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FOREWORD  
 

The constitutive modeling of asphalt concrete behavior is a topic that has gained national 
importance in the past few years. Such modeling efforts have the explicit goal of providing for 
better design and analysis of asphalt pavement structures to resist failure and/or better predict 
when failure will occur. These efforts should thus provide the tools necessary to better utilize 
available resources and/or to gain maximum results from limited resources. One such modeling 
effort that encompasses the two main forms of pavement distress, cracking and permanent 
deformation, is the multiaxial viscoelastoplastic continuum damage (MVEPCD) model and finite 
element package, finite element program (FEP++). The MVEPCD model combines elements of 
viscoelasticity, continuum damage mechanics, and viscoplasticity to model the material behavior, 
and FEP++ is used to model the interaction of material and structure.   
  
The MVEPCD model has been characterized and verified using asphalt concrete mixtures tested 
at the Federal Highway Administration’s Accelerated Load Facility in McLean, VA. A novel 
approach to modeling this process is suggested and verified in this work. In light of practical 
concerns related to constant rate tests using the Asphalt Mixture Performance Tester and due to 
the complexities of performing true time-dependent analysis of cyclic fatigue tests, a refined and 
simplified viscoelastoplastic continuum damage model is presented. A robust FEP++ has been 
developed to account for the effects of loading and boundary conditions. Analysis can be 
performed in either two-dimensional or three-dimensional configurations. The resulting 
predictions are deemed reasonable and, thus, a reliable simulation of pavement response. 
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EXECUTIVE SUMMARY 

This report highlights findings from the FHWA DTFH61-05-H-00019 project, which focused on 
the development of the multiaxial viscoelastoplastic continuum damage (MVEPCD) model for 
asphalt concrete in both compression and tension. The MVEPCD model and finite element 
package (FEP++) have been developed for this purpose. The MVEPCD model combines 
elements of viscoelasticity, continuum damage mechanics, and viscoplasticity to model the 
material behavior. FEP++ is used to model the interaction of material and structure.  
 
An introduction that outlines the research objectives and scope of the project is given in 
chapter 1 of this report. Chapter 2 provides a practical review of the underlying theories for the 
MVEPCD material model. Particular attention is paid to the concept of continuum damage 
mechanics and their implementation with viscoelastic materials. In addition, methodologies used 
to characterize the MVEPCD model are outlined in chapter 2. Details regarding specimen 
fabrication and testing protocols as well as background for the materials tested are in chapter 3. 
 
Experimental results are categorized by loading direction, tension, or compression in chapter 4 
and chapter 5, respectively. Specific comparisons of the effects of direction of loading are given 
in subsections 5.2.2 and 5.2.4. Each chapter provides the procedure for characterizing the 
viscoelastoplastic continuum damage (VEPCD), beginning with the linear viscoelastic 
characterization, proceeding to the viscoelastic damage characterization and viscoplastic 
characterization, and ending with the validation of the models. In addition, there is some 
discussion about the engineering properties of the materials in compression and tension, as well 
as verification of the time-temperature superposition (t-TS) principle with growing damage. 
Chapter 4 discusses the use of the VEPCD model for fatigue predictions. Because the rutting 
distress, a permanent deformation phenomenon, is related primarily to the compressive behavior 
of asphalt concrete, chapter 5 focuses on the viscoplastic behavior of the material in compression.  
 
Chapter 6 presents the research efforts to enhance the finite element program with the 
viscoelastic continuum damage (VECD) model and the viscoelastic continuum damage model 
included in finite element package (VECD-FEP++). The resulting program is then used in 
chapter 7 to perform the three-dimensional (3D) finite element analysis to study the effects of 
temperature, material type, and vehicle speed on pavement responses. Chapter 8 summarizes the 
conclusions from both the experimental and computational work for this project. The future 
direction of the research at hand is provided at the end of chapter 8 as well.
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CHAPTER 1. INTRODUCTION 

1.1. PROBLEM STATEMENT 

Asphalt concrete pavement, one of the largest infrastructure components in the United States, is a 
complex system that involves multiple layers of different materials, various combinations of 
irregular traffic loading, and various environmental conditions. Therefore, a realistic prediction 
of the long-term service life of asphalt pavements is one of the most challenging tasks for 
pavement engineers. The performance of asphalt concrete pavements is closely related to the 
performance of asphalt concrete. In order to predict the performance of asphalt concrete with 
reasonable accuracy, a better understanding of its deformation behavior under realistic conditions 
is urgently needed. 
 
Asphalt concrete is a viscoelastic particulate composite that consists of aggregate particles and 
an asphalt binder matrix. When the asphalt-aggregate composite is subjected to repeated traffic 
loading at low temperatures, distributed microstructural damage occurs primarily in the forms of 
microcrack nucleation and growth due to the embrittled binder and high-stress concentrations 
along the aggregate-binder interfaces. Therefore, the role of the binder and the variables that 
influence the properties of the binder (e.g., aging, adhesion, etc.) become important to the study 
of this type of damage. At high temperatures, the asphalt binder becomes too soft to carry the 
load, and thus, the principal type of damage is permanent deformation due to volume change  
(i.e., densification) and rearrangement of aggregate particles. Therefore, a reliable performance 
prediction model should account for the effects of various constitutive factors that affect the 
aggregate-binder and aggregate-aggregate interactions. 
 
With the goal of accurate pavement performance evaluation, researchers at North Carolina State 
University (NCSU) have been developing advanced models for asphalt concrete under complex 
loading conditions. Over the past decade, they have successfully developed material models that 
can accurately capture various critical phenomena such as microcrack-induced damage, which is 
critical in fatigue modeling, strain-rate temperature interdependence, and viscoplastic flow, 
which is critical for high-temperature modeling. The resulting model is termed the viscoelastic 
continuum damage (VEPCD) model. While the initial development of the VEPCD model 
focused on uniaxial tension behavior, the accurate performance prediction of an asphalt mixture 
in a pavement structure requires a multidimensional model. 
 
To predict the performance of real pavement structures, it is also important to incorporate the 
material model in a pavement model that considers the vehicle and climatic loads as well as the 
boundary conditions. The finite element method is best suited for this purpose due to the 
nonlinear material behavior. The group has an in-house finite element code (FEP++) which can 
analyze general nonlinear dynamical systems. FEP++ is a research code and requires several 
modifications in order to be used for routine pavement modeling.  
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1.2. OBJECTIVES 

The long-term goal of the asphalt pavement modeling research at NCSU is to develop a 
mechanistic asphalt pavement performance prediction methodology that can be used by State 
highway agencies. This research focuses on the following objectives to accomplish this goal:  
 

1. To develop a multiaxial viscoelastoplastic continuum damage (MVEPCD) model for 
asphalt concrete in both compression and tension. 

 
2. To enhance FEP++ so that nonlinear analysis of pavements can be easily conducted. 

1.3. RESEARCH SCOPE 

This research includes four of the mixtures used in the Federal Highway Administration’s 
(FHWA) Accelerated Load Facility (ALF) current study that is funded through the pooled-fund 
study, TPF-5(019). Three of the mixtures contain asphalt binders modified with polymeric 
additives; the remaining mixture contains an unmodified asphalt binder. Material behavior under 
both tension and compression is addressed in this research. For the current research in multiaxial 
model development, only the unmodified mixture is being used. 
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CHAPTER 2. CONSTITUTIVE MODELING WITH A MULTIAXIAL 
VISCOELASTOPLASTIC CONTINUUM DAMAGE MODEL 

2.1. HISTORICAL PERSPECTIVE 

The foundation for the work presented in this report was laid by researchers at Texas A&M 
University almost two decades ago.(1) These researchers successfully applied Schapery’s 
nonlinear viscoelastic constitutive theory for materials with distributed damage to describe the 
behavior of sand asphalt under controlled strain cyclic loading. Later research shows that this 
theory can also describe the behavior of asphalt concrete under both controlled stress and 
controlled strain cyclic loading.(2–4) Later research shows that the damage characteristics of a 
material are independent of the mode of loading and can be determined using simpler tests.(5) 
Further, verification of the t-TS principle at high levels of damage is an equally significant 
discovery.(6) These two findings significantly reduce the required testing protocol while 
simultaneously extending the realm of application for the model. Work by Chehab et al. utilizes 
Schapery’s theory, along with strain decomposition, to account for both viscoelastic and 
viscoplastic strains. (See references 7 through 11.) The most recent work applies this theory to 
mixtures tested at the FHWA ALF in Mclean, VA,(12) and successfully demonstrates the 
application of the modeling principles to both modified and unmodified asphalt concrete 
mixtures. This work is the basis for the current research. 

2.2. MODELING APPROACH 

The MVEPCD model is a theoretical and phenomenological extension of the uniaxial VEPCD 
model presented in previous work and briefly reviewed here. These modeling approaches share 
many of the same principles, such as linear viscoelasticity, elastic-viscoelastic correspondence 
principle, continuum damage, and strain-hardening plasticity. A complete review of these 
principles in the uniaxial sense is given elsewhere, and a brief review is given in the following 
sections.(13) For a more rigorous treatment of the subject, the reader is referred to previous work  
and to the work of Schapery for linear viscoelasticity and continuum damage mechanics. (See 
references 1 through 10.) For a detailed review of strain-hardening viscoplasticity, the reader is 
directed to the work of others.(7,10,14)  

 
Linear viscoelastic materials exhibit time- and temperature-dependent properties that make them 
dependent upon the history of loading, unlike elastic materials. This issue complicates the 
analysis since many continuum theories have been developed assuming an elastic material. In 
this report, the elastic-viscoelastic correspondence principle is used so that these elastic theories 
can be applied to the viscoelastic asphalt concrete mixtures. The correspondence principle uses 
pseudo strains, a quantity calculated from the actual time-dependent strains, in place of the actual 
strains. It is a general theory in so much that for purely elastic materials, the pseudo strains may 
be equal to the physical strains. Many damage theories exist, and in this report Schapery’s theory 
based on energy principles is used. For this theory, consideration is given for both the time-
dependent nature of energy availability as well as the time dependence of damage resistance. 
These arguments are considered within a thermodynamic framework. Finally, strain-hardening 
plasticity is found to be simple to model and commonly observed viscoplastic phenomenon.  
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A well-known assumption, founded in the theory of plasticity, is that total strain can be 
decomposed into elastic and plastic strains. Likewise, total strain can be decomposed into elastic 
strain, plastic strain, and creep strain, according to the theory of viscoplasticity, to account for 
the rate-dependent plastic strain of materials, as shown equation 1. In some studies that involve 
such rate-dependent materials, the rate-independent plastic strain and the rate-dependent creep 
strain are defined as viscoplastic strain because it is difficult to distinguish the plastic 
deformation from creep deformation. The theoretical background for the viscoplastic strain 
concept was first discussed by Perzyna, and since then more complicated models have been 
developed to explain the behavior of a material due to plasticity-creep interaction.(15) 

 total e p c e vp
ij ij ij ij ij ijε ε ε ε ε ε= + + = +  (1) 

Where: 
e
ijε  =  Elastic strain. 
p

ijε   =  Plastic strain. 
c
ijε  =  Creep strain.  
vp
ijε  =  Viscoplastic strain. 

 
From a similar perspective, Schapery suggests that total strain may be separated into several 
components, such as elastic, viscoelastic, and viscoplastic strains.(10) For the MVEPCD model, 
elastic, linear viscoelastic, and strains due to microcracking damage are combined into a single 
term, and plastic and viscoplastic strains are combined into another, as shown in equation 2.  

 total ve vp
ij ij ijε ε ε= +  (2) 

Where: 
ve
ijε  =  Elastic plus linear viscoelastic strain due to damage.  
vp
ijε  =  Viscoplastic strain. 

2.2.1. Linear Viscoelasticity 

Linear viscoelastic (LVE) materials exhibit time- and temperature-dependent behavior—the 
current response is dependent on both the current input and all past input (i.e., the input history). 
By contrast, the response of an elastic material is only dependent on the current input. 
Constitutive relationships for LVE materials are typically expressed in the convolution integral 
form, as follows: 

 ( )
0

t dE t d
d

εσ τ τ
τ

= −∫  (3) 

 

 ( )
0

t dD t d
d
σε τ τ
τ

= −∫  (4) 
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Where: 
E(t) and D(t) are the relaxation modulus and creep compliance, respectively. In this report, the 
analytical forms for these functions are given by the common Prony series formulation shown in 
equation 5 and equation 6. Note that the characterization of LVE behavior is undertaken by 
performing temperature and frequency sweep tests which are then processed to obtain the 
coefficients for these functions.(13)  

 ( )
1

i
tm

i
i

E t E E e
ρ

−

∞
=

= + ∑  (5) 

 ( )
1

1 j
n t

g j
j

D t D D e τ
−

=

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

∑  (6) 
 
2.2.1.1. Linear Viscoelastic Interconversion 

The unit response functions presented in equation 3 and equation 4 are often measured in the 
frequency domain using the complex modulus test because it is often difficult to obtain 
measurements in the time domain due to limitations of the testing machine’s capacity for testing 
time. The complex modulus provides the constitutive relationship between the stress and strain 
amplitudes of a material loaded in a steady-state sinusoidal manner. Then, the storage modulus 
can be determined from the complex modulus and converted to a time-dependent property, such 
as E(t) and D(t), according to the theory of linear viscoelasticity. When the storage modulus is 
expressed in terms of reduced angular frequency, Rω , as shown in equation 7, it can be expressed 
using the Prony series representation given in equation 8.(16,17) 

 ( ) ( ) ( )( )*' *sinR R RE Eω ω φ ω=  (7) 

 ( )
2

2 2
1

'
1

m
R i i

R
i R i

EE E ω ρω
ω ρ∞

=

= +
+∑  (8) 

Where: 
E∞  =  Elastic modulus. 

Rω  =  Angular frequency (=2π fR Δ t). 
Δ t =  Time lag between stress and strain. 
Ei =  Modulus of ith Maxwell element (fitting coefficient). 

iρ  =  Relaxation time (fitting coefficient). 
 
The coefficients determined from this process are then used with equation 5 to find the relaxation 
modulus. Using the theory of viscoelasticity, the exact relationship between the creep 
compliance and relaxation modulus is given by equation 9. 
 

 ( ) ( )
0

1
t dD

E t d
d

τ
τ τ

τ
− =∫  (9) 
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If the creep compliance, written in terms of the Prony representation (equation 10), is substituted 
into equation 9 along with equation 5 and simplified, then the result can be expressed as a linear 
algebraic system, shown as equation 11. The coefficients {D} are solved by any proper 
numerical method. 

 
( )

1

1 j
n t

g j
j

D t D D e τ
−

=

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

∑
 

 (10) 
 

 [ ]{ } [ ]A D B=  (11) 

 
Where: 

 
[ ]

1 1
1j jm

t ttM N
m m

j m m j

EA e e E eτ τρρ
ρ τ

−− −

∞
= =

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟= − + −

⎜ ⎟ ⎜ ⎟−⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ ∑

 (12) 
 

 { } jD D=  (13) 

 

 

[ ]
1

1

11 m

tN

mN
m

m
m

B E E e
E E

ρ
−

∞
=

∞
=

⎛ ⎞
= − +⎜ ⎟⎜ ⎟

⎝ ⎠+
∑

∑  (14) 
 
Once the coefficients Dj are determined, they are substituted into equation 10 to find the creep 
compliance.  
 
2.2.1.2. Linear Viscoelastic Characterization Methodology 

Numerous research efforts by the authors have led to a methodology for assessing and analyzing 
LVE properties through the dynamic modulus. Explicit details of the experimental method are 
given in subsection 3.4.1; however, it should be known that the test applies cyclic sinusoidal 
loading at several combinations of frequency and temperature either with or without confining 
pressure. Load and axial deformations measured at four locations separated by 90-degree 
intervals are recorded for each combination of frequency and temperature. From these 
measurements, stresses and strains are calculated based on the specimen area and gauge length of 
the deformation measurements, respectively. The analysis procedure is the same for both 
confined and unconfined tests and is given in detail elsewhere.(13,18)  
 
Asphalt concrete in the LVE range is known to be thermorheologically simple (TRS) and, as 
such, the effects of time and temperature can be combined into a joint parameter, reduced 
time/frequency, through the time-temperature shift factor (aT) using equation 15.  

 R Tf f a= ×  (15) 
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In practical terms, this behavior allows for the horizontal shifting of the processed data to form a 
single curve, the mastercurve, for describing the constitutive behavior of asphalt concrete. The 
amount of horizontal shift is known as the t-TS shift factor, and the relationship between this 
factor and temperature is known as the t-TS shift factor function. When combined with the 
mastercurve, these two functions allow for the prediction of the LVE behavior over a wide range 
of conditions. The process is shown schematically in figure 1 through figure 3.  

2.2.2. Correspondence Principle 

The damage theory used in this research, which was originally developed for elastic materials, is 
generalized for viscoelastic materials using the elastic-viscoelastic correspondence principle.(8) In 
short, this principle states that viscoelastic problems can be solved with elastic solutions when 
physical strains are replaced by pseudo strains.  

 
( )

0

1 t
R

R

dE t d
E d

εε τ τ
τ

= −∫  (16) 

Where: 
ER is a particular reference modulus, typically taken as one. Using pseudo strain in place of 
physical strain, the uniaxial constitutive relationship presented in equation 3 can be rewritten as 
follows: 

 R
REσ ε=  (17) 

As equation 17 shows, for the uniaxial condition, a form corresponding to that of a linear elastic 
material (Hooke’s Law) is taken when strains are replaced by pseudo strains. Additional 
theoretical details of this concept can be found elsewhere.(8,19,20) In a practical sense, pseudo 
strains are simply the LVE stress response to a particular strain input. The most important effect 
of pseudo strains is seen when plotting with stress, as the time effects are removed from the 
resulting graph. This property allows the direct quantification of damage independent of any time 
effects. The results of two typical monotonic tests are presented in figure 4 and figure 5 in both 
stress strain space and stress-pseudo strain space. The behavior during initial loading is shown as 
an inset in these figures. In stress-strain space, as seen in figure 4, nonlinearity appears in the 
initial stage of loading, which might suggest that damage commences from the outset. However, 
the nonlinearity in this zone is related only to the time effects of the material. When these time 
effects are removed, as seen in figure 5, it is clear that damage does not commence at the outset 
of loading and does not begin until the stress level reaches approximately 500 kPa. 
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Figure 1. Graph. Schematic representation of dynamic modulus shifting process with 

unshifted data. 
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Figure 2. Graph. Schematic representation of dynamic modulus shifting process with 

shifted data. 
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Figure 3. Graph. Schematic representation of dynamic modulus shifting process with  

time-temperature shift factor. 
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Figure 4. Graph. Constant crosshead test results in stress-strain space. 
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Figure 5. Graph. Constant crosshead test results in stress-pseudo strain space. 

2.2.3. Continuum Damage 

On the simplest level, continuum damage mechanics considers a damaged body with some 
stiffness as an undamaged body with reduced stiffness. Continuum damage theories thus attempt 
to quantify two values: damage and effective stiffness. Further, these theories ignore specific 
microscale behaviors and instead characterize a material using macroscale observations (i.e., the 
net effect of microstructural changes on observable properties). The most convenient method to 
assess the effective stiffness in the macro sense is the instantaneous secant modulus. On the other 
hand, damage is oftentimes more difficult to quantify and generally relies on macroscale 
measurements combined with rigorous theoretical considerations. For the model at hand, 
Schapery’s work potential theory, based on thermodynamic principles, is appropriate for the 
purpose of quantifying damage. Within Schapery’s theory, damage is quantified by an internal 
state variable, S, that accounts for microstructural changes in the material. (See references 8 
through 11.) 

2.2.4. Viscoelastic Continuum Damage Theory 

The uniaxial viscoelastic continuum damage (UVECD) model combines elements from the 
preceding sections to arrive at the constitutive relationship. From continuum damage, the 
stiffness reduction is defined by the pseudo secant modulus (pseudo stiffness). This quantity is 
typically normalized for specimen-to-specimen variability by the factor I and denoted as C. 

 RC
I

σ
ε

=
×  (18) 

Initial Pseudo    
Stiffness 
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The relationship between damage, S, and the normalized pseudo secant modulus, C, is known as 
the damage characteristic relationship and is a material function independent of loading 
conditions.(19) With these considerations, the nonlinear constitutive relationships used for this 
research are given by equation 19 for stresses and equation 20 for strains. 

 ( ) RC Sσ ε=  (19) 

 
( )

( )
0

ve R

d
C S

E D t d
d

ξ

σ

ε τ τ
τ

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠= −∫  (20) 

In comparing equation 20 to equation 4, a striking similarity is observed. Equation 4 is the 
constitutive relationship for linear viscoelasticity with a stress input. The modeling approach 
uses the given input (σ ) to determine the input if no damage has occurred ( Rε ) and then utilizes 
the LVE constitutive relationships to find the response. Equation 20 is solved in this research 
using the same state variable type of approach used for solving equation 16. These formulations 
are presented elsewhere.(13)  
 
2.2.4.1. Refinement of Damage Characteristic Relationship 

The work potential theory specifies an internal state variable, S, to quantify damage. This 
internal state variable quantifies any microstructural changes that result in the observed stiffness 
reduction. For asphalt concrete in tension, this variable is related primarily to the microcracking 
phenomenon. This report highlights only components new to this research, as significant 
theoretical work has been done by others. (See references 2, 7, 20, and 21.) 
 
The derivation of the UVECD model begins with an assumption of damage behavior 
(equation 21) or damage evolution law. 

 

R
dWdS

dt S

α
⎛ ⎞∂

= −⎜ ⎟∂⎝ ⎠  (21) 

The method used to solve the damage evolution law is a matter of preference; therefore, two 
different solutions are proposed for solving equation 21. The first transforms the original form of 
the equation into an integral form, assumes α  >> 1, and defines a new parameter, Ŝ .(21) 
Equation 22 presents this method in discrete form. 

 

1
111ˆ 1S S α

α
+⎡ ⎤⎛ ⎞= +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦  (22) 
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Where: 
Ŝ is given by equation 22, as follows: 

 ( ) ( )
1

2

1
1ˆ ˆ
2

R
i i ii

S S C tαε+ = − Δ  (23) 

The second possible solution shown in equation 24 utilizes the chain rule and makes no 
assumption regardingα .(3) Both methods have been successfully applied in asphalt concrete 
research.(7,20,21) 

 ( ) ( )
112

1
1

1
2

R
i i ii

S S C t
α
α

αε
+

+
+

⎡ ⎤= + − Δ Δ⎢ ⎥⎣ ⎦  (24) 

To reconcile the approximations of these methods, an iterative refinement technique is 
incorporated into this research. In short, this method assumes that the change in material integrity 
is sufficiently small over some discrete time step. The rate of change of the material integrity 
with respect to damage is determined at a point near the current value of damage, Si + δ S, where 
the extrapolation error is minimized.  
 
This refinement process begins with an initial calculation of S by either of the approximate 
methods, both of which require results from constant crosshead rate tests for the stress-pseudo 
strain relationship. The initial S values are plotted with the pseudo stiffness values, C, to obtain 
the damage characteristic curve. This relationship is then fitted to some analytical form, as 
shown in equation 25.  

 baSC e=  (25) 

Returning to equation 21 and noting that the increments of time are generally small, the rate of 
change in damage can be written as follows: 

 
dS S
dt t

Δ
=

Δ  (26) 

By substituting this expression into equation 21 and rearranging and writing in the discrete form, 
equation 27 is established: 

 1

R
i

i i
WS S t

S

α
δ
δ+

⎛ ⎞
= + Δ −⎜ ⎟

⎝ ⎠  (27) 

 
For the uniaxial case, the work function, WR, is given by equation 28.(19)  

 ( )1
2

R R
dW C S ε=  (28) 



 

 15

By substituting equation 28 into equation 27 and then simplifying, equation 29 is reached. 

 
( ) ( )2

1
1
2

R i
i i

C
S S t

S

α
δ

ε
δ+

⎛ ⎞
= + Δ −⎜ ⎟⎜ ⎟

⎝ ⎠  (29) 

In equation 29, it is assumed that before loading occurs, S and C are zero and 1, respectively. 
Furthermore, δ S must be specified and should be significantly less than the change in damage 
over a time step (typically, 0.1 is used). After calculating the value of damage, Si, and the 
incremental damage, Si +δ S, at a given time step, the corresponding values of C are found by 
equation 25. The difference between these values (δ C) is then used to calculate damage at the 
next time step. The process is repeated until all data points are processed.  
 
After completing this first iteration, the new values of S are plotted against the original pseudo 
stiffness values, and a new analytical relationship is found. The entire process is repeated until 
the change in successive iterations is small. In this research, eight such iterations were performed, 
but very little improvement was made after the third or fourth iteration.  
 
Figure 6 and figure 7 present the initial S calculated by both approximate techniques along with 
results from the refinement process. From these figures, it is seen that the refinement process 
results in S values that fall between the two approximate methods. In these figures, the seed 
values for the refinement process are obtained by the chain rule method. However, trials show 
that regardless of the method used to find the seed values, iterations collapse to the same curve. 
Details regarding this refinement process can be found elsewhere.(22) 
 
The final refined values of S are plotted with C to obtain the true damage characteristic curve. As 
noted before, the benefit of this curve is its mode-of-loading independence; the curve represents 
a fundamental behavior of the material. From equation 16 and equation 19, if this fundamental 
relationship is known and the relaxation modulus is given, then the stresses can be directly 
calculated. Conversely, if this fundamental relationship is known and the creep compliance is 
given, the strain response can be directly calculated for any stress input using equation 20.  
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2.2.4.2. Calculation of Damage 

In a typical application, the user wants to predict strain from only stress and time using 
equation 20. However, from the preceding discussion, the user must know the strain to compute  
S and C. To bypass this requirement, it is first assumed that S and C are initially zero and 1, 
respectively. Then, at some incremental amount of damage (δ S), C can be computed by the 
functional relationship found through the refinement process. Finally, using the relationship in 
equation 19, equation 29 can be rewritten as follows: 

 

( )2

1
1
2

i i
i i

i

C
S S t

C S

α
δσ
δ+

⎛ ⎞⎛ ⎞
⎜ ⎟= + Δ − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠  (30) 

Through equation 30, damage may be incrementally calculated using a technique similar to that 
used to refine S using only stress and time. 
 
2.2.4.3. Viscoelastic Damage Characterization Methodology 

Viscoelastic damage characterization refers to the development of the characteristic damage 
relationship (i.e., the C versus S relationship). Although such characterization can be performed 
under any loading condition, the simplest method is the constant crosshead rate test.(20) For 
MVEPCD characterization, both confined and unconfined constant crosshead rate tests are 
performed. The only requirement for this test is that viscoelastic damage mechanisms dominate 
the material behavior, such as when the material is at a low temperature or when it is loaded at a 
very fast rate. In this study, characterization is performed at 5 °C. This temperature is convenient 
because it allows for moderate strain rates and does not require consideration of any dynamic 
effects that might be related to extremely high strain rates. In practice, at least three different 
rates are tested at 5 °C, and if the resulting C versus S curves collapse, it is known that 
viscoelastic damage mechanisms dominate. The appropriate strain rates are material-dependent. 
 
For both VEPCD and MVEPCD characterization, the first step is the calculation of the pseudo 
strains by equation 16 for the constant rate tests. These values are used along with equation 18 
and equation 24 to calculate the initial damage, S, values. The relationship between C and these 
initial S values are fitted to equation 25 and refined through the aforementioned procedure. The 
true C versus S relationship is obtained by refitting equation 25 to these refined S values. Results 
from the tests at different rates are finally averaged to obtain the C versus S relationship for 
modeling. Typically, each test is sampled at different intervals, which complicates this averaging 
process. To overcome this difficulty, a common list of C values is compiled, and the 
corresponding S values are interpolated from the respective test. Averaging can then be easily 
performed because each test has common C values.  

2.3. MULTIAXIAL VISCOELASTIC CONTINUUM DAMAGE MODEL  

2.3.1. Review of Mechanistic Principles 

The arguments presented in this section focus on general stress-strain relationships. For 
notational simplicity, the derivations in this section are given for linear elasticity; however, the 
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arguments remain valid for viscoelastic materials through the elastic-viscoelastic correspondence 
principle. Much information about this principle has been provided elsewhere; the form given by 
Schapery is adopted here.(8)  
 
For linear elastic materials, the most general constitutive relationship is given by the following: 

 ij ijkl klCσ ε=  (31) 

Cijkl is a fourth-order tensor with 81 constants. Through symmetry arguments, this number is 
reduced to 21. In matrix form, equation 31 can be viewed as equation 32. 

