution of equation (12) in 

the presence of a gravitational field. A transformation is made which 

removes the sedimentation term. This transformation is due to Wilhelm 

[6] and is 

u(r',z',t') = f(r',z',t')exp(F' - p') 

This transformation yields 

af 
atl = V2f - E: exp(- $z' + $') 

(29) 

(30) 

The boundary conditions then become f(r',z',t') = 0 at the.wall and 

f(r',z',O) = exp(- $z'). 

Solution 

Equation (30) is solved by separation of variables in the same man- 

ner as was equation (15), resulting in 

f(r',z',t') = i=l j=l ij 0 i ?!! ?, A J (X r')sin(F')exp(-(Xi + (pr)2) 
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where 

Aij = 
I:!ir ‘exp (- 2 @zl)Jo(Xir')sin(~')dz'dr' 

I~~~r'J~(Xir')sin2(~')dz'dr' 

4j7T(l - (-l)jexp(- 9)) 
= 

AiJl(Xi) (q + j2n2) 

(32) 

Solution Near the Wall --- 

There are several areas in which this solution has difficulties. 

An examination of equation (29) will show where these difficulties oc- 

Values for B range from 3.58 X 10 -3 cur. for small particles to 

1.11 x 1o12 for large particles. Thus for certain particle sizes, the 

transformation given by equation (29) becomes so large that the results 

are meaningless. The solution does work for particles smaller than 

0.04 micrometers where sedimentation is much less important that dif- 

fusion, and for particles larger than 0.7 micrometers where diffusion 

is much less important than sedimentation and for long times when sed- 

imentation has essentially depleted the chamber. 

Results from the zero-gravity solution indicate that the effects of 

diffusive deposition are limited to a thin boundary layer. Thus dif- 

fusive deposition has a negligible effect on the concentration of the 

bulk of the chamber and if seems reasonable to expect that the problems 

of the above solution can be overcome by ignoring diffusion altogether. 

This leads to the equation 

an’ an1 
at” -BP-F 12 (33) 
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now applying the transformation in equation (11) the result is 

au au 
atl’ -?g (34) 

The solution to this is in terms of a unit step function, s(x). 

The unit step function is defined as follows 

0 xc0 
s(x) = { 

1 x>o 

So the solution to equation (34) is 

u(r',z',t') = s($ - z' - Bt') (35) 

This solution can be combined with the inner expansion solution of 

equation (28) to give the solution for the entire chamber. 



31 

CHAPTER IV 

RESULTS AND DISCUSSION 

Zero-Gravity 

Figure 1 gives the results of the settling velocity calculations 

for unit density spheres in air at 23C and 1 atmosphere. 

Figures 2 - 5 give the results of equation (23) which describes the 

depletion of a confined aerosol which is acted on only by coagulation 

and diffusive deposition. The first two figures give the concentration 

as a function of particle size for a location near the center of the 

chamber and times of 1 and 2 hours. These figures do not show any ef- 

fects of diffusive deposition on the aerosol concentration and are 

therefore identical to a curve for coagulation alone. Figures 4 and 5 

give similar information but for a location near the wall of the cham- 

ber. The dotted lines on the curves for the smaller particles show what 

the concentration would be if only coagulation were acting on the aero- 

sol at that point. Thus it can be seen that diffusive deposition is 

not very effective as a removal mechanism for the bulk of the chamber. 

Near the wall, however, the situation is reversed. There is a steep 

gradient in concentration which drives diffusive deposition. Thus for 

a thin boundary layer the dominant removal mechanism is diffusive de- 

position. The steep gradient near the wall will reduce equation (14) 

to a one dimensional equation except at the corners. The solution to 
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Figure 1. PARTICLE SETTLING VELOCITY. 
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the one dimensional diffusion equation (28). Figures 6 and 7 are con- 

centration profiles for the region near the wall of the chamber and 

show the extent of the action of diffusive deposition for times of 1 

and 2 hours respectively. Thus for the zeroth approximation, equation 

(15) gives the concentration for the entire chamber. 

The zeroth approximation is sufficiently accurate for all but the 

most demanding applications. The higher order solutions are very dif- 

ficult to obtain and contain only a small correction to the solution 

given by equation (23). Table I gives the values of the terms of equa- 

tion (14) for various locations within the chamber and times of 1 and 2 

hours. The values for locations near the center of the chamber are 

large relative to the other terms in equation (14) but are quite small. 

The size of E for these locations is a further indication that there 

are no gradients and thus diffusive deposition is not important. The 

values are so large because of truncation error in evaluating equation 

(23) and not any fluctuations in aerosol concentration at those points. 

If the truncation error were not present it is expected that the value 

of E would be zero. Substituting E = 0 into equation (14) for the first 

approximation would yield exactly the same result as the zeroth approx- 

imation, Thus for those situations where E = 0 the zeroth approxiamtion 

is exact. 

