

General Architecture for Text Engineering (GATE)

Developer for Entity Extraction: Overview for SYNCOIN

by Michelle Vanni and Andrew Neiderer

ARL-TR-7000 July 2014

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless

so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the

use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5067

ARL-TR-7000 July 2014

General Architecture for Text Engineering (GATE)

Developer for Entity Extraction: Overview for SYNCOIN

Michelle Vanni and Andrew Neiderer

Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

 ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

July 2014

2. REPORT TYPE

Final

3. DATES COVERED (From - To)

November 2012–September 2013
4. TITLE AND SUBTITLE

General Architecture for Text Engineering (GATE) Developer for Entity

Extraction: Overview for SYNCOIN

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Michelle Vanni and Andrew Neiderer

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory

ATTN: RDRL-CII C

Aberdeen Proving Ground, MD 21005-5067

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-7000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The integrated development environment of the General Architecture for Text Engineering (GATE), or GATE Developer, is

used to annotate entities in a text document consisting of messages in and around the Baghdad area (SYNCOIN data).

Highlighting entities, such as person(s), location(s), and organization(s), may result in a more structured format for faster

comprehension of the data. The application for entity determination is called a nearly-new information extraction, or ANNIE: a

system of seven processing resources (PRs) in GATE. ANNIE is executed from the graphical user interface (GUI). Other PRs,

such as those for machine learning, and the capability for user-defined applications are managed as a collection of reusable

objects for language engineering (CREOLE); an icon for the CREOLE plug-in manager exists at the GUI as well.

15. SUBJECT TERMS

GATE Developer, SYNCOIN, ANNIE, gazetteer lists, JAPE rules, entity extraction, annotation toolkit

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

28

19a. NAME OF RESPONSIBLE PERSON

Andrew Neiderer
a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

410-278-3203

 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

 iii

Contents

List of Figures iv

1. Introduction 1

2. GATE Developer Graphical User Interface (GUI) 2

2.1 Extraction and Guidelines ...2

2.2 GATE Terminology ..3

2.3 GATE Developer GUI...3

3. GATE Developer Customization 5

3.1 GATE Interfaces..5

3.2 Adapting Resources ...6

3.3 Ambiguity ..7

3.4 JAPE Pattern Matching ...7

3.5 Annotation Output ...10

4. Machine Learning Resources 11

5. Conclusions and Future Work 12

6. Bibliography 14

Appendix A. Running A Nearly New Information Extraction (ANNIE) Extraction on a File

of 595 Concatenated SYNCOIN Messages 17

Appendix B. Running A Nearly New Information Extraction (ANNIE) Extraction on a

Corpus of SYNCOIN Messages 19

Distribution List 22

 iv

List of Figures

Figure 1. Interacting with GATE: Gate Developer, GATE Embedded. ..1

Figure 2. GATE Developer GUI. ...4

Figure 3. GUI and command line listings of ANNIE PRs. ..6

Figure 4. A simple JAPE grammar rule. ..9

 1

1. Introduction

This report records knowledge gained at the U.S. Army Research Laboratory (ARL) on the use

of the General Architecture for Text Engineering (GATE). Flexibility and ease of use were the

principal factors influencing our choice of GATE in support of a Named Entity (NE) Extraction

(NEE) task to be performed on the synthetic message dataset known as SYNCOIN.* The

SYNCOIN dataset consists of varying types of messages contrived by military scenario

developers to have been sent and received by individuals living in and around the Baghdad area.

As for GATE, its development started in 1995 at the University of Sheffield, United Kingdom,

and has grown in complexity, robustness, and renown. GATE software consists of the GATE

Developer graphical user interface (GUI) and the GATE Embedded applications programming

interface (API)† (see figure 1). Its user community boasts support from world-class

computational linguists and its Wiki site provides GATE training material for courses the

University of Sheffield has been offering since 2009.‡

Figure 1. Interacting with GATE: Gate Developer, GATE Embedded.§

*The SYNCOIN corpus is described in Graham, J. L.; Hall, D. L.; Rimland, J. A Synthetic Dataset for Evaluating Hard and

Soft Fusion Algorithms. Presented at the 14th International Conference on Information Fusion, Chicago, IL, 5–8 July 2011.

http://speidigitallibrary.org/data/Conferences/SPIEP/62118/80620F_1.pdf (accessed February 2013).
†GATE is open-source software downloadable from http://gate.ac.uk/download/; email questions are fielded at

gate-users@lists.sourceforge.net and archived at http://sourceforge.net/mailarchive/forum.php?forum_name=gate-users.
‡https://gate.ac.uk/wiki/. Note that the screenshots, examples and listings in figures 1–4 are taken from already published

online sources, which are acknowledged in the footnotes.
§Source: The GATE Embedded API, Track 11, Module 5, Fifth GATE Training Course, slide 7 of 61, copyrighted by the