 

11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 25 44 45 46

15 25 35 45 55 56

16 26 36 46 56 66

C C C C C C
C C C C C C
C C C C C C
C C C C C C
C C C C C C
C C C C C C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

C

 (32) 

If further assumptions such as orthotropic isotropy, transverse isotropy, and cubical isotropy are 
assumed, these numbers reduce further. The simplest of these cases is full isotropy, which 
assumes no directional dependence on the material properties. In this case, two material 
constants are necessary to describe the constitutive relationship between stress and strain. In 
general terms, these are called Lame’s constants and together define the more commonly 
recognized fundamental parameters: Poisson’s ratio (ν ), shear modulus (G), Young’s 
modulus (E), and bulk modulus (K). In terms of compliances, these constants define the shear 
compliance (J), longitudinal compliance (D), and bulk compliance (B).  
 
For a general isotropic case, it can be shown that C11, C22, and C33 are equal; C12, C13, and C23 are 
equal; and C44, C55, and C66 equal either half of the shear modulus or just the shear modulus 
depending on the definition used for shear strain. All other terms become zero. Written in full, 
assuming the shear strain in equation 31 is given as the total angle form, the stiffness matrix for 
the general isotropic case becomes equation 33. 

( )( )

( )
( )

( )
( )

( )

( )

1 0 0 0
1 0 0 0

1 0 0 0
1 2

0 0 0 0 0
21 1 2

1 2
0 0 0 0 0

2
1 2

0 0 0 0 0
2

E

ν ν ν
ν ν ν
ν ν ν

ν

ν ν
ν

ν

⎡ − ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥
= ⎢ ⎥

+ − ⎢ ⎥
−⎢ ⎥

⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥⎣ ⎦

C

 (33) 
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It is seen from equation 31 that the use of equation 33 recovers the common form of Hooke’s 
law.(23) For the problem at hand, however, isotropy is of less concern than transverse isotropy. 
For this case, it can be shown that the stiffness matrix is given by equation 34. A change in 
nomenclature from Cij to Zij for general stiffness is made to avoid confusion with later 
terminology. Also, axis three is assumed to be the axis of symmetry. 

 

11 12 13

11 13

33

44

44

66

0 0 0
0 0 0
0 0 0

0 0
0

Z Z Z
Z Z

Z
sym Z

Z
Z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Z

 (34) 

For isotropy, it is seen that the stiffness matrix terms are related to the engineering parameters, 
Young’s modulus and Poisson’s ratio. Using similar terminology, transverse isotropy can be 
considered to have two Young’s moduli and three Poisson’s ratios. The nomenclature used in 
this report for these parameters is as follows: 

 

1 2

3

12

11 22
3132

33 33

33 33
1323

11 22

13 23

Stiffness on isotropy plane.
Stiffness along axis of symmetry.
Poisson's ratio on isotropy plane.

.

.

Shear modulus between transverse plane

E E E
E

G G

ν
ε ε

ν
ε ε
ε ε

ν
ε ε

= = =
=

=

= − = −

= − = −

= =

12

and axis of symmetry.
Shear modulus on transverse isotropy plane.G =  (35) 

Where: 
ν 1323 is not equal to ν 3132; however, for symmetry, ν 3132/E3 = ν 1323/E.  
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The relationships between Zij and the values defined in equation 35 are as follows: 

 

( )
( )

( )
( ) ( )

11 1323 3132

33 3 12

12 12 1323 3132

13 3132 12 3132 3 1323 12 1323

44 23 13

66 12

2
12 3132 1323 12 3132 1323

1

1

1
1 2 2

Z E

Z E

Z E

Z E E
Z G G
Z G

ν ν

ν

ν ν ν

ν ν ν ν ν ν

ν ν ν ν ν ν

= − ϒ

= − ϒ

= + ϒ

= + ϒ = + ϒ

= =

=

ϒ =
− − −  (36) 

 

Or, solving for the engineering parameters, the relationships are as follows: 

 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

2 2 2 2
11 33 13 12 13 11 33 12

2
11 33 13

2 2 2 2
11 33 13 12 13 11 33 12

3 2 2
11 12

2
12 33 13

12 2
11 33 13

13 11 12 13
3132 2 2

11 12

13 11 12 13
1323 2

11 33 13

23 13 44

12 66

2 * 2 *

2 * 2 *

Z Z Z Z Z Z Z Z
E

Z Z Z

Z Z Z Z Z Z Z Z
E

Z Z

Z Z Z

Z Z Z

Z Z Z Z
Z Z

Z Z Z Z
Z Z Z

G G Z
G Z

ν

ν

ν

+ − −
=

−

+ − −
=

−

−
=

−

−
=

−

−
=

−

= =
=  (37) 
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If the compliance matrix with generalized compliances, Sij, is considered, then the resulting 
relationships are as shown in equation 38.  

 

313212

3

313212

3

1323 1323

3

23

23

12

1 0 0 0

1 0 0 0

1 0 0 0

10 0 0 0 0

10 0 0 0 0

10 0 0 0 0

E E E

E E E

E E E

G

G

G

νν

νν

ν ν

−−⎡ ⎤
⎢ ⎥
⎢ ⎥−−⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

S

 (38) 

The compliance matrix is considered here for completeness. Also, the constitutive relationships 
are more compact and easier to present.  
 

2.3.2. Application of Schapery’s Work Potential Theory 

Schapery’s work potential theory model contains parameters that characterize the material 
integrity with damage growth.(22,11) To clarify the issue of the physical significance of these 
parameters, a step-by-step process is followed to link the damage functions to the engineering 
parameters defined in equation 37. 
 
In terms of principal strains, the strain energy density function as defined by the terms found in 
equation 34 is shown in equation 39: 

 
2 2 2

11 1 11 2 33 3 12 1 2 13 1 3 23 2 3
1 2 * 2 * 2 *
2

W Z Z Z Z Z Zε ε ε ε ε ε ε ε ε⎡ ⎤= + + + + +⎣ ⎦  (39) 

Schapery shows that a more convenient way to express the strain energy density function for 
transversely isotropic materials is as follows: 

 
2 2 2

11 22 3 12 3 66 2
1 2 *
2 v vW A e A e A e e A e⎡ ⎤= + + +⎣ ⎦  (40) 

Where: 

 1 2 3 3 3 2 2 1, 3  andv ve e e eε ε ε ε ε ε= + + = − = −  (41) 
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The stiffness values, Aij, in equation 40 can be damage dependent for both the elastic and 
viscoelastic case. Through an expansion of equation 40, the Aij values correspond to the more 
recognizable forms in equation 39, thusly: 

 

11 22 11 22 12 66

33 11 22 12

12 11 22 12 66

23 13 11 22 12

1 2
9 3
4 4
9 3
1 2
9 3
2 1
9 3

Z Z A A A A

Z A A A

Z A A A A

Z Z A A A

= = + − +

= + +

= + − −

= = − +
 (42) 

Schapery presents the energy density function as a dual energy density function so that the 
damage characteristics of a cylindrical body subjected to confining pressure, p, and axial 
deformation can be more easily characterized. This dual energy density function, as derived by 
Schapery, is presented in equation 43. To arrive at the relationship presented in equation 43, 
Schapery assumes that work potential exists and uses the principle of virtual work on a 
cylindrical specimen subjected to axial loading and confining pressure.(11) Then, he defines a 
general work potential theory and expands it into a power series, canceling terms to satisfy the 
initial conditions. The relationships between the Aij terms and the damage-dependent variables, 
Cij, are presented in equation 44. These relationships must be satisfied for consistency between 
equation 40 and equation 43. The Cij terms in equation 43 and equation 44 are not the same as 
those defined in equation 32. 
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Making substitutions and canceling terms, the engineering parameters in equation 37 are 
expressed as a function of Cij: 
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For the compliance matrix, the following can be seen: 
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It is worthwhile to consider the definitions of stress and strain used in equation 43. Stress is 
defined as the stress above stress due to pressure (i.e., the deviator stress). According to the 
definition of strain given in the formulation of the work potential theory presented in the Park 
dissertation, strain includes all changes in length, even those associated with volume change.(24) 
In an earlier paper, strain is defined clearly as the change in axial displacement due to load 
divided by the initial length.(11) To clarify the confusion, virtual work is defined by the 
following: 

 ( )
1

N

i i
i

Work Q dqδ
=

= ∑  (47) 

In equation 47, Qi are the generalized loads, and qi are the generalized displacements. Whether 
the strain is defined as the total strain, the evaluated value of equation 47 does not change 
because the derivative of the strain is independent of these two definitions. Still, the issue does 
present some consequences in the characterization stage, and so, equation 40 and the 
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relationships in equation 44 will be used to clarify the issue. For a transversely isotropic axial 
specimen subjected to confining pressure and axial elongation along the axis of symmetry, the 
following can be shown: 

 ( ) ( )3 3 11 12 22 1 11 12 22
3

4 4 1 223 9 3 9
W A A A A A Aσ ε ε
ε

∂
= = + + + + −

∂  (48) 

Using the relationships in equation 44, equation 48 can be recast with υ  defined the same way as 
ev from equation 40 as the following: 
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−
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From equation 43, C22 and C12 are related by the following: 

 
12

22
CC
p

υ ε−
=  (50) 

If it is assumed that the strain in equation 50 is the total strain,ε 3, and that equation 50 is 
substituted into equation 49 and rearranged, then the following occurs: 

 3 3 11 12p C C pσ ε+ = +  (51) 

Equation 51 is compared to the similar form obtained from equation 43 to achieve equation 52: 

 11 12
dW C C pσ ε

ε
∂

= = +
∂  (52) 

Observing that the sign convention for pressure is opposite that of stress above pressure, a 
comparison of equation 51 and equation 52 indicates that the stress in equation 43 is the deviator 
stress, and the strain is the total strain. 

2.4. THEORY OF VISCOPLASTICITY 

The hot mix asphalt (HMA) mixture is a pavement material that exhibits both viscoelastic and 
viscoplastic behavior and therefore shows complicated rate-dependent behavior for repetitive 
traffic loadings. Rutting, one of the major distress types in HMA pavements, is directly related to 
the rate-dependent permanent deformation behavior of HMA. To predict the rutting performance 
of HMA, much effort has been made to develop constitutive models capable of describing the 
rate-dependent permanent strain development in HMA. Some researchers suggest a viscoplastic 
model with strain-hardening features.(25) As the simplest model, it is also able to describe 
monotonic behavior in tension, as shown by researchers.(7,10) Others have presented a 
viscoplastic model for HMA that incorporates Perzyna’s flow rule with Desai’s yield 
function.(26,27) While still others suggest a simplified hierarchical single surface (HISS)-Perzyna 
model that shows a reasonable viscoplastic strain prediction.(28) However, the difficulty in 
developing a constitutive model for HMA is that hardening rules based on the behavior of metals 
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or soils are not necessarily appropriate to describe both viscoplastic and viscoelastic behaviors of 
HMA. That is, models developed for metals and soils describe only elastic recovery during 
unloading, whereas HMA shows nonlinear strain recovery during unloading due to the 
viscoelastic property of the material. An important observation supporting this phenomenon was 
made by Saadeh.(29) 

2.4.1. Flow Rule 

The general concepts behind the constitutive equations for plastic deformation were proposed by 
Von Mises based on the theory of elasticity.(30) As such, the strain tensor is related to the stress 
through an elastic potential function, the complementary strain energy, Ue. 

 
e e
ij

ij

Uε
σ

∂
=

∂  (53) 

Where: 
ε ij

e
 = Elastic strain tensor. 

Ue =  Elastic complementary strain energy. 
σ ij =  Stress tensor. 
 
The plasticity theory based on the above flow rule is called the plastic potential theory. When the 
state of stress reaches the yield criterion, f, plastic strain develops; this mechanism is called 
plastic flow. To generalize this concept to the plasticity theory, Von Mises proposes that a plastic 
potential function, g(σ ij), exists.(30) The plastic strain rate, dε ij

p, can then be derived from the 
following flow rule: 

 
p

ij
ij

gdε λ
σ
∂

=
∂  (54) 

Where: 
dε ij

p  =  Plastic strain rate. 
λ  =  Positive scalar factor. 

ij

g
σ
∂

∂
 =  Gradient of the plastic potential, g(σ ij). 

 
In equation 54, λ  is a proportional positive scalar factor that can be determined from the yield 
criterion. For some materials, the plastic potential function, g, and the yield function, f, can be 
assumed to be the same. These kinds of materials are considered to follow the associative flow 
rule of plasticity. In other words, the normality rule for this material is associated with the yield 
criterion, f. However, for other materials, the plastic potential function, g, and the yield function, 
f, are different. These materials are considered to follow the nonassociative flow rule of plasticity, 
and the flow rule of the material is derived from a plastic potential, g. In this case, ∂ g/ σ∂ ij is not 
proportional to ∂ f/ σ∂ ij, and therefore, the plastic strain direction is not normal to the yield 
surface, f. Basically, the viscoplastic flow rule takes a similar form to the plastic flow rule except 
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that it takes advantage of the over-stress function as a replacement for λ , as shown in 
equation 55. 

 0

vp
ij

ij ij ij

f f fε λ
σ η σ σ
∂ Φ ∂ ∂

= = = ΓΦ
∂ ∂ ∂

&
 (55) 

Where: 
Φ  =   Overstress function. 
η 0 =   Viscosity. 
 
Figure 8 represents the viscoplastic flow rule using a mechanical analog, which combines a 
dashpot and a slip element in parallel.(31) In this case, the overstress function in equation 55 is 
represented by the difference from the applied stress (σ ) and the yield stress (G) to the viscosity 
(η 0) in this model. 

0η G

σ

 
Figure 8. Illustration. Mechanical analog for the viscoplastic model. 

2.4.2. Yield Criterion 

In conventional viscoplasticity, the elastic limit of the material can be defined by a surface-in-
stress space. Mathematically, the yield surface for general anisotropic materials is expressed as 
equation 56. 

 ( ) 0ijf σ =  (56) 

For an isotropic material, the orientation of the principal axis is immaterial, and the principal 
stresses, σ 11, σ 22, and σ 33, are sufficient to describe the state of stress. The principal stresses 
form the integrity basis; it is common to use I1, J2, and J3 as the integrity basis. Therefore, the 
yield function becomes equation 57 for the isotropic material.  

 ( ) ( )11 22 33 1 2 3, , , , 0f f I J Jσ σ σ = =  (57) 
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Where:  
I1 = σ  11+ σ  22+σ 33 (58) 

J2 = 
1
2 ij ijs s  (59) 

J3 = 
1
3 ij jk kis s s  (60) 

sij = 
1
3ij kk ijσ σ δ−  (61) 

δ ij =  Kronecker delta. 
 
Physically, I1 represents the hydrostatic pressure, and J2 represents the distortional energy in the 
material; no clear physical meaning is related to J3. Generally, yield criteria can be classified into 
two subgroups according to their dependence on hydrostatic stress. The isotropic hardening 
model is the simplest hardening model and is based on the assumption that the yield surface 
expands isotropically as the plastic strain develops. The typical isotropic hardening model is 
presented in equation 62 and figure 9. Because the loading surface expands uniformly, it cannot 
account for the Bauschinger effect observed in various materials, which describes the reduction 
of compressive yield strength due to a previously applied tensile stress, or vice versa. Therefore, 
using only the isotropic hardening model frequently limits the characterization of the material 
behavior when both tension and compression loads are applied. 

 ( ) ( ), 0ij ijf K f sσ κ= − =  (62) 

Where: 
sij =  Deviatoric stresses. 
κ  =  Isotropic hardening parameter. 
 
The kinematic hardening model assumes that during plastic deformation the yield surface 
translates as a rigid body in the stress space and has the same shape and size as the initial yield 
surface. The kinematic hardening model is represented by equation 63 and figure 10. 

 ( ) ( ), 0ij ij ijf a f sσ α= − =  (63) 

Where: 
sij  =  Deviatoric stresses. 
α ij =  Kinematic hardening parameters (i.e., coordinates of the center of the yield  
  surface in the deviatoric stress space). 
 
Equation 64 and equation 65 conceptually represent the classic kinematic hardening rules 
suggested by Prager, Armstrong-Frederick, and Chaboche, respectively.(32–34) The kinematic 
hardening rate is a function of the viscoplastic strain rate in these equations, and the hardening 
rate is always zero when there is no change in viscoplastic strain. Therefore, when a material is 
subjected to one-directional loading, such as a constant strain-rate test and a repetitive creep and 
recovery test, the yield stress increases only in the direction of the developed viscoplastic strain 
and never decreases.  
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 ( )vpgα ε=& &  (64) 

 ( ),vpgα ε α=& &  (65) 

Where: 
α  =  Kinematic hardening stress. 

vpε&  =  Viscoplastic strain rate. 
 

σ1  

σ2  
Initial yield 

surface 

Subsequent yield surface 

 
Figure 9. Illustration. Isotropic hardening diagram. 

 
 

σ1   

σ2  
Initial yield 

surface 

Subsequent yield surface
(b) 

 
Figure 10. Illustration. Kinematic hardening diagram. 

2.5. VISCOPLASTIC MODELS 

2.5.1. Simple Strain-Hardening Model 

A simple strain-hardening model has been suggested and is shown in equation 66, which assumes 
that viscosity obeys a power law in viscoplasticity. Researchers have shown that the model is 
applicable to monotonic behavior in tension.(7,10,25)  
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( )
( )vp

vp

g σ
ε

η ε
=&

 (66) 

Where: 
g(σ )  =  Stress function. 
η   =  Viscosity. 
 
Assuming that η  is a power law in the viscoplastic strain, equation 67 becomes the following: 

 
 ( )

vp p
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g
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σ
ε

ε
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 (67) 

Where: 
A and  p are model coefficients. Rearranging and integrating yield the following:  
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Raising both sides of equation 69 to the 1/(p + 1) power yields the following: 
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∫  (70)    

Letting g(σ ) = Bσ 1
q and coupling coefficients A and B into coefficient Y, equation 70 becomes 

the following: 
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∫  (71) 

In the current work, the coefficients, p, q, and Y, are pressure-dependent quantities.  
 
Typically, viscoplastic models are characterized using creep and recovery tests. These tests allow 
relatively easy separation of the viscoplastic and viscoelastic components, as shown in figure 11. 
However, it is difficult (if not impossible in some machines) to maintain zero load during the 
recovery period of the creep and recovery test in tension. Therefore, in tension, viscoplastic 
characterization uses constant rate tests in which the VECD model is used to first predict the 
viscoelastic strains. These viscoelastic strains are then subtracted from the measured strains to 
provide the viscoplastic strains that are needed for curve fitting to equation 71.  
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The advantage of this model is that it is easy to implement and does not consume much 
computational time. This model’s ability to predict the HMA behavior under complex loading 
histories in tension is reported by Underwood et al.(12) However, this model’s major weakness is 
its one-dimensional nature, which is not sufficient to describe the behavior of HMA in 
pavements. This deficiency is particularly troublesome in compression where the confinement is 
known to play a major role in permanent deformation behavior of HMA. In the following 
subsections, more general viscoplastic models are presented. 
 

Viscoelastic 

Plastic

Elastic

Elastic

Viscoelastic
+ 

Viscoplastic 

Time 

Axial Strain 

 
Figure 11. Illustration. Strain decomposition from creep and recovery testing. 

2.5.2. HISS-Perzyna Model 

The HISS plasticity model provides a general formulation for the elastoplastic characterization of 
material behavior. This model, which is potentially able to incorporate isotropic and kinematic 
hardening and associated and nonassociated plasticity characterizations, can be used to represent 
a material response based on the continuum plasticity theory. Therefore, the HISS model allows 
the selection of a more appropriate derivative model for a given material in a specific 
engineering application. Various well-known plasticity models, such as the Von Mises, Mohr-
Coulomb, Drucker-Prager, continuous yielding critical-state, and capped models, can be derived 
as special cases of the HISS model.(30,32,35) 

 

2.5.2.1. HISS Model Implemented by Delft University of Technology 

Equation 72 represents the HISS criterion.(35) In the criterion, n and α  determine the shape of the 
yield stress in deviatoric-hydrostatic stress space, and γ  represents ultimate yield stress. R 
represents the cohesion of the material and determines the position of the yield stress with 
respect to the hydrostatic stress axis. Because the yield stress of the HISS criterion varies 
depending on the first stress invariant, I1, the model exhibits a spindle shape of its yield surface 
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when the shape of the yield surface is assumed to be circular (β =0) in the deviatoric stress space, 
as shown in figure 12. 
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Where: 
γ  =  Softening parameter. 
α  =  Hardening parameter. 
R =  Tensile strength of material when deviatoric stress is zero. 
n =  Parameter determining shape of yield stress. 
β  =  Parameter determining shape of yield stress in deviatoric stress space. 
Pa =  Atmosphere pressure. 
 

σ1 

σ2 

σ3 σ1= σ2= σ3 

 
Figure 12. Illustration. Typical yield surface of HISS model. 

 
Researchers using this model suggest an HISS criterion whose parameters are the strain rate-
dependent functions for a given HMA mixture.(36) For the characterization, a series of constant 
strain-rate tests in tension and in compression are performed at several strain rates and 
temperatures. Then, predictions are made for indirect tension (IDT) specimens subjected to 
constant strain-rate loading. Because this model requires constant strain-rate testing using several 
different strain rates and temperatures for characterization, it is important to determine the 
appropriate range of the strain rates and temperatures to minimize the amount of experimental 
effort. Although it appears that the model can successfully explain the viscoplastic behavior 
when subjected to monotonic loading, numerical issues related to parameter determination and 
prediction still remain. In addition, because the model is characterized using constant strain-rate 
tests, it cannot fully explain the behavior of HMA under discontinuous loading, such as repetitive 
creep and recovery loading. 
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2.5.2.2. HISS Model Implemented by the University of Maryland 

A viscoplastic model based on the simplified HISS model and using Perzyna’s flow rule has also 
been suggested.(28) Repetitive creep and recovery tests are used for both calibration and 
prediction, and numerical optimization techniques are adapted for calibrations, unlike Erkens’ 
model.(36) As shown in equation 73, γ , which represents both the ultimate yield stress and the 
softening of the material, is considered a constant, and R is a function of the viscoplastic strain. 
In Erkens’ study, however, γ  and R are functions of the viscoplastic strain rate and 
temperature.(36) 

 ( )( ) ( ) ( )( )2
2 1 1

n
F J I R I Rγ ξ α ξ ξ⎡ ⎤= − − − −

⎣ ⎦  (73) 

Where: 
ξ   =   Viscoplastic strain trajectory. 
γ  =   Softening parameter (constant). 
α  =   Hardening parameter (function of viscoplastic strain). 
R =   Tensile strength of material when the deviatoric stress is zero. 
 
The main contribution of this research is to apply the t-TS principle to a conventional 
viscoplastic constitutive model and confirm the validity of the superposition principle. 

2.5.3. Unified Model 

In theory of viscoplasticity, the term unified constitutive model refers to models that describe the 
rate-dependent viscoplastic strain for steel or polymer. However, in other disciplines, the unified 
constitutive model is used to represent not only viscoplastic strain but also viscoelastic strain. 
Because this type of model takes a more flexible form of hardening equations than other 
viscoplastic models, it is worth reviewing the approaches used in the unified model. 
 
2.5.3.1. Linear Kinematic Hardening Model 

The simplest unified constitutive model is the linear kinematic hardening model shown in 
equation 74 and equation 75.(37) The inelastic strain rate has a linear relationship with the 
overstress, σ  - α . The back stress rate is a function of the back stress in the previous time step 
and the strain rate in the current time step. Because the model is designed to explain inelastic 
strain, which is the summation of viscoelastic strain, plastic strain, and viscoplastic strain, the 
inelastic strain rate can be negative depending on the stress history. The back stress rate,α& , is 
another representation of the Maxwell model of mechanical analog.(50)
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 ( )in Cε σ α= −&  (74) 

 inA Bα ε α= −&  (75) 

Where: 
inε&  =   Inelastic strain. 

α  =   Back stress. 
A,B,C =   Material constants. 
 
2.5.3.2. Chaboche Model 

In general, the viscoplastic strain of a material obeys a power law, and the hardening of the 
material can be represented by kinematic and isotropic hardening, as shown in equation 76. 
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Where: 
Φ =  Magnitude of strain rate. 
α  =  Kinematic hardening function (back stress function). 
k =  Isotropic hardening function. 
 
The Chaboche model is a viscoplastic model consisting of the above flow rule and hardening 
function represented by a summation form of back stress.(34) By using decomposed back stress, 
the model is capable of describing nonlinear hardening with enhanced accuracy for a wider range 
of viscoplastic strain. Equation 77 shows the back stress function in the Chaboche model; it 
becomes the Armstrong-Frederick model when n = 1. 

 ( )
1

n

i vp
i

α α ε
=

= ∑  (77) 

Where: 
α i(ε vp)  =  ith back stress, which is a function of the viscoplastic strain. 
 
2.5.3.3. Krempl and Ho Models 

As an advanced and recent form of the linear kinematic hardening model, some researchers have 
proposed a viscoplastic model based on the overstress concept.(38,39) The constitutive model also 
includes a description of the time-dependent recoverable strain of the materials. It begins with 
the assumption that the coefficients of viscoelasticity are nonlinear functions. Equation 78 is the 
differential equation used to derive the model.
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 ( )( ) ( ) ( )( )m g g k gσ ε ε ε σ σ ε σ− × + = + − ×& &  (78) 

Where: 
m(σ -g(ε )) =  Positive, bounded and even function. 
k(σ -g(ε )) =  Positive, bounded and even function. 
g(ε ) =  Odd function of strain. 
σ -g(ε ) =  Overstress. 
 
When the functions m(σ  – g(ε )) and k(σ  – g(ε )) become constant and when g(ε ) is linear in ε , 
equation 78 reduces to the differential equation of a standard linear solid model that represents 
viscoelastic behavior. The equation can then be expanded to the regular convolution integrals of 
linear viscoelasticity. Because equation 79 holds true for slow loading, the relationship between 
the strain rate and stress can be expressed as equation 80, the simplest form of the viscoplastic 
model.(40) 
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Where: 
E  =  Material elastic modulus. 
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More complicated model forms are available for describing hardening, dynamic and static 
softening, and relaxing, as well as negative and positive rate sensitivities. However, as shown in 
equation 80, Krempl’s constitutive models have neither loading or unloading conditions nor the 
concept of yield stress because they are derived from the concept of general viscoelasticity. 
Therefore, it is not appropriate to describe only the viscoplastic behavior of HMA, even though 
the model gives an idea of the rate dependency of viscoplastic properties under unloading 
conditions. This potential shortcoming is overcome by introducing Macauley’s bracket into the 
second term of equation 80.(41) Because the model is based on equation 80, the back stress 
function is related to the kinematic stress function, as shown in equation 83. 
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Where: 
D =   Drag stress. 
R =   Isotropic hardening function. 
H =   Kinematic stress function ( inH Eε=& & ) (82) 
G =   Back stress. 
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Where: 
B, m, and ψ  =  Material constants characterized from experimental results.  
 
In contrast to Krempl’s model, this model does not allow a change in the material state during 
unloading because the state of the material is a function only of the viscoplastic strain rate. 

2.6. VISCOELASTOPLASTIC CONTINUUM DAMAGE MODEL 

In the previous sections, the viscoelastic and viscoplastic models are developed separately. It has 
been shown by using a thermodynamic formulation that the total strain is the sum of the 
viscoelastic and viscoplastic components even in the non-small strain region.(10) Thus, the 
viscoelastic and viscoplastic models can now be integrated to form the VEPCD model in which 
the predicted viscoelastic and viscoplastic responses are combined to obtain the total response 
for a given stress history.  
 
The resulting equation from combining equation 20 and equation 71 predicts the total strain 
history for a general loading history at a reference temperature. 
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∫ ∫  (84) 

Equation 84 is presented in terms of reduced time, (ξ ), due to the verification of the t-TS 
principle with growing damage. Stated simply, this principle allows the use of time-temperature 
shift factors determined from LVE characterization to combine the effects of time and 
temperature at higher levels of damage. This simplification significantly reduces the required 
testing protocols while simultaneously expanding the realm of application for the model. 
Section 4.5 and subsection 5.1.3 present the methodology and experimental work used to verify 
this principle for both tension and compression modes of loading, respectively. 
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CHAPTER 3. SPECIMEN FABRICATION AND TESTING PROTOCOLS 

3.1. MATERIALS 

Component materials used in this study were obtained from FHWA’s Turner-Fairbank Highway 
Research Center (TFHRC). Two options for materials acquisition were available to the 
researchers at the outset of the project. The first option was to acquire already mixed asphalt 
concrete that was available and used for construction of the ALF testing lanes. The second option 
was to have the component materials sampled and transported to NCSU for fabrication of 
appropriate asphalt concrete mixtures. Based on the availability and desired consistency of the 
materials, the latter option was chosen, and component materials were obtained from TFHRC. 
Four stockpiles, #68, #78, #10, and Sand (FHWA Designation B-6265, B-6264, B-6306, and 
B-6263, respectively), were sampled and transported to NCSU for fabrication. For the ALF lanes, 
hydrated lime was first mixed with the #10 stockpile before mixing it with the asphalt binder. 
The decision was made to not use this stockpile for fabrication; instead, hydrated lime was added 
separately on a specimen by specimen basis at NCSU. In addition to acquiring aggregates, four 
asphalt binders, PG 70-22 (B-6298), Crumb Rubber Terminal Blend (B-6286), Styrene-
Butadiene-Styrene (B-6295), and Ethylene Terpolymer (B-6289), were also acquired.  
 
