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1. Introduction and Background 

Metal–organic framework (MOF) materials have attracted a great deal of attention during the last 

few years.
1,2

 These materials are formed by coordination bonds between metal ions and organic 

molecular ligands, leading to robust open framework structures that can accommodate various 

guest molecules. Organic ligands in the MOFs make the structure flexible and different from 

traditional microporous materials like zeolites, which are fully inorganic and thus lack synthetic 

flexibility. During the synthesis of MOFs, solvent molecules get trapped in the pores and can be 

removed via desolvation. The resulting empty framework may maintain structural integrity, 

yielding a porous MOF material that has a large apparent surface area. The original solvent or 

other guest molecules can then be adsorbed into this porous structure.  

MOFs have a number of useful properties such as large internal surface areas (some as high as 

10
3
–10

5
 m

2
/g), high thermal stability (400–500 °C), ultra low densities, and the availability of 

uniformly structured cavities of molecular dimensions that make them attractive candidate for a 

wide range of chemical and physical applications such as hydrogen and methane storage,
3
 

chemical separations,
4 

selective chemical catalysis,
5
 photonics,

6 
and drug delivery.

7 
Here we 

present our work on the study of MOFs as thermally stable hosts for small molecule organic 

materials. We have successfully introduced two molecules, viz. 3-methoxypropionitrile (3MPN) 

inside the cage of a MOF and verified the inclusion by using a variety of analytical techniques, 

such as powder x-ray diffraction (PXRD), thermo-gravimetric analysis (TGA), Fourier transform 

infrared (FTIR), and gas chromatography-mass spectrometry (GC-MS).  

2. Experiment  

2.1 Materials  

Commercial reagents were purchased from Sigma-Aldrich (ACS grade) and used as received. In 

this work, we used Zn2NDC2DPNI-DMF, as our inert MOF host, where NDC is the dianion of 

1,6-napthalene dicarboxylic acid, DPNI is N,N-di-(4-pyridyl)1,4,5,8-napthalenetetracarboxy-

diimide, and DMF is N, N dimethylformamide, which is employed as a reaction medium during 

the synthesis and is subsequently displaced by the guest molecule. This MOF is constructed with 

zinc (Zn) atoms as metal centers, and NDC and DPNI molecules as ligands, as shown in Fig. 1a. 

Our first guest molecule is 3MPN and the second molecule is nitrobenzene (NB). The structures 

of these two guest molecules are shown in Fig. 1b and Fig. 1c. 
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Fig. 1   (a) Crystal structure of the host MOF. The yellow polyhedra represent the Zn ions: carbon,  

gray; oxygen, red; and nitrogen, blue. (b) 3MPN, (c) NB, (d) NDC, and (e) DPNI d and e from  

Bae et al.
4
 (used with permission)

 

2.2 Experimental 

Distilled de-ionized water was used for all solution preparations. All glassware was cleaned in 

the order: tap water and dish detergent, purified water, ethanol, and nitrogen gas to dry. Two 

different methods were used to include the guest molecules inside the cage of the host MOF. For 

our first guest molecule (3MPN), we used the solvent exchange method and, for the second 

molecule (NB), the vapor diffusion method was used. 

2.2.1 Solvent Exchange Method  

In a typical synthesis, 10 mg of the yellow MOF is mixed with 5 mL of 3MPN, resulting in a 

clear yellow liquid. The solution is stirred at room temperature for 3 weeks and then centrifuged. 

The powder left is quickly rinsed in acetone, allowed to dry, and then characterized by GC-MS, 

FTIR, TGA, and PXRD. The nitrile end of the 3MPN molecule has an affinity for metals, so in 

suspending these substances in a solution, we hypothesize that the 3MPN displaces the DMF 

inhabiting the framework. 

2.2.2 Vapor Diffusion Method 

In this method, the inclusion of the guest molecule NB was done by simply putting the MOF 

under NB atmosphere. Here, 1 mL of NB (guest) was placed in an open vial (2 mL) and 1 mg of 

the yellow MOF (host) was placed in an open DSC pan. Both the pan and the small vial 

a b c 

d e 
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containing NB were placed in a larger vial (20 mL) and sealed. The whole system was placed in 

a heater base to maintain a temperature of ~35 °C.  

2.3 Characterizations 

Analysis of the MOF and the complexes with the MOF and the guest molecules was performed 

using an Agilent GC-MS (Model 6890N GC and Model 5973N MSD) system fitted with a 

Pyroprobe 2000 (CDS Analytical, Oxford, PA). The GC column used was a HP-5 capillary 

column (0.25 mm × 30 m, 0.25-mm film). The injector temperature was 200 °C and the 

Pyroprobe interface temperature was 175 °C. The GC oven temperature program was as follows: 

50 °C isothermal for 1 min, 50–250 °C at 40 °C/min, and 250 °C isothermal for 1 min. The 

Pyroprobe was programmed to give a 20-s desorption pulse at 175 °C (heating rate 1000 °C/s). 