University of Sheffield, June 2012; GATE Website. https://gate.ac.uk/sale/talks/gate-course-may-10/track-2/module-5-

embedded/module-5-slides.pdf, accessed (15 July 2013).

http://speidigitallibrary.org/data/Conferences/SPIEP/62118/80620F_1.pdf
http://gate.ac.uk/download/
file://ADLCA70108SCNGS/ARL/CIM_Data/CIM-P/APG-OK-T/TECHREP/Vanni/Vanni-246/gate-users@lists.sourceforge.net
http://sourceforge.net/mailarchive/forum.php?forum_name=gate-users
https://gate.ac.uk/wiki/
https://gate.ac.uk/sale/talks/gate-course-may-10/track-2/module-5-embedded/module-5-slides.pdf
https://gate.ac.uk/sale/talks/gate-course-may-10/track-2/module-5-embedded/module-5-slides.pdf

 2

The three-part layout of the GATE Developer interface, with its Panes for Resources, Display

and Annotation, is the focus of section 2 of this report. In section 3, we detail grammar rules and

lexical resources, such as collections of names and technical terminology as well as lists of

closed class items often falling into part-of-speech (POS) categories of preposition, conjunction

and pronoun. GATE resources for machine learning (ML) are described in section 4. In section

5, we conclude and discuss future efforts.

2. GATE Developer Graphical User Interface (GUI)

2.1 Extraction and Guidelines

While there are numerous capabilities housed in GATE, its featured functionality, and the one

for which it is best known, is NEE, which constitutes a subset of the larger natural language

processing (NLP) problem known as Information Extraction (IE). The intent of IE is to pull out

from a text those well-defined tokens that match a specific definition of an information type or

category such as, in the case of named entities, Person (PER), Location (LOC) and Organization

(ORG) names. Highly qualified linguists perform this process manually to create ground truth

data, by studying the principles set forth and exemplified in a project’s annotation guidelines or

coding manuals.*

SYNCOIN data experiments use ground truth annotations prepared according to a standard

known as Simple Named Entity Guidelines1 (SNEG). Based on the MUC-7 NE definitions,2 this

standard is also used in a nearly new information extraction (ANNIE) tutorial for PER, LOC and

ORG NE recognition.3

The manually annotated ground truth data is used to train and test automatic IE engines. One

such engine is GATE’s. GATE orders ANNIE’s several rule-based (RB) processors and sends

their returns to subsequent routines.† For any given annotation category, RB IE engines compare

candidate text strings, or the text surrounding them, against known list item strings or their

abstract representations. The engines insert annotations corresponding to the category type

around any matching string tokens found.

*Humans annotating text for ML use the term “coding manual” to refer to the highly precise category definitions that guide a

project’s analytical tagging of ground truth data for system training and evaluation.
1Linguistic Data Consortium Webpage. Simple Named Entity Guidelines for Less Commonly Taught Languages; v6.5; March 2006.

http://projects.ldc.upenn.edu/LCTL/Specifications/SimpleNamedEntityGuidelinesV6.5.pdf (accessed December 2012).
2Chinchor, N. MUC-7 NE Task Definition, v3.5, 1997. http://www.itl.nist.gov/iaui/.../ne_task.html (accessed December

2012).
3Cunningham, H. Bontcheva, K. NE Recognition. http://gate.ac.uk/sale/talks/ne-tutorial.ppt, 09/08/2003 (accessed December

2012).
†The seven-stage GATE ANNIE pipeline is described in section 3. External IEs LingPipe and OpenNLP can be installed

using the CREOLE (Collection of REusable Objects for Language Engineering) plug-in manager.

http://projects.ldc.upenn.edu/LCTL/Specifications/SimpleNamedEntityGuidelinesV6.5.pdf
http://www.itl.nist.gov/iaui/.../ne_task.html
http://gate.ac.uk/sale/talks/ne-tutorial.ppt

 3

Developers of IE engines designed to handle large volumes of data avoid the characteristic

brittleness of RB systems with probabilistic language models, built using ML algorithms (see

section 4). Once trained on ground truth text, these models guide the ML IE engines to recognize

text strings weighted heavily toward correspondence with a given annotation category and to

insert annotations around those strings. Although potentially more reliable on unseen data than

RB IE, ML IE requires a very large quantity of training data. The volume of data required

increases naturally with the complexity and robustness of the annotation schemes. Also required

are computing capacity, speed and power capable of training a model, and testing an engine with

reasonable amounts of equipment and time.

Regardless of approach, however, the accuracy of automatic IE is measured by comparing

engine placement of annotations against human placement of annotations on the same set-aside

portion of ground truth text data.* Annotations create structure in text, which is valuable for

information processing because it permits category-specific downstream processing. This may

include, for one, interface displays with category-specific colors for ease of human content

analysis and, for another, software designs with category-specific string handling for gains in

system and application performance.