The aggregate structure for each of the mixtures was constant and was a coarse 12.5-mm 
nominal maximum size aggregate (NMSA) mixture comprised of 18.0 percent #68 stone,  
36.4 percent #78 stone, 17.1 percent #10 stone, 27.5 percent sand, and 1.0 percent lime. For the 
multiaxial tension work, a slightly modified mixture was used. This mixture contained the same 
binder and gradation as the Control mixture; however, the #78 aggregate for this mixture was 
obtained almost 4 years after the original aggregate was obtained. To reflect the later date of 
aggregate acquisition, this mixture is referred to as Control-2006. The blended gradation is 
shown in figure 13. Four asphalt binders, three polymer-modified and one unmodified, of similar 
performance grade were used for this study. Table 1 summarizes the relevant information for 
each of these binders. The asphalt content for each mixture was set at 5.3 percent by total 
mixture mass based on the mix design values. 
 

Table 1. Relevant asphalt binder information. 
Binder Designation PG Grade Cont. PG Grade

Unmodified Control/Control-2006 70–22 72–23
Crumb Rubber Term. Blend CR-TB 76–28 79–28
Styrene-Butadiene-Styrene SBS 70–28 74–28
Ethylene Terpolymer Terpolymer 70–28 74–31
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Figure 13. Graph. Mixture gradation chart. 

 
The laboratory materials were similar to those found in the field with the following exceptions: 
 

• Differences between the laboratory air voids and the constructed air voids. 
 

• Differences in internal structures (not quantified) between the compaction techniques 
used—gyratory in the lab and roller in the field. 

 
• Small differences in the mixture gradations due to construction factors.  

 
The actual field mixture conditions are summarized in table 2 and figure 14. 
 

Table 2. Summary of constructed lanes’ air void and asphalt content. 

Mixture 

Laboratory Test Lanes 

Percent 
Air Voids

Percent 
Asphalt1 

Percent 
Air Voids

Percent 
Asphalt1 
Ignition 

Percent 
Asphalt1 
Nuclear 

Control 

4.0 5.3 

7.8 5.23 4.82 
CR-TB 6.8 5.48 5.09 
SBS 6.0 5.28 5.05 
Terpolymer 6.5 5.52 5.25 
1 By percent mass.      
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Figure 14. Graph. Comparison of test lane and laboratory gradations. 

3.2. SPECIMEN FABRICATION 

All specimens were compacted by the Superpave Gyratory Compactor to a height of 178 mm 
and a diameter of 150 mm. To obtain specimens of uniform air void distribution, these samples 
were cored and cut to a height of 150 mm with a diameter of either 75 mm for tension testing or 
a diameter of 100 mm for compression testing. Details can be found elsewhere.(19,20) 
 
After obtaining specimens of the appropriate dimensions, air void measurements were taken via 
the CoreLok method, and specimens were stored until testing. The air voids for all tests in this 
study were between 3.5 and 4.5 percent. During storage, specimens were sealed in bags and 
placed in an unlit cabinet to reduce aging effects. Furthermore, no test specimens were stored for 
longer than 2 weeks before testing. 

3.3. TEST SETUP 

A closed-loop servo-hydraulic loading frame was used for all the tests. Depending on the nature 
of the test, either an 8.9- or a 25-kN load cell was used. An environmental chamber, equipped 
with liquid nitrogen coolant and a feedback system, was used to control and maintain the test 
temperature.  
 
Measurements of axial and, in some instances, radial deformations were taken during loading. 
Axial measurements were taken at 90-degree intervals over the middle 100 mm of the specimen 
with loose-core linear variable displacement transducers (LVDTs). When taken, radial 
deformations were measured at 90-degree intervals with spring-loaded LVDTs. These 
measurements were taken on the central plane of the specimen. Load, crosshead movement, 
triaxial cell pressure (when appropriate) and deformation data for the specimen were acquired 
with National Instruments® hardware and collected with LabView™ software.  
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Prior to all tension testing, steel end plates were glued to the specimen with Devcon® steel putty. 
Extreme care was taken to completely clean both the end plates and the specimen ends before 
each application. It was observed early in the testing that failure to do so could result in the 
premature failure of the test. To ensure that the specimens were properly aligned, a special 
gluing jig was employed to ensure that the end plates were parallel, minimizing any eccentricity 
that might occur during the test. The triaxial tension end-plates had holes drilled specifically so 
that after the end plate glue had cured, a drill could create another hole through the glue at the 
center of the bottom end of the specimens to allow them to drain excess pore pressure during testing. 
 
For the uniaxial constant crosshead rate compression tests, a circular hole that was 3 mm in 
depth and 14 mm in diameter was made at the center of the top surface of the specimen. The top 
plate had a key with the same dimensions in its center. The key and the hole were used to prevent 
the specimen from sliding during the test. For the creep and recovery test specimens, an 
aluminum end plate was used to minimize the creep due to the weight of the end plate. A  
0.3048-mm thick rubber membrane with a 100-mm diameter and lubricant were used to avoid 
the end effect caused by friction between the end plate and the surface of the specimen. 
 
Tests performed under confining pressure were the most difficult to prepare. The preparation 
protocols for confined tests are similar to those of an unconfined setup, except that before testing 
the specimen is encased in a latex membrane. To ensure proper drainage during the compression 
tests, the bottom lubricated membrane was punctured with a hole approximately 25 mm in 
diameter. This drainage ensured that no excess pore pressure developed during testing.  
 
Following the protocol presented elsewhere, the specimen was encased in a latex membrane after 
attaching LVDT mounting studs.(42) Early observations showed that extreme care had to be taken 
when attaching LVDTs and that failure to remove all air pockets between the membrane and 
specimen, particularly around the LVDT studs, resulted in unusual and inconsistent results. In 
this study, a hole in the membrane approximately 2.5 mm in diameter was punctured at the 
center of each LVDT mounting stud. This hole was then stretched around the LVDT studs, and 
all surrounding air pockets were removed. Studs were mounted and prepared similarly for radial 
measurements. Mounts were prepared for radial measurements instead of directly measuring the 
membrane-encased specimen because it was found that deformation of the membrane was 
significant during pressurization. Finally, after all LVDT mounting brackets were attached, 
acrylic latex caulk was used to seal the areas around the mounts. 

3.4. TEST PROTOCOLS 

The laboratory testing was divided into four phases. The objective of the first phase was to 
determine the temperature and loading frequency dependence of the four mixtures. Temperature 
and frequency sweep complex modulus testing, either under confinement or not, were performed 
during this phase.  
 
The second phase was intended to verify the t-TS principle with growing damage under 
confinement. This phase was important because the positive verification of the t-TS principle 
with growing damage under confinement significantly reduced the testing program for 
MVEPCD model development. Due to the limitation of time and resources, only the constant 
crosshead rate tests were performed for validation of the t-TS principle.  
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The third phase of laboratory testing was designed to determine the MVEPCD model 
coefficients of the mixtures. The testing program required for this phase consisted of the 
following: 
 

• Constant crosshead rate tests at low temperatures and fast loading rates under both 
confined and unconfined conditions for the development of the viscoelastic continuum 
damage model. 

 
• Constant crosshead rate tests at high temperatures with a range of loading rates or creep 

and recovery tests for the development of the viscoplastic model. The creep and recovery 
tests required a constant loading time with varying load amplitudes and constant loading 
amplitude with varying loading times. 

 
The final phase of the experimental program was designed to validate the developed model. In 
this phase, constant rate tests under conditions not used in model development were used.  
 
The four phases of testing applied both to tension and compression testing. For the tension 
testing, 75-mm diameter, 150-mm tall specimens were used, whereas 100-mm diameter, 150-mm 
tall specimens were used for the compression testing. 

3.4.1. Complex Modulus Test 

The complex modulus test was performed in the load-controlled mode in axial tension-
compression (zero-mean deviatoric stress) or in compression only (zero-maximum deviatoric 
stress) according to American Association of State Highway and Transportation Officials 
(AASHTO) TP62-03. For the zero-mean deviatoric stress condition, confining pressures of  
0, 250, and 500 kPa were tested, whereas the zero-maximum deviatoric stress tests were 
performed for confining pressures of 0, 140, and 500 kPa. Load levels for these tests were 
determined by a trial and error process so that the resulting strain amplitudes were between 
50 and 70 με . Based on the work of other researchers, it was assumed that this criterion ensured 
an accurate viscoelastic characterization.(7,42) Under both confined and unconfined conditions, 
tests were performed at five temperatures (-10, 5, 20, 40, and 54 °C) and six frequencies (25, 10, 
5, 1, 0.5, and 0.1 Hz) or in compression at four temperatures (-10, 10, 35, and 54 °C) and eight 
frequencies (25, 10, 5, 1, 0.5, 0.1, 0.05, and 0.01 Hz).  

3.4.2. Constant Crosshead Rate Tests 

Constant crosshead rate tests were performed with the application of a constant rate of 
deformation over the complete loading train. Because each component of the loading train 
(machine ram, load cell, etc.) deformed slightly, the on-specimen displacement rate or strain rate 
was not constant.(20) Prior to the confined tension test, a constant confining pressure was applied 
for 2 hours before testing. This 2-hour period ensured that bulk creep could not affect the 
analysis. To simplify the discussion of these results for the ready, a test identification (ID) 
system (e.g., 55-1, 55-2, etc.) has been used to describe the data for the remainder of this report. 
The first number in the test ID is the test temperature, and the second number indicates the 
ranking of the strain rate, with 1 being the fastest. For tension tests, the test ID is followed by a 
“T” (e.g., 55-1-T, 55-2-T). 
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Tests in tension were performed at three temperatures (5, 25, and 40 °C) and at multiple rates. 
These tests were used for the following: 
 

• Viscoelastic (Multiaxial viscoelastic continuum damage (MVECD)) damage 
characterization (5 °C tests).  

 
• Viscoplastic (VP) characterization (40 °C tests). 
 
• MVEPCD model validation. 
 
• t-TS principle with growing damage verification. 
 

Table 3. Controlled crosshead testing matrix for Control-2006 in tension. 

Test ID
Confining 

Pressure (kPa) Temp. 
(°C) 

Crosshead 
Strain 
Rate 

Purpose 

0 500 
5-1-T X X 

5 

5.50E-05 

MVECD 
characterization 

5-2-T X X 3.00E-05 
5-3-T X X 2.20E-05 
5-4-T   X 2.15E-05 
5-5-T   X 1.50E-05 
5-6-T X   1.05E-05 

MVEPCD and  
t-TS verification 

25-1-T   X 

25 

5.00E-04 
25-2-T   X 1.50E-03 
25-3-T   X 4.50E-03 
25-4-T   X 1.35E-02 
40-1-T X X 

40 

3.00E-02 
40-2-T X X 1.00E-02 

VP 
characterization 

40-3-T X X 3.00E-03 
40-4-T X X 1.00E-03 
40-5-T X X 3.00E-04 

  
Table 3 presents the strain rates calculated from the crosshead displacement rates over the 
150-mm specimen height that were used for each phase. Tension tests were performed at 5, 25, 
and 40 °C at 0 and 500 kPa.  
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Tests in compression were performed at 5, 25, 40, and 55 °C at 0 and 500 kPa. For compression 
modeling purposes, these tests were used for the following: 
 

• Viscoelastic damage characterization (5 °C tests). 

• t-TS principle with growing damage verification. 

To conserve materials while still covering a wide range of material behavior, it was decided that 
the best course of action would be to conduct tests at several different combinations of 
temperatures and rates with one replicate test for each combination. The strain rates used for 
testing at each temperature were selected so that an overlap would occur in the reduced strain 
rates between adjacent temperatures. The relevant information for the compression tests is 
presented in table 4. 
 

Table 4. Controlled crosshead testing matrix for Control in compression. 

Test ID 
Confining 

Pressure (kPa) Temp. 
(°C) 

Crosshead 
Strain 
Rate 

Purpose 
0 500 

5-1 X X 

5 

5.75E-05 
MVECD 

characterization 
5-2 X X 3.83E-05 
5-3 X X 1.92E-05 
5-4 X X 9.60E-06 
25-1 X X 

25 

1.35E-02 

t-TS verification 

25-2 X X 4.50E-03 
25-3 X X 1.50E-03 
25-4 X X 5.00E-04 
40-1 X X 

40 

3.01E-02 
40-2 X X 1.00E-02 
40-3 X X 3.00E-03 
40-4 X X 1.00E-03 
55-1 X X 

55 

2.99E-02 
55-2 X X 1.00E-02 
55-3 X  3.00E-03 
55-4 X  1.00E-03 

3.4.3. Repetitive Creep and Recovery Tests 

Repetitive creep and recovery tests were conducted in uniaxial and multiaxial compression up to 
failure at 55 °C. These tests consisted of the repeated application of creep and recovery cycles. 
For characterization, two different conditions were applied: one with the loading time fixed and 
the stress magnitude increasing in each cycle (i.e., a variable loading (VL) test) and the other 
with a fixed-stress level and increasing loading time as the loading cycle increases (i.e., a 
variable time (VT) test). To gain insight into the material behavior with respect to sequence of 
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loading, a VT test was performed in the reverse order of the characterization VT test (i.e., a 
reverse VT (RVT)). For model verification, three different conditions were used:  

1. A test with constant load and constant time (CLT). 

2. A variable load and variable time test (VLT). 

3. A VT test that was followed by a flow number test.  

A summary of the test methods and the confining pressures used with each is shown in table 5. 
The following sections provide a brief summary of each test method used.  
 
3.4.3.1. VL Test 

The repetitive creep and recovery test with a variable load level was performed for the 
calibration of the developed viscoplastic model. In this VL test, the loading time remained 
constant until the end of the test, whereas the load level was varied. One loading block consisted 
of eight increasing loading pulses. The deviatoric stress of the first loading in the loading group 
was the same as that of the third loading in the preceding loading group. For testing with an 
unconfined and confining pressure of 140 kPa, the first deviatoric stress was 137.9 kPa and was 
stepped by 1.2(n-1) as the number of loads, n, increased, as shown in figure 15. The confined 
testing began with a deviatoric stress of 300 kPa for the 500 kPa confining pressure test, as 
shown in figure 16. For both cases, the loading time was set to 0.4 s, and the loading was 
repeated until the specimens failed.  
 

Table 5. Creep and recovery testing matrix for Control mixture in compression. 

 Confining Pressure (kPa) 
0 140 500 

VT X X X 
RVT  X X 
VL X X X 

VLT  X X 

CLT 
0.4 s   X 
1.6 s   X 
6.4 s   X 

VT + Flow Number  X  
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Figure 15. Graph. Stress history of VL testing (unconfined and 140 kPa confinement VL). 
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Figure 16. Graph. Stress history of VL testing (500 kPa confinement VL). 
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3.4.3.2. VT and RVT Test 

The repetitive creep and recovery tests with variable loading times were performed to achieve 
three major goals:  

1. Identify the effect of loading time (pulse time) on viscoplastic strain development. 

2. Verify the t-TS principle. 

3. Characterize the viscoplastic model.  

For the VT tests, the level of deviatoric stress remained the same until the end of the test, but the 
duration of the load was varied. As with the VL testing, these tests consisted of the repeated 
application of load pulses in groups or blocks. The first loading block started with a 0.05-s 
loading pulse followed by 200 s of rest. Longer loading pulses with 200 s of rest were applied 
subsequently until the loading block ended, as shown in table 6. This loading block was repeated 
depending on the deviatoric stress and confining pressure of the test. 
 

Table 6. Test conditions for the VT and RVT tests. 
Confining 
Pressure 

(kPa) 

Deviatoric 
Stress 
(kPa) 

Pulse Time (rest period) 
(s, physical time at the testing temperature) 

0 827 0.05 
(200) 

0.1  
(200) 

0.2  
(200) 

0.4  
(200) 

1.6  
(200) 

6.4  
(200) — 

140 552, 827 

0.05 
(200) 

0.1  
(200) 

0.2  
(200) 

0.4  
(200) 

1.6  
(200) 

6.4  
(200) — 

0.82 
*(40) 

1.63 
*(40) 

3.27 
*(40) 

6.53 
*(40) 

26.12  
*(50) 

104.49  
*(60) — 

500 1600, 1800, 
2000 

0.05 
(200) 

0.1  
(200) 

0.25 
(200) 

0.4  
(200) 

1.6 
(200) 

2.0  
(200) 

6.4  
(200) 

* Physical time at 40 °C, which is equivalent in reduced time to physical time at 55 °C. 
— No measurement taken. 
 
Note from table 6 that at a confining pressure of 140 kPa two different pulse times and rest 
period histories are given. Tests at this confining pressure were performed for t-TS verification 
with damage, and the second history was performed at 40 °C for this verification. In RVT testing, 
the loading conditions were the same as for VT testing except for the sequence of loading, which 
was exactly opposite to that in the VT tests. 
 
3.4.3.3. CLT Test 

CLT testing was conducted to confirm the effects of loading time (or pulse time) on the 
viscoplastic strain development. During CLT testing, the loading time, rest period, and load level 
were kept constant. These tests were performed only at the 500 kPa confining pressure, and only 
a single deviatoric stress level of 1,800 kPa was used. Three different loading times of 0.4, 1.6, 
and 6.4 s were used.  
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3.4.3.4. VLT Test 

VLT testing incorporated the combined loading histories of the VT and VL testing. The test 
started with a deviatoric stress of 100 kPa and a loading time of 0.05 s, as shown in figure 17, 
figure 18, and table 7. After 200 s of rest following the first loading, another loading followed by 
200 s of rest using the same deviatoric stress but with an increased loading time, similar to the 
VT testing. Following the rest period, the deviatoric stress increased to the next stress level, as 
shown in figure 17 and figure 18. This sequence was repeated until the specimen failed.  
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Figure 17. Graph. Stress history of VLT testing (140 kPa confinement). 
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Figure 18. Graph. Stress history of VLT testing (500 kPa confinement). 

 
Table 7. Loading times for VLT test. 

Confining Pressure (kPa) Pulse Time (s) 
140 0.05 0.1 0.2 0.4 1.6 6.4 
500 0.05 0.1 0.25 0.4 1.6 6.4 

3.5. DATA ANALYSIS 

Various data analysis methods were evaluated in this research. The major objective in the data 
analysis was to determine the MVEPCD model coefficients. The time-temperature shift factors 
were determined from the frequency and temperature sweep dynamic modulus test. These factors 
were also used to check if the mixtures exhibited t-TS with growing damage. Dynamic modulus 
mastercurves were used for the determination of MVECD characteristics.  
 
The viscoelastic model development involved the determination of pseudo strain and the damage 
parameter, S. The constant crosshead rate monotonic tests at 5 °C were used to develop the 
damage characteristic curve for each mixture. The viscoplastic model coefficients were 
determined from either constant crosshead rate tests at high temperatures or creep and recovery 
tests with varying loading times and stress levels. 
 
The MVEPCD model, developed with the above mentioned testing program, was used to 
calculate the viscoelastic and viscoplastic strains under random cyclic loading. A comparison of 
the calculated and the measured strains revealed the accuracy of the MVEPCD model under 
realistic loading conditions. All of the analysis techniques presented were performed with 
analysis software developed at NCSU.  



 

 49

CHAPTER 4. MVEPCD CHARACTERIZATION AND VERIFICATION IN TENSION 

4.1. INTRODUCTION 

Fatigue cracking of asphalt pavements, along with permanent deformation, is known to be a 
major form of pavement distress in the United States. Such cracking occurs due to extensive 
cyclic applications of loads and/or variations in temperature. The typical understanding of this 
cracking phenomenon suggests that these cycles create areas of tensile strain at the bottom of the 
pavement layer, leading to the initiation of microcracks. Under repeated loadings, these 
microcracks densify, coalesce, propagate, and eventually develop into more visible macrocracks 
on the pavement surface. Further research in recent years also suggests that under certain 
conditions cracking can begin at the top of the pavement and progress downward.(43–45) 
 
Traditional fatigue testing and performance prediction are based on empirical methods that are 
developed from the “bottom-up” understanding of fatigue cracking. For fatigue assessment, these 
methods rely on the simulation of field conditions in the laboratory. As such, typical methods 
apply cyclic bending stresses to asphalt beams of a particular dimension and support 
condition.(46) Tests are performed under either controlled stress or controlled strain conditions. 
Using such methods alone can lead to gross errors in performance prediction when field 
conditions vary considerably from those used in the laboratory. Further complications with these 
methods are evidenced by the combined effects of the elements of both material and structure. 
This shortcoming can be bypassed, however, by separating these two behaviors and focusing on 
the material separately from the structure.  
 
Results of the Strategic Highway Research Program (SHRP) A-003 project acknowledged the 
need to combine material and structural components in some way.(46,47) Researchers on this 
project concluded that experimental work should be performed to extract fatigue properties and 
that mechanistic analysis should be performed to calculate stresses and strains in the pavement 
structure. Although these researchers made considerable advances in beam fatigue testing—an 
ever-present shortfall of these tests—the inability of the test to truly separate the material from 
the structure could not be overcome.  
 
A fundamental purpose of this report is to show that material behavior can be accurately 
described using a simplified laboratory program by using constitutive models that make rigorous 
theoretical considerations. The benefits of such an approach lie in the constitutive model’s use of 
the fundamental properties that govern material behavior. That is, changes in external conditions, 
such as temperature and loading level, are easily taken into account without the need for 
additional experimentation. When combined with a structural model, such as finite elements, this 
approach can then account for any combination of pavement structure, traffic, and environmental 
condition.  
 
In a previous report, a VEPCD model was characterized using the FHWA ALF mixtures.(13) 
However, this model was limited because in-service asphalt concrete undergoes a more 
complicated state of stress than that which was simulated in the laboratory. With this in mind, a 
possible drawback to the current VEPCD model formulation is the exclusion of stress state 
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dependence. In this chapter, the multiaxial extension, first derived by Ha and Schapery, is 
characterized and verified using the Control-2006 mixture.(48)  
 
As part of the characterization process, results were obtained that allowed further verification of 
the t-TS principle with growing damage, and these results are presented here. The final section of 
this chapter presents findings from a study of the uniaxial VEPCD model as it relates to the 
prediction of cyclic fatigue test results. This section of the report is particularly important 
because it relates directly to potential test protocols that are to be included in the Simple 
Performance Tester (SPT)/Asphalt Mixture Performance Tester (AMPT). 

4.2. MVECD CHARACTERIZATION IN TENSION 

4.2.1. Linear Viscoelastic Characterization  

Characterization of the MVEPCD model began with the development of a stress state dependent 
linear viscoelastic model. Following the test protocols presented in chapter 3, frequency-
temperature sweep tests were conducted in both the unconfined and confined state. The results of 
this characterization are shown for the unconfined stress state in table 8, a confining pressure of 
250 kPa in table 9, and a confining pressure of 500 kPa in table 10. Generally, higher variability 
was observed in the confined tests relative to the ones performed under unconfined conditions. 
However, the variability in both was generally small, on the order of 5 percent. It is also 
observed from table 8 through table 10 that the confinement effect became more prominent as 
the temperature increased or the frequency decreased.  
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Table 8. Linear viscoelastic characterization and variation for Control-2006 in unconfined 
state at selected frequencies and temperatures. 

Temp. 
(°C ) 

Frequency 
(Hz) 

Average 
|E*| (MPa)

Average 
Phase Angle 

(°) 

|E*| Coefficient 
of Variation 

(%) 

Phase Angle 
Coefficient of 
Variation (%) 

-10 

25 32,290 4.9 2.8 34.8 
10 31,260 5.4 2.9 31.4 
5 30,416 5.7 3.1 28.4 
1 27,905 6.7 3.1 30.4 

0.5 26,771 7.1 3.0 26.2 
0.1 23,694 8.8 4.0 8.0 

5 

25 23,184 9.7 2.9 17.1 
10 21,243 10.7 3.0 17.2 
5 19,713 11.3 2.8 16.2 
1 16,286 13.7 3.2 12.5 

0.5 14,831 14.8 3.3 13.3 
0.1 11,439 18.3 3.8 13.6 

20 

25 12,305 18.2 2.1 6.6 
10 10,384 20.4 1.7 8.5 
5 8,834 22.8 2.2 5.8 
1 5,732 29.0 3.7 5.6 

0.5 4,701 31.3 3.2 5.1 
0.1 2,736 38.9 2.1 3.4 

40 

25 2,713 38.4 4.0 4.0 
10 1,856 43.2 3.5 2.0 
5 1,358 44.2 3.8 2.6 
1 705 44.5 5.1 2.7 

0.5 527 42.4 5.7 3.5 
0.1 294 34.3 5.2 4.4 

54 

25 764 45.1 8.9 4.1 
10 523 42.8 6.8 2.8 
5 419 38.7 8.7 1.5 
1 229 30.9 9.7 6.6 

0.5 204 25.6 9.5 11.0 
0.1 151 18.2 10.2 34.3 
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Table 9. Linear viscoelastic characterization and variation for Control-2006 in 250 kPa 
confined state at selected frequencies and temperatures. 

Temp. 
(°C ) 

Frequency 
(Hz) 

Average 
|E*| (MPa)

Average 
Phase Angle 

(°) 

|E*| Coefficient 
of Variation 

(%) 

Phase Angle 
Coefficient of 
Variation (%) 

-10 

25 31,769 2.2 — — 
10 30,490 2.5 — — 
5 29,595 2.3 — — 
1 27,011 3.2 — — 

0.5 25,884 3.6 — — 
0.1 22,966 4.6 — — 

5 

25 22,775 6.5 — — 
10 21,065 7.5 — — 
5 19,555 7.5 — — 
1 16,143 9.5 — — 

0.5 14,661 10.9 — — 
0.1 11,312 14.3 — — 

20 

25 12,538 15.0 — — 
10 10,525 16.7 — — 
5 9,173 18.2 — — 
1 6,119 22.8 — — 

0.5 5,069 24.8 — — 
0.1 2,974 29.3 — — 

40 

25 3,801 26.1 — — 
10 2,841 25.8 — — 
5 2,408 24.0 — — 
1 1,554 20.5 — — 

0.5 1,434 18.1 — — 
0.1 1,088 14.0 — — 

54 

25 1,905 22.8 — — 
10 1,555 20.0 — — 
5 1,363 17.4 — — 
1 1,156 13.7 — — 

0.5 1,031 11.2 — — 
0.1 925 8.1 — — 

— Data based on a single test thus variational analysis is not possible. 
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Table 10. Linear viscoelastic characterization and variation for Control-2006 in 500 kPa 
confined state at selected frequencies and temperatures. 