The inner-outer expansion solution embodied in equations (25) 

through (28) give further evidence that the zeroth-approximation is ac- 

curate because this solution technique gives the same results as those 

of equation (15). That one dimensional diffusion is the dominant re- 

moval mechanism near the wall is also shown by the fact that the solu- 

tion to equation (27) predicted the difference between the curves for 
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Table I -- 

VALUES OF TERMS IN EQUATION.(14) 

au 
t(hr) w V2U E 

lE-6 5 1 0. 3.05E-6 3.05E-6 

lE-6 22.5 1 18.96 18.97 5.803-3 

13-6 5 2 0. 4.18E-16 4.183-16 

lE-6 22.5 2 87.69 88.03 0.340 

lE-5 5 1 0. 4.09E-9 4.09E-9 

1E-5 22.5 1 0. 4.09E-9 4.093-g 

lE-5 5 2 0. 2.26E-12 2.263-12 

lE-5 22.5 2 0. 2.26E-12 2.26E-12 

1E-4 5 1 0. 5.183-6 5.Jl8E-6 
1E-4 22.5 1 0. 5.40E-6 5.403-6 

lE-4 5 2 0. 6.47~-6 6.473-6 

lE-4 22.5 2 0. 6.48E-6 6.483-6 

lE-3 ,5 1 0. 7.46~-6 7.46E-6 

lE-3 22.5 1 0. 1.35E-5 1.35E-5 

lE-3 5 2 0. 1.41E-5 1.41E-5 

lE-3 22.5 2 0. 2.24E-5 2.243-5 
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coagulation alone, depicted by the dotted lines, and the curves for 

both coagulation and diffusive deposition in figures 4 and 5 to within 

1%. 

Table I shows that the values for E for locations near the wall are 

quite large relative to those far from the wall. Comparison with the 

values of the other terms in equation (14) shows that they are negli- 

gible. Thus the approximation calculated by ignoring E for those re- 

gions was good. 

Gravity 

Equation (33) is the model of a confined aerosol which is acted on 

by sedimentation as well as coagulation and diffusive deposition. Fig- 

ures 8 and 9 give the results of this model. Figures 8 and 9 are 

graphs of the concentration as a function of particle size for a loca- 

tion near the bottom of the chamber. An inportant result of this model 

is the sharp gradient which appears in the vertical extent of the cham- 

ber as a result of the action of gravity. This gradient moves downward 

with a velocity equal to the terminal settling velocity of the particles. 

Above the line of the gradient there are no particles. Below the line 

the concentration changes as if the particles were being acted on by 

coagulation and diffusive deposition. 
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CHAPTER V 

CONCLUSIONS 

The aerosol depletion model given by equation (14) represents the 

action of a confined aerosol both in the presence and absence of gravity 

for the entire chamber. It was found that in the presence of a gravi- 

tational field, sedimentation was the dominant mechanism, even for small 

particles. When there is no gravitational field, coagulation is the 

most significant mechanism for removing particles from the bulk of the 

chamber. 

An advantage of the zero-gravity model is that it embodies the so- 

lution for the entire chamber. The more conventional technique of in- 

ner-outer expansions requires that two different problems be solved and 

the solutions then matched. The matching problem is likely to present 

difficulties comparable to those of solving for the higher order approx- 

imations. 

The results presented are those of the zeroth approximation. 

However, the higher order approximations would only yield a small cor- 

rection to the zeroth approximation and thus may not be worthwhile in 

most cases. 

The situation in the presence of gravity yields an important re- 

sult in the sharp boundary which moves downward through the chamber. 

This result is not unreasonable and is substantiated by the results of 

the one dimensional diffusion work. This work indicated that aerosol 
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particles do not diffuse very far from the location of the gradient 

which drives the diffusion. Nonetheless, diffusion is present and the 

boundary would be more or less blurred by it. 

The model is not complete in that it does not directly deal with 

the shifting size distribution of particles caused by coagulation. 

Fuchs [l] indicates that there has been no significant time dependence 

in the coagulation coefficient detected in the terrestrial experiments 

done to date. This is because the expected increase in the coagulation 

coefficient due to the increased particle size is almost exactly offset 

by the decrease in diffusivity of the larger particle. The diffusion 

coefficient for the new particle would be less, but this would have the 

effect of decreasing the effect of diffusive deposition on the particle 

concentration. Thus this effect should not require a major correction. 

The terminal settling velocity of the new particles would be greater 

and this could cause a problem for the gravity model. It is expected 

that for the lower initial concentrations and short times that the re- 

sults of the gravity model would be valid because there would only be a 

few of these larger particles formed. An attempt to deal with this 

problem would follow the lines of research presented by Tolfo [9]. This 

would involve writing a model such as this for each size class and sol- 

ving them simultaneously. Some further work that would be instructive 

would be to find the higher order approximations, although it is ex- 

pected that they will not provide much additional information. 