2.2 GATE Terminology

The GATE framework consists of two basic types of resources, processing resources (PRs) and

language resources (LRs). GATE PRs are implementations of algorithms that take as input text

files, i.e., LRs in GATE. A PR returns an annotated or otherwise processed text file, which is

also an LR. The term “application,” or “plug-in,” is used to refer to a PR, or two or more PRs,

arranged in a predetermined order to achieve a specific effect. GATE’s ANNIE system is a well-

known and widely used example of a GATE application, which can be adapted for use on

particular types of data.

2.3 GATE Developer GUI

Figure 2 shows the layout of the GATE Developer 7.1 GUI. Horizontally displayed across the

top is the (1) menu bar and the (2) icon bar just below it. For the project displayed, icons for

frequently used actions in GATE Developer include (3) Restore Application from File, (4) Load

ANNIE System, (5) New Language Resource, (6) New Processing Resource (PR), (7) New

Application, (8) Data Stores, (9) Manage CREOLE Plug-Ins, and (10) Annotation Differences.

Icons for actions 4–8 appear vertically in the Resources pane for every application, while those

for 3, 9 and 10, appearing horizontally in the icon bar, are project-specific.

*Human programmers of the system engine and human annotators of the ground truth follow identical guidelines.

 4

Figure 2. GATE Developer GUI.

A set of tabs are displayed, starting toward the center and proceeding from left to right, which

consist of the following system features and can be accessed by selecting a tab: Annotation Sets,

Annotations List, Annotations Stack, Co-Reference Editor, and the Text to be annotated. Note

that both the annotation set displayed in the Annotation pane and the text sentence displayed in

the Display pane correspond to the project’s active tabs, Annotation Sets and Text. The intent

here is to provide familiarization with the GATE Developer GUI for manipulation of actual

content and resources. For a detailed discussion of each of the tabs, consult the GATE manual

site.4

4GATE website. http://gate.ac.uk/sale/tao/ (accessed December 2012).

 TABS

 Display

 Pane
 Resources
 Pane

 4

 Annotation

 Pane

 7

 8

 6

 5

 1
 2

 9

10

 3

ANNOTATED
MATERIAL

COLOR CODED

TAGSET WITH
CHECKS ON
ACTIVE TAGS

http://gate.ac.uk/sale/tao/

 5

The example in figure 2 consists of the sentence, “Jane Rooney and Wayne Rooney owe Jan

Rooney $10.”* Note that strings ‘Jane,’ ‘Wayne,’ and ‘Jan’ have been annotated with tag

‘FirstPerson,’ and the string ‘$10’ with tag ‘Money,’ as indicated by highlighting in green and

blue, respectively.† When changes are saved, gazetteers or PRs that match list items to input

strings for annotation with tags ‘FirstPerson’ and ‘Money’ will be updated.

Reference to the GUI is made often throughout this report, particularly in the appendices. GUI

use for manual annotation and resource updating was detailed in previous paragraphs. Yet,

appendix A, for example, describes a stepwise process to automatically annotate a single file of

concatenated messages. For that, ANNIE automatic IE is run from the Resources pane on the

Text in the Display pane. Annotation set(s) of information-category-defined annotation types are

computed automatically by GATE. The sets and types can also be tailored to match features of a

specific task, text genre, topic domain, formatting style, or combinations thereof, as described in

section 3.

IE output displays as original input text, with GATE-computed annotation types displayed in the

GUI’s Annotation pane. Clicking on the checkbox to the left of a type causes its referring

expressions to be highlighted with the appropriate—unique to its category—color within the text.

3. GATE Developer Customization

3.1 GATE Interfaces

As mentioned in section 2, GATE’s GUI is versatile software, integral to GATE Developer,

which permits viewing of input and output, manual annotation, and resource adaptation. The

latter is only one of several GUI-accessible functionalities available for IE. When the PR

functions are ordered into an application, such as ANNIE, the resultant RB entity-centric IE

incorporates a Gazetteer-entry matching routine and a Java Annotation Pattern Engine (JAPE),

as discussed in section 3.4. These resources can be created and edited without programming

GATE Embedded, making the GUI an effective tool for quick text category mark-up by analysts.

When category tokens are known in advance, lists can be added in “batch” mode from the

command line. Regardless, at least one new list and one new grammar will effect domain capture

in GATE.