Temp. 
(°C ) 

Frequency 
(Hz) 

Average 
|E*| (MPa)

Average 
Phase Angle 

(°) 

|E*| Coefficient 
of Variation 

(%) 

Phase Angle 
Coefficient of 
Variation (%) 

-10 

25 31,031 4.3 1.9 22.6 
10 30,093 4.7 2.7 24.1 
5 29,207 4.9 2.9 26.3 
1 26,480 5.8 3.0 26.4 

0.5 25,203 6.4 2.9 25.7 
0.1 22,112 7.9 3.1 20.1 

5 

25 22,380 8.3 2.3 18.1 
10 20,573 9.3 3.4 13.9 
5 19,043 9.7 4.0 15.2 
1 15,601 12.1 4.0 13.5 

0.5 14,177 13.4 4.0 10.8 
0.1 10,879 16.8 5.0 9.6 

20 

25 12,628 16.0 5.4 6.4 
10 10,815 17.4 6.3 5.4 
5 9,408 19.1 7.8 2.3 
1 6,561 22.6 10.8 1.7 

0.5 5,623 22.9 12.4 0.5 
0.1 3,994 24.0 6.4 7.0 

40 

25 4,430 24.2 6.5 7.0 
10 3,528 22.9 1.6 6.6 
5 3,049 21.6 2.8 7.0 
1 2,268 18.7 5.8 8.7 

0.5 2,103 17.4 4.6 11.7 
0.1 1,731 14.4 4.6 16.3 

54 

25 2,550 20.1 5.6 9.4 
10 2,154 18.0 4.6 10.7 
5 1,981 16.3 5.5 14.9 
1 1,658 12.8 5.2 20.4 

0.5 1,575 11.6 5.2 24.1 
0.1 1,463 9.5 4.4 29.9 

 
Table 11. Effect of confining pressure on shift factor function coefficients for  

Control-2006 mixture.  
Parameters 0 kPa 250 kPa 500 kPa 

α 1 0.00069 0.00079 0.00063 
α 2 -0.16245 -0.15411 -0.14816 
α 3 0.79489 0.75076 0.72512 
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The data presented in table 8 and table 10 have been shifted to form a continuous mastercurve. 
The results are plotted for the three conditions in figure 19, figure 21, and figure 22. The shift 
factor function coefficients are shown in table 11. For all cases, zero-mean deviatoric stress 
conditions (i.e., tension compression) were applied. From figure 19 through figure 21, it is 
observed that at high reduced frequencies, stiffness and phase angle values were insensitive to 
confining pressure, but they diverged as the reduced frequency decreased. Furthermore, it is seen 
from figure 19 and figure 20 that the slope of the confined mastercurve was not as steep as the 
slope of the unconfined mastercurve, thus suggesting reduced time dependence in the material 
under confined stress. In addition, by examining the phase angle mastercurves in figure 21, it is 
seen that at lower reduced frequencies, the material behaved more elastically under confining 
pressure than it did in the uniaxial state. This effect was not significantly dependent on the 
confining stress level. The same observation can be made with regards to the t-TS shift factors 
from figure 22. 
 
These observations are consistent with those made by other researchers for asphalt concrete.(22,49) 
This finding may have implications on the simple performance test protocols since it is known 
that in the pavement structure complicated stress states do exist. Time and resources do not allow 
for an indepth investigation into the effects of this phenomenon, and it is unclear exactly what 
factors influence the phenomenon’s magnitude. Care should be taken in using the findings shown 
in these figures to justify the confined protocol for simple performance testing until the necessary 
analysis has been completed and further testing is performed. Performing confined dynamic 
modulus testing, even in the compression mode, is considerably more complex and time-
consuming than uniaxial tests. In the end, this effort may be wasteful if, through careful study, 
the overall impacts of this behavior are similar across mixtures and would be indirectly 
considered through any mechanistic-empirical analysis calibration process.  
 
These observations are also the same as those found from unbound paving materials (i.e., higher 
stiffness increases the confining pressure). Therefore, the behavior appears to be related to the 
ability of the asphalt cement to resist dilation of the aggregate skeleton. However the 
deformation that was applied in these tests was generally small, on the order of 60 με , which 
was not large enough to introduce significant aggregate reorientation. Nevertheless, it seems 
reasonable to assume that the mechanisms responsible for the increased stiffness under confining 
pressure were at least similar to those of unbound materials. This hypothesis may also suggest 
that confining pressure effects can be considered without the need to significantly reconsider the 
LVE properties of the material. Support for this hypothesis is given in figure 23 where the 
relaxation spectrum for the confined and unconfined tests is plotted. The relaxation spectrum was 
the crossplot of the Prony coefficients, Ei, and their active or relaxation times, iρ , from 
equation 5. This plot provides an indication of molecular processes occurring in the material and 
the times at which they occurred under fixed displacement.(50,51) Stated more simply, this plot 
provides a snapshot of the LVE processes that occurred in the material. Figure 23 shows that the 
spectrum obtained from collocation for the unconfined test was very similar to that for the 
confined test. The reason for the differences shown in figure 19 can be largely attributed to 
differences in the equilibrium or long-time elastic modulus of the material. In fact, figure 24 
presents the effect of using the uniaxial relaxation spectrum with the confined equilibrium 
modulus, and the overall effect was small.  
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One may also question whether the differences observed at low reduced frequencies were related 
to a permanent hardening of the material, recoverable hardening, or some other mechanism. To 
examine the possibility of permanent hardening, the frequency sweep test was rerun with no 
confining pressure approximately 1 hour after decompressing from the first 500 kPa test. Results 
of this test are presented in figure 25 along with the average from the original uniaxial 
characterization tests at 54 °C. Similar results were obtained for the two sets of tests, with the 
test performed after the confined test showing slightly higher values. The slightly higher values 
could be related to membrane effects but were more likely due to the relative magnitudes of the 
friction and applied stress levels. The loading rod for the uniaxial tests was not subjected to 
friction, whereas, in the tests run after the confined test (labeled “unconfined” in figure 25), 
friction was present where the rod passes through the triaxial cell lid. Regardless of the influence 
of the friction on the measured modulus, figure 25 shows that the increased stiffness at low 
reduced temperatures was a mostly recoverable phenomenon at the very least.  
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Figure 19. Graph. Effect of 500 kPa confining pressure on the dynamic modulus  

in semi-log space. 
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Figure 20. Graph. Effect of 500 kPa confining pressure on the dynamic modulus  

in log-log space. 
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Figure 21. Graph. Effect of 500 kPa confining pressure on observed elasticity  

in the Control mixture. 
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Figure 22. Graph. Effect of 500 kPa confining pressure on the log shift factor function. 
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Figure 23. Graph. Effect of confining pressure on the relaxation spectrum. 
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Figure 24. Graph. Use of the uniaxial relaxation spectrum for multiaxial test results. 

100

1000

10000

0.01 0.1 1 10 100
Frequency (Hz)

|E
*| 

(M
Pa

)

Unconfined

500 kPa

Uniaxial-No Cell

 
Figure 25. Graph. Effect of performing confined temperature/frequency sweep testing  

on the unconfined dynamic modulus. 
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4.2.2. Modeling Stress State Dependence of the |E*| 

To model the stress state dependence of the |E*| of asphalt concrete, a phenomenological model 
similar to that used for unbound material moduli was utilized. For the purposes of this report, the 
modulus mastercurves determined from 0, 250, and 500 kPa were used along with the 
observations given in figure 19 through figure 25. The relaxation spectrum from the uniaxial test 
was assumed to be independent of confining pressure, and all pressure effects were combined 
into the long-time equilibrium modulus ( E∞ from equation 5). The model used for the 
equilibrium modulus is shown in equation 85. The characterization results for this model are 
shown in figure 26, and it was found that k1 = -1,859, k2 = 0.681, and k3 = 10.01. The degree to 
which these models agreed with the measured responses is shown for the storage modulus in 
figure 27. Note that the MVEPCD model verification efforts in section 4.4 employ the modulus 
predicted from equation 85 instead of the measured modulus.  

 

2
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∞

⎡ ⎤−
= ⎢ ⎥

⎣ ⎦  (85) 

Where: 
θ  = Bulk stress, σ 11+σ 22+σ 33. 
Pa = Atmospheric pressure. 
k1, k2, k3 = Fitting coefficients. 
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Figure 26. Graph. Multiaxial equilibrium characterization results. 
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Figure 27. Graph. Multiaxial dynamic modulus model strength. 

4.2.3. MVECD Damage Function Characterization 

Characterization of the MVECD model involves developing the functional relationship of C11, 
C12, and C22 with damage, S. It is recalled that the general strain energy density function is given 
as such: 

 ( )( ) ( )
2 2

11 12 22
1 1( )
2 2

R R R
dW C S C S p C S pε ε= + +  (86) 

From this equation, the stress and pseudo dilation can be shown as follows: 

 
11 12( ) ( )RC S C S pσ ε= +  (87) 

 
12 22( ) ( )R RC S C S pυ ε= +  (88) 

From equation 87 and equation 88, C11 and C12 may be characterized using uniaxial constant 
crosshead rate tests under conditions where viscoelastic damage mechanisms dominate the 
material behavior. C22, however, must be characterized using multiaxial constant crosshead rate tests. 
 
4.2.3.1. Characterization of C11(S) 

Under uniaxial conditions in equation 87, the pressure is zero, and C11 may be solved at any time 
as shown in equation 89. 
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( )11

i
Ri

i

C σ
ε

=
 (89) 

To find the relationship between C11 and S, the damage is first calculated using the chain rule 
method, equation 90, with C denoting C11 for notational simplicity.  

 ( ) ( ) ( )
1 12

1
1 1 1

1
2

R
i i i i i iS S C C t t

α
α

αε
+

+
− − −

⎛ ⎞= + − − −⎜ ⎟
⎝ ⎠  (90) 

These S values are then refined using the method outlined in the NCHRP 9-19 Final Report.(22) 
Finally, the functional relationship between C11 and the refined S is determined for each replicate 
test and averaged to obtain the representative C11-S relationship. This relationship is shown for 
the mixture under consideration in figure 28. This figure is constructed at a reference 
temperature of 5 °C and applies only to the material under tensile loading. For this given mixture, 
it is found that a = -0.00157 and b = 0.5320. 
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Figure 28. Graph. C11 versus S for tension for Control-2006 mixture (5 °C reference). 

 
4.2.3.2. Characterization of C12(S) 

Under uniaxial conditions in equation 88, the pressure is zero, and C12 may be solved at any time, 
as shown in equation 91. 

 
( )12

R
i

Ri
i

C υ
ε

=
 (91) 
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Where: 
The pseudo dilation is calculated using the convolution of the relaxation modulus and the sum of 
the axial and radial strain components. 
 
Complications arose in C12 characterization due to the differences in time dependence of the 
axial and radial strains (i.e., the time dependence of Poisson’s ratio). The generalized 
correspondence principle did not account for such time dependence in Poisson’s ratio. Instead, 
the correspondence principle placed all of the time dependence with the relaxation modulus or 
creep compliance.  
 
Through the definitions of pseudo strain and pseudo dilation, it can be observed that C12 = (1-2ν ). 
Thus, C12 defined, in a way, the change in Poisson’s ratio with damage. The initial value of C12 
was related to the undamaged Poisson’s ratio of the material, and any change in this value was 
assumed to be related to damage effects alone. When the material of interest did not have a 
constant Poisson’s ratio, the same could be claimed because time effects caused C12 to change as 
well. The data shown in figure 29 demonstrate this effect. Here, a LVE prediction of strains has 
been performed for the axial and radial strains. These predicted strains were then used to 
calculate pseudo strain and pseudo dilation. In turn, these values were used to calculate C12, 
which was plotted against time. Two predictions were performed, one utilizing the time-
independent Poisson’s ratio and one using the time-dependent Poisson’s ratio. Figure 29 shows 
that the prediction utilizing a time-dependent Poisson’s ratio incorporated changes in the values, 
whereas the values from a time-independent Poisson’s ratio did not change with time.  
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Figure 29. Graph. Effect of time-dependent Poisson’s ratio on C12 calculation. 

 
To begin, the calculated C12 versus S curves for the asphalt concrete mixture of interest are 
presented in figure 30. This figure shows that C12 decreased drastically at first and then increased, 
suggesting that at small damage levels Poisson’s ratio increased, and then decreased at some 



 

 63

critical damage level. From measurements of the axial and radial strains taken during small strain 
dynamic loading tests and dynamic modulus tests, it was known that the short-time elastic 
Poisson’s ratio for the material of interest was approximately 0.137. When the data in figure 30 
were plotted in semilogarithmic scale, as shown in figure 31, it was observed that at the smallest 
S values, it was not unreasonable to assume an average C12 value of 0.726. This value of C12 
corresponded to a Poisson’s ratio of 0.137 and supported the findings from the dynamic modulus 
tests. The reasons for complications in the characterization of C12 became clear. Any change in 
the C12 value was assumed to be due to damage alone. However, because the measurements were 
subject to the time dependence of Poisson’s ratio, a change in C12 could be due either to damage 
growth or time dependence (figure 29).  
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Figure 30. Graph. C12 characteristic curve for Control-2006 mixture. 
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Figure 31. Graph. C12 characteristic curve for Control-2006 mixture in  

semi-logarithmic space. 
 
Because damage affects both axial strains and radial strains, eliminating the time effects from the 
measurements was not possible. Further, it was not possible to separate the time effects from the 
true damage effects seen in figure 30. This situation left only a third possibility, which was to 
assume a constant Poisson’s ratio that was overall representative of the material behavior. With 
this in mind, it was reasonable to assume that the change in curvature of the C12 curves in figure 
30 occurred because the effects of damage overwhelmed those of time. To then characterize the 
material behavior, the value of C12 at the curvature point was averaged for the three replicates 
(approximately 0.23) and was taken as the initial undamaged C12 value. If this operation was 
performed, Poisson’s ratios at points to the left of the curvature point were all overstated.  
 
To clarify the influence of this error, a series of numerical simulations using LVE analysis were 
performed for tests in the same reduced time range as the characterization tests. In these 
simulations, the value of radial strains calculated using the time-dependent Poisson’s ratio was 
assumed to be correct (the standard). Then, different time-independent Poisson’s ratio values 
were assumed, and comparisons were drawn between these constant Poisson’s ratio predictions 
and the standard. Numerical simulations were performed in lieu of VECD model predictions 
because other errors could be introduced in the prediction process otherwise, and the LVE 
simulation scheme allowed for a more accurate assessment of only the constant Poisson’s ratio 
assumption. Results of the calculations with various assumptions of a constant Poisson’s ratio are 
presented in figure 32. As the figure shows, amongst the values tested, a constant Poisson’s ratio 
of 0.4 performed best. This value was very similar to the point of curvature in the C12 plots 
shown in figure 30. The error in assuming that Poisson’s ratio was equal to the low-bound elastic 
ratio is demonstrated.  
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Figure 32. Graph. Effect of different time-independent Poisson’s ratio values on radial 

strain predictions. 
 
An assumption of 0.25 for Poisson’s ratio did not provide a good prediction. This observation 
was interesting because the generally accepted value for Poisson’s ratio at 5 °C was 0.25. 
However, this acceptance was based on experience with the resilient modulus test, which applied 
a much shorter time of loading than these tests. In brief, this observation further emphasized the 
importance of a reduced time of loading when considering the fundamental behavior of asphalt 
concrete. From the results of the analytical simulations, the assumed lower bound value for C12 
appeared to work well for the tests used in characterization. However, each of these tests covered 
a similar range in reduced time. The implication for tests that occurred in a more limited range of 
time, e.g., cyclic tests, was less clear. These tests, when performed at a constant frequency, did 
not display any time dependence in Poisson’s ratio over a given cycle. A cyclic test performed at 
25 Hz and 5 °C, for example, might be represented well by a Poisson’s ratio of 0.25, but the 
model would assume it to be 0.386, thus leading to more erroneous predictions than were 
currently observed in the constant crosshead rate tests. It is unclear exactly how this issue will be 
addressed. It is hoped that the C12 curve can be scaled appropriately depending on the input 
conditions, but more experimental data and theoretical development are needed to determine the 
proper course of action.  
 
The form taken for C12 as a function of damage is shown with the data in figure 30 and figure 33. 
It was observed that at early damage stages, Poisson’s ratio changed very little, but generally, as 
damage increased, Poisson’s ratio reduced, as indicated by an increase in C12. For this mixture, it 
was found that K1 = 0.228558, K2 = -6.9785 x 10-6, K3 = 0.960065, and K4 = 7.81989 x 10-7. 
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Figure 33. Graph. C12 versus S for tensile loading for Control-2006 mixture (5 °C reference). 
 
4.2.3.3. Characterization of C22(S) 

Characterization of C22 was not as straightforward as the C11 and C12 characterization. For 
multiaxial loading all three relationships, C11, C12, and C22, had to be used to calculate S, but C22 
was not yet known. To compensate for this problem, researchers in the NCHRP 9-19 project  
developed an iterative technique whereby C22 was substituted, as follows:(22) 

 
12

22
( )( )

R RC SC S
p

υ ε−
=

 (92) 

Where: 
υ R and ε R are calculated from the measured strains based on the relaxation modulus determined 
at the pressure of interest p. 
 
However, there were some concerns over the NCHRP 9-19 interpretation of the problem.(22) As a 
result of such concern, three methods were examined for the S calculation when the pressure was 
greater than zero, and the C11 and C12 versus S relationships were known. The first method was 
based on the NCHRP 9-19 derivation with only slight differences;(22) the second was based on 
discussions with Schapery; and the third was based on an optimization technique of equation 87. 
In these methodologies, the pseudo strain and pseudo dilation due to pressure were assumed to 
have the following equalities: 

 ( )1 2*0.386R
pressure pε = − −  (93) 

 ( )3 1 2*0.386R
pressure pυ = − −  (94) 
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This assumption was necessary to make equation 87 accurate when no load was applied and to 
make equation 88 consistent with the terms in equation 87. In a similar manner, the initial value 
of C22 had to be specified for the consistent transformation from isotropy to transverse isotropy. 
Because C11 equaled 1 when damage was zero, the initial condition of C22 is given as follows: 

 ( )( )22 2 1 2 1C ν ν= − − +  (95) 

4.2.3.3.1. Characterization by NCHRP 9-19 Methodology:(22) 

By inserting the expression of dual strain energy, equation 86, in the damage evolution law the 
following was found: 

 

( )( ) ( ) ( )2 2
11 12 22

1 1
2 2

R RC S C S p C S p
dS
d S

α

ε ε

ξ

⎛ ⎞⎛ ⎞∂ + +⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟= −
∂⎜ ⎟

⎜ ⎟
⎝ ⎠  (96) 

 

 ( )2 211 12 221 1
2 2

R RdC dC dCdS p p
d dS dS dS

α

ε ε
ξ

⎡ ⎤⎛ ⎞= − + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦  (97) 

From equation 92, the following was found: 

 
22 12

RdC dC
dS dS p

ε⎛ ⎞= −⎜ ⎟
⎝ ⎠  (98) 

Equation 98 assumed that υ R was either a weak function of S or independent of S. Inserting 
equation 98 into equation 97 yielded the following: 

 ( )211 12 121 1
2 2

R R RdC dC dCdS p p
d dS dS dS

α

ε ε ε
ξ

⎡ ⎤⎛ ⎞= − + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦  (99) 

For small Δ ξ , the result was as follows: 

 

( ) ( ) ( )211 121 1
2 2

R Ri i
i i

dC dC
S p

dS dS

α

ξ ε ε
⎡ ⎤⎛ ⎞

Δ = Δ − +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦  (100) 

With change in notation, it appeared as follows: 

 

( ) ( ) ( )211 12
1

1 1
2 2

R Ri i
i i i i

dC dC
S S p

dS dS

α

ξ ε ε+
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⎢ ⎥⎝ ⎠⎣ ⎦  (101) 
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Where: 
S1 =  0. 
δ S is an increment smaller than ΔS=Si+1 - Si, for example, 0.1. 
δ Ci = C(Si+dS) - C(Si).  
 
These values of S were then used to calculate C12 at a given time step. Because pressure was 
constant and pseudo dilation and pseudo strain were known as functions of time, equation 88 
may be used to directly calculate C22. These values were then plotted against the values of S 
found from the first step, and the C22-S relationship was developed. Due to some numerical 
complications, a condition was set such that if the term inside the parenthesis of equation 101 
was less than zero, the term was replaced by zero.  

4.2.3.3.2. Characterization with Schapery’s Approach:  

Equation 88 was rearranged to solve for C22 (equation 102):  

 
12

22

RR CC
p p

ευ
= −

 (102) 

Then, taking the derivative of equation 102 with respect to time and applying the chain rule 
achieved the following: 

 
22 22 12 121 R R RdC dC dC CdS d d dS d

dt dS dt p dt dt dS dt p dt
υ ε ε

= = − −
 (103) 

Solving equation 103 for the damage rate resulted in equation 104: 
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 (104) 

Similarly, using equation 87 resulted in equation 105: 
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Because equation 104 must equal equation 105, the following can be shown: 
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Substituting equation 106 into equation 97 and simplifying found the following: 

 
11 121

2 2 2
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Where: 
λ   =  A function of C11, C12, and the pseudo dilation, pseudo strain, and stress rates.  
 
Equation 88 may be used to directly calculate C22. These values were then plotted against the 
values of S found from the first step, and the C22-S relationship was developed. Due to some 
numerical complications, a condition was set such that if the term inside the parenthesis of 
equation 101 was less than zero, the term is replaced by zero.  

4.2.3.3.3. Characterization by Optimization:  

From the triaxial constant crosshead rate tests, it was found that pressure was constant, stress was 
measured, and pseudo strain may be calculated using the measured strains and the relaxation 
modulus. Then, from equation 87, the only unknown was S. In this methodology, S was solved 
for by numeric optimization to minimize the error between measured stress and the stress 
calculated from equation 87. These values of S were then used to calculate C12 at a given time 
step. Because pressure was constant, and pseudo dilation and pseudo strain were known as 
functions of time, equation 88 may be used to directly calculate C22. These values were then 
plotted against the values of S found from the first step, and the C22-S relationship was developed.  

4.2.3.3.4. Comparison of Methodologies:  

Each of the above methods has been used to characterize S. Comparisons were made first with 
the S values as functions of time for a single test. Figure 34 through figure 37 and figure 38 
through figure 41 show the S calculated from each of the methods in both arithmetic and 
logarithmic scales. Figure 42 through figure 45 present the stress calculated using the 
characterized S and equation 87. Method three used optimization; thus, the predicted stress and 
measured stress agree exactly. Figure 46 through figure 49 show the damage characteristic 
relationship by each technique for the four tests. The final representative C22(S) function is 
shown in figure 50. The initial conditions required H1 to be equal to equation 95. Explicitly, the 
coefficients for C22(S) are H1 = -0.633435, H2 = 3.0834 x 10-5, and H3 = 0.83682. 
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 Figure 34. Graph. S as a function of reduced time calculated by three different 

methodologies in arithmetic space for 5-1-T. 
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Figure 35. Graph. S as a function of reduced time calculated by three different 

methodologies in arithmetic space for 5-3-T. 
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Figure 36. Graph. S as a function of reduced time calculated by three different 

methodologies in arithmetic space for 5-4-T. 
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Figure 37. Graph. S as a function of reduced time calculated by three different 

methodologies in arithmetic space for 5-5-T. 
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Figure 38. Graph. S as a function of reduced time calculated by three different 

methodologies in logarithmic space for 5-1-T. 
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Figure 39. Graph. S as a function of reduced time calculated by three different 

methodologies in logarithmic space for 5-3-T. 
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Figure 40. Graph. S as a function of reduced time calculated by three different 

methodologies in logarithmic space for 5-4-T. 
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Figure 41. Graph. S as a function of reduced time calculated by three different 

methodologies in logarithmic space for 5-5-T. 
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Figure 42. Graph. Predicted and measured stress as a function of reduced time for 

different S calculation methodologies for 5-1-T. 
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Figure 43. Graph. Predicted and measured stress as a function of reduced time for 

different S calculation methodologies for 5-3-T. 
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Figure 44. Graph. Predicted and measured stress as a function of reduced time for 

different S calculation methodologies for 5-4-T. 
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Figure 45. Graph. Predicted and measured stress as a function of reduced time for 

different S calculation methodologies for 5-5-T. 
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Figure 46. Graph. C22 as a function of S calculated by different methodologies for 5-1-T. 
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Figure 47. Graph. C22 as a function of S calculated by different methodologies for 5-3-T. 

 



 

 77

-12

-9

-6

-3

0

0.E+00 2.E+05 4.E+05 6.E+05 8.E+05 1.E+06

Damage Parameter S

C
22

 
Figure 48. Graph. C22 as a function of S calculated by different methodologies for 5-4-T. 
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Figure 49. Graph. C22 as a function of S calculated by different methodologies for 5-5-T. 
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Figure 50. Graph. Representative C22 versus S for tension using optimization methodology 

(5 °C reference). 

4.3. VISCOPLASTIC MODELING OF ASPHALT CONCRETE IN TENSION 

With the damage characteristic functions thus characterized, it was possible to predict the 
material behavior under conditions where viscoelastic damage mechanisms dominate. However, 
it was known that viscoplastic effects may have been significant factors governing the overall 
behavior of asphalt concrete in tension. Currently, viscoplastic effects are considered using an 
empirical strain-hardening model. Because details of this model have been presented previously 
and elsewhere, only the integrated form of the constitutive equation is shown here in 
equation 108.(12,13,25)   

 

11
11

0

1 t pp q
vp

p dt
Y

ε σ
++ ⎛ ⎞+⎛ ⎞= ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫  (108) 

As with the MVECD model, the characterization of equation 108 utilized constant crosshead rate 
tests under confining pressure. The procedure first required prediction of the VECD related 
strains of such tests at high temperatures. Viscoplastic strains were then backcalculated by 
subtracting the predicted MVECD strains from the measured values. This process was repeated 
in multiple tests where viscoplastic strains were considered to be significant. The backcalculated 
values for these tests were then presented to the model, and the coefficients were determined by 
optimization using a genetic algorithm.  
 
For the prediction of viscoplastic behavior under various confining states, a phenomenological 
observation was utilized. From the characterization, it was found that the coefficients p and q are 
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not strongly affected by confining states, but the coefficient Y was found to depend heavily on 
confining pressure. This relationship, along with the stress dependent model, is shown in  
figure 51. 
  

y = -161624466.99x + 766528136533.83
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Figure 51. Graph. Effect of confining pressure on coefficient Y. 

4.4. MVEPCD MODEL VERIFICATION 

Verification tests for the MVEPCD model were similar to those used for characterization (i.e., 
constant crosshead rate tests under a constant confining pressure). Some of the tests were 
performed at the same confining pressure as characterization tests, but at a different temperature 
(25 °C). A second verification test was performed at the same temperatures as characterization 
but at a different confining pressure (250 kPa). Results of the first verification data set are shown 
in figure 52. Both axial and radial strain predictions are shown in this figure. Although not 
shown here, the agreement observed in figure 52 was approximately the same as that observed in 
the verification of the uniaxial VEPCD model. This agreement was considered a good match 
with the measurements. The results of the second verification data set are shown in figure 53 for 
40 °C and in figure 54 for 5 °C. Although this data set did not show as good an agreement with 
the measured response, the fitting was considered reasonable. 
 



 

 80

0

500

1000

1500

2000

2500

3000

3500

-4.E-03 -2.E-03 0.E+00 2.E-03 4.E-03 6.E-03 8.E-03 1.E-02
Strain

σ
11

- σ
33

 (k
Pa

)

Measured
PredictedRadial Axial

 
Figure 52. Graph. Results of MVEPCD model simple verification for constant crosshead 

rate tests under 500 kPa confinement at 25 °C. 
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Figure 53. Graph. Results of MVEPCD model verification for constant crosshead rate tests 

under 250 kPa confinement at 40 °C. 
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Figure 54. Graph. Results of MVEPCD model verification for constant crosshead rate tests 

under 250 kPa confinement at 5 °C. 
 
4.5. t-TS WITH GROWING DAMAGE IN TENSION 

It has been shown repeatedly that dense-graded asphalt concrete, including that with modified 
binders, exhibits t-TS under growing damage in the uniaxial stress state. Less conclusive results 
are available for the behavior of mixtures under confining pressure. Therefore, it was necessary 
to verify the principle of t-TS under confining pressure. Verification was performed following 
the method presented in Chehab.(20) The advantage of utilizing this method was that tests used 
for validation of t-TS may also have utilized in the characterization procedure, thus reducing 
excessive testing. A brief schematic representation of the process is presented in figure 55 
through figure 57. In short, stress as a function of reduced time for constant crosshead rate tests 
performed at different rates and temperatures was plotted for a given strain level. Therefore, each 
test produced a single point in the respective plot. This process was repeated for several strain 
levels covering a broad range in material behavior. If t-TS with growing damage was valid, then 
the resulting plots would appear to be continuous.  
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Figure 55. Illustration. Schematic representation of first step for verifying the  

t-TS principle under growing damage, finding stress for different tests at a  
consistent strain level. 
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Figure 56. Illustration. Schematic representation of the second step for verifying the t-TS 

principle under growing damage, finding reduced time for the stress found in the first step 
for each test. 
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Figure 57. Illustration. Schematic representation of the third step for verifying the t-TS 

principle under growing damage, plotting the stress from the first step against the reduced 
time from the second step. 