There is much experimental work that needs to be done. Data are 

needed to validate this model. These data should take the form of 

aerosol concentrations for various times and locations within the cham- 

ber, both in the presence and absence of gravity. The values of the 
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coagulation coefficient and diffusion coefficient used in this model 

were theoretical. A zero-gravity experiment would be instrumental in 

obtaining measurements of these quantities. These measurements are 

severely hampered in terrestrial experiments by the action of gravity. 

Zero-gravity experiments could be designed which would provide direct 

measurements of these quantities, thus validating that portion of this 

mode& and advancing our knowledge of aerosol science. 
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PWOORAM SOLUTN ~IN~~UT~O~JTPUT~IAPE~=INPUT~TAPE~=OU~PUT~ 
C 
~....,****..*******. l **..**.******.* 
C PROGRAM CALCULATES THE ZERDTH APPROXIMATION TO THE SOLUTION 
C OF THE AEROSOL DECAY EQUATION FOR A LEN0 GRAVITY ENVIRONMENT 
~.***..*.*~**.*~******.*~~*~~***~~** 

C 
C 

~-~~~:R~:~:,VARIABLES ARE INITIALIZE0 AND PHOGRAH OPERATION 

C 
c l l 

C 

10 

20 

30 

40 

COHMO3I/RH/TICE 

l l l * INITIALIZE 

TIHPRH=3600. 
CttHMAD=25, 
Ct’t’wT=SO. 
COhCl=l.E4 
IF=11 
IZ=ll 
RINC=.l 
ZItdC=.2 
PI=4.0ATAN(l.) 
PIO2=PI/2. 
PI02SG=P102*PI02 
ITEWuL=350 
ITERMR=500 
CONTINUE 
IPASS= 1 
HEAD (5,201 PIVICOAGID 
FORpAT l4FlO.O) 
IF 1EOFtS)l 270,30,270 
CONT IkUE 
WRITE (6,401 R,V~DtCOAG*TIHPWMrCONCI 

SOL 
SOL 

l SOL 
SOL 
SOL 

l SOL 
SOL 
SOL 

l SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 

FORMAT ~llil~//~lOX~ 1UHlHIS OUTPUT IS FDR*//rl5X* 13HPARTICLE SIZESOL 
1*15X*1PE@.1*/r15X* 17HSETTLING vE~OCITY~~IX~I~E~~.~~/~~~X~ ZlHDIFFSOL 
ZUSION COEFFICIENT~7X~IPElI.4~/~15X~ 23HCOAGULATlON COEFFICIENJ*~XISOL 
31PEll.4*/*15X* 4HTIHE124X~OPFB.l~/~15X, 2lHINITIAL CONCENTRATIONISOL 
47X*IPCB.l.//t SOL 

C 
c l l 

C 

50 

60 
C 
c l l 

C 

70 
C 
c l l 

RETA=CHHHAD“V/D 
FAt~pA=C~HRAD*CHHRAD*COAG’CONCI/D 
TI~C=TIHPR~*D/ICHHRAD~CHMRAD) 
tlT4SO=RET4’Rt~TA/4. 
RTAOV2=RETA/Z. 
EXPRTA=ErP(-PETA’CHMHl/(2.*CHMRAD)l 
HTATIH=RTASO~TIHE 
XPTIt’E=EXP(RTATIH) 
GMATIM=GAtW4’TIHE 
TOGMAT=E..GMATIW 

l l l * SUM SERIES FOR 2 

z(lb=‘o. 
DO SO I=2312 

ZIIl=Z(I-l)*LINC 
CONTINUE 
00 60 I=l.IZ 

CALL SINES ~Z~l~rSERSIN~I~rIfEAHZ~ 
CONTINUE 

l l l l SUM SERIES FOR R 

RAD-0. 
DO 10 I=l*IH 

CALL RESSEL IRAOoSEHJO~I)rITERHH) 
RAO=RAD*HINc 

CONTINUE 

l l l l CALCULATE TOTAL SOLUTION 

SO; 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SDL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
c I-., -)VL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 

10 
20 
30 
40 
50 
h0 
70 
80 
90 

100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
300 
310 
326 
330 
340 
350 
360 
370 
380 
390 
400 
410 
420 
430 
440 
4so 
460 
470 
480 
490 
500 
510 
520 
530 
540 
55u 
560 
5 7 0 
580 
590 
600 
610 
620 
f-70 1-1 
640 
650 
660 
67U 
680 
b90 
700 
7-l u 
720 
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C <OL 
DO 110 I=lrIR SOL 

00 100 J=l*Iz SOL 
F~I*J~=SEH.J0~I~*SEPSINO SOL 
XEXP=BTAOV2*Z(J1-BTATIH SOL 
IF (XEXP.GT.600.1 GO 10 60 SOL 
tJlI~J)=F(I*Jl.EXP(XEYP) SOL 
CO~ICN~I~J~=U~I,J~/~~.*GMA~IM*U~I~J~~ SOL 
GO JO 100 SOL 