ANNIE is GATE’s flagship IE application with a pipeline consisting of the following ordered

PRs: (1) Orthomatcher /Orthographic Co-Reference, (2) NE Transducer, (3) POS Tagger, (4)

*Thakker, D.; Osman, T.; Lakin, P. GATE JAPE Grammar Tutorial v. 1.0., 2009. GATE Website. https://gate.ac.uk/sale

/thakker-jape-tutorial (accessed 11 March 2013).
†First names of PERson entities are annotated with the “FirstPerson” tag and expressions involving currency or other legal

tender are annotated with the “Money” tag.
‡Dr. Paula Matuszek summarized each of these GATE PRs, or algorithms, in the 2012 text mining presentation at

http://www.csc.villanova.edu/~matuszek/spring2012/GATEOverview2012.ppt.

https://gate.ac.uk/sale/thakker-jape-tutorial

 6

Sentence Splitter, (5) Gazetteer(s), (6) English Tokenizer, (7) Document Reset PR.
‡
 The

resources can be accessed via either the GATE GUI, as in figure 3 (left), a detail of the upper

frame of the Resources pane seen in figure 2, or the Command Line, shown in figure

3 (right). The lines in figure 3 link references to the same resource from different interfaces.

Figure 3. GUI and command line listings of ANNIE PRs.

3.2 Adapting Resources

Thus far in our work of developing SNEG-defined SYNCOIN truth data and a version of

ANNIE customized for SYNCOIN data entities, we have mastered few steps. Nevertheless, we

have discovered that these are quite robust and may be the sole adaptation techniques required

for the task. For this pilot exercise in tagging SYNCOIN data, the resources needed and created

consist of only Gazetteer lists and extensions using JAPE rules, effectively limiting GATE

customization to a mere two of the seven available ANNIE PRs. In section 3.4, JAPE rule format

and referencing framework are described. Future technical reports will examine the functionality

of the JAPE language as well as that of the remaining five PRs.

For SYNCOIN data, use of the Gazetteer PR consists of simple table look-up. Satisfying SNEG

for a GATE 7.1 installation involves modification of files, i.e., lists of names in a single person,

location, or organization category. Editing entails (1) specifying new list items in files designated

as person.lst, location.lst, and organization.lst and (2) updating the file named lists.def to point to

these files. But listing all possible entities may be difficult and may even result in ambiguity (see

section 3.3). In that case, JAPE rules, which will be explained in section 3.4, can be created for

the grammar. But while the use of Gazetteer lists is simple, the use of JAPE grammar rules is

complex. JAPE rules combine to create sets, or phases, in phase files, which, in main.jape,

 7

combine into multiphases to create grammars. Phases, multiphases, and grammars are discussed

further in section 3.4. Rules are one of GATE’s trademark adaptable resources, called by the IE

engine from within a grammatical system defined in main.jape.

After a GATE install, the gazetteers called from lists.def follow the path C:\Program

Files\GATE_Developer_7.1\plugins\ANNIE\resources\gazetteer and subdirectory, C:\Program

Files\GATE_Developer_7.1\plugins\ANNIE\resources \NE is the location of the pointer file,

main.jape.*

3.3 Ambiguity

Lexical ambiguity is a common challenge for automatic language processing and one that is

shared at the entity reference level by GATE ANNIE. An entity reference is an expression that

points to a single entity, or set of thereof, outside the text. Ambiguity occurs when one

expression string is an exact match with another string, with the latter constituting either an

unrelated linguistic constituent or an entirely different reference. The second string, then, can

point to an entirely “other” outside individual or collective entity. In computational terms, we

can imagine two strings input to a <string compare> function returning 1, which an automatic

understanding system sends in very different directions. For example, the expression “May” in

the text, “Dr. May recommends morphine,” references a person, while the same expression,

occurring elsewhere in the same text, “It was in May 2010 that he departed Belgrade,” references

a time frame. Unless programmed to recognize context, list-based IE systems are ill-equipped to

distinguish between expressions that look alike but refer differently.

3.4 JAPE Pattern Matching

ANNIE’s Gazetteers—basically lists themselves—are designed to identify string matches only,

to support tagging. It is beyond the scope of their design to resolve such ambiguity. It is for this

reason, among others, that GATE is equipped with PRs for pattern matching as well as string

matching. JAPE is the pattern-matching language for GATE. A JAPE rule has a <left-hand-side>

(LHS) condition, input string match to ordered text pattern, and a <right-hand-side> (RHS)

action that the system is programmed to take, when the condition is true.

As mentioned in section 3.2, JAPE grammar rules can be complex, and the file main.jape keeps

track of these rules with a listing out of the names of files containing a phase or set of related

rules. The rules are related because they treat a single linguistic category, which may manifest in

different ways, each requiring its own rule. For example, time reference format can change

depending on context, as with the formats, “two o’clock,” “2:00,” “2 p.m.,” and “1400.” Each

rendering warrants its own rule. The four rules, each handling a distinct format, would then

occupy space in the same file, named for the unifying linguistic category. In this case, if the

phase file were named times.jape, this name would have to appear among the phase filenames

*Note that the terms “JAPE transducer,” “Named Entity” or “NE Transducer,” “NE Tagger,” and “JAPE grammar” are

equivalent references.