 
The strain levels examined for t-TS analysis are shown graphically along with the stress-strain 
curves in figure 58. The stress-strain curves in figure 58 represented all the tests noted in table 3, 
and the examined strain levels covered both low damage (low strain levels) and high damage 
(high strain levels) ranges. The resulting stress versus reduced time curves at these strain levels 
are presented in figure 59 through figure 64. At all strain levels examined, the curves appeared 
continuous, and thus, t-TS under deviatoric tension conditions was satisfactorily verified. In  
figure 63 and figure 64, data for 5 °C were not presented due to localization of the strain prior to 
reaching the given strain levels. This observation is also apparent in figure 58, in which the tests 
with the highest strength were performed at 5 °C.  
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Figure 58. Graph. Strain levels examined for verifying the t-TS principle under growing 

damage and confining pressure for the Control-2006 mixture. 
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Figure 59. Graph. t-TS with growing damage under confinement verification  

at a 0.0001ε  level. 
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Figure 60. Graph. t-TS with growing damage under confinement verification at a  

0.0005ε  level. 
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Figure 61. Graph. t-TS with growing damage under confinement verification at a  

0.001ε  level. 
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Figure 62. Graph. t-TS with growing damage under confinement verification at a  

0.0022ε  level. 
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Figure 63. Graph. t-TS with growing damage under confinement verification at a  

0.004ε  level. 
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Figure 64. Graph. t-TS with growing damage under confinement verification at a  

0.007ε  level. 
 

4.6. ENGINEERING BEHAVIOR IN CONFINED TENSION 

Verification of t-TS with growing damage under confining stress permitted the development of 
mastercurves for various engineering parameters. Such curves were created in much the same 
way as LVE mastercurves (refer to subsection 2.2.1). In this case, the reduced variable of interest 
was the reduced strain rate. This value was calculated for a given test by multiplying the 
physically observed strain rate by the time-temperature shift factor for that test. The time-
temperature shift factor was determined by using the test temperature with the time-temperature 
shift factor function shown in figure 22.  
 
One such curve of particular interest was the strength mastercurve, which is shown for both the 
confined and unconfined conditions in figure 65. Each point in these curves reflected the result 
from a single test. When examining this figure, the tests performed at higher temperatures 
resulted in lower reduced strain rates, and tests performed at lower temperatures resulted in 
higher reduced strain rates. No tests were performed at intermediate temperatures in the 
unconfined condition, and thus, no data were available in the middle reduced rates for this stress 
condition. From figure 65, results similar to those observed in LVE characterization were seen. 
Specifically, strength did not appear to be a function of confining pressure at high reduced rates 
but did appear to be a strong function of confining pressure at lower reduced rates. Also, less rate 
dependence was observed in the confined test at lower reduced rates. Another similar curve of 
interest was the strain at failure mastercurve. This curve provided a glimpse of the effect of 
temperature and rate on ductility. Plots of the strain at failure mastercurves under both the 
confined and unconfined conditions are shown in figure 66. Given the variability in these 
measurements, it was difficult to find any certain conclusive differences in the ductility with 
pressure. However, the data seemed to indicate an increase in ductility under all conditions, 
particularly at low reduced rates (i.e., high temperatures). The observation regarding asymptotic 



 

 88

behavior of both stiffness and strength at the low reduced frequencies/rates did not seem to 
transfer to the ductility.  
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Figure 65. Graph. Effect of 500 kPa confining pressure on strength mastercurves. 
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Figure 66. Graph. Effect of 500 kPa confining pressure on ductility in constant crosshead 

rate tests. 
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4.7. FATIGUE ANALYSIS WITH VECD MODEL 

4.7.1. VECD Integrated Formulation Summary 

Formulas relating to the existing formulation of the VEPCD model are shown in equation 109 
through equation 116. The damage evolution law is given by the following: 

 

R
dWdS

dt S

α
⎛ ⎞∂

= ⎜ ⎟∂⎝ ⎠  (109) 

Where: 
The dual energy density function for uniaxial loading was as follows: 

 ( )( )21
2

R R
dW C S ε=  (110) 

This leads to the constitutive relationship, which is shown in equation 111. 

 ( ) RC Sσ ε=  (111) 

Noting that increments of time are generally small, the following can be assumed. 
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Because only C was a function of damage, equation 113 simplified to the following: 
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However, in the case where only stress and time were given, it was convenient to observe that 
the following: 

 
R

C
σε =  (115) 
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Assuming that pseudo strain was constant over a given increment of time, equation 114 can be 
recast as follows: 

 

( )2

1
1 *
2

i i
i i

i

C
S S t

C S

α
δσ
δ−

⎛ ⎞⎛ ⎞
⎜ ⎟≅ + Δ − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠  (116) 

For solving equation 116, either an iterative technique or the analytical representation of δ C/δ S 
can be used. 
 
The important aspects of this formulation as they relate to this report are as follows: 
 

• Damage grew whenever loading was imposed although it did not necessarily grow at an 
almost zero rate. 

• Pseudo strain (true pseudo strain) must also equal zero when stress equaled zero. 

• The time dependence of the material was assumed constant regardless of the damage 
level. 

• Damage was irreversible. 

• Damage was predicted to grow equally during tension and compression. 

• The LVE characteristics of the material were related to the damage characteristics using a 
single variable, C. 

• Damage growth was a function of α  true pseudo strain (or stress and pseudo stiffness) 
and the current value of damage only. 

4.7.2. Formulation of Lee, Daniel, and Kim 

Formulas relating to the previous formulation as they have been applied in the past are shown in 
equation 117 through equation 123. 

 ( )R
eI F G Hσ ε= + +  (117) 

Where: 
I =   Normalization factor. 
ε e

R =   Effective pseudo strain = ε R - ε s
R

. 
ε s

R =   Permanent pseudo strain. 
F =   Function representing the slope of an individual stress-pseudo strain loop. 
G =   Hysteresis function. 
H =   Healing function. 
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It was observed that the damage function, C, is not explicit in equation 117; rather, C enters 
through the function, F, as follows: 

 
( )

R
m

R R
m s

F C Sε
ε ε

⎛ ⎞
= ⎜ ⎟−⎝ ⎠  (118) 

Equation 117 led to the pseudo energy density function shown in equation 119: 
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W C S G Hε ε
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= + +⎢ ⎥⎜ ⎟−⎝ ⎠⎣ ⎦  (119) 

The damage evolution law was the same for this approach and the current approach. Because G 
and H were not functions of damage, the damage growth equation became the following: 
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Previous researchers further simplified this equation by taking only the pseudo strain values at 
the peak and then performing the chain rule operation as follows: 
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Where: 
ε R

m,i  =   Peak pseudo strain of cycle i. 
ε R

me,i  =   Effective pseudo strain at the peak of cycle i. 
Ci  =   Pseudo stiffness at the ε R

m,i. 
Ci-1  =   Pseudo stiffness at ε R

m,i-1. 
Δ t  =   Cycle pulse time times the number of cycles occurring between observation i and 

observation i - 1.  
 
If it is assumed that the permanent pseudo strain at the beginning of the cycle was approximately 
equal to the permanent pseudo strain at the peak of the cycle and if it is assumed that the 
permanent pseudo strain was much smaller than the maximum pseudo strain, then equation 121 
can be recast as follows: 
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In terms of the iterative approach currently used, the following was the case: 
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The important aspects of this formulation as they relate to this report are as follows: 
 

• The effect of damage was only a reduction in stiffness. 

• Other nonlinear aspects were considered but not physically justified using other functions  
(G and H). 

• Damage growth was independent of other nonlinear effects. 

• The pseudo stiffness at the peak value was assumed sufficient for characterization and 
prediction purposes. 

• Damage growth was a function of α , maximum apparent pseudo strain, the current value 
of damage, and permanent pseudo strain levels at the beginning of a cycle. 

• A correction factor was necessary. Rationalization for this factor was provided by the 
assumption that damage only grew when pseudo strain was positive and increasing to 
collapse damage curves for cyclic and monotonic data. 

4.8. SIMPLIFIED ANALYSIS OF CYCLIC FATIGUE DATA 

4.8.1. Correction Factor in Formulation of Lee, Daniel, and Kim 

To make cyclic and monotonic data agree in the previous formulation, it was necessary to 
introduce a pseudo stiffness time change correction factor, M, into the damage calculation 
function. 
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To examine the significance of equation 124, it must be returned to its base form before the 
introduction of factor, M, to equation 121. Undoing the final simplification step for this equation 
is as follows: 
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In order to make equation 125 agree with equation 124, it was necessary to introduce the 
correction factor, M, as shown in equation 126. 
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From this equation, it was observed that a factor, M (taken as 4 in previous research), introduced 
in the manner shown in equation 124, implied that the pseudo stiffness decreased at a rate of M 
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times the observed cycle averaged rate for a period of 1/M*tp
 (figure 67). Mathematically, this 

approach can be schematically represented in figure 69. This figure indicates that the problem 
was simplified from that of a cyclic load application with magnitudeε R

m to a square wave form 
of duration 1/M*tp and a magnitude equal toε R

m. Although the square waveform is shown 
centered about the pulse, no real consideration was given to it when the equivalent square pulse 
was located during the cyclic pulse.  
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Figure 67. Illustration. A schematic representation of the concept of average dC/dt. 
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Figure 68. Illustration. A schematic representation of the effect of the M factor on dC/dt 

used in calculation. 
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Figure 69. Illustration. Mathematical equivalence of the formulation used by  
Lee, Daniel, and Kim.(3,4,5) 

4.8.2. Rigorous Analysis of Pseudo Strain History Effects 

The primary complication was that pseudo stiffness values were taken only at the peak. However, 
in order to have a net reduction in pseudo stiffness over a cycle, the damage must evolve during 
loading. Some assumptions had to be made regarding how damage grew between the peak values 
to more rigorously apply equation 120. Ideally, it should be possible to use the measured data to 
determine exactly when damage seems to grow, but complications in the analysis of full-time 
data in cyclic tests prevented such an approach.  
 
Because the integration was so well defined and repeatable (constant cyclic loading, for 
example), the correction factor could be simplified and applied in a way similar to the previous 
formulation by introducing another derivable factor, Q, as shown in equation 127. This factor 
was known as the pseudo strain shape factor and accounted for the time-varying pseudo strain 
history. 
 
It was hypothesized that the more rigorously accurate solution to equation 120 is given by 
equation 127 (in contrast to equation 124). 
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To derive the factor, Q, the G and H functions in equation 119 had to be ignored and substituted 
with an analytical expression for total pseudo strain as a function of time. This expression was 
denoted by ( )ˆR tε . Then this function was introduced into the damage evolution law, and the 
chain rule to arrive at an equation for the amount of damage occurring within a single cycle 
applied. 
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Equation 128 implies a different form for the constitutive relationship. In particular, the factor, 
ε m

R/( ε m
R - ε s

R ), was lumped in with the effective pseudo strain. This particular factor did not 
affect equation 127; however, it did imply arrival at equation 127 somewhat differently than was 
done previously (equation 120 through equation 122). During the cycle, damage grew over only 
a certain portion of the cycle pulse time, tp. Furthermore, during this time, pseudo stiffness 
reduced linearly at a rate such that the total reduction in pseudo stiffness that occurred over this 
reduced portion was equal to the experimentally observed reduction in pseudo stiffness between 
peaks. Mathematically this phenomenon is as follows: 
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Where: 
M  =   Factor denoting the inverse of the proportion of total pulse time when damage occurs (i.e., 

if it is assumed that damage occurs during only a quarter of the pulse time, then M = 4). 
tp =   Cycle pulse time (1/f). 
N =   Number of discrete points used in the numerical calculation.  
 
Substituting equation 129 and equation 130 into equation 128 and then simplifying found the 
following: 
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A comparison of equation 133 and equation 127 illustrated that the factor, Q, could be solved as 
follows: 
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It was then necessary to assume over which range of tp damage would occur. For controlled 
stress testing, it was assumed that damage growth occurred over only half of the loading cycle 
and was centered over the peak stress. It was important to specify the proportion of loading 
where damage occurred and when damage occurred in the loading cycle. The functional form of 

( )ˆR tε  also had to be assumed. For controlled stress loading, this function is represented by 
equation 135: 
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R R R Rm
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m s

t tt ε ω ωε ε ε ε
ε ε
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A schematic view of the assumptions made for controlled stress loading conditions is shown in 
figure 70. The shaded region the figure represents the portion of the loading pulse where it was 
assumed that damage was occurring.  
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Figure 70. Illustration. Schematic representation of assumptions made for controlled stress 

cyclic loading to develop Q and M factors. 
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In the case of controlled crosshead loading, the functional form for ( )ˆR tε  is given by 
equation 136. 
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m s

t t tεε ε ε ω ε ω
ε ε
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A schematic view of the assumptions made for controlled crosshead loading is shown in  
figure 71. Again, the shaded region represents the portion of the load pulse where it was assumed 
that damage was occurring.  
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Figure 71. Illustration. Schematic representation of assumptions made for controlled 

crosshead cyclic loading to develop Q and M factors. 
 
Finally, combining the pseudo strain shape factor and the pseudo stiffness time factor into a 
single parameter, Z, resulted in the following relationship: 
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Where: 
Z factor was given by the following equation 138. 
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In the work of Lee, Daniel, and Kim, the Z factor was given by equation 139.(3–5) 
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The tests used to verify the above derivation are summarized in table 12. The four ALF mixtures 
used in the VEPCD model verification and discussed in detail elsewhere were used here.(12,13)  
Table 12 shows that each of the mixtures had both controlled stress (CS) and controlled 
crosshead (CX) tests and different combinations of levels and temperatures. The Q and Z factors 
for each of these mixtures are summarized in table 13 for both the CS and CX conditions. 
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Table 12. Cyclic tests performed. 

Material Specimen 
Name 

Test 
Type 

Test 
Designation

Level  
(kPa/ με  

Freq. 
(Hz)

Temp. 
( °C ) Nf 

Control 

FHWA 101 CS 5-CS-H 1,500/42 4 5 32,000 
FHWA 99 CS 19-CS-H 750/52 4 19 4,700 
FHWA 100 CS 19-CS-L 250/16 4 19 108,720 
FHWA 96 CX 19-CX-L —/262 4 19 14,800 
FHWA 97 CX 19-CX-L(2) —/273 4 19 17,800 
FHWA 98 CX 19-CX-H —/327 4 19 7,900 
FHWA 85 CX 5-CX-H —/89 10 5 51,170 
FHWA 87 CX 5-CX-H(2) —/83 10 5 48,190 
FHWA 88 CX 5-CX-L —/73 10 5 135,000 

CRTB 

CRTB 30 CS 5-CS-H 1,500/90 4 5 4,400 
CRTB 28 CS 19-CS-H 750/90 4 19 2,360 
CRTB 29 CS 19-CS-L 250/25 4 19 106,700 
CRTB 26 CX 19-CX-H —/333 4 19 27,500 
CRTB 27 CX 19-CX-L —/442 4 19 48,762 

SBS 

SBS 28 CS 5-CS-H 1,500/70 4 5 4,100 
SBS 26 CS 19-CS-H 750/110 4 19 670 
SBS 27 CS 19-CS-L 250/30 4 19 54,240 
SBS 25 CX 19-CX-L —/300 4 19 >120,000 
SBS 24 CX 19-CX-H —/523 4 19 > 90,000 

Terpolymer 

EVY 28 CS 5-CS-H 1,500/70 4 5 5,500 
EVY 26 CS 19-CS-H 750/140 4 19 740 
EVY 27 CS 19-CS-L 250/50 4 19 56,230 
EVY 24 CX 19-CX-L —/428 4 19 > 138,000 
EVY 25 CX 19-CX-H —/579 4 19 75,000 

— Initial stress level in CX tests are not reported,  

 
Table 13. Summary of cyclic correction factors. 

Mixture α  Test 
Type Q Z 

PG 70-22 2.12 CS 0.669 0.609
CX 0.814 0.558

CRTB 2.96 CS 0.672 0.624
CX 0.815 0.605

SBS 2.62 CS 0.671 0.619
CX 0.814 0.588

Terpolymer 2.44 CS 0.670 0.622
CX 0.815 0.605
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The comparisons of the C versus S curves characterized from the monotonic tests and from 
cyclic tests are shown in figure 72 through figure 75. The loading portions of the first cycle in all 
of the tests shown in figure 72 were calculated using the formulation shown in equation 29. 
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Figure 72. Graph. Damage characteristic comparison, cyclic to monotonic using  

equation 127 Control mixture. 
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Figure 73. Graph. Damage characteristic comparison, cyclic to monotonic using  

equation 127 CRTB mixture. 
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Figure 74. Graph. Damage characteristic comparison, cyclic to monotonic using  

equation 127 SBS mixture. 
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Figure 75. Graph. Damage characteristic comparison, cyclic to monotonic using  

equation 127 Terpolymer mixture. 

4.8.3. Discussion of Simplified Model Approach 

Figure 72 through figure 75 show that the collapse of the damage characteristic curve between 
cyclic and monotonic data depended on both the mixture and test conditions. The Control and 
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CRTB mixtures showed the most favorable overall collapse, whereas the SBS and terpolymer 
mixtures showed the least favorable collapse. For each of the mixtures, the degree of collapse 
appeared to reduce as the amount of permanent strain developing in the test increases. In general, 
such permanent strains were significantly higher in the CS tests than they were in the CX tests. 
These strains also tended to increase as a percentage of the total with lower input amplitudes or 
higher temperatures. These results appeared to become significant for only the 19-CS-L test for 
the Control and CRTB mixtures. The SBS mixture showed the effects under both of the 19 °C 
CS test conditions, whereas the terpolymer mixture showed major effects under only the  
19-CS-L and the CX conditions.  
 
In addition to the effects of permanent strain, the collapse may have been affected by errors in 
some of the aforementioned assumptions made for the calculation of damage. Unfortunately, the 
direct verification of these assumptions was not possible due to uncontrollable data analysis and 
acquisition errors. Additionally, in cyclic loading, it was possible that other mechanisms, such as 
nonlinear viscoelasticity and microcrack healing, may have occurred. If this was the case, these 
mechanisms may not have been triggered by constant rate tension testing. Therefore, it was not 
expected that the curves would collapse until the model was appropriately formulated. Another 
potential source of error lay with the α  variable in the VEPCD model. Two different physical 
interpretations of the α  variable were used in the literature. However, these interpretations were 
based on the physical consequences for a single macrocrack (i.e., fracture process zone 
characteristics, which may have had no relation to the physical realities of a continuum damage 
problem). In addition, the interpretation of α  as a constant value independent of test conditions 
was based on certain LVE characteristics. These particular characteristics were not observed for 
asphalt concrete under every condition. In addition, because α  was an exponent in the model, its 
impact was complicated and could have caused an increase or decrease in the damage prediction, 
depending on temperature, mode of loading, and amplitude of loading. 

4.9. REFINED DERIVATION OF SIMPLIFIED FATIGUE MODEL  

The previous formulations had some obvious problems either in the rigor of their derivations or 
in the assumptions made. To address this problem, a new formulation was proposed. In the 
following subsections this refined formulation is given. Then, the refined formulation is further 
simplified into a form which can be easily programmed into a spreadsheet for fatigue life 
predictions. To be clear, the definition used for pseudo stiffness with this formulation is shown in 
equation 140. Notice that pseudo stiffness is given by the variable F to differentiate it from the 
definition used in the previous formulations. Qualitative the meaning of F and C are the same 
even though they differ slightly quantitatively.  
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Where: 
σ 0,ta = The stress tension amplitude.  
ε  R0,ta  = The pseudo strain tension amplitude.  
Ι  = The normalization factor (0.9–1.1). 
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4.9.1. Identification of Tensile Loading Time 

To quickly analyze the cyclic data in the simplified mechanics model, it was important to 
identify the actual time that a given cycle was under tensile loading. This time was important 
because it was assumed that fatigue damage occurred only under such conditions. To determine 
this time, it was assumed that regardless of the input condition the following analytical function 
was descriptive of the stress history of any given cycle for the tests used in this study: 

 
( ) ( )( )
0,

1cos
1R

ta

σ ξ
β ω ξ

σ β
= −

+  (141) 

Where: 
σ 0,ta  = The tension stress amplitude and for generality time was given as reduced time, ξ .  
 
The β  term, defined by equation 142, was a factor that allowed direct quantification of the 
duration that a given stress history was tensile. In equation 142, (σ peak)i was the largest value 
within cycle i, and (σ valley)i was the smallest value within cycle i. 
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When β  = 1, the entire stress (and therefore the pseudo strain minus permanent pseudo strain) 
history for the given cycle was tensile; when β  = 0, half of the history was tensile; and when 
β  = -1, the entire history was compressive. This last condition was not used for any of the tests 
in this study.  
 
Noting that the total pulse time was Rω /(2π ) and using the definition of stress shown in 
equation 141, the factor M used in the previous formulation can now be rigorously calculated 
using equation 143. 
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With the definition of total stress history and β  in equation 141 and equation 142 respectively, it 
can be shown that the tensile amplitude can be calculated from the peak-to-peak values if β  is 
known by equation 144. Although equation 144 is shown for stress, it can also be applied to 
pseudo strain.  

 0, 0,
1

2ta pp
βσ σ+

=  (144) 

Finally, it can be shown that the times during the load pulse at which tensile loading begins and 
ends for any given cycle are, in terms of the coefficient, β , and the reduced loading frequency, 

Rω , given by equation 145 and equation146. 
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4.9.2. Defining Alpha 

The power,α , in the VECD model has been discussed previously. In the reformulated model, the 
power was defined more clearly. Through theoretical arguments that use the macrocracking 
phenomenon, this power was found to relate to linear viscoelastic time dependence.(9) Motivated 
by earlier work on this subject, the maximum absolute value of the log-log slope of the 
relaxation modulus, m, was taken to represent the linear viscoelastic response. (See references 4, 
5, 7, and 8.) According to the theory, if the material’s fracture energy and failure stress are 
constant, then α  = 1/m + 1, but if the fracture process zone size and fracture energy are constant, 
then α  = 1/m. A review of the literature shows that different researchers have used differing α  
values. Some researchers suggest that it is most appropriate to use α  = 1/m for the type of CS 
tests that were performed in this current study and α  = 1/m + 1 for the CX tests.(3,4) This 
approach is supported by the work of other researchers that uses the constant failure stress and 
energy criteria for the CX tests and by separate studies which have used CS-type tests and  
α  = 1/m.(5,7,12) Therefore, this study used α  = 1/m + 1 for the CX tests, and α  = 1/m for the CS 
tests. No attempt was made in this work to calibrate these relationships further. A summary of 
the α  values used for the mixtures of interest is given in table 14. 
 

Table 14. Summary of α values for refined model. 
Mixture Test Type α

PG 70-22 CS 2.40539
CX and Monotonic 3.40539

CRTB CS 3.31787
CX and Monotonic 4.31787

SBS CS 2.92686
CX and Monotonic 3.92686

Terpolymer CS 2.72093
CX and Monotonic 3.72093

9.5 Fine CS 3.12658
CX and Monotonic 4.12658

4.9.3. Failure in Cyclic Mode of Loading 

Two criteria were adopted to define the cycle at which data could be used in the VECD 
characterization/verification process. Two different criteria were necessary because the CS and 
CX tests failed in quite different patterns and because each criterion captured one of the two 
possible reasons that it was inappropriate to use a given test result: (1) localization of damage at 
the point of a single macrocrack, or (2) the onset of additional dominating mechanisms that were 
not related to microdamage. To identify the point of macrocrack localization in these tests, the 
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method suggested in the literature, whereby the cycle at which the phase angle showed a sharp 
decrease, was taken as Nf.(58) This cycle was identified graphically by plotting the phase angle 
versus cycle number. During the test, the phase angle tended to increase steadily until a point at 
which it dropped rapidly. The cycle where this rapid drop occurred was Nf. 
 
When processes other than damage mechanisms, such as viscoplasticity, began to have  
significant effect, then a test could no longer be used directly for characterization. Although at 
this time rigorous identification of this occurrence was not possible, it was assumed that the 
onset of other mechanisms was closely related to the total amount of permanent strain 
experienced by the specimen. It was known from experience that the constant crosshead rate 
tests at 5 °C and strain rates above 1 x 10-5 for unmodified mixtures and 1 x 10-4 for polymer-
modified mixtures were dominated by the viscoelastic damage mechanisms.(7,12) It was also 
known that for any given mixture the tests performed at these rates showed similar strain levels 
at the peak stress. These mixture-dependent strain levels represented a known level below which 
VECD mechanisms dominate. The cycle in the fatigue tests at which the permanent strain 
exceeded this threshold was taken as the point after which data could not be used for VECD 
characterization. To find the permanent strain during the cyclic test, the permanent pseudo strain 
was tracked by cycle. Then these permanent pseudo strain values were compiled as a function of 
reduced time, where reduced time was taken at the end of the beginning of the respective cycle 
where the permanent pseudo strain was known. It was then assumed that the permanent pseudo 
strain varied linearly within the cycle (the final value for cycle i was equivalent to the initial 
value for cycle i + 1). With this assumption, equation 16 could be inverted and used with the 
state variable formulation to solve for permanent strain. Note that while the effect of assuming a 
linear pseudo strain growth is not explored here, the effect of this assumption was small since the 
amount of permanent pseudo strain within a cycle is generally very small. 
 
When either of these two conditions was met, failure was said to have occurred, and all data 
gathered afterward were ignored. Thus, all of the data shown in any of the subsequent graphs 
represent the data prior to this failure point. It is worth noting that in this study all tests in the CX 
mode failed due to the rapid change in phase angle, while all tests performed in the CS mode 
failed due to exceeding the strain limit. 

4.9.4. Refined Simplified Model Derivation 

The basic concept of the refined model is to separate the damage calculation into two 
components: damage occurring in the first loading path and damage occurring due to the 
repeated loading. These two components were referred to as the transient and cyclic portions 
respectively. The mathematical implications are given in equation 147.  
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Cyclic p

dS
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dS
ξ ξ
ξ ξ

≤⎧
= ⎨ >⎩  (147) 

Where: 
ξ p = Reduced cycle pulse time. 
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This refined method assumed that all of the effects of damage were shown through a reduction of 
the cyclic pseudo stiffness, F. This assumption did not mean that damage affected only the cyclic 
pseudo stiffness but rather that this pseudo stiffness wholly reflected damage effects. It was also 
assumed that damage growth within a given cycle was small. The test data were still normalized 
for specimen-to-specimen variability by the correction factor, I, defined earlier. The transient 
calculation was the same as the rigorous calculation shown in equation 114, but the form of the 
cyclic portion was given by equation 148 where the variable R was a form adjustment factor. The 
subscript k was only a placeholder to represent the fact that the factor R could vary from cycle to 
cycle depending on the particular loading history. During real experiments this might occur due 
to slight deviations in machine control. In general, though, the value of R varied only slightly 
throughout loading. However, the refined model was capable, by including the form adjustment 
factor, to explicitly account for any load form shape (i.e., square, saw-tooth, sinusoidal, etc.), or 
combinations of shapes, as long as that load history did not violate the assumptions made in the 
following paragraphs.  
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This adjustment factor was found by assuming that equation 150 could be used to simplify the 
more rigorous equation 149.   
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Setting equation 149 equal to equation 150 and noting that (equation 152):  
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gave the following (equation 153):  
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Finally, if it was assumed that within a cycle, ∂ F/ ∂ S was nearly constant and if it is recalled that 
the effective pseudo strain history is given by equation 151, then (equation 154): 

 ( ) ( )( ) ( ) ( )2 22
0, 0, 1* * * *

f

i

R R
ta ta f if d K

ξ
α αα

ξ

ε ξ ξ ε ξ ξ= −∫ , (154) 

which simplifies to (equation 155): 
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− ∫  (155) 

The implication of assuming that ∂ F/ ∂ S was nearly constant was not explored for this study. 
However, in the context of fatigue where failure often required thousands to millions of cycles, it 
was assumed that such an assumption was valid. It can be shown that the R factor was equal to 
K1 raised to a power that was a function of α  as shown in equation 156, where the times for the 
integral in this equation were defined by equation 145 and equation 146. The values for this 
adjustment factor were approximately equal to 0.77 for the CX tests (nearly sinusoidal loading) 
and 0.70 for the CS tests (purely haversine loading) for most mixtures. Should the loading form 
be something other than these two types, the value of R would be different but could be 
calculated using equation 156. 
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∫  (156) 

4.9.5. Model Application 

The refined model was applied to the tests given in table 12, and the comparison of the damage 
characteristic curves from the cyclic and monotonic tests are shown in figure 76 through 
figure 79. Comparing these figures to the results shown in figure 72 through figure 75, it was 
seen that the refined method did a much better job in collapsing the damage characteristic curves, 
suggesting that the mathematical rigor and assumptions made in this refined method were more 
appropriate for describing the behavior of asphalt concrete materials. 
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Figure 76. Graph. Damage characteristic comparison, cyclic to monotonic using  

refined model Control mixture. 
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Figure 77. Graph. Damage characteristic comparison, cyclic to monotonic using  

refined model CRTB mixture. 
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Figure 78. Graph. Damage characteristic comparison, cyclic to monotonic using  

refined model SBS mixture. 
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Figure 79. Graph. Damage characteristic comparison, cyclic to monotonic using  

refined model Terpolymer mixture. 
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4.9.6. Simplifications to Refined Model 

Compared to the rigorous modeling, the refined model was simple to use. However, the method 
still required the complete calculation of pseudo strain for the entire loading history, e.g., 
evaluation of the integral in equation 16. This process could have been time consuming, so it was 
worthwhile to examine simplifications to the calculation. The easiest simplification was referred 
to as the steady-state assumption because it was rigorously accurate only under steady-state 
loading. This condition was only approximately true for the cyclic portion of loading and is 
mathematically shown in equation 157. 