The sample was held within the coil of the Pyroprobe by first placing it in a quartz tube 

containing a small plug of glass wool and then inserting the entire tube into the coil. 

All FTIR spectra were obtained using a ThermoScientific (formerly Nicolet) Nexus 870 FTIR 

spectrometer fitted with a Thermo Nicolet OmniSampler (attenuated total reflectance [ATR]) 

accessory. A deuterated triglycine sulfate (DTGS) and potassium bromide (KBr) beam splitter 

was used. For each spectrum, 64 scans were collected at a resolution of 4 cm
–1

. 

A TGA (TA Instruments Q500) operating under Universal Analysis software (TA Instruments) 

was used for the TGA measurements. All samples were run in open aluminum pans. The heating 

rate was 10 °C/min, and analyses were run under a nitrogen flow of 50 mL/min. 

PXRD results of the samples were recorded with a Rigaku-miniflex II diffractometer using Cu 

Kα radiation (λ = 1.541 Å) in –2 geometry and with a position-sensitive detector. The 

diffractometer was operated at 30 kV with 15 mA and the data were collected in the 2 range of 

5–40°
 
with a step size of 0.02° per 1.2 s.  

3. Results and Discussion 

3.1 Guest Molecule: 3-methoxypropionitrile (3MPN)  

D-GC-MS analysis was performed to identify and confirm the presence of the guest molecule 

inside the MOF complex. The total ion chromatogram of the neat MOF is shown in Fig. 2, which 

shows the presence of a peak at 3.35 min. The mass spectrum of this peak, as well as the library 

search match, is shown in Fig. 3. Based on this finding, we conclude that the starting host MOF 

has DMF inside the MOF cage. After the inclusion of the guest molecule 3MPN, D-GC-MS 

analysis was performed to re-identify the constituents inside the host MOF (Fig. 4). While the 

total ion chromatogram of the complex shows a peak at nearly the same retention time observed 

for the neat MOF, the associated mass spectrum of the peak reveals that the peak is from 3MPN  
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(Fig. 5). The similar retention times for DMF and 3MPN are reasonable considering their 

respective boiling point (i.e., 153 and 165 °C). Based on D-GC-MS results, we conclude that the 

DMF inside the MOF cage has been completely displaced by the guest molecule 3MPN. 

PXRD is a powerful technique to follow guest inclusion by performing a detailed analysis of the 

changes in the relative intensities of the low-index diffraction peaks, which are more or less 

sensitive to the cavity filling. In general, the overall intensity of the host XRD reflections will 

decrease upon inclusion of guest molecules due to the enhancement of the X-ray scattering 

contrast.
8
 Fig. 6 shows both the PXRD of the original host MOF and the MOF with the guest 

molecule 3MPN. As expected, the overall intensity of the host MOF with 3MPN as guest has 

decreased. Drastic changes in intensity of individual peaks in the XRD pattern can result from 

changes of distribution of electron density within the unit cell of the MOF. The electron density 

distribution is dependent upon the extent of filling of pores in the MOF with guest molecules and 

on the nature of the guest molecules. Esken et al.
9
 showed that in MOF-5, the intensity ratio of 

the reflections at especially 2= 6.9° and 9.7° will change upon loading the guest molecule. In 

this work, the relative intensity of the two low angle peaks at 2= 6.8° and 7.7° changed 

drastically, consistent with the inclusion of the guest molecule. PXRD of the MOF with 3MPN 

displays many additional reflections, which originate from the ordering of the guest molecules in 

the MOF with new reflections observed at 2 = 10°–20°, with the most prominent new reflection 

at 2 = 19°. 

 

Fig. 2   Total ion chromatogram for neat MOF 
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Fig. 3   Mass spectrum for 3.35-min peak in Fig. 1 (top) with library search match (bottom) 

 

Fig. 4   Total ion chromatogram for guest-host complex 
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Fig. 5   Mass spectrum for 3.41-min peak in Fig. 1 (top) with library  

search match (bottom). 