80 CON1 INUE SOL 
YHITF (6990) I,JIFIIIJ)~XEXP SOL 

90 FORMAT (15x* 4HI = */3r3Xe 4HJ = ,13*3X, YHFII*Jl = rlPE11.4,JXSoL 
I* 7btXEXP = tlPE11.4) SOL 

IPA.SS=-1 SOL 
100 CONTINUE SOL 
110 CONTINUE SOL 

IF fIRASS.LT.0) GO TO 200 SOL 
C SOL 
C l l l l l l CALCULATE DERIVATIVES FOR EPSILON SOL 
C SOL 

DO 120 I=l,IR SOL 
0U0R(l~I)=(U(191l-U(ZII))/(-RINC) SOL 

120 CON1 INUE SOL 
DO t40 1=2,IH SOL 

730 
740 
750 
760 
770 
7tlo 
790 
800 
810 
820 
630 
840 
850 
860 
870 
El80 
89U 
YOO 
YAO 
Y20 
Y30 
Y40 
9so 
Y60 

DO 130 J=l*IZ sol 970 
DIIDRII~J)=(U(I-~.J)-U(IIJ))~(-RI~C) SOL 980 

130 CONTINUE SOL Y90 
140 CONTINUE SOL 1000 

DO 150 I=l,IZ SOL 1010 
DUOz~I,l~=~U~I~l~-U(IIZ))/(-ZINC) SOL 1020 

150 CON1 INlIE SOL 1030 
DO 170 I=l,IR SOL 1040 

00 160 J=ZvIZ SOL lOS0 
DUDZtI~JJ=~U~I~J-l1-U~IIJ))I(-ZINCl SOL 1060 

160 CONTINUE SOL 1070 
170 CORTINUE SOL 1080 

C SOL 1090 
C l l l l l l CALCULATE EPSILON SOL 1100 
C SOL 1110 

DO 190 I=IeIR SOL 1120 
00 lb0 J=lrIZ SOL 1130 

EPSLON(I~JI=~TOGMAT/~I .*GMATIH*U~I~J~~~*~DUDR~I~J~*DUOR~~~J~S~L 1140 
1 l DIIDL(I*J)YDUDL(I,J)) SOL 1150 

180 CONTINUE SOL 1160 
190 CONTINUE SOL 1170 

C SOL 1180 
C l . l l l l OUTPUT VARIABLES SOL 1190 
C SOL 1200 

200 CONTINUE SOL 1210 
*F’ITE t6*21Ol SOL 1220 

210 FORMAT (15x1 SHCONCN 1 SOL 1230 
CALL TERMS (IR,IzvCONCNl 
WRITE (he2201 

220 FORMAT 115x1 7HEPSILONt 
CALL TERMS (IHIIZIEPSLON~ 
hRIiF: l6*230) 

230 FORMAT (15x9 1liU) 
CALL TERMS (IR,IZIUI 
YRITE (61240) 

240 FORMAT (15x1 4HDUDR 1 
CALL TERMS (IR,IZ~DUDR) 
VRITE (6,Z’SOl 

250 FORMAT (15x9 4HDUDZ 1 
CALL TERMS (IWeIZtDUOZl 
CRITE (612601 

260 FORMAT (15x1 IHF) 
CALL TFRMS (IR,IZtF) 
GO TO 10 

270 CONTIUUE 
STOP 

C 
EN0 

SOL 
SOL 
SOL 
SOL 
SOi 
SOL 
SOL 
SOL 
SOL 
SOL 

1240 
1250 
1260 
1270 
1280 
lZY0 
1300 
1310 
1320 
1330 

sol 1340 
SOL 1350 
SOL 1360 
SOL 1370 
SOL 13AO 
SOL 1390 
SOL 1400 
SOL 1410 
SOL 1420 
SOL 1430 
‘SOL 1440 
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C 
c l 

C 

c l 

C 

C 
c l 

C 

C 
c l 

C 

C 
c l 

C 

C 
c l 

C 

C 

SUBROUTINE BESSL (GNUwXeBESSELT BES IO 
l3L.s 20 

.a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..“ES 3u 
THZS SR CALCULATLS THE HESSEL FUNCTIONI J(X)* OF ORDER GNU HES 4u 

. . . . . . . . . . ..Y...Y ..(I . . . . . . . . . . . . ..“~S 5u 
LIES 6U 

DATA AA21/.25/mAA41/-. 375/,AA42/.kSb2S/rAA61/1.875/~ BE5 7d 
1 AA62/-1.15625/rAA63/.1171~‘75/,AAU1/-19.b~75/~AA~~/14.2265625/~ EES 00 
2 AAB3/-2.3H671~75/rAAd4/.U9~214~437/*AAlUl/3S4.3?~/~ BES 9u 
3 AA102/-2T7.87~/rAAIU3/5~.224bOY~H/~AAlO4~-4.~UU~MS93U~* HES 100 
4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ HES 110 
X ;~~EI’;.75/dM2/ -.35/r~963/.0125/rHHh~~-S.6~~/*~~~2/3.b026f~857l/*HES 120 