 ( ) ( ) ( )( )0. 0, 0,
1 1 1* * * * *

2
R

ta ta ppLVE LVEi icycle i
R R

E E
E E

βε ε ε+
= =  (157) 

Replacing the pseudo strain amplitude in equation 148 with that in equation 157 greatly 
simplified the calculation and made a spreadsheet solution a possibility. The consequences of 
this simplification are shown in figure 80 through figure 84. Note that an additional mixture was 
included in this group of graphs. The test summary for only this mixture is given in table 15; a 
summary of the other mixtures has already been given in table 12. Due to the change in 
definition for pseudo stress, the pseudo stiffness is now referred to as C* to indicate that it was 
computed using the steady-state assumption. Also, recall the definitions of failure in these tests 
have been provided in subsection 4.9.3. 
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Figure 80. Graph. Damage characteristic comparison, cyclic to monotonic using  

refined simplified model Control mixture. 
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Figure 81. Graph. Damage characteristic comparison, cyclic to monotonic using  

refined simplified model CRTB mixture. 
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Figure 82. Graph. Damage characteristic comparison, cyclic to monotonic using  

refined simplified model SBS mixture. 
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Figure 83. Graph. Damage characteristic comparison, cyclic to monotonic using  

refined simplified model Terpolymer mixture. 
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Figure 84. Graph. Damage characteristic comparison, cyclic to monotonic using  

refined simplified model 9.5-mm Fine mixture. 
 



 

 113

Table 15. Cyclic tests performed for 9.5-mm Fine mixture 

Material Test 
Type 

Test 
Designation

Level  
(kPa / με

Freq. 
(Hz) 

Temp. 
( °C ) Nf 

9.5 Fine 

CS 5-CS-H 1,500/115 10 5 5,900 
CS 5-CS-L 750/40 10 5 29,6450 
CS 19-CS-H 750/108 10 19 2,950 
CS 19-CS-L 250/35 10 19 105,480 
CX 19-CX-H —/240 10 19 46,389 
CX 19-CX-VL —/190 10 19 311,170 
CX 19-CX-VH —/402 10 19 2,670 
CX 5-CX-H —/150 10 5 70,140 
CX 5-CX-L —/126 10 5 145,410 

— Initial stress level in CXH tests is not reported.

4.10. SUMMARY 

Various interpretations of the work potential/pseudo strain class of continuum damage models 
have been explored, and a final refined version is suggested. The two methods shown in this 
report represented a simplification of a more rigorous theory so that it can be easily and 
accurately applied to cyclic fatigue testing and characterized using cyclic fatigue tests that are 
performed in the AMPT. The final suggested version is also further simplified so that it can be 
implemented as a software solution. The earlier versions of this model contained certain 
shortcomings in the rigor of their derivations. The rigorously accurate VECD model has been 
used to gain understanding of, and improve upon, these earlier models. The resulting refined 
formulation unified the results of CS, CX, and monotonic testing and supported earlier findings 
that the damage characteristic curve was a material property independent of temperature and test 
type. In addition, this model allowed rapid characterization and/or prediction of the material 
fatigue response. Coupled with either a structural model or a predictive scheme similar to that 
used in the NCHRP 1-37A Mechanistic Empirical Pavement Design Guide, this model could 
also be used to predict the fatigue response of asphalt concrete pavements.(59) This topic is the 
subject to ongoing efforts by the research team.
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CHAPTER 5. MVEPCD CHARACTERIZATION AND VERIFICATION IN 
COMPRESSION 

The permanent deformation in HMA is affected by several mixture factors, such as the resistance 
of the binder to flow, aggregate angularity and gradation, the amount of asphalt, the air void 
content, etc. A significant amount of research has been conducted to develop laboratory test 
methods, analysis techniques, and models to study the permanent deformation growth of HMA. 
The nature of the permanent deformation models available in the literature ranges from empirical 
to mechanistic-empirical to completely mechanistic. Further attempts have been made in recent 
years to develop a mechanistic permanent deformation model that involves fundamental material 
characterization.(20,52,53) 
 
The objective of this research was to develop a constitutive model of HMA in compression that 
could predict HMA behavior under loading conditions and temperatures encountered in the field. 
The following sections present theories used in the modeling, the experimental program, the 
characterization process, and predictions for various loading histories. For this effort only, the 
ALF Control mixture has been used, and it should be understood that all figures in this chapter 
are related to this mixture. 

5.1. ENGINEERING BEHAVIOR OF ASPHALT CONCRETE IN COMPRESSION 

5.1.1. Constant Rate Compression 

Figure 85 and figure 86 show the rate-dependent stress-strain curves of HMA at the confining 
pressures of 0 and 500 kPa, respectively. As observed from figure 85 and figure 86, the gross 
trends in stress-strain curves with 500 kPa confinement were quite similar to those with 0 kPa 
confining pressure; the overall strength of the material decreased with increasing temperature 
and with decreasing strain rates. Directly comparing the curves at different temperatures (figure 
87 through figure 90), it was found that at 5 and 25 °C, the response was not sensitive to 
confining pressure. The strengths began to deviate during the 40 °C tests and were significantly 
different at 55 °C, with the confined tests showing higher strengths. This trend was similar to 
that observed in the confined dynamic modulus tests, which was described for tension-
compression loading in subsection 4.2.2 and for compression loading in section 5.2. This finding 
suggests that when the material was very stiff, the effects of confinement were negligible. 
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Figure 85. Graph. Stress-strain curves for unconfined constant strain-rate tests. 
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Figure 86. Graph. Stress-strain curves for 500 kPa confinement constant strain-rate tests. 
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Figure 87. Graph. Comparison of 500 kPa confinement and unconfined constant rate tests 

for 5 °C. 
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Figure 88. Graph. Comparison of 500 kPa confinement and unconfined constant rate tests 

for 25 °C. 
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Figure 89. Graph. Comparison of 500 kPa confinement and unconfined constant rate tests 

for 40 °C. 
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Figure 90. Graph. Comparison of 500 kPa confinement and unconfined constant rate tests 

for 55 °C. 
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5.1.2. Repetitive Creep and Recovery Test 

5.1.2.1. Creep and Recovery Test with VL 

Figure 91 through figure 93 present the viscoplastic strains for the given VL stress histories. The 
viscoplastic strains caused by the first loading in each group, except for the first loading group, 
were close to zero or were at least very small because the deviatoric stress that caused the 
viscoplastic strains was quite small compared to that of previous loadings. 
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Figure 91. Graph. Viscoplastic strain versus cumulative loading time (unconfined VL). 
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Figure 92. Graph. Viscoplastic strain versus cumulative loading time  

(140 kPa confinement VL). 
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Figure 93. Graph. Viscoplastic strain versus cumulative loading time  

(500 kPa confinement VL). 
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5.1.2.2. Creep and Recovery Tests with VT and RVT  

Figure 94 and figure 95 present the viscoplastic strains measured at the end of each rest period in 
unconfined VT and 500 kPa confinement VT, respectively. In both unconfined and confined VT 
testing, the overall reproducibility was sufficiently adequate to identify the effects of load level 
and loading sequence. In RVT testing, less viscoplastic strain was observed than in VT testing 
despite the fact that the test conditions were the same for both tests, with the exception of the 
sequence of loading, as described previously. This difference in viscoplastic strain indicated that 
the sequence of loading plays was an important role in viscoplastic strain development. In 
addition, a change of slope between the two groups of viscoplastic strain, which could not be 
explained by the concepts inherent of the conventional viscoplastic model, was observed. It 
seems the characteristic behavior of HMA was affected by viscoelastic relaxation.  
 
Although quantifying the variations in the viscoplastic strain rate under a given loading condition 
is necessary for rigorous modeling work, no test protocol was available that could capture only 
the viscoplastic strain rate because HMA showed time-dependent viscoelastic strain, too. 
However, trends for viscoplastic strain rates developed in repetitive creep and recovery testing 
could be estimated by analyzing the VT test results. Figure 96 presents incremental viscoplastic 
strain rates (i.e., incremental viscoplastic strain divided by pulse time). As shown in figure 96, at  
1-percent viscoplastic strain, viscoplastic strain rates from 0.05-s loadings (2.0 x 10-3) were much 
greater than those from 6.4-s loadings (8.0 x 10-5). These results indicated that most of the 
viscoplastic strain developed at the beginning of the loading period and that the viscoplastic 
strain that developed during the remainder of the loading period (i.e., at 6.4 to 0.05 s) was 
relatively small. Because the calculated viscoplastic strain rate was the average of the 
viscoplastic strain rates during loading, the actual viscoplastic strain rates at the end of the 
loading were much smaller than 8.0 x 10-5. This is another important behavior of HMA, along 
with the softening concept presented in the following section. Mathematically, this behavior can 
be formulated in a viscoplastic constitutive model with either increasing viscosity or increasing 
yield stress due to aggregate interlocking. 
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Figure 94. Graph. Viscoplastic strain versus cumulative loading time  

(unconfined VT testing). 
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Figure 95. Graph. Viscoplastic strain versus cumulative loading time  

(500 kPa confinement for VT and RVT testing). 
 



 

 123

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

0.0% 0.5% 1.0% 1.5% 2.0% 2.5%

Viscoplastic Strain

In
cr

em
en

ta
l V

P 
St

ra
in

 R
at

e
0.05 sec 0.10 sec
0.25 sec 0.40 sec
1.60 sec 2.00 sec
6.40 sec

 
Figure 96. Graph. Incremental viscoplastic strain rate versus viscoplastic strain  

(500 kPa confinement, 1,600 kPa deviatoric). 
 
5.1.2.3. Creep and Recovery Tests with Constant Load Level and CLT 

Figure 97 presents the viscoplastic strain history for each loading condition with a confining 
pressure of 500 kPa. A smaller viscoplastic strain was observed as the pulse time increased. Even 
considering the ramp time of 0.005 s, which was not taken into account in the cumulative loading 
time, the difference in the viscoplastic strains was quite significant.  
 
As shown in figure 97, more viscoplastic strain was observed in the CLT tests that consisted of 
shorter loading times at a given cumulative loading time. The differences were significant. For 
example, at 150 s of cumulative loading time, the viscoplastic strain in 1,800 kPa CLT testing 
with a 0.4-s loading time was over 3 percent, whereas it was around 1.5 percent in 1,800 kPa 
CLT testing with a 6.4-s loading time and was 2.2 percent with a 1.6-s loading time. One reason 
for this behavior could be related to the dynamic effects associated with the ramp to the target 
load because one difference in the tests, as they are presented in figure 97, is the number of load 
applications. Alternatively, because the tests are exposed to different total rest times at given 
cumulative loading times, the differences could be related to material softening. Furthermore, it 
is not beyond reason to suppose that this softening behavior could be rate dependent. For further 
study of this issue, two additional VT tests with 0.1- and 0.05-s rest periods were performed at a 
confining pressure of 140 kPa. These test results were compared with the results from VT testing 
with 200 s of rest. In these tests, the conditions were identical (i.e., the number of loadings and 
rest periods were the same for each), except for the length of the rest period. Figure 98 presents 
the viscoplastic strains measured at the end of the rest periods. For VT tests with 0.05 and 0.1 s 
of rest, 200 s of rest was allowed at the end of the testing to measure the pure viscoplastic strain 
because it was not possible to measure pure viscoplastic strain immediately after 0.05 or 0.1 s of 
rest. The deviatoric stresses were 827 and 552 kPa, and the confining pressure was 140 kPa. 
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Figure 97. Graph. Viscoplastic strain versus cumulative loading time  

(500 kPa confinement CLT). 
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Figure 98. Graph. Viscoplastic strain versus cumulative loading time  

(140 kPa confinement VT). 
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As seen in figure 98, even though the loading histories were identical except for the length of the 
rest period, a smaller viscoplastic strain developed as the rest period became shorter. 
Furthermore, the effect of the rest period on viscoplastic development was significant 
considering the amount of viscoplastic strain when using 552 kPa deviatoric stress and 200 s of 
rest. This experimental observation did not demonstrate the effects of the dynamic loading ramp, 
but it did demonstrate the significant effect of rate-dependent softening during unloading. 
Therefore, the modeling effort focused on developing a viscoplastic model that accounted for 
rate-dependent hardening and/or softening. 

5.1.3. t-TS with Growing Damage in Compression 

The principle of t-TS is one of the fundamental and most important concepts for HMA in tension 
modeling because it provides a strong mechanical background and significantly reduces the 
experimental efforts. In order to verify the principle for the compression stress state, stress 
characteristic curves were constructed from constant strain-rate test results by utilizing shift 
factors determined from the dynamic modulus tests. Further verification was also performed 
using repetitive creep and recovery tests.  
  
For the verification of the principle for monotonic loading, a wide range of eight reference-strain 
values were chosen according to the results of both the uniaxial and triaxial compressive constant 
strain-rate tests (figure 85 and figure 86). According to the procedure shown schematically in 
figure 55 through figure 57 and discussed in detail elsewhere, the stress and time values were 
determined for all of these tests at fixed strain levels.(13,20) These plots of stress versus time are 
shown in figure 99 through figure 114. Then, shift factors obtained from small-strain LVE 
testing were applied to determine the reduced time that corresponded to each physical time. If the 
t-TS principle was valid with growing damage, the resulting plots of stress and reduced time 
would appear continuous at all strain levels. This behavior was indeed observed for the 
compression tests under both the confined and unconfined conditions (figure 115 and figure 116). 
These results verified that the t-TS concept held true for mixtures subjected to compressive 
loading as well as to tensile loading, even if there was severe damage and viscoplastic strain. 
However, to verify that the principle held for the physical mechanisms behind the behavior of 
repetitive creep and recovery tests, more rigorous verification was needed—this verification 
compared VT test results at 40 and 55 °C with the same reduced time histories.  
 
For this verification, VT testing was first performed at 55 °C (the 200 s rest period results are 
used here). Next, the time history was used with the t-TS shift factors to compute the equivalent 
reduced time history at 40 °C. However, because the testing time was estimated to take several 
days (the equivalent time to 200 s at 55 °C is approximately 3,265 s at 40 °C), the following 
analysis was performed to finish the VT testing within a reasonable time. In this analysis, the 
measured strain history during the unloading portion of several load pulses was used to compute 
the strain rate, which was plotted against the rest period time in figure 117. To avoid issues 
related to the initial loading of a test, the 0.05 s data were taken from the second load block, 
whereas the other pulse times were taken from the first loading block of the VT test. As shown in 
figure 117, most of the strain rates became quite small after around 40 s, except for the rest 
periods following the 1.6 and 6.4 s load pulses. For this reason, 40 s was used to compute the 
reduced time for pulse times less than 1.6 s (653 s at 40 °C); 50 s was used for a pulse time of  
1.6 s (816 s at 40 °C); and 60 s was used for a pulse time of 6.4 s (980 s at 40 °C). Note that 
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strain rates reached an asymptotic value of zero more quickly as the strain level increased, and 
thus, it was conservative to consider the times used in the first loading block as the reference 
times. The results of these two tests are shown figure 118. As the figure shows, viscoplastic 
strains measured at the end of rest periods were well matched to each other. This agreement 
confirmed that the t-TS principle was applicable regardless of loading sequence and the amount 
of damage and viscoplastic strain in asphalt concrete. 
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Figure 99. Graph. Stress-time curves for the Control mixture before the application of 

time-temperature shift factors at a 0.0001 strain level under uniaxial conditions. 
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Figure 100. Graph. Stress-time curves for the Control mixture before the application of  

time-temperature shift factors at a 0.0005 strain level under uniaxial conditions. 
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Figure 101. Graph. Stress-time curves for the Control mixture before the application of  

time-temperature shift factors at a 0.001 strain level under uniaxial conditions. 
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Figure 102. Graph. Stress-time curves for the Control mixture before the application of  

time-temperature shift factors at a 0.003 strain level under uniaxial conditions. 
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Figure 103. Graph. Stress-time curves for the Control mixture before the application of  

time-temperature shift factors at a 0.005 strain level under uniaxial conditions. 
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Figure 104. Graph. Stress-time curves for the Control mixture before the application of  

time-temperature shift factors at a 0.01 strain level under uniaxial conditions. 
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Figure 105. Graph. Stress-time curves for the Control mixture before the application of  

time-temperature shift factors at a 0.015 strain level under uniaxial conditions. 
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Figure 106. Graph. Stress-time curves for the Control mixture before the application of  

time-temperature shift factors at a 0.02 strain level under uniaxial conditions. 
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Figure 107. Graph. Stress-time curves for the Control mixture before the application of  

time-temperature shift factors at a 0.0001 strain level under 500 kPa conditions. 
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Figure 108. Graph. Stress-time curves for the Control mixture before the application of  

time-temperature shift factors at a 0.0005 strain level under 500 kPa conditions. 
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Figure 109. Graph. Stress-time curves for the Control mixture before the application of  

time-temperature shift factors at a 0.001 strain level under 500 kPa conditions. 
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Figure 110. Graph. Stress-time curves for the Control mixture before the application of  

time-temperature shift factors at a 0.003 strain level under 500 kPa conditions. 
 

1.E+02

1.E+03

1.E+04

1.E+05

1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04

Time (s)

St
re

ss
 (k

Pa
)

5C
25C
40C
55C

  
Figure 111. Graph. Stress-time curves for the Control mixture before the application of  

time-temperature shift factors at a 0.005 strain level under 500 kPa conditions. 
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Figure 112. Graph. Stress-time curves for the Control mixture before the application of  

time-temperature shift factors at a 0.01 strain level under 500 kPa conditions. 
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Figure 113. Graph. Stress-time curves for the Control mixture before the application of  

time-temperature shift factors at a 0.015 strain level under 500 kPa conditions. 
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Figure 114. Graph. Stress-time curves for the Control mixture before the application of  

time-temperature shift factors at a 0.02 strain level under 500 kPa conditions. 
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Figure 115. Graph. Stress mastercurves for the Control mixture under uniaxial conditions. 
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Figure 116. Graph. Stress mastercurves for the Control mixture under triaxial conditions 

(500 kPa). 
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Figure 117. Graph. Variation of strain rate during unloading. 
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Figure 118. Graph. Viscoplastic strain versus cumulative loading time  

(140 kPa confinement VT at 40 and 55 °C). 

5.2. MVECD CHARACTERIZATION IN COMPRESSION 

5.2.1. Linear Viscoelastic Characterization 

As presented in chapter 2, the first stage in MVECD characterization was the determination of 
the LVE properties of the material. Following the test protocols presented in chapter 3, 
frequency-temperature sweep tests were conducted in both unconfined and confined states. The 
results of this characterization under zero-maximum deviatoric stress conditions are shown for 
the unconfined stress state in table 16, for a confining pressure of 140 kPa in table 17 and for a 
confining pressure of 500 kPa in table 18. The shift factor function coefficients that resulted as 
part of the mastercurve construction process for each of the tests in these tables are shown in 
table 19. 
 
Table 16 through table 18 show that a trend similar to that observed for the zero-mean deviatoric 
conditions was also observed for the zero-maximum deviatoric tests. Specifically, under 
confinement, the material modulus increased as a function of the confinement level. Additionally, 
under conditions where a given confinement state diverged from the unconfined state, the 
mastercurve moved toward a lower temperature and higher frequency at the higher confined 
stress. Additionally, a higher confining stress generally resulted in a lower phase angle (i.e., 
higher elasticity). Although it may be argued that increased aggregate interlocking was the cause 
of these behaviors, it was assumed that such an interpretation was flawed due to the strain 
magnitudes typically induced during the testing. The net effect of the increased dynamic 
modulus and phase angle was an increase in the relaxation modulus, which is shown for the 
different confining pressures in figure 119. These curves were obtained by the method outlined 
in subsection 2.2.1. Figure 119 shows that the relaxation modulus began to diverge at around 



 

 137

0.01 to 1 s in reduced time. These times generally corresponded to a physical time of between  
1 x 10-5 and 2 x 10-7 s at 54 °C and of between 1 x 10-4 and 1 x 10-7 at 40 °C. Therefore, it was 
important to consider the effect of confining pressure because the time at which the relaxation 
modulus started to diverge was within the range of reduced time that was used in the rutting 
analysis.  
 

Table 16. Linear viscoelastic characterization and variation for the Control mixture in 
unconfined compression state at selected frequencies and temperatures. 

Temp. 
(°C ) 

Frequency 
(Hz) 

Average 
|E*| (MPa)

Average 
Phase Angle 

(°) 

|E*| Coefficient 
of Variation 

(%) 

Phase Angle 
Coefficient of 
Variation (%) 

-10 

25 33,603 4.8 12.6 4.0 
10 32,251 6.1 12.1 10.0 
5 30,865 6.5 11.0 4.6 
1 28,633 7.9 11.7 2.8 

0.5 27,398 8.0 11.4 3.4 
0.1 23,909 9.7 7.9 44.1 

5 

25 23,707 9.7 7.0 45.6 
10 21,323 11.7 5.0 34.3 
5 20,085 12.5 9.1 4.2 
1 16,399 15.1 10.9 4.5 

0.5 14,262 17.2 11.4 3.9 
0.1 11,205 20.7 11.9 5.5 

20 

25 12,444 19.2 11.4 4.3 
10 10,624 21.4 14.7 4.7 
5 8,809 23.2 14.5 5.4 
1 6,229 26.2 7.0 8.4 

0.5 4,941 27.8 1.0 3.0 
0.1 2,818 32.7 5.4 2.4 

40 

25 2,872 32.5 3.2 0.2 
10 1,834 36.2 1.3 1.0 
5 1,386 38.0 2.5 1.7 
1 904 35.7 7.0 3.0 

0.5 640 35.9 7.0 2.6 
0.1 363 32.6 20.4 12.1 

54 

25 973 35.6 4.1 3.3 
10 604 35.8 5.8 2.7 
5 475 34.5 1.0 2.7 
1 321 31.3 20.8 15.4 

0.5 226 29.0 4.7 18.5 
0.1 185 24.3 11.0 38.7 
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Table 17. Linear viscoelastic characterization and variation for the Control mixture in 
140 kPa confined compression state at selected frequencies and temperatures. 

Temp. 
(°C ) 

Frequency 
(Hz) 

Average 
|E*| (MPa)

Average 
Phase Angle 

(°) 

|E*| Coefficient 
of Variation 

(%) 

Phase Angle 
Coefficient of 
Variation (%) 

-10 

25 34,501 9.0 1.6 3.7 
10 33,555 7.8 0.4 4.5 
5 32,396 7.8 0.0 5.7 
1 29,413 8.5 0.0 1.1 

0.5 28,174 9.1 0.5 2.4 
0.1 25,164 10.6 0.9 2.4 

5 

25 24,048 11.1 1.4 0.4 
10 21,655 12.7 1.4 1.6 
5 20,663 13.4 1.2 2.0 
1 17,333 16.3 2.4 2.6 

0.5 15,097 17.9 2.8 1.9 
0.1 11,904 20.6 2.6 1.2 

20 

25 12,773 19.7 3.2 1.3 
10 10,458 22.4 3.2 0.5 
5 9,013 24.3 3.0 0.6 
1 6,278 29.2 4.7 0.2 

0.5 5,176 31.9 5.6 0.3 
0.1 3,376 33.2 1.7 2.2 

40 

25 3,489 33.1 1.2 2.0 
10 2,473 33.5 2.8 4.0 
5 1,978 33.4 3.9 5.1 
1 1,397 30.0 5.0 3.4 

0.5 1,276 27.3 4.8 0.2 
0.1 904 22.4 7.8 16.9 

54 

25 1,459 32.2 5.6 8.4 
10 1,328 28.0 3.9 0.2 
5 1,005 27.4 10.6 18.8 
1 896 19.9 4.5 14.0 

0.5 752 21.9 11.5 27.5 
0.1 740 14.8 5.1 30.4 
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Table 18. Linear viscoelastic characterization and variation for the Control mixture in 
500 kPa confined compression state at selected frequencies and temperatures. 

Temp. 
(°C ) 

Frequency 
(Hz) 

Average 
|E*| (MPa)

Average 
Phase Angle 

(°) 

|E*| Coefficient 
of Variation 

(%) 

Phase Angle 
Coefficient of 
Variation (%) 

-10 

25 32,837 6.3 10.0 0.9 
10 31,947 7.7 11.1 0.9 
5 30,803 8.6 11.6 0.9 
1 27,616 10.3 11.0 0.5 

0.5 26,114 11.1 11.5 0.9 
0.1 22,672 13.5 11.2 0.2 

5 

25 23,317 13.1 8.6 2.9 
10 21,641 13.6 6.7 0.3 
5 19,651 11.9 7.0 0.4 
1 16,013 15.1 7.5 2.1 

0.5 13,834 17.2 7.3 1.6 
0.1 10,903 20.7 8.4 2.2 

20 

25 12,927 18.1 5.1 0.1 
10 11,312 20.1 5.3 0.2 
5 9,540 22.9 5.1 0.3 
1 7,067 27.3 4.0 0.2 

0.5 5,943 23.0 7.0 0.9 
0.1 3,996 24.0 7.5 0.5 

40 

25 4,621 29.2 5.8 6.2 
10 3,631 23.7 0.8 0.3 
5 3,166 23.3 2.6 0.2 
1 2,477 18.7 3.9 1.8 

0.5 2,204 16.7 3.1 1.3 
0.1 1,737 12.5 6.7 9.8 

54 

25 2,664 19.7 3.9 7.2 
10 2,295 17.8 4.0 2.7 
5 2,059 16.3 0.5 3.1 
1 1,674 11.7 2.5 17.6 

0.5 1,528 9.8 1.2 2.5 
0.1 1,398 7.0 3.0 7.9 

 
Table 19. Effect of confining pressure on shift factor function coefficients for the Control 

mixture in compression state. 
Parameters 0 kPa 140 kPa 500 kPa 

α  0.00071 0.00090 0.00062
α 2 -0.15833 -0.17176 -0.14508
α 3 0.77385 0.83629 0.71001
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Figure 119. Graph. Confining stress effect on the relaxation modulus. 

5.2.2. Comparison of Zero-Mean and Zero-Maximum Deviatoric Stress Results 

Figure 120 through figure 123 present the LVE characteristics determined from the zero-mean 
and zero-maximum deviatoric stress states. Only the 0 and 500 kPa results are shown in the 
figures because they were consistent for the two test methods. Overall, the comparisons were 
very favorable, and little difference was seen between the zero-mean and zero-maximum 
deviatoric stress states. However, a noticeable difference was seen in the phase angle results, but 
these results were subject to higher variability. Further, the phase angle calculation was less 
precise due to limitations of the measurement instrumentation. These results indicated that at 
small strains, asphalt concrete was not bimodal, and it was only after some threshold strain had 
been exceeded that such behavior occurred. Such findings are consistent with the work presented 
elsewhere when care is taken in performing the experiments at sufficiently small strains (50 to 
70 με ).(54,55) When such care is not taken, conflicting data are found in the literature.(28,56) For 
modeling then, it is important that the LVE characterization is limited to the 50 to 70 με  range; 
in this range, either the zero-mean or zero-maximum method may be used.  
 
As a final comparison of the two test conditions, the model developed in subsection 4.2.2 was 
applied to the zero-maximum deviatoric stress state tests. The results of this analysis are shown 
in figure 124, and good agreement was observed between the model and measured data. 
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Figure 120. Graph. Comparison of zero-mean and zero-maximum deviatoric stress 

dynamic modulus mastercurves in semi-logarithmic scale.  
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Figure 121. Graph. Comparison of zero-mean and zero-maximum deviatoric stress 

dynamic modulus mastercurves in logarithmic scale.  
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Figure 122. Graph. Effect of test method on shift factor functions. 
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Figure 123. Graph. Comparison of zero-mean and zero-maximum deviatoric stress phase 

angle mastercurves. 
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Figure 124. Graph. Application of stress state-dependent model to zero-maximum 

deviatoric stress tests.  

5.2.3. MVECD Damage Function Characterization 

Characterization of the VECD model in compression was identical in analysis and general 
experimental requirements to that in tension. Constant rate compression tests were performed 
under both unconfined and confined conditions, the results of which were then used to calculate 
the damage functions C11, C12, and C22. The process was discussed previously in subsection 4.2.3 
and is shown schematically in the flow diagram shown in figure 125. 
 