 8

listed in main.jape for the patterns to be recognized and the instantiating strings to be

automatically annotated. Recall that phase files, created to accommodate a set of complementary

language categories in a corpus, constitute for GATE a grammar or multiphase. One is likely to

find computational linguists creating specialized grammars for annotation of information

relevant to specific domains, genres, registers, media, or combinations thereof.

Phases, considered in the abstract, are linguistic categories represented by sets of strings that

match a pattern. Conceptualized concretely as files, phases serve to structure related JAPE rules

to identify and tag instantiating strings. When JAPE text-pattern-based matching rules combine

in a file to create a phase, the phase file, say times.jape, consists of, generally, with possible

added information, a simple slot-filler template of the form

 Phase: Phase Category Time

Rule: Alphabetic-PCT-Type001

 Rule: NumberPunct-PCT-Type002

 Rule: AlphaNumeric-PCT-Type003

 Rule: Universal-PCT-Type004

...

 Rule: YetAnother-PCT-TypeNNN

Similarly, grammars or multiphases, when viewed abstractly, are sets of generally identifiable

language category types associated with well-defined, linguistically or otherwise, corpora. In

parallel fashion to the function of a phase file, a grammar, when conceptualized concretely as a

file, serves to structure the set of phase files created for a given corpus or task. The modular

organization permits, in serial runs of the IE engine, easy substitution of files, file groupings, and

file grouping versions. This flexibility facilitates not only more fine-grained comparative analysis

but also more complex and informative experimental design. When phase files combine to create a

GATE grammar, the main.jape pointer file follows this, very general, example template:

MultiPhase: The Corpus-010 Grammar

 Phases:

 times.jape

 persons.jape

 locations.jape

 money.jape

A simple rule in the JAPE language appears as figure 4. It instructs IE tagging to recognize U.S.

currency symbols, or dollar signs, “$.” Imagine similar rules recognizing Mongolian, Korean,

Ukrainian, or Thai currency symbols, i.e., tughrik, “₮ ,” won, “₩,” hryvnia, “₴,” and baht, “฿,”

respectively.

 9

Phase: Money

Input: Token
Options: control = applet

Rule: MoneyUSD

(

 {Token.string == "$"}

):money



:money.Money = {rule = "MoneyUSD"}

 *.jape FILENAME = ENTRY IN main.jape

 RESULTING ANNOTATION TYPE

 INPUT TEXT

 *.jape FILENAME = ENTRY IN main.jape

LHS

 RESULTING ANNOTATION TYPE

 INPUT TEXT

 *.jape FILENAME = ENTRY IN main.jape

RHS
 RESULTING ANNOTATION TYPE

 INPUT TEXT

Figure 4. A simple JAPE grammar rule.

Note that LHS and RHS are separated by the arrow symbol “” following standard JAPE rule

formatting practices. JAPE files are generally named for the phase category they process. The

phase “Money” here shares its name, in conventional fashion, with the JAPE file itself, the name

of which occurs after the colon, as the final element in the rule’s LHS. Entered before ANNIE

runs into main.jape, filename money.jape passes control to the eponymous file for iterative rule-

firing on single-symbol input, as defined by the <Token> type-filled <Input> slot on the file’s

second line.

The <Options> slot contains system details that vary depending on computing environment. Slot

<Rule> fills with a rule name appropriate to a specific phase variant; thus rule <MoneyUSD>

aptly references a “Money” phase rule for money type “U.S. Dollar.” Similar names would

similarly be applied to rules handling relevant types (e.g., <MoneyMONT> for type “Mongolian

Tugrik,” <MoneyKORW> for type “Korean Won,” <MoneyUKRH> for “Ukrainian Hryvnia,”

and <MoneyTAIB> for “Thai Baht”).

The LHS, in the figure, starts on the fifth line with an open parenthesis. A pair of braces on the

sixth line contains the condition on which the action depends. In this case, that condition is that

the input string must be a token and the token must be a dollar sign. After the closing

parenthesis, there is a colon, indicating that the condition can be found in the file, the name of

which follows the colon.

If the input fails to meet the condition, control passes to conditions in subsequent phase rules for

testing. However, if the input meets the condition, control passes to the RHS, as indicated by the

arrow, and the specific action described within the braces. In this case, the action is to set the

variable rule to the value “MoneyUSD.” Variable instantiation triggers—as indicated by the

 RULE NAME

 10

equal sign—the action of annotation in the manner indicated. In this case, rule licenses input

annotation with phase tag “Money,” as defined by its rules in a file named “money.” Phase tag

names and filenames are indicated, respectively, by prefixes and suffixes of strings that follow

initial RHS colons and precede triggering equal signs.

From the analyst’s perspective, ANNIE is returning input text, now with category tags inserted

around instantiating strings of the ‘Money’ phase category. Moreover, GATE is adding the

relevant phase annotation type, causing it to appear among the Annotation Set types in the

Annotation Pane of the output file display. See figure 2. Output can also be formatted such that

begin and end tag positions are indicated in offset files (see section 3.5). JAPE files are placed in

a GATE directory with relative path: ...\plugins\ANNIE\resources\NE.