-.4241071429/rHR84/~.~60357k4~/~H~101/78.7~~~~~102/-~~./~ HE5 130 
7 60109/10.28645H33/rR0104/-. 34722222222L/~l3~1Ut~/3.03tTl94444E-3/ RES 140 

HES ISi, 
l l l l l INITIALIZE HES 16U 

HES 170 
PI=4.*ATAN(l.T HES 180 
PIOZ=PI/2. BES 190 
ALPRA’CNU*GNU-.25 RES 200 
T-l ./X HE5 210 
lSD~T*T RES 220 

RES 230 
l l l * l CALCULATE COEFFICIENTS BES 240 

AES 250 
P2=ALPHA@A421 #ES 260 
A4=tAA42”bLPHAeAA41) *ALPHA HE-3 270 
Ah=t~AAh3~ALPHA+AAb2)~ALPtiA*AA6l~*ALPHA HES 280 
A~=((IAAR4OAL~‘HA’AA~3)aALPHA~AA~2)*ALPHA~AA~~)oAL~HA HE5 2YO 
A10=~I((AA1050ALPHA*AAAO4~*ALP~A~AAlO3~~ALPHA*AAlU2~*ALP~A*AAlOll*BES 300 

1 ~l.Pti~ HES 310 
H2=HRZl’ALPHA RES 320 
R4=~RRL2”AL~HA*H841)*AL~HA HES 330 
R6=fIWHb3~PLPHA~BR62)“ALP~A*BH61~*ALPHA RES 340 
AB=f((HR~4*PLPHA+HBB3)~ALPHA*~0~2)’PLPHA*BR~l~~AL~~A RES 350 
B10=~~~~RR1050ALPHA*BRlO4~UALPHAIHB103)’ALPHA~~~lU2~~ALPHA*~BlOl~o~~S 360 

~ALPHA BES 370 
RES 380 

l l l l l CALCULATE INTERMEDIATE FUNCTIONS EES 390 
BE5 400 

8=~1~~AlO*TSfl~A~~~TS~*Ab~~TSD*A4~*TSD*A2~*TSD+l. PES 410 
PRTP~l=~~~~R10’TS0~8~~~TS~*~6~~TS~~B4~*lS~*~2l~lS~*I. BES 420 
PHI=PRTPHI/T-(GNU*.S)OPIOZ BES 430 

BES 440 
. l . l l CALCULATE BESSEL FUNCTION HES 450 

HES 460 
EIESSEL=R*SW7T~T/PIO2)QCOSo BE5 410 
RETURN RES 480 

HES 49u 
END HE5 500 
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SUORDUTINE HLAHDA (XLAHOAtITEWM) 
C 
C................*............. 

C FINDS THE FIRST ITERM ROOTS DF THE ZERO OHDER HESSEL 
~.......*.......U.............. 

C 
‘DIMENSION XLAMDA~ITERM) 

C 
C l **ooo XNITlALILE 
C 

PI=Q.‘ATAN(l.) 
A=2.4 
ERROR=1 .F-6. 
DO 60 I=lrITEWH 

R=P*l. 
X=B 
IF (A.LE.10.) CALL HESJ (A*O,XJOFAtl.E-6*IEH) 
IF (H.LE.lO.1 CALL HESJ (R~O~XJDFHI~.E-~~IEH~ 
IF (A.GT.10.) CALL HESSL (O..A+X.JDFA) 
IF tR.GT.IO.1 CALL BESSL (U.rR4XJOFH) 

10 CONT INUF 
IF tX.GT.10.) CALL HESSL (b.tX+XJOFXT 
IF (X.LE.10.) CALL RESJ (X~OBXJOFXI~.E-~,IERJ 
IF (XJOFA*XJOFX) 20150~30 

20 CONTINUE 
e-x 
XJOFR=XJOFX 
GO TO 40 

30 CO~JT INUE 
A=X 

XJOFA-XJOFX 
40 CONTINUE 

IF (ARS(XJOFX).LE.ERROH) GO TO 50 
X=(A”XJOFH-H*XJOFA)/(XJOFB-XJOFtT-XJOFAb 
GO TO 10 

50 CONTINUE 
A=Xej. 

XLAMDA(I)=X 
60 CONTINUE 

RETURN 
L 

EkD 

HLA 10 
HLA 20 

l l l l l HLA 30 
FTN RLA 40 
l l l l l HLA 50 

HLA 60 
HLA 70 
RLA 80 
HLA 90 
HLA 100 
RLA 110 
HLA 120 
HLA 130 
RLA 140 
RLA 150 
RLA 160 
BLA 170 
QLA 180 
HLA 190 
ALA 200 
HLA 210 
RLA 220 
HLA 230 
HLA 240 
HLA 250 
HLA 260 
HLA 270 
HLA 280 
HLA 290 
HLA 300 
HLA 310 
RLA 320 
HLA 330’ 
HLA 340 
HLA 350 
HLA 360 
RLA 370 
HLA 380 
HLA 390 
HLA 400 
BLA 410 
HLA 420 