5.2.3.1.  Characterization of C11(S) 

Uniaxial constant rate tests were used to characterize the C11 damage function. Test results were 
used with equation 89 and equation 90 to compute the material function and damage parameter, 
respectively. Note that stress-hardening (equation 85) was used for this analysis. As with the 
tension damage function, this relationship was refined following the NCHRP 9-19 
methodology.(22) This relationship is shown for the Control mixture in figure 126. This figure is 
constructed at a reference temperature of 5 °C and is only for the material under compressive 
loading. For this mixture, a1 = 7.679 x 10-6, a2 =1.6971 x 10-6, a3 = 7.6793 x 10-6 ,  
a4 = 4.6192 x 10-7,  a5 = 1.5128 x 10-7, and a6 = 4.1017 x 10-8. 
 



 

 144

MVECD Model Characterization

Test Quantity of Interest Material Property

Temperature and Frequency
Sweep |E*| and φ E(t) and aT

Unconfined Monotonic 
at 5°C εR and υR C11(S) and C12(S) 

Confined Monotonic 
at 5°C εR, υR and p C22(S) 

MVECD Model Characterization
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Figure 125. Diagram. MVECD model characterization.  
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Figure 126. Graph. C11 versus S for compression for Control mixture (5 °C reference). 
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5.2.3.2. Characterization of C12(S) 

In addition to using uniaxial constant rate tests to characterize the C11 damage function, these test 
results were also used to characterize the C12 damage function. As with the tension tests, 
complications arose due to the time-dependent nature of Poisson’s ratio in asphalt concrete. 
Based on the analysis presented in subsection 4.2.3.2, an initial value of approximately 0.179 
was assumed for C12. This assumption was not unreasonable based on the results of the 
characterization tests. A slight difference between the initial values of the compression and 
tension data shown previously was observed due to the use of slightly different mixtures for the 
two sets of tests (Control-2006 for tension and Control for compression). Tension data for the 
Control mixture will be shown in subsequent sections of this report. The C12 material parameter 
was defined from equation 91, and the damage parameter was calculated and refined as before. 
The functional form taken for the compressive C12 damage function is shown along with the data 
in figure 127. It was observed that at early damage stages, Poisson’s ratio changed very little, but, 
in general, as damage increased, Poisson’s ratio reduced, as indicated by an increase in C12. For 
this mixture, it was found that β1 = 3.5598 x 10-8, 1.6982 x 10-8, and 3.2756 x10-10. 
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Figure 127. Graph. C12 versus S for compression for Control mixture (5 °C reference). 

 
5.2.3.3. Characterization of C22(S) 

Confined constant rate tests, along with the other two damage functions, were used to 
characterize the final C22 function. Following the study conducted for the tension 
characterization methodology, a visual basic macro was created in Microsoft Excel® to 
determine the damage function by optimization. The characterized C22 function is shown in 
figure 128 along with the model function. The parameters of the model were H1 = -0.504959 and 
H4 = 1.16247 x 10-13. 
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Figure 128. Graph. C22 versus S for compression for Control mixture (5 °C reference). 

5.2.4. Comparison of MVECD Behavior in Compression and Tension 

Asphalt concrete, like other composite materials, is known to exhibit bimodal behavior. In 
particular, the strength of the material it is in and its ductility are much higher in the compression 
direction than they are in the tensile direction. Comparisons of the MVECD damage functions 
revealed some interesting behaviors. First, when comparing the primary axial modulus damage 
function, C11, between tension and compression, the material was substantially more resistant to 
damage in compression than it was tension. This behavior is shown in the same scale in figure 
129. This behavior was explained by the notion that the damage parameter, S, represented some 
kind of crack density or volume-averaged cracked area. In tension, these cracks were oriented 
perpendicular to the principal loading direction, whereas, in compression, the cracks ran parallel 
to the principal loading direction. In constant rate loading, cracks only grew when they were 
under a tensile stress. Because tension was only induced (at the microscale level) in compression 
tests and not directly applied, the material was more resistant to a given cracking volume.  
 
This physical interpretation for damage was also supported by the behavior of the second 
damage function, C12. These damage functions are shown for both tension and compression in 
figure 130. This figure has both the C12 function and Poisson’s ratio between the symmetric axis 
and perpendicular axis (ν 3132) for the convenience of the discussion. From the comparison 
shown in figure 130, it was observed that the primary Poisson’s ratio showed an overall 
decreasing trend in tension, whereas the opposite trend occurred in compression. As with the C11 
damage function, the tensile behavior of C12 was observed to be more sensitive to damage. A 
possible explanation of this behavior depended on understanding that Poisson’s ratio indicated 
the degree to which the radius changed relative to a unit change in length. Applying the physical 
interpretation of damage in tension and compression, the physical implications of the patterns in 
both damage curves were identical. The tension curve was increasing, thus indicating that with 
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higher levels of damage, the direction parallel to the primary cracking direction (radial strain) 
was less sensitive to changes in strain perpendicular to the primary cracking direction (vertical 
strain). For compression, the primary cracking direction was parallel to the loading direction and 
perpendicular to the radial direction, so with the same interpretation (of damage in tension and 
compression), an increase in Poisson’s ratio was observed. In the most general terms, the 
increased opening of a microcrack within a body was not necessarily accompanied by a relative 
increase in the parallel to the crack direction dimension of the body. In fact, the results indicated 
that at higher levels of cracking or damage the material became less likely to change dimension 
as much when loaded perpendicular to the damage orientation. 
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Figure 129. Graph. Comparison of tension and compression of C11 damage function. 

 
The physical interpretation of the C22 damage function was not as straightforward as the other 
two damage functions. As seen in equation 45, the C11 and C12 damage functions can be directly 
translated to elements in the stiffness matrix. However, the C22 damage function entered in the 
denominator of multiple elements of the material stiffness matrix. Nevertheless, this damage 
function can be considered as a sort of volumetric compliance, which has little meaning in a 
transverse isotropic problem. From figure 131, though, it is seen that the material was more 
volumetrically compliant in compression than it was in tension. 
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Figure 130. Graph. Comparison of tension and compression of C12 damage function. 
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Figure 131. Graph. Comparison of tension and compression of C22 damage function. 
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5.3. VISCOPLASTIC MODELING OF ASPHALT CONCRETE IN COMPRESSION 

5.3.1. A Phenomenological Model Considering Pulse Time Effects 

As a first step toward developing a mechanistic material model for the behavior of HMA in 
compression, a series of analyses was performed on VT and VL test data, and a 
phenomenological model was developed. The modeling approach adopted in the 
phenomenological model was based on the existing strain-hardening model presented for 
describing the tensile behavior in section 4.3 and shown in the general form as follows: 

 
( )

( )vp
vp

f
g

σ
ε

ε
=&

 (158) 

Where:   
vpε&  =  Viscoplastic strain rate. 

σ  =  Stress. 
ε vp =  Viscoplastic strain. 
 
As shown in equation 158, the viscoplastic strain rate was represented by the combination of two 
functions, f(σ ) and g(ε vp), which allowed the stress rate dependency and strain hardening to be 
taken into consideration in the model. Equation 158 can be generalized as equation 159, which 
accounts for the effect of the pulse time. 

 ( ), ,vp vp pF tε ε σ=&
 (159) 

Where: 
 tp  = The loading time.  
 
The exact form of the function, F, is presented along with experimental data in the following 
sections. 
 

5.3.1.1. Tests Performed in This Study 

Three types of repetitive creep and recovery tests were performed for the phenomenological 
model development, including the creep and recovery test with VL, the creep and recovery tests 
with VT, and the creep and recovery test with a constant load level and CLT. All the tests were 
conducted at 55 °C under the confining pressure of 500 kPa. Experimental details for these tests 
are given in the following sections because this particular study uses different test conditions 
than those outlined in chapter 3. 

5.3.1.1.1. Creep and Recovery Test with VL:  

The creep and recovery test with a VL test was performed with 200 kPa as the starting load level. 
An incremental factor of 1.0245 was used for the subsequent load levels to increase the load 
level until the complete failure of the specimen. The loading time and rest period were 0.1 and 
10 s, respectively. 
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5.3.1.1.2. Creep and Recovery Tests with VT:  

The creep and recovery test with a VT test was performed with a loading block consisting of 30 
different loading times. The loading time varied from 0.005 to 2.0 s with an incremental factor of 
1.1356. The rest period for each load cycle was 30 times that of each loading time. The VT tests 
were performed at three different load levels, 1,800, 2,000, and 2,200 kPa. 

5.3.1.1.3. Creep and Recovery Test with CLT: 

In this test, a constant load level and constant loading time were used for each test. Load levels 
and loading times were changed between tests. Three load levels of 1,800, 2,000, and 2,200 kPa 
were used with the loading time of 1.6 s. For the 2,000 kPa load level, the creep and recovery 
tests were conducted with three additional loading times of 0.1, 0.4, and 6.4 s. 

The VL and VT tests were used to understand the effects of load level and loading time on the 
permanent deformation behavior of HMA and to calibrate the phenomenological model. The 
CLT tests were used to verify the calibrated model. 
 
5.3.1.2. Model Characterization 

By observing the viscoplastic strain rate versus the viscoplastic strain VT in figure 132, a 
constitutive relationship between these viscoplastic media was defined, as shown in equation 160. 

 ( ) ( )log log ,vp p vp pa t D tε ε σ= +&  (160) 

Where: 
a(tp) =  Material function of loading time. 
D(tp, σ ) =  Intercept of the curve on viscoplastic strain rate axis. 
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Figure 132. Graph. Incremental viscoplastic strain rate versus viscoplastic strain (500 kPa 

confinement, 2,000 kPa). 
 
In equation 160, a was a function of the loading time, and D was a function of the load level and 
loading time. Equation 160 can be represented in equation 161, which was a generalized form of 
equation 158.  

 

( ) ( ) ( ) ( )

( )
( ) ( )

10 10pa t b cd
vp vp p
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σε ε

σ
ε

⎡ ⎤= ⎢ ⎥⎣ ⎦

=

&

 (161) 

Where: 
k(tp)  = Function of loading time. 
 
Equation 160 required the determination of a(tp) and D(tp, σ ) to calculate the viscoplastic strain 
rate for a given viscoplastic strain. Values of a(tp) and D(tp, σ ) for given loading times could be 
found by fitting log functions against each viscoplastic strain rate versus viscoplastic strain curve 
corresponding to given loading time. At this time, the values of a(tp) can be represented by the 
second logarithm function, as shown in equation 162. 

 ( ) 1 2logp pa t a t a= +
 (162) 

Where: 
a1 and a2  = Material-dependent constants. 
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In order to determine the form of D(tp, σ ), it was assumed that D(tp, σ ) could be represented by 
the summation of the loading time term and the load level term, as shown in equation 163.  

 ( ) ( ), logp pD t b t c dσ σ= + +
 (163) 

Where: 
The function c(σ ) was given by c1log(σ ) when the stress was less than 1,000 kPa and by 
c2σ  when the stress was greater than 1,000 kPa. The coefficient b was determined by fitting 
equation 163 against D(tp, σ ) from the VT test. At this time, it was assumed that c(σ ) and d 
constitute one constant that accounts for the effect of load level. The function c(σ ) was then 
fitted by the logarithmic function and the linear function. Finally, coefficient d was determined 
by fitting equation 163 for the viscoplastic strain rate versus the viscoplastic strain curve of the 
VL and VT tests. 
 
Figure 133 and figure 134 show the fitting results and the coefficients that were determined. 
Figure 135 and figure 136 presents predictions for the VT and VL tests, which were then used 
for the characterization process. 
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Figure 133. Graph. Determined fitting results and coefficients of function a(tp).  
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Figure 134. Graph. Determined fitting results and coefficients of function D(tp σ ).  
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Figure 135. Graph. VT predictions. 
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Figure 136. Graph. VL predictions. 

 
5.3.1.3. Verification of the Model 

As shown in figure 137 through figure 142, predictions were made for the CLT tests. Although 
the model was able to account for differences in the viscoplastic development for various loading 
times, overall predictions were not as accurate. Several causes for the discrepancy between 
viscoplastic strain predictions and measurements could be suggested. However, the inability of 
the model to consider strain history was a highly probable cause for this discrepancy, given that 
the fitting results for the VT and VL tests were acceptable. 
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Figure 137. Graph. CLT predictions (2.0 MPa deviatoric stress—0.1-s pulse time). 
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Figure 138. Graph. CLT predictions (2.0 MPa deviatoric stress—0.4-s pulse time). 
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Figure 139. Graph. CLT predictions (2.0 MPa deviatoric stress—1.6-s pulse time). 
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Figure 140. Graph. CLT predictions (2.0 MPa deviatoric stress—6.4-s pulse time). 
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Figure 141. Graph. CLT predictions (1.8 MPa deviatoric stress—1.6-s pulse time). 
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Figure 142. Graph. CLT predictions (2.2 MPa deviatoric stress—1.6-s pulse time). 
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5.3.2. HISS-Perzyna Model 

The HISS-Perzyna model, suggested by the Delft University of Technology and the University 
of Maryland, was investigated with respect to the data set obtained from experimental 
tests.(26,28,36) A prediction using the Delft University of Technology model was not be made 
because of numerical problems. However, the characterization process using the t-TS principle 
and coefficients of the model are described in subsection 5.3.2.1. 
 
5.3.2.1. Delft University of Technology Model 

The model suggested by researchers at the Delft University of Technology required the 
development of several relationships between the material parameters and the strain rates 
obtained from constant strain-rate tests. In this research, the t-TS principle was utilized to 
simplify the modeling effort and to reduce the number of relationships required. With the 
assumption that the yield stress in deviatoric stress space was presented as circular, ( β =0), 
equation 72 was be reduced to equation 164. 

 ( ) ( )2
2 1 1

nJ I R I Rγ α= − − −  (164) 

Where: 
γ  =  Softening parameter. 
α  =  Hardening parameter. 
R =  Tensile strength of material when deviatoric stress is 0. 
n =  Parameter that determines shape of yield stress. 
  
Figure 143 shows peak stresses for a series of compressive and tensile constant strain-rate tests; 
the strain rates are listed in table 4. These peak stresses were used as fundamental quantities to 
develop relationships between the material parameters and the reduced strain rates. R and γ 0 
could be determined as functions of the reduced strain rate by plotting the compressive and 
tensile peak stresses obtained from the constant strain-rate tests under a certain strain rate and 
then taking the slope and x-intercept of the line. In the model, R and γ 0 represented the tensile 
strength for hydrostatic stress and the softening of the material in the post-peak region, 
respectively. The parameter n governs the overall shape and size of the yield function and was 
related to the dilation of the material. The beginning of dilation was defined as the stress at the 
minimum plastic volumetric strain because the plastic deviatoric strain and elastic strain (or 
viscoelastic strain) was assumed to not be associated with the volumetric change of a material. In 
addition, because HMA specimens dilated after a little compression as the compressive stress 
increased, the dilation stress could be determined. Once the dilation stresses were determined for 
several strain rates, the value of n could be determined using equation 165.  

 ( )
2,

2
1,

2

1 dilation

dilation

n J

I Rγ

=
−

−  (165) 
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Where: 
I1,diation =  I1 at beginning of dilation. 
J2,dilation =  J2 at beginning of dilation. 
Once n is determined, α 0 can be readily determined using equation 166. 
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0 0

n
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R
P

α γ
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⎛ ⎞
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⎝ ⎠  (166) 

The sigmoidal function was used to represent relationships between the reduced strain rate and 
the material parameters. The form of the function and the coefficients determined for each 
parameter are listed in equation 167 and table 20. Figure 144 through figure 147 show a 
comparison of measured values versus predicted values at various reduced strain rates. 
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Figure 143. Graph. Compressive and tensile peak stress in SQRT(J2) - I1 space. 

 
Table 20. Delft material model coefficients functions. 

 a b d e 
R 316.86 17,074.55 -9.28 1.75 
γ  0.20 -0.15 -13.91 2.13 
n 2.00 2075.86 0.48 1.06 
α  -0.63 -93.39 -5.01 1.35 
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Figure 148 shows the strain rate-dependent yield surface that was constructed using the 
characterized parameters when the viscoplastic strain was equal to zero (i.e., the initial yield 
surface). It was observed that the initial yield surface increased as the temperature decreased; the 
reduced strain rate increased. This behavior coincided with observations from constant strain-rate 
tests in which more viscoplastic strains were developed under a small, reduced strain rate (or 
higher temperature). 
 
As shown in equation 164, the second term in the square root always had to be smaller than the 
first term in order to construct a valid yield surface. However, because of the numerical errors 
involved in the characterization process of α  and n, the prediction program was often required to 
calculate the square root of a negative number during analysis. This situation was encountered 
without t-TS, as mentioned by others.(36) 
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Figure 144. Graph. Determined γ 0 parameter function. 
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Figure 145. Graph. Determined R parameter function. 
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Figure 146. Graph. Determined n parameter function. 
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Figure 147. Graph. Determined α 0 parameter function. 
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Figure 148. Graph. Rate-dependent initial yield surface. 
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5.3.2.2. University of Maryland Model 

As shown in equation 73, a simplified HISS-Perzyna model was suggested by researchers at the 
University of Maryland.(28) Equation 168 represents a general form of the hardening function 
used for the suggested model. 

 0
vpe κ εα α − ⋅=  (168) 

Where: 
α 0 and κ  = Material constants. 
 
However, the observation made in subsection 5.1.2.3 indicates that a single hardening function, 
equation 168, was not sufficient to represent the characteristic behavior of the material, such as 
softening during unloading. Therefore, one more variable, the viscoplastic strain increment 
during loading, was introduced into equation 168. Equation 169 represents the modified 
functionα  to incorporate the variation of the viscoplastic strain rate during the pulse time in the 
existing model. α 1 and α 2 in equation 169 describe general variations of α  in terms of 
viscoplastic strain and a local variation of α  in terms of incremental viscoplastic strain in a pulse, 
respectively. 

 1 1 2α κ α α=  (169) 

Where: 

 
2

1
vpe κ εα −=  (170) 

 ( )2
2 1 vpe κ εα − Δ= −  (171) 

Figure 149 presents the variation of α  determined by using a modified alpha-viscoplastic 
relationship for five 6.4-s pulses with 1,800 kPa of load level. As shown, α  was no longer a 
simple decreasing function of the viscoplastic strain, but had multiple decreasing functions of 
which independent variables were incremental viscoplastic strain during each load pulse and 
overall viscoplastic strain. The incremental viscoplastic strain was reset to zero each time the 
material was unloaded.  
 
Figure 150 through figure 152 present measured and predicted viscoplastic strains by using a 
modified hardening function. The model was able to describe viscoplastic strain development for 
various loading conditions, such as VT, RVT, and CLT; this capability was not possible in the 
existing HISS-Perzyna model. However, even though incremental viscoplastic strain in a pulse 
described multiple hardening rates at certain viscoplastic strains, it was more reasonable to 
assume that the multiple hardening rates were caused by the viscoelastic property of the material, 
given the rate dependency of the softening. Therefore, a viscoplastic model with a rate-
dependent hardening-softening function was developed and is presented in subsection 5.3.3. 
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Figure 149. Graph. Variation of α  for 1,800 kPa CLT loading (500 kPa confinement). 
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Figure 150. Graph. Viscoplastic strain predictions for VT tests (500 kPa confinement). 

 



 

 165

0.0%

0.4%

0.8%

1.2%

1.6%

0 1000 2000 3000 4000 5000
Time (s)

Vi
sc

op
la

st
ic

 S
tra

in

1.8M 0.4s Measured
1.8M 1.6s Measured
1.8M 6.4s Measured
1.8M 0.4s Predicted
1.8M 1.6s Predicted
1.8M 6.4s Predicted

 
Figure 151. Graph. Viscoplastic strain predictions for CLT tests (500 kPa confinement). 
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Figure 152. Graph. Viscoplastic strain predictions for RVT tests (500 kPa confinement). 
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5.3.3. Development of a Viscoplastic Model Using Rate-Dependent Yield Stress 

The model developed in this research was capable of capturing both additional hardening that 
was due to aggregate interlocking and rate-dependent softening due to viscoelastic relaxation. 
Viscosity in Perzyna’s evolution law is separated into a constant term and a viscoplastic strain-
dependent term that together represent the change of viscosity in viscoplastic flow. The yield 
stress function that takes into account rate-dependent hardening and softening is also described 
in subsection 5.3.3.1. 
 
5.3.3.1. Flow Rule and Yield Function for Developed Viscoplastic Model 

As an expansion of equation 55, a general flow rule for materials exhibiting kinematic and 
isotropic hardening is represented in equation 172. m amplified or reduced the stress rate 
dependency of the model, and D determined the viscosity in the viscoplastic flow. When D was a 
constant, it was assumed that the effect of the change in viscosity on the response of the material 
was taken into account by the yield stress function. However, when variations of yield stress 
were affected by the viscoelastic property of the material, it seemed reasonable to consider the 
viscosity in the viscoplastic flow as a function that was not subjected to yield stress. 
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Where: 
α  =  Kinematic hardening function. 
γ  =  Isotropic hardening function. 
D =  Viscosity parameter. 
m =  Rate-dependency parameter. 
 
Therefore, a flow rule that takes into consideration the variations of viscosity in the viscoplastic 
flow is suggested in equation 173 by incorporating Perzyna’s flow rule and Von Mises’ yield 
criterion. In equation 173, D was the viscosity and represented the scalar hardening and softening 
as described above. The anisotropic behavior of the material was also integrated by using Dij. 
Meanwhile, Gij represented the orientation-dependent isotropic hardening function that reflected 
the viscoplastic and viscoelastic property of the material. Because the material was subjected 
only to compressive stress, the kinematic hardening rule was not introduced in this model. The 
viscosity (D) was related to aggregate interlocking and was represented as a function of the 
viscoplastic strain, as shown in equation 174. Because the function could represent both 
increasing and decreasing viscosity according to the viscoplastic strain, it had the potential to 
represent the behavior of HMA mixtures in the tertiary region as well as in the primary and 
secondary regions. 
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Where: 
D =  Viscosity related to aggregate interlocking, equation 174. 
η 0, m, α , β , γ   =  Material constants. 
D0 =  Initial viscosity. 
sij =  Deviatoric stress tensor. 
gij = Deviatoric back stress tensor. 
σ ij  =  Stress tensor. 
Gij  =  Yield stress tensor. 
J(σ ij -Gij)  =  The second invariant of (σ ij - Gij). 
 

 
( )0 sin 1 vpD D e γεα β −⎡ ⎤= + −⎣ ⎦  (174) 

However, as discussed in subsection 5.1.2.3, rate-dependent softening, which implied the 
possibility of a multiple state of the material at certain viscoplastic strains, was observed when 
HMA was subjected to repetitive loading. In order to introduce the characteristic behavior of 
HMA into the viscoplastic constitutive model, equation 175, which was one of the simplest 
forms, was suggested as the hardening-softening function. 

 ( ), ,vp vpG g Gε ε=& &
 (175) 

In equation 175, the yield stress increased as the viscoplastic strain and viscoplastic strain rate 
increased during loading, whereas it decreased during unloading (when the viscoplastic strain 
rate was zero). Figure 153 presents a schematic concept of the variation of yield stress subjected 
to a creep and recovery loading condition. The remaining yield stress, which was yield stress at 
the asymptote, was governed by the viscoplastic strain at the end of the loading condition, ε 0

vp, 
and material constants E1 and E2. The decreasing yield stress during unloading allowed a 
multiple viscoplastic strain rate at a certain viscoplastic strain. 
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Figure 153. Illustration. Variation of yield stress (Standard Linear Solid model). 
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Because of their simplicity, equation 176 was suggested as a hardening-softening function to 
confirm the characteristics of the model for an arbitrary stress history, and equation 177 was 
suggested to predict the actual behavior of the HMA mixture. As shown in equation 177, the 
hardening-softening function was represented as the convolution integral, including the 
relaxation modulus. Material constants A and B were introduced into the relaxation modulus to 
develop a relationship between the relaxation modulus, which was the LVE property, and the 
viscoplastic yield stress. Additionally, by utilizing the material constants, the number of 
parameters needed to calibrate the model could be reduced. In calculating the yield stress, the 
state variable approach was used to reduce computational time, as shown in equation 178. 
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Where: 
E1, E2, η 1, η 2 =  Material constants. 
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Where: 
A, B =  Material constants. 
E0, Ei =  Prony coefficients determined for the relaxation modulus. 
ρ i =  Relaxation time. 
 
Equation 177 was solved using the state variable approach to predict strains and calculate pseudo 
strains. This approach is shown mathematically in equation 178. 
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Where: 
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5.3.3.2. Characteristics of the Developed Model for Arbitrary Stress History 

In order to confirm the characteristics of the developed viscoplastic model, the following 
predictions were made for the arbitrary stress histories by using equation 173 and equation 176. 
In this study, D was considered a constant to simplify the calibration and prediction processes. 
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Two sets of stress histories were generated, as shown in figure 154 and figure 157. Table 21 
shows the material constants used in this analysis. 
 

Table 21. Material coefficients used for the developed model analysis. 
m D η  η 2 E1 E2 
2 3,000 10 50,000 500 200 

5.3.3.2.1. Effect of Rest Period: 

 Figure 154 shows two different stress histories used to check the sensitivity of the viscoplastic 
model to the effects of rest periods. For both stress histories, stress levels and the cumulative 
loading time were fixed to 2,000 units less stress and 160 s, respectively. However, for the first 
stress history, 8.0 s of rest between the loading pulses were allowed, whereas only 1 s of rest was 
allowed for the second loading history. Figure 155 presents the variation of yield stress for each 
stress history, and as expected, the model showed different yield stress developments depending 
upon the rest period. 

Figure 156 presents the viscoplastic strain developed by each stress history. It shows more 
viscoplastic strain for a longer rest period. This result corresponded to the experimental 
observations made from figure 98.  
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Figure 154. Graph. Stress histories for rest period analysis. 
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Figure 155. Graph. Yield stress versus cumulative loading time (rest period analysis). 
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Figure 156. Graph. Viscoplastic strain versus cumulative loading time (rest period analysis). 

5.3.3.2.2. Effect of Loading Time: 

Figure 157 presents another set of stress histories used to check the effects of loading time. For 
these stress histories, the load level, rest periods, and cumulative loading time were fixed to 
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2,000 units, 4 and 66 s, respectively. However, the first loading history consisted of 6 pulses at 
11 s long, and the second loading history consists of 22 pulses at 3 s long. 

The analysis results for the given stress histories are shown in figure 158. The loading history 
with shorter individual loading times showed more viscoplastic strain, which was identical to the 
CLT test results. As shown, the viscoplastic model that incorporated the softening rule appeared 
to account for the pulse time effect. As shown in figure 156 and figure 158, the viscoplastic 
model with the rate-dependent hardening-softening capability could account for the effects of 
loading time. 
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Figure 157. Graph. Stress history for loading time analysis. 
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Figure 158. Graph. Viscoplastic strain versus cumulative loading time  

(loading time analysis). 
 
5.4. CHARACTERIZATION AND VERIFICATION OF THE VISCOPLASTIC MODEL 

5.4.1. Calibration 

Prior to the calibration process, data points acquired during the unloading period were filtered to 
reduce the computational time. Strains measured at the end of the rest periods were defined as 
the objective function. The nonlinear optimization function (lsqnonlin) in MatlabTM was utilized 
to minimize errors between the measured and predicted viscoplastic strains. Based on the model 
calibrated for the VT and VL tests, the viscoplastic strains of the other loading conditions, such 
as CLT and VLT, could be predicted. Table 22 shows the coefficients determined from the 
calibration process for 140 and 500 kPa confining pressures. 
 