Recall that both Gazetteer lists and JAPE grammar rules, along with their pointer files, are

loaded automatically by GATE only if they appear in the previously referenced directories.

Creating lists and rules is still an active area of development for preparing ground truth text data

to support the evaluation of IE system performance on the SYNCOIN data. The intent here is to

show why these resources are necessary to give unform resource locaters for the technology, and,

thereby, to provide foundational background for ongoing and new implementations of GATE.

The JAPE overview in the 2012 University of Sheffield GATE training course and the line-by-

line explication of JAPE rules, detailed in a 2009 tutorial, are excellent options for further study.*

3.5 Annotation Output

When conditions for the system to perform annotating actions are satisfied, the system annotates

in one of two ways. It can perform in-line annotation, whereby the category tags assigned by the

rule are inserted into the original text file around the matching input string, and it can perform

offset annotation. If parameters for the latter approach are set, the system creates a file, which

accompanies the analyzed material. Annotation is accomplished in three steps. The system (1)

calculates the text file locations for a matching string’s bounding characters, (2) associates them

with the tag category assigned by the rule, and (3) registers the paired <<location references>

and <tag category>> on a new line in the accompanying offset file, so called because, unlike the

in-line mode in which tags are adjacent to their material, in offset mode, tags are set off or apart

from the material. Offset mode permits preservation of the integrity of the original for runtime

processing, downstream manipulation, or archival purposes.

GATE implements offset mode within the Datastores PR, which is called when a session of

annotation is concluded and work is to be saved. An annotated corpus quickly becomes fairly

large. Datastores permits loading of the unannotated corpus prior to processing, with negligible

*Module 3 of the course at https://gate.ac.uk/wiki/TrainingCourseJune2012/ introduces JAPE and can be found at

http://gate.ac.uk/sale/talks/gate-course-jun12/track-1/module-3-jape/module-3-jape.pdf. A tutorial by D. Thakker, T. Osman, and

P. Lakin from 2009 appears at https://gate.ac.uk/sale/thakker-jape-tutorial. There is also a JAPE repository at http://gate.ac.uk

/jape-repository/.

https://gate.ac.uk/wiki/TrainingCourseJune2012/
http://gate.ac.uk/sale/talks/gate-course-jun12/track-1/module-3-jape/module-3-jape.pdf
https://gate.ac.uk/sale/thakker-jape-tutorial
http://gate.ac.uk/wiki/jape-repository/

 11

overhead and space-saving storage of annotations as pointers from character positions within the

corpus. Appendix B gives details for doing this. Automatic annotation for this project was done

by GATE Developer 7.1 on a Windows 7 machine. At the start of the project in January 2013,

7.1 was the most recent version. The discussion should still be relevant if/when a later release

becomes available

4. Machine Learning Resources

GATE also includes a plug-in for ML,* which approaches the annotation task in a manner quite

different from that used in ANNIE. Rather than manually identify patterns and create rules for

input matching, programs implementing ML techniques automatically uncover category-

predicting patterns from minimally tagged text data or sets of seed elements. The predictive

patterns are known as language models and created by a process of training from fairly large text

corpora similar in domain, genre, and register.

When it comes to data, the concept of “enough” is relative; generally, the more the merrier.

Factors such as structural complexity of extraction category, homogeneity of training material, as

well as technique selected for experimentation affect this determination. One accepted practice is

that in order to know how well ML models are performing, corpora are split into equal parts such

that one part is set aside for testing while the rest are used to train the model. Serial selection of

partitions with score averaging is called X-fold Cross Validation, X being the number of

partitions created.

A design such as this permits a view into the effects of known data features, possibly spurious or

idiosyncratic, present in one or more of the partitions. More important, by averaging scores

obtained by models weak and strong, it also prevents anyone (e.g., one trained on corrupted data)

from inaccurately characterizing the efficacy of the approach itself for the task.

ML automates the process of predicting where information category mentions occur in text with

language models, which associates an information category with pattern-based locations where

mentions have high likelihood of occurrence in existing data. In GATE, this means using manual

annotation of different categories for training or seed data so that models reflect patterning of

intercategory relations as well as likelihoods of occurrence.

Although currently state of the art in IE, ML techniques have yet to be tested for our SYNCOIN

ground truth annotation effort. Once we have determined the effectiveness of our adaptation of

the two resources described in this report, we can move on to experimentation using ML

techniques. Precision, Recall, and F-Measure scores of SYNCOIN-adapted GATE engines on

SYNCOIN data, covering various information categories, their definitions, and combinations

*GATE’s ML plug-in operates from the directory Learning rather than Machine Learning; the latter is obsolete.