SUBROUTINE SINES (Z,F,ITERM) SIN 10 
c c SIN 20 
C...................................~~t, 30 

C 11-11s SR CALCULATES 1tiE SIN SERIES, Fe FOR POSITION 2 SIN 4U 
C...........................-........~~~ 50 

C 
DIMENSION A(350 )rSINEt350 )vTERM(350 1 
COMMON/RR/TIME 
COMHON/ZZ/HETA~PItPIO2~PIO2SQ~HTASQ~EXPHTA 
F=O: 
XHNI=l. 
DO 10 ITRH=lrITEHH 

XMNl=XMNl*(-1.) 
XTRH=FLOAT (ITRH) 
~XPT~~~=fXP~-XTRM*XTHM*P102S~*1~M~1 
AWG=XTRY*l’IO2~2 
AIITRH~zXTHH*PIO2*~I.- XMN1*EXPHTA)/(HTASCl*XTRM”XTRMoPI02SO~ 
SINE~ITWM~=SIN~AHGl 
T~RM~ll~~Ml=AIITHM~*SINE~~THH)‘EXPTIH 
F=F*TERM(ITRM) 

10 CONTINUE 
RETURN 

C 
END 

SIN 60 
SIN 70 
SIN 80 
SIN 90 
SIN 100 
SIN 110 
SIN 120 
SIN 130 
SIN 14u 
SIN 150 
SIN 160 
SIN 170 
SIN 180 
SIN 1YO 
SIN 200 
SIN 21u 
SIN 22U 
SIN 230 
SlN 240 
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SUBROUTINE BESSEL (R~FIITERM~ nss 
C tss 
c**...**..*.**.**.*. . . l * l Q . l . l . . l l l l fjss 

C THUS SW CALCULAIES IHE JU SERIESI Fe FOR POSillON I? ass 
c l l l ..* l l l l 0 l l ..*.* l *...* **.*.*.4*.*~ss 

C HSS 

-OIH~STON.~XLWDA~~OO 1 *HE5SL1~500 ) *HESSLO ISOU I rTERMt500 19 RSS 
1 A1500 ) HSS 

COMHDN/RR/TIHE HSS 
F=O; 05s 
ERQDR=l.E-6 HSS 
CALL BLANDA (XLHDA~ITERH) RSS 
DO 80 ITRH=l~ITEHM HSS 

IF lXLHDA(IlRH).GT.lO.~ GO TO 20 HSS 
CALL RESJ lXLMDA~ITRH~*l*HESSLYorEHHOHIIEM~ RSS 
IF fIEW.NE.01 WRITE IbtlOT IEP~XL~~A~ITHH~~HESSLl~ITRMl 055 

10 FORMAT (10X, SHIER= 913~ YM LAHDA q rlPEll.4r bti Jl = rlPEll.41HSS 
GO TO 30 RSS 

20 CON1 IIIUE HSS 
CALL MESSL ~1.~XLHDA~ITHH~rBESSLl~ITRM~l tjss 

30 CONT INUF. HSS 
ARO=R’XLHOA I ITRH) HSS 
IF fPRG.ED.0.) GO TO 60 HSS 
IF (ARG.GT.lO.) GO TO 50 PSS 
CALL RESJ ~PRG~O,HESSLO~ITHM~~ERHOR,IEW~ BSS 
;F (1ER.NE.01 kHITE (6,4(J) IEHsAHG~BtSSLO(ITHH1 ASS 

40 FORMAT (10X* 6HIEH = 9139 TH AA0 = rlPE11.4~ 6ti JO = rlPE11.4) RSS 
GO TO 70 HSS 

50 CONTINUE HSS 
CALL PESSL (O.rARGsHESSLO(ITRH)T RSS 
GO TO 70 RSS 

60 CONTINUE 05s 
BESSl.O(ITRH)=l. BSS 

70 CONTINUE RSS 
HO CONTINUE RSS 

00 90 I=lrlTEti~ P s s 
A(1)=2./(HESSLl~I)*XLMDA~I11 PSS 

90 CON1 INUF HSS 
DO 100 ITRp=l~ITERH HSS 

~xRT~H=~xP(-XLMOA~ITRM~*XLMDA~ITHH)V~IHE~ RSS 
TFRH(~TH~)=A~ITHM)*HESSLOO”EXPTIW HSS 
F=F*TFRMtITHMT RSS 

100 CONTINUE RSS 
RETURN. RSS 

C RSS 

10 
20 
30 
40 
50 
60 
70 
80 
90 

1ou 
110 
120 
130 
14u 
IS0 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 
2HU 
290 
300 
310 
320 
330 
34d 
350 
360 
370 
3HO 
390 
400 
410 
420 
430 
440 
450 
460 HSS ._ 
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SUBROUTINE TERMS (ITERHvJTERHeA) 
DIMENSION AfITERHwJTERH) 
hRITE (6.10) 