 

Fig. 6   PXRD pattern of the host MOF and the MOF + 3MPN 

The temperature-dependent guest release and thermo-stability of the complex were explored by 

TGA. The TG curve shown in Fig. 7 shows a weight loss of 10% in the temperature range of  

25–140 °C, which corresponds to the loss of guest molecule adsorbed on the exterior of the cage 

of the host MOF, and a slow weight loss of 20% between 140–400 °C, which corresponds to the 
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loss of the guest molecule 3MPN that was inside the MOF cage. The weight loss beyond 400 °C 

is attributed to the decomposition of the framework structure. It should be noticed that the release 

of the guest molecule by heating spans a broad temperature range up to 400 °C, which implies 

that the loss of 3MPN molecules from the cavities of the host MOF grid networks is a prolonged 

process. 

 

Fig. 7   TGA curve of neat MOF and the MOF + 3MPN complex  

The FTIR spectrum of the host MOF and the complex (MOF + 3MPN) gave further evidence of 

the inclusion of the guest molecule inside the MOF cage (Fig. 8). The library spectrum of the 

guest molecule is taken from the Bio-Rad “Know it all” informatics system analytical addition 

infrared (IR) spectra database. The spectra of both 3MPN and the complex exhibits the vibration 

of the nitrile groups (C≡N) at 2250.8 cm
−1

, proving the inclusion of the guest molecule inside the 

MOF cage. The complete removal of DMF molecules is indicated by the disappearance of the 

characteristic C=O band of DMF at 1660 cm
−1

. The FTIR spectrum of the complex shows a 

new peak at 1638 cm
–1

,
 
which is not present in either the host or the guest molecule. The peaks at 

1100.3 and 1115.9 cm
–1 

of the MOF spectra merges to a single peak at 1112.3 cm
–1

 in the 

complex spectra. An additional vibrational band at 1000.5 cm
–1 

is due to the inclusion of the 

guest molecule since this band is also present in the spectrum of the guest molecule but not in 

that of the host MOF. 
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Fig. 8   FTIR spectrum of the host MOF and the MOF + 3MPN (spectra normalized to largest peak) 

3.2 Guest Molecule: Nitrobenzene (NB) 

The total ion chromatogram of the neat MOF shows the presence of DMF (Fig. 2 and Fig. 3) 

while that of the complex with the second guest molecule NB shows no trace of DMF. A new 

peak for NB was observed at 5.2 min, as shown in Fig. 9. The mass spectrum for this peak along 

with the library match for NB is shown in Fig. 10. Based on this finding, we can conclude that in 

the complex, the DMF molecule inside the MOF cage has been displaced by the guest molecule 

NB.  

 

Fig. 9   Total ion chromatogram for guest-host complex 
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Fig. 10   Mass spectrum for 5.2 min peak in Fig. 1 (top) with library search match (bottom) 

PXRD of both the original host MOF and the complex with the guest molecule NB is shown in 

Fig. 11. As expected, the overall intensity of the complex has decreased and relative intensity of 

the two low angle peaks at 2= 7.9° and 8.8° has changed proving the inclusion of the guest 

molecule. PXRD of the complex displays some additional reflections, which originate from the 

ordering of the guest molecules in the MOF with new reflections observed at 2= 9–20°, with 

the most prominent new reflection at 2 = 17.9°. 

 

Fig. 11   PXRD pattern of the host MOF and the MOF + NB 
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TGA was performed to find the temperature-dependent guest release and thermo-stability of the 

host-guest complex. The TG curve of neat MOF and the MOF complex with the NB guest is 

shown in Fig. 12. The complex shows approximately 15 wt-% loss between 25–125 °C at one 

rate and another 15 wt-% loss between 125–400 °C. The MOF structure is observed to 

decompose starting at about 400 °C. We can infer that the first weight loss is from the outside 

guest molecule, and that the next weight loss is due the guest molecule inside the MOF cage, 

which took a longer time and a higher temperature to be released. 

 

Fig. 12   TGA curve of neat MOF and the MOF + NB complex 

The host MOF and the host-guest complex were also characterized by FTIR spectroscopy  

(Fig. 13). The complete removal of DMF molecules is indicated by the disappearance of the 

characteristic C=O band of DMF at 1660 cm
−1

. The strong band at 1523 cm
−1 

is characteristic 

for the asymmetric (NO2) stretching of NB as well as two new aromatic NB bands at 1478 and 

1021 cm
−1 

were also clearly visible that were not present in the MOF. The band at 851 cm
−1 

is 

also coming from the C-N stretch of the guest molecule NB. 
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Fig. 13   FTIR spectrum of the host MOF and the MOF + NB (spectra normalized to largest peak) 

4. Summary and Conclusions 

We have successfully trapped two small molecules, viz. 3MPN and NB, inside the cage of a 

mixed ligand MOF, Zn2NDC2DPNI .DMF. The complete exchange of the reagent solvent for the 

new guests has been verified by GC-MS, PXRD, TGA, and FTIR.  
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