 12

thereof, will constitute a baseline for follow-on ML experiments. This type of expanded

experimentation is inevitable given that GATE includes the University of Waikato (New

Zealand) Environment for Knowledge Analysis (WEKA), which consists of more than 150

algorithms for data mining tasks. GATE Developer has ML in the following directory:

C:\Program Files\GATE_Developer_7.1\plugins\Learning.

5. Conclusions and Future Work

This report has introduced GATE, a versatile text annotation and IE environment, which

comprises many more functionalities than those described here. GATE has subsumed open

source tools as well as proprietary technologies and made them, be they PR or LR, available

within its accessible interface. Routines are wrapped such that they can be selected for inclusion

in a text processing pipeline. Thus, there are many more features of GATE to explore and with

which to experiment, including remaining ANNIE resources, ML techniques, and incorporated

community-developed technologies, among others.

The two featured ANNIE resources, the Gazetteers and the JAPE grammar language, have

provided the SYNCOIN team a means for gauging the extent to which existing tools, applied to

U.S. Army data, can be adapted to provide the metadata required for sophisticated real-time

processing to support analyst and leadership decision-making, the overarching goal of this effort.

We want also to extol the virtues of GATE Developer’s Datastores facility. Despite a dearth of

documentation, it achieved powerful economies of space, time, and complexity with offset

pointers to tag locations in text.

In support of the SYNCOIN tagging project, we explored traditional annotation with GATE

ANNIE, a fairly shallow, entity-centric, RB IE engine, and we intend to expand our purview

with follow-on study of Ontology-Based Information Extraction (OBIE), also known as semantic

annotation.

ANNIE uses a flat data structure, that is, information categories are characterized only by their

text features and context, or their inclusion in a list, rather than their intra-class relationships. By

contrast, semantic annotation uses a hierarchical or graphical data structure, which permits a

richer representation, capable of expressing inter-class relationships in terms of structure and

type. GATE’s Ontology plug-in supports OBIE by leveraging such knowledge for understanding

purposes.

These include, among others, (1) teasing apart similar meanings, as with learn/know, using

lexical aspect features; (2) disambiguating unrelated concept/reference senses of homonyms or

near-homonyms such as exact “precise”/exact “command” or mean “poor”/mean “ill-tempered”

or still “unmoving”/still “up to present”/still “distiller” or even segments of name referents such

 13

as Dr. in “Dr. Betty Fuchs”/“501 Winters Dr.” with one a title and the other a roadway or MD in

“Marcus Dolby, MD”/“Chesapeake Beach, MD,” the former indicating a profession and the

latter a geographical jurisdiction.

 14

6. Bibliography

Chinchor, N. MUC-7 Named Entity Task Definition; version 3.5.;1997. http://www.itl.nist.gov

/iaui /89.02/related _projects/muc/proceedings/ne_task.html (accessed 17 September 1997).

Cunningham, H.; Maynard, D.; Bontcheva, K.; Tablan, V.; Aswani, N.; Roberts, I.; Gorrell, G.;

Funk, A.; Roberts, A.; Damljanovic, D.; Heitz, T.; Greenwood, M.; Saggion, H.; Petrak, J.;

Li, Y.; Peters, W. Text Processing with GATE; Version 6. Department of Computer

Science: University of Sheffield (UK), 15 April 2011; ISBN 0956599311.

Cunningham, H.; Bontcheva, K. Named Entity Recognition, GATE website. http://gate.ac.uk

/sale/talks/ne-tutorial.ppt (accessed 10 May 2013).

Cunningham, H.; Maynard, D.; Bontcheva K.; Tablan V. GATE: An Architecture for

Development of Robust HLT Applications. Proceedings of 40th Annual Meeting of

Association for Computational Linguistics (ACL), Philadelphia, PA, July 2002; pp 168–175.

Cunningham, H.; Wilks, Y.; Gaizauskas, R. GATE – A General Architecture for Text

Engineering. Proceedings of the 16th Conference on Computational Linguistics (COLING-

96), Copenhagen, August 1996; pp 1057–1060.

GATE Embedded API Track 11, Module 5, Fifth GATE Training Course, Slide 7 of 61,

University of Sheffield, UK, June 2012. https://gate.ac.uk/sale/talks/gate-course-may-10

/track-2/module-5-embedded/module-5-slides.pdf (accessed 15 July 2013).

GATE Website. http://gate.ac.uk/download/ (accessed 15 July 2013).

GATE Website. GATE Training Course Module 3: Introduction to JAPE, University of

Sheffield, UK, June 2012. https://gate.ac.uk/wiki/TrainingCourseJune2012/; JAPE Website.

http://gate.ac.uk/sale/talks/gate-course-jun12/track-1/module-3-jape/module-3-jape.pdf

(accessed 1 May 2013).

Graham, J.; Hall, D.; Rimland, J. A Synthetic Dataset for Evaluating Soft and Hard Fusion

Algorithms, 2011. SPIE Website. http://spiedigitallibrary.org/data/Conferences/SPIEP

/62118/80620F_1.pdf (accessed 2 April 2013).