10 FORMAT 11) 
DO 30 K=lrJTERH 

rRIT@ .(6r20) fA(J*K)rJ=l~ll) 
20 FORMAT (3X.llllPE9.2~3Xl) 
30 CONTINUE 

IF !IlERt’.LE.ll) GO TO 70 
hHITE (6tlO) 
DO 40 K=~*JTERH 

kRfTE (6120) (A(JeK) eJ=l2*22) 
40 CONTINUF 

IF tITERH.LE.22) GO TO 70 
kAITE l6.10) 
DO 50 K=lrJTEHH 

kRITF (6920) tA(JsK) rJ=23,331 
50 CONTINLJF 

IF tITERH.LE.33) GO TO 70 
WRITE (6910) 
DO 60 K=l*JTERM 

WRITE (6120) (A(JvK) sJ=34r44) 
60 CONTINUE 
70 CONTINUE 

WHITE (6~80) 
no FORMAT i//b 

RETURN 
C 

EhD 

TER 10 
TER 20 
TEH 30 
TER 40 
TER 50 
TER 60 
TER 70 
TER 80 
TEH YO 
TEH 100 
TER 110 
TEH 120 
TEH 130 
TER 140 
TER 150 
TEH 160 
TER 170 
TEH 180 
TER 190 
TER 200 
TEH 210 
TEW 220 
TER 230 
TER 240 
TER 250 
TER 260 
TER 270 
TER 280 
TER 290 
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APPENDIX B 
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PRDQRAM SOLUTN ~INPUT~OUTPUT,TAPE5=XNPUl~TAPEbmOUTPUTPUT~ SOL 
C SOL 
C.o***...‘* I) l ..***.******* l o.** o*o*.so~ 

: 
PROGRAM CALCULAlES THE ZEWOTH API’ROXIHATION 70 THE SOLUTION SOL 
OF THE AEROSOL DECAY EQUATION FOR A GRAVITY ENVIRONHfNT’ SOL 

cooo+ooooo’*o*.*****.*oboo+ooooooooooso~ 

C IN THIS PART VARIABLES ARE INIT.IALIZED AND PROORAH OPERATION SOL 
C tS CONTROLLED SOL 
c l o*.*.o*o*ooooo*o***oooo l oooooo*oo*soL 
C 

DIHCNSION FlIl~ll~~U~1l*Il~~EPSLON(llrll)r~(ll~rCONCNlll~ll~~ 
1 SEUSl~~ll~*DUOL~11*1l~*~UD~~ll,ll)rSERJO~ll~ 

COHMGN/ZZ/RETA,PI~PIO2~PIOi?SOtEXPHTA 
COMPON/RR/TIPE 

C 
C l l l l l * INITIALIZE 
C 

71HPR~=7200. 
CONC1~1.F5 
CHHR4D=ZS. 
ClJ’HHT=-50. 
H=CHWT/CHHRAD 
IP=lJ 
IZ=ll 
PINC=.l 
ZINC=.2 
pI=S.*ATAN(l,) 
p102=pr/2. 
PrO2SO=PI02*PI02 
ITEQH2=350 
IlERHp=500 
Z(l)=O. 
DO 10 I=Z,IZ 

Z(I)=Z(I-ll*ZINC 
10 CONTINUE 
20 CONTINUE 

YEAD (Sr30) R*V*COAGeD 
30 FORMAT (4FlO.O) 

IF TEOF(5) 1 21004Ov210 
40 CONTINUE 

WRITE (6e50) R~V~D~COAG~TIHpHH~CONCI 

SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 

51 ZESOL SO FORMAT (l~lr//vlOX~ 1HHTHIS OUTPUT IS FOHe//,I5X, 13HpARTICLE 
lrlSXe1PFR.lr/rlSXt 17HSETTLING VELOCITY~llX*lPElI.4l/r15X* EIHOIFFSOL 
2USlOfJ CDEFFICIENT~7X~lPEl1.4~~~T5X~ 23HCOAGULATION COEFFICIENTI~XISOL 
31PE~1,4*/*15X* ~HTIHE,Z~XI’JPFB.~~/.~~X~ ZIHINITIAL CONCENTRATIONISOL 
47XtlPER.l*//) SOL 