Graham, J.; Rimland, J.; Hall, D. SYNCOIN: A Synthetic Data Set for Evaluating Hard and Soft

Fusion Systems. Proceedings of the 14th International Conference on Information Fusion,

Chicago, IL, 2011.

Matuszek, P. CSC 9010: Text Mining Applications Fall 2012: Introduction to GATE.

http://www.csc.villanova.edu/~matuszek/spring2012 /GATEOverview2012.ppt (accessed 18

May 2013).

http://www.itl.nist.gov/iaui/89.02/related%20_projects/muc/proceedings/ne_task.html
http://gate.ac.uk/sale/talks/ne-tutorial.ppt
https://gate.ac.uk/sale/talks/gate-course-may-10/track-2/module-5-embedded/module-5-slides.pdf
https://gate.ac.uk/sale/talks/gate-course-may-10/track-2/module-5-embedded/module-5-slides.pdf
http://gate.ac.uk/download/
https://gate.ac.uk/wiki/TrainingCourseJune2012/
http://gate.ac.uk/sale/talks/gate-course-jun12/track-1/module-3-jape/module-3-jape.pdf
http://spiedigitallibrary.org/data/Conferences/SPIEP/62118/80620F_1.pdf
http://spiedigitallibrary.org/data/Conferences/SPIEP/62118/80620F_1.pdf
http://www.csc.villanova.edu/~matuszek/spring2012%20/GATEOverview2012.ppt

 15

Less Commonly Taught Languages Project Team, Simple Named Entity Guidelines, Less

Commonly Taught Languages, v.6.5, 28 March 2006. Presented at Linguistic Data

Consortium, Data Linguistic Consortium, Philadelphia, PA, 2006.

Thakker, D.; Osman, T.; Lakin, P. GATE JAPE Grammar Tutorial v. 1.0., 2009. GATE Website.

https://gate.ac.uk/sale/thakker-jape-tutorial (accessed 11 March 2013).

https://gate.ac.uk/sale/thakker-jape-tutorial

 16

INTENTIONALLY LEFT BLANK.

 17

Appendix A. Running A Nearly New Information Extraction (ANNIE)

Extraction on a File of 595 Concatenated SYNCOIN Messages

 18

The following figure results from applying nearly new information extraction (ANNIE) in GATE

Developer to all 595 SYNCOIN messages concatenated into in a single, very long document.

Note that only the beginning of text output is displayed. Messages are separated by date in a

<mm/dd/yy> format and highlighted in red; location(s) of entity(s) has blue highlights. Once

GATE Developer is started, the steps for output include the following:

(1) Load ANNIE system with defaults from the tool bar.

(2) Right-click Language Resources: New -> GATE Document -> SYNCOINall.xml; open.

(3) Under Language Resources, right-click SYNCOINall.xml_00; New Corpus with this

Document.

(4) Under Language Resources, double-click SYNCOINall.xml_000.

(5) Under Applications, double-click ANNIE. Run this application.

(6) Left-click on SYNCOINall.xml_000 tab.

(7) Left-click Annotation Sets tab.

(8) Check annotation type, e.g., Location.

 19

Appendix B. Running A Nearly New Information Extraction (ANNIE)

Extraction on a Corpus of SYNCOIN Messages

 20

A General Architecture for Text Engineering (GATE) Datastore corpus can be used for showing

individual messages. Taking the steps in the following example results in the formatting for

display of 85 messages from the 595-message SYNCOIN corpus; the first is shown in the

following figure. Date(s) is highlighted in red and location(s) in blue. Once GATE Developer 7.1

(or >) is started, the steps for output include:

(1) Right-Click Language Resources:

New => GATE Corpus => Name: SYNCOIN1-85_07012013

(2) Right-Click Datastores:

Create Datastore =>

SerialDataStore: Java-Serialized File-Based storage =>

SYNCOIN1-85DataStore07012013 => OPEN

(3) Language Resources:

Right-click SYNCOIN1-8507012013 =>

Populate => <name of directory with the 85 messages>

Open.

(4) Load nearly new information extraction (ANNIE) system with defaults from the tool bar.

(5) Under Applications, double-click ANNIE; run this application.

(6) Double-click on any of the 85 messages.

(7) Left-click Annotation Sets tab.

(8) Check annotation type, e.g., Location.

 21

 22

 1 DEFENSE TECHNICAL

 (PDF) INFORMATION CTR

 DTIC OCA

 2 DIRECTOR

 (PDF) US ARMY RESEARCH LAB

 RDRL CIO LL

 IMAL HRA MAIL & RECORDS MGMT

 1 GOVT PRINTG OFC

 (PDF) A MALHOTRA

 2 DIR USARL

 (PDF) RDRL CII C

 A NEIDERER

 RDRL CII T

 M VANNI