RETA=QWRAD’V/D SOL 
GAPCA=CHHHAD*CHHHAD’COAG*CONCI/D SOL 
TIHC=T~~PHH~D/~CHHRAD*CH~RAD) SOL 
RTPSQ~HETA’HETA/Q. SOL 
tiTAOV?=RfTA/i’. SOL 
EXPGTA=fXPl-HETA’CHHHT/(2.*CHHRAD)) SOL 
HlATlM=RTASP’T1HE SOL 
HTTIt’F=I~FTA’TIHE SOL 
XPlI~E=fXplGTATIY) SOL 
GPATIM=GAWM~~TIHE SOL 
TOGHAT=2.*Gt4ATIH SOL 

C SOL 
c 0 . 0 l l l CALCULATE TOTAL SOLUTION SOL 
C SOL 

no 79 r=l.T~q SOL. 
00 60 J-l.12 SOL 

STPFNl=ZlJ)-I~TTIHE SOL 

STPFNZ=STPFNI-H SOL 
If (STPFNl.LI .O.l SPFNl=O. SQL 
IF (STPFNI.GE.0.) SpFNl=l. SOL 

IF (STPFN2.LT.0.) SpFN2’0. SOL 
IF (STPFN2.tE.U.) SpFNZfl. SOL 
U(T ,J)=SPFNl-SpfN2 SOL 

CDNCN(IIJ)=U(I~J)/(~.*GMATIM*U(I*J)) SOL 

60 CON1 INUE SOL 
r,., 

70 CONTINUE 3”L 

10 
20 
30 
40 
so 
60 
70 
BU 
90 

100 
110 
120 
130 
140 
150 
160 
17u 
180 
190 
200 
210 
220 
230 
24U 
250 
260 
270 
280 
290 
300 
310 
320 
330 
340 
350 
366 
3?U 
300 
390 
400 
410 
420 
430 
440 
45u 
460 
470 
480 
490 
500 
510 
520 
530 
540 
550 
560 
570 
580 
590 
600 
610 
620 
630 
640 
650 
660 
670 
666 
696 
100 
710 
720 
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DO 80 I=l*ll 
U~ltll~=O. 
Utllrl)=O. 
CONCN(Iell)=O. 
COKN(llrIl=O. 

GO COR:.INUE 
C 
C l l l l l l CALCULATE DERIVATIVES FOR EPSILON 
1 
L 

DO 90 l=l,IR 
DUOR~1.l~=~U~l,I~-U~2~I~~/~-RINC~ 

90 CONTINUE 
DO 110 1=2*IR 

00 100 J=leIZ 

SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 

DUDR~I*J~“~U~l-l~J~-U~l~J~~~~-RINC~ soi 
100 CONTINUE SOL 
110 CONTINUE SOL 

DO 120 I=l.lZ SOL 
DUDZlI,l~=~U~I~1)-U~IIZ))/(-ZINC) SOL 

120 CONTINUE SOL 
DO 140 I=lsIR SOL 

DO 130 J=2rIZ SOL 
DUDZll~J~~~U~ItJ-l~-U~I1J))((-ZINC~ SOL 

130 GOIJT INUE SOL 
140 CONTINUE SOL 

C SOL 
C l l w l l ’ CALCULATE EPSILON SOL 
C SOL 

00 140 J=lrIR SOL 
DO 150 J=lrIZ SOL 

IF ~ABS~DUDW~I*J~).GE.l.E27O.DR.A~S~DUD~~I~J~~.GE.l.E270~ GOSOL 
1 TO 150 SOL 

EPSLON~I*Jl=ITOGHAT/~l.*GMATIM*U~l*J~~~’~DUDR~l~J~*DUDR~I*JlSOL 
1 l OUnZ(I*J)*DUDL(I*J)) SOL 

150 CON1 I NUE SOL 
160 CONTINUE SOL 

C SOL 
C l l l l l + OUTPUT VARIABLES SOL 
C SOL 

CALL TERMS (IRIIZICONCN) SOL 
kR17E (6e 170) SOL 

170 FORMAT 115x1 ‘IHEPSILON) SOL 
CALL TERMS IIRrIZeEPSLON) SOL 
WRITE (6.180) SOL 

190 FORMAT (15X. 1HU) SOL 
CALL TERMS (IA,lZ,Ul 
WRITE (he1901 

190 FOHCAT 115X* 4HDUDH 1 
CALL TERMS (IW~IZ~OUDR) 
*RITE lhr200) 

200 FORMAT (15Xv CHOUDZ J 
GILL 1ERHS ~IH*lZ,DUoL~ 
GO TO 20 

210 CONTINUE 
STOP 

c 
FNII 

SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
SOL 
zm 

730 
740 
750 
760 
770 
780 
790 
800 
810 
820 
030 
840 
850 
860 
tl70 
8t3U 
090 
900 
910 
920 
930 
940 
Y5U 
960 
970 
YBU 
990 

1000 
1010 
1020 
1030 
1040 
1050 
1060 
1070 
1080 
1090 
11’00 
1110 
1120 
1130 
1140 
1150 
1160 
1170 
1180 
1190 
1200 
1210 
1220 
1230 
1240 
1250 
1260 
1470 
12tlo 
1 ?on 
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