Table 22. Compression viscoplastic material model coefficients. 
Confining 

Pressure (kPa) m D0 α  β  γ  A B 

140 3.83 1,951.76 2,758.93 3.07 258.34 0 6.3E-06 
500 9.99 3,460.62 3,569.28 1.87 156.96 0 5.2E-03 

 
Figure 159 and figure 160 present the calibration results for VT and VL testing at 140 kPa 
confining pressure, and figure 161 and figure 162 present the calibration results for VT and VL 
testing at 500 kPa confining pressure. In general, the predicted and measured viscoplastic strains 
match very well, although there was a slight discrepancy in the VT and VL 500 kPa confining 
pressure results. 
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Figure 159. Graph. Viscoplastic strain versus cumulative loading time  

(140 kPa confinement VT). 
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Figure 160. Graph. Viscoplastic strain versus cumulative loading time  

(140 kPa confinement VL). 
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Figure 161. Graph. Viscoplastic strain versus cumulative loading time  

(500 kPa confinement VT). 
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Figure 162. Graph. Viscoplastic strain versus cumulative loading time  

(500 kPa confinement VL). 
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5.4.2. Verification 

Viscoplastic strain predictions for the 140-kPa confining pressure tests are presented in  
figure 163 through figure 166. Figure 163 shows the ability of the developed model to consider 
the effects of rest periods on the viscoplastic strain development even though the viscoplastic 
strains were slightly underpredicted. Figure 164 and figure 165 show the predictions for the VLT 
tests and a low load level VL test, respectively; these predictions were quite good. Figure 166 
presents predictions for complex loading histories, which were a combination of VT test results 
and flow number test results. Up to 0.5-percent strain, the prediction of the viscoplastic strain 
matched well with the measured viscoplastic strain; however, the viscoplastic strain was 
underpredicted for the last strain level. This discrepancy could indicate a need to refine the 
softening function. Figure 167 to figure 172 present the viscoplastic strain predictions made for 
500 kPa confining pressure tests. The overall prediction was good considering the complexity of 
the loading history. 
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Figure 163. Graph. Viscoplastic strain versus cumulative loading time  

(140 kPa confinement VT). 
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Figure 164. Graph. Viscoplastic strain versus cumulative loading time  

(140 kPa confinement VLT). 
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Figure 165. Graph. Viscoplastic strain versus cumulative loading time  

(140 kPa confinement VT). 
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Figure 166. Graph. Viscoplastic strain versus cumulative loading time  

(140 kPa confinement VT + flow). 
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Figure 167. Graph. Viscoplastic strain versus cumulative loading time  

(500 kPa confinement 1,600 deviatoric VT). 
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Figure 168. Graph. Viscoplastic strain versus cumulative loading time  

(500 kPa confinement 2,000 deviatoric VT). 
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Figure 169. Graph. Viscoplastic strain versus cumulative loading time  

(500 kPa confinement 0.4 s CLT). 
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Figure 170. Graph. Viscoplastic strain versus cumulative loading time  

(500 kPa confinement 1.6 s CLT). 
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Figure 171. Graph. Viscoplastic strain versus cumulative loading time  

(500 kPa confinement 6.4 s CLT). 
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Figure 172. Graph. Viscoplastic strain versus cumulative loading time  

(500 kPa confinement VLT). 
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CHAPTER 6. ENHANCEMENT OF VEPCD-FEP++ FOR PAVEMENT MODELING 

A complete redesign of FEP++ was one of the major tasks completed in this study. The redesign 
activity resulted in a well designed and modular code base of around 40,000 lines. All of the old 
features of FEP++ have been revamped and tested, and several new features have been added. 
 
Currently, FEP++ supports the following: 
 

1. Two-dimensional (2D) and 3D pavement models analysis. 

2. Elastic, viscoelastic, and VECD material models. 

3. Separate analysis for static and dynamic loads. 

4. Linear, nonlinear, and quasilinear analysis. 

5. Special elements for modeling pavements. 

6. Elastic and viscoelastic materials thermal analysis. 

7. Multipoint constraints. 

8. Graphical user interface (preprocessor). 
 

The following sections discuss the upgraded VECD model, the overall organization of the 
modules in FEP++, and the newly developed preprocessor. 

6.1. DAMAGE IN VISCOELASTIC MATERIALS 

For the sake of completeness, the original VECD model, as detailed elsewhere, is presented first 
in this section.(13) Then, the upgraded VECD model is presented. Last, the implementation of 
temperature dependency for these materials is examined. 

6.1.1. The Original Model 

A one-parameter continuum damage model was incorporated into the viscoelastic material 
module. The new elements account for the evolution of isotropic damage. In this formulation, it 
is assumed that the stress-strain relationship obeys the following form: 

 { } [ ] { }( )C S Eσ ε= ∗ &  (181) 

Where: 
C(S)  =  Effect of damage on the stiffness of the material. 
S  =  Parameter representing damage evolution.  
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The following evolution law governs the damage parameter: 

 
S W
t S

α∂ ∂⎛ ⎞= −⎜ ⎟∂ ∂⎝ ⎠  (182) 

Where: 
W =  Total energy in the material. 
α  =  Parameter that depends on the type of loading.  
 
Currently, based on the available experimental data, the following form for the damage function 
is assumed: 

 ( ) baSC S e=  (183) 

A plot of the above function, assuming a = ―0.001334 and b = 0.5725, is shown in figure 173. 
The formulation presented here is not limited to the form of the damage function shown in 
equation 183. To show the effect of continuum damage, a 10 by 10 patch of 2D plane stress 
elements has been modeled and is shown in figure 174. The specimen is fixed at the bottom and 
loaded (in tension) on five nodes at the top. The loading history is sinusoidal as shown in 
equation 184. 

 ( )1 sin 2f tγ π= +⎡ ⎤⎣ ⎦  (184) 

Where: 
γ  = The loading amplitude.  
 
The time history of the vertical displacement for point A () is shown in figure 175. The evolution 
of damage in the specimen and, consequently, a gradual increment in the displacement amplitude 
can be seen from the time history. This figure shows that damage has an effect on the response of 
the material. More quantitative tests on the effect of damage will be performed in the future.  
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Figure 173. Graph. Damage characteristic relationship used in the finite element 

implementation of one-dimensional VECD model. 
 

A

 
Figure 174. Graph. Layout of the numerical experiment specimen. 
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Figure 175. Graph. Effect of continuum damage evolution on the vertical displacement of 

the test specimen at point A in the test simulation. 

6.1.2. Upgraded Constitutive Model 

The continuum damage formulation was upgraded to a more rigorous model based on the work 
of others.(57) However, a one-parameter damage model was chosen instead of the two-parameter 
model used in the work because the experimental data needed to characterize a two-parameter 
damage model are not yet available.  
 
The model assumes that a material is isotropic when undamaged and that the growth of damage 
under loading leads to local transverse isotropy (i.e., the material has a local axis of symmetry 
oriented along the maximum principal stress direction). The current framework is formulated for 
the axisymmetric case but can easily be extended to 3D.  
 
Starting with the work potential theory for an elastic material and making use of viscoelastic 
fracture mechanics and the correspondence principle for viscoelastic materials, a pseudo strain 
energy density function, WR, can be written in terms of the pseudo strains in the local axis as 
follows: (8,9) 
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Where: 
ε 11

R, ε 22
R, ε 33

R, γ 12
R, γ 13

R, γ 23
R are the pseudo strains along the local axis. 

 



 

 185

When the local axis is also a principal axis, the shear strains are zero, and equation 185 becomes 
the following: 

 
2 2 2

11 22 12 66
1 ( ) ( ) 2 ( )
2

R R R R R R
v d d v sW A e A e A e e A e⎡ ⎤= + + +⎣ ⎦  (186) 

In this case,ε 11
R, ε 22

R, and ε 33
R are the principal pseudo strains (which lie in the local axis) with 

the axis of isotropy oriented along direction 3. These principal pseudo strains are obtained from 
the pseudo strains along the global axis using standard tensor transformation and knowing the 
angle between the local axis and the global axis. (For the axisymmetric analysis, the hoop 
direction is already a principal axis because there are no shear strains along the rθ - zθ  plane.) 
The LVE pseudo strains along the global axis,ε kl

R(t), are calculated from strains along the global 
axis, ε kl, using the convolution integral. 
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Where: 
ER  =  Reference modulus that has the same dimensions as the modulus and is usually taken as 

1 E(t). 
1 E(t)  =  Relaxation modulus for uniaxial loading. 
 
The calculation of the convolution integral can be very expensive in terms of computation time. 
In practice, therefore, the pseudo strains are calculated using a state variable approach to reduce 
the computational expense. When the relaxation modulus of the material E(t) is represented 
using the Prony series of the form, shown in equation 188, an approximation can be obtained to 
the convolution integral in equation 187. 
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Where: 
E∞  = The relaxation modulus at t = ∞. 
Ei  = The Prony coefficients corresponding to the relaxation times, iρ .  
 
The pseudo strains along the global axis can be calculated from the following: 
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Where: 
ε kl

i(tn+1) (i = 1..M) are the internal state variables that record the history of the material up to 
time tn+1, Δ ε kl(tn+1) = ε kl(tn+1) - ε kl(tn), and Δ t=tn+1-tn. The pseudo strains at time tn+1 are 
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calculated based on the strain at times tn and tn+1 which are available at the end of the finite 
element solution step at time tn+1. 
 
The factors A11, A22, A12, and A66 are stiffness terms that can be related to a damage function, 
C(S) as follows: (48) 
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Where: 
ν  = Poisson’s ratio of the material. 
C(S) = A stiffness function that depends on damage in the material. 
S = A damage parameter used to track the growth of damage in the specimen. 
 
The principal stresses along the local axis can be found from equation 186 using the following:  
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which gives the following: 
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The stresses along the global axis are then obtained by standard stress transformation and the 
orientation of the local axis with respect to the global axis.  

6.1.3. Damage Model 

The growth of the damage parameter S is modeled by extending the concepts of viscoelastic 
fracture to microcracking.(8) 
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RdS W
dt S

α
⎛ ⎞∂

= −⎜ ⎟∂⎝ ⎠  (193) 

Where: 
WR  =  Pseudo strain energy density function shown in equation 185. 
α  =  Material-dependent parameter.  
 
From equation 186, the quantity ∂ WR/ ∂ S can be calculated as a function of pseudo strains in the 
local axis as follows: 

 ( ) ( )2 21 1 2
2 9 3

R
R R R R
V d V d

W C e e e e
S S

∂ ∂ ⎛ ⎞= + +⎜ ⎟∂ ∂ ⎝ ⎠  (194) 

Where: 
C(S) =  Damage function that is assumed to be of the form shown in equation 195, based on 

experimental data. 

 ( ) baSC S e=  (195) 

6.1.4. Finite Element Implementation 

The finite element solution of the problem requires the material tangent stiffness matrix that is 
used to assemble the global tangent stiffness matrix used for the solution of the nonlinear system 
of equations by the Newton-Raphson method. Not to be confused with the damage function, C(S), 
the material tangent stiffness matrix, [C], is given by the following: 
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Where: 
{σ } = {σ rr, σ θθ , σ zz, σ rz} and {ε }={ε rr, ε θθ , ε zz, ε rz}are the stresses and strains for the 

axisymmetric problem.  
[C]  =  Material tangent stiffness matrix oriented along the global axis. Because the stresses 

along the global axis are obtained by transforming the stresses in the local axis, it is 
easier to construct the material tangent stiffness matrix along the local axis and then 
transform it to the tangent stiffness along the global axis.  
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The tangent stiffness matrix in the local axis, [CL], is given as follows: 
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Where: 
{σ L} = {σ 11, σ 22, σ 33, σ 12, σ 13, σ 23} is the stress vector along the local axis. 
{ε L

R} = {ε 11
R, ε 22

R, ε 33
R, γ 12

R, γ 13
R, γ 23

R}is the pseudo strain vector along the local axis.  
 
The pseudo shear strains are zero along the local axis, but the stiffnesses corresponding to them 
are non-zero. The matrix, [C], can be obtained by transforming [CL], as shown in the following: 

 [ ] [ ] [ ][ ]1
R L RC T C T−=  (198) 

Where: 
[TR] =  The rotation and permutation matrix that changes the order of the vector components (the 

axis 3 along the local axis is always oriented along the maximum principal pseudo strain 
direction) and transforms a vector from the local axis to the global axis. 

 
As seen in equation 193 and 194, the damage growth involves a nonlinear differential equation 
that can be expensive to solve in a large finite element method (FEM) problem. Hence, a semi-
implicit method is used to predict the damage parameter in the next time-step, Sn+1, using the 
damage parameter in the current time-step, Sn, and the pseudo strain vector in the local axis, 
{ε L

R}n+1, for the next time-step, as follows: 

 { }( )11 ,
nn n R n

LS S S S tε
++ = + Δ&  (199) 

This method should provide results similar to those of an exact nonlinear analysis when the time-
steps are made small enough. 

6.1.5. Verification 

The continuum damage material model is verified for a monotonic uniaxial test. The test is part 
of the uniaxial testing on cylindrical specimens that is conducted for the damage characterization 
of FHWA mixtures. Verification uses the 5 °C test because there is little or no viscoplastic 
deformation at this temperature. For the FEM simulation, the cylindrical specimen is modeled as 
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a single quadrilateral (Q4) element that is 150 mm in height and 75 mm in width and is subjected 
to a uniform axisymmetric loading in the vertical direction. The stress history measured from the 
test is used as an input for the problem, with the strains calculated by analysis. Horizontal 
displacements are constrained along the axisymmetric axis of the element, and vertical 
displacements are constrained along the bottom edge of the element, which results in a uniform 
state of stress and strain in the element. Predicted strains are then compared against measured 
strains to verify the FEM implementation of the material model. The damage function is taken as 
C(S) = exp(-0.001S0.5737), based on the monotonic test results from several different specimens. 
The Prony series for the material is obtained from test data for the asphalt concrete mixture used 
in the testing.  
 
The results of the verification are shown in figure 176 through figure 178. As seen from these 
figures, the prediction of strain is very good, the damage parameter consistently increases with 
time and the pseudo stiffness consistently decreases with time. These combined findings verify 
that the model has been implemented correctly. 
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Figure 176. Graph. Verification of strain prediction for monotonic uniaxial test using the 

new continuum damage material model. 
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Figure 177. Graph. Evolution of damage parameter, S, for the monotonic test. 
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 Figure 178. Graph. Plot of function C(S) with time. 

6.1.6. Implementation of Temperature Dependency 

The variation of temperature in a pavement has two effects: (1) a change in stiffness of the 
asphalt concrete and (2) a change of the thermal stresses due to thermal expansion of the material. 
The thermal stresses are generated in the pavement depending on boundary conditions. These 
two effects of temperature have been implemented in FEP++. 
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The change in stiffness in the asphalt concrete due to temperature is taken into account using the 
concept of reduced time. The reduced time is calculated as follows: 

 
( ) ( )( )0

1 ,
t

t d
a T

ξ τ
τ

= ∫  (200) 

Where: 
a(T)  = Time-temperature shift factor of the material. The time-temperature shift factor is 

obtained from the characterization of the relaxation modulus of the material using 
dynamic modulus tests at different frequencies and temperatures. The reduced time is 
calculated with respect to a reference time and captures the history of temperature 
variation on the material. The thermal stresses on the material are incorporated by defining 
mechanical strains, ε m(t), as follows: 

 ( ){ } ( ){ } { }( )0 .m t t T Tε ε α= − −  (201) 

Where: 
{ε  (t)} = Strain in the material. 
{α } = Coefficient of isotropic thermal expansion in the material (which is assumed constant 

for asphalt concrete) and is given by [α ,α ,α ,0,0,0] in three dimensions. 
T  = Current temperature. 
T0 = Reference temperature at which there are no initial stresses.  
 
The constitutive law for a viscoelastic material undergoing damage is given as follows: 

 { } [ ]{ },m
RDσ ε=  (202) 

Where: 
{σ } = Stress vector. 
[D]  = Stiffness matrix that is a function of damage. 
{ε m

R} = Vector of mechanical pseudo strain.  
 
The ith component of the pseudo strain vector is given by the following: 
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= −∫  (203) 

Where: 
ε i

m  =  ith component of the mechanical strain vector. 
E(ξ  )  =  Relaxation modulus of the material characterized at reduced temperature. ξ  is 

computed in accordance with equation 200 and is a function of the temperature history 
of the material. 
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6.2. REDESIGN OF FEP++ 

The older code base of FEP++ was redesigned during the course of the project, leading to a 
robust, modular, and standards-compliant version. These enhancements greatly improve the 
maintainability of the code base and significantly reduce the training necessary for a new user. 
 
The FEP++ code base is divided into two major modules, domain and analysis. The following 
sections discuss the features and functionalities of these modules. 

6.2.1. Domain Module 

The domain module represents the core finite element component of FEP++. It encompasses the 
finite element classes that are involved in the modeling of the computational domain. Figure 179 
presents a block diagram and the key components of the module. The following sections briefly 
discuss the main features of the domain module. 
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Figure 179. Diagram. Domain module. 

 
6.2.1.1. Material Model 

FEP++ provides 2D and 3D models of elastic, viscoelastic, and VECD materials for modeling a 
pavement layer. Detailed discussion of these models and their implementation is provided in 
section 6.1. 
 
6.2.1.2. Elements 

FEP++ provides two main types of elements, the quadrilateral elements for 2D analysis and the 
brick elements for 3D analysis of pavements. Also, special elements developed for modeling 
infinite domains in pavement analysis have been incorporated into FEP++. The following 
subsection describes the special elements and their efficiency in pavement analysis. 
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6.2.1.2.1. Incorporation of special elements for pavement modeling: 

A finite element mesh generation methodology for incorporating special elements that reduce the 
computational costs of pavement analysis has been developed. An accurate mesh of special 
elements can be difficult to generate because it depends on the characteristics of the load applied. 
Development of such a methodology may also turn out to be somewhat computationally 
expensive if it tries to provide greater accuracy than is necessary for the problem at hand. Hence, 
there is a need to develop a mesh generation methodology that allows the user to easily generate 
a finite element mesh that models the problem at hand with specified accuracy. 
 
To this end, work is being carried out to generate the best mesh for a specified accuracy through 
optimization techniques. Generating the best mesh is an involved process that could render it 
unfeasible for everyday analysis. Therefore, simplified rules will be developed that allow the 
user to easily generate a mesh that is as close as possible to the best mesh. 
 
A simple example is given below to demonstrate the computational efficiency achieved.  
Figure 180 shows a layer of elastic material loaded on a rigid base. This layer is infinite in the 
two horizontal directions. For a strip load of width “2B,” the 3D problem can be reduced to a 
2D-plane strain problem. Also, symmetry allows that only one half of the problem needs to be 
modeled. Only the deflection and stresses under the load (the interior region) are of interest here.  
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Figure 180. Illustration. Infinite elastic layer on a rigid base. 

 
However, despite the emphasis on the interior region, the exterior region also must be modeled 
to a sufficient length to simulate the infinite extent of the layer. As the exterior region is 
extended, the solution in the interior approaches the solution of the physical problem. The 
objective is to model the physical problem to achieve an accuracy of at least 1 percent. A typical 
mesh of finite elements used to simulate this physical problem is Mesh-1, shown in figure 181. 
For Mesh-1, the exterior is four times the extent of the interior and hence needs four times as 
many finite elements as the interior to achieve an accuracy of 0.86 percent.  
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If, on the other hand, special elements are used, then Mesh-2 shown in figure 181 is sufficient 
and provides an accuracy of 0.84 percent. The total number of elements in Mesh-1 is 320, 
whereas the total number in Mesh-2 is 64. In order to achieve almost the same degree of 
accuracy as Mesh-1, far fewer special elements are required for Mesh-2. In short, because the 
computational time is directly proportional to the number of finite elements used to model the 
problem, Mesh-2 with the special elements is far more computationally efficient when compared 
to Mesh-1. 
 
The development of a finite element mesh generation methodology that incorporates special 
elements is now complete. This methodology is being tested on various finite element models to 
demonstrate its efficacy. Once the results have been verified against theoretical solutions, the 
mesh generation methodology will be coded into FEP++ to make the discretization both 
automatic and efficient. (This task will be performed as part of the ongoing cooperative 
agreement between NCSU and the FHWA.) 
 

  
Figure 181. Illustration. Finite element mesh required to model the physical problem with 

1-percent accuracy without special elements. 
 

 
Figure 182. Illustration. Finite element mesh required to model the physical problem with 

1-percent accuracy with special elements. 
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6.2.2. Analysis Module 

The analysis module handles the generation and solution of the linear/nonlinear system of 
equations using the domain module. A block diagram of the classes and relationships is shown in 
figure 183. The following sections discuss the key components of this module. 
 
6.2.2.1. Solution Algorithm 

The solution algorithm is the component that acts as a liaison between the domain and analysis 
modules. This component uses the information in the domain to generate a set of equations that 
provides the solutions to the problem. Currently, the following static and dynamic analyses of 
linear, quasilinear, and nonlinear problems are available.  
 
One significant enhancement over the earlier capabilities of FEP++ is the ability to perform 
quasilinear analysis. This improvement is particularly beneficial in the context of pavement 
analysis because the VECD material model is quasilinear. By using a quasilinear solver instead 
of a nonlinear solver, the analysis time is reduced by almost half. 
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Figure 183. Diagram. Analysis module. 

 
6.2.2.2. Solver 

The solver is the workhorse of the module. It is responsible for solving the set of equations 
generated by the solution algorithm. The solver is also an important component in terms of the 
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capabilities of FEP++ in solving large computational problems because the solver determines the 
memory requirements and performance output. Any improvements to this module would 
significantly improve the overall capabilities of FEP++. 
 
Currently, a class of direct methods called Gaussian elimination is used to solve the equations. 
The objective here is to enhance the component by providing an option to interface with external 
linear algebra packages to solve the system of equations. The benefit of such a feature would be 
the ability to use mature, well tested, and highly efficient libraries available in the public domain 
for performing the analysis. This capability would also reduce further interdependence between 
the domain and the analysis modules, thereby enhancing the flexibility and elegance of the code. 

6.3. PREPROCESSOR 

The preprocessor is a graphic user interface (GUI) front end developed for the efficient analysis 
of pavements using FEP++. The motivation behind the tool is to provide the user with a 
simplified and intuitive interface to FEP++ for pavement analysis. The tool can be used either to 
run an analysis directly or to generate the input files for FEP++. It also has visualization 
capabilities to view the mesh discretization, which makes it easy for the user to verify the input 
data for the analysis. Figure 184 shows a screenshot of the main window in the preprocessor.  
 

 
Figure 184. Screen capture. Main window of the preprocessor. 
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As labeled in figure 184, the main window is divided into three functional units, the control 
panel, the canvas panel, and the popular open-source library called Visualization Toolkit (VTK) 
control panel, described below. 
 
The left-hand unit is called the Control Panel. This panel contains the controls to invoke the data-
entry windows and other operations related to the analysis. Each control is either red or green, 
indicating the current state of the analysis. For controls corresponding to data entry operations, 
green indicates that no user action is required. Green, therefore, could either signal that the data 
entry has already been completed or that it is preset with a default set of parameters. Red 
indicates that some action is required from the user. The data input is considered complete only 
when all the controls in the input parameters block (figure 185) are green. 
 

 
Figure 185. Screen capture. Control panel. 

 
The middle unit is called the Canvas Panel. This panel is used for the visualization of the mesh 
discretization and the solid model of the pavement. The underlying graphical engine used to 
render the graphics is VTK. This toolkit was chosen for its stable and mature set of high-level 
graphical libraries. Also, it is popular and widely used in the open-source and scientific 
community. Figure 186 shows a sample mesh discretization in the canvas panel. 
 
The rightmost unit provides the controls for the visualization operations supported in the 
preprocessor, e.g., zoom, pan, etc., and is called the VTK control panel. The following 
operations are currently supported: 
 

• Projections along a plane, e.g., along the x-y plane. 

• Image operations, such as zoom, pan, and rotate. 

• Display nodes and cell numbers on the mesh. 
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The results of these operations are displayed in the view window. Figure 187 shows the zoomed 
version of a 2D mesh with node numbers displayed. The visual feedback from these windows is 
useful to verify the data inputs to the analysis. The different stages involved in performing a 
pavement analysis and the ways that the various analytical pieces fit together are outlined in 
figure 188. 
 
The input stage corresponds to the data-entry windows that receive the input data from a user 
(i.e., it shows the list of data that needs to be entered by the user). The analysis stage shows the 
list of options available to the user once the input stage is complete. The postprocessing stage 
again shows the options after the analysis is completed successfully. The above mentioned stages 
are discussed in detail in the following sections. 
 

 
Figure 186. Screen capture. Mesh discretization. 
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Figure 187. Screen capture. Zoom operation on a mesh. 
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Figure 188. Diagram. Stages involved in an FEP++ analysis. 

6.3.1. Input Stage 

As discussed in the previous section, this stage corresponds to the data entry by the user. Each 
main input data entry for FEP++ corresponds to a data entry window. The user manual, with a 
detailed explanation of each of the data entry windows, is provided in the appendix of this report. 
Figure 189 shows a data entry window for entering the mesh discretization parameters for a 
pavement. 
 
The data entry windows have been designed in a modular way, and effective error validation 
schemes have been incorporated to ensure consistent input data. Each data entry window has a 
data class associated with it that enforces the validation and consistency checks. There are two 
levels of error validations that are carried out at each data entry window, namely syntactic and 
semantic errors. The syntactic errors refer to invalid data entries, and they are checked by the 
data entry windows themselves, whereas the semantic errors refer to consistency check failures 
imposed by the data classes. 
 
Once the data entry is complete for a particular block, it is validated against the checks provided 
in the data classes. If the validation is successful, the next data entry window can be accessed. If 
it fails, appropriate error messages are shown, and the user is asked to modify the incorrect data. 
Figure 190 shows a typical error dialog that is displayed when a consistency check fails. 
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Figure 189. Screen capture. Sample data entry window. 

 
This sequential data entry process may seem to be somewhat limiting, but it greatly simplifies 
the maintenance of consistency in the input data. Also, by strictly enforcing these checks in the 
software, there is less scope for input data corruption. 

6.3.2. Analysis Stage 

Once the data entry has been completed, the analysis section in the control panel turns green, 
signaling that the actions in the analysis stage can now be performed. The following sections 
discuss the actions that can be performed at this stage. 
 
6.3.2.1. Setting the Output Options 

Output options can be used to control the results that are generated by FEP++. For example, 
FEP++ can be configured to output data that correspond to a particular region in the domain. 
These options are essentially used to control the amount of data output by FEP++. 
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6.3.2.2. Viewing a Summary of the Input Data 

The preprocessor can be used to create a user-readable report of the input data entered for an 
analysis. This report can be used to verify the final state of all the input data before beginning a 
simulation. 
 

 
Figure 190. Screen capture. Error dialog for a semantic error. 

 
6.3.2.3. Generating an FEP++ Input File 

The preprocessor can be used to generate input files for FEP++ for different configurations that 
can then be saved to a remote location. This feature is helpful if the user wishes to perform 
multiple analyses in a script without any user intervention. 
 
6.3.2.4. Running an Analysis 

Running an analysis is the final step in pavement analysis. The analysis can be started only after 
the run analysis option in the control panel turns green. The preprocessor uses the user input to 
create an input file to FEP++ and invokes it with the generated input file. The preprocessor 
creates a separate instance and displays the progress of the analysis in a window, as shown in 
figure 191. 
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Figure 191. Screen capture. Analysis run-time window. 

6.3.3. Postprocessing Stage 

After an analysis is completed, the run-time window shown in figure 191 exits, and the results 
option on the control panel turns green, indicating that result files have been generated that can 
be viewed with a postprocessor. On choosing view results, the default postprocessor is invoked 
to view the results. 

6.4. POSTPROCESSOR 

The postprocessor is an external tool for visualizing the results of the pavement analysis. 
Currently, Tecplot® serves as the default postprocessor, but efforts to provide support for other 
open-source data visualization tools are underway. It has been decided that the VTK format will 
be used for the output file format and that MayaVi, a stable open-source python-based viewer 
that is popular in the finite element community, will be used as a suitable viewer. The support for 
external tools will be completed in the next project.
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CHAPTER 7. A SAMPLE 3D PAVEMENT SIMULATION USING FEP++ 

As mentioned in the previous chapter, FEP++ has full support for 3D finite element analysis of 
elastic and viscoelastic materials. This chapter discusses the details of a 3D analysis performed 
using FEP++ to study the effects of temperature, material, and wheel speed on ALF pavements. 
The following sections discuss the analysis details and the results. 

7.1. THE INPUT DATA 

The pavement was modeled as a 3D cuboid, and the details are shown in table 23. A single 
moving wheel load with the parameters shown in table 24 is used in the analysis. The behavior of 
the pavement was studied for the effects of temperature, material, and wheel speed. The 
following subsections discuss the simulations and the results in detail. 
 

Table 23. Properties of pavement. 
Depth of AC Layer 46 cm 
Pavement Length  296.5 cm 
AC Material ALF Control/ 

ALF SBS 
Subgrade Type and Stiffness Infinite Subgrade, 

86 MPa 
Ambient Surface Temperature Winter (-5 ºC)/ 

Summer (38 ºC) 
 

Table 24. Properties of moving wheel load. 
Contact Pressure 758 kPa
Load Area 19.65 cm by 17.79 cm
Wheel Velocity 13.41 m/s/26.82 m/s

7.2. EFFECT OF TEMPERATURE 

To simulate the effect of temperature, the analysis was performed at representative temperatures 
for winter and summer. The temperature distribution across the depth was found from 
simulations with the Enhanced Integrated Climatic Model (EICM). For these simulations, a 
typical pavement cross section was used with the Raleigh, NC, climatological database. The 
exact temperature variation is shown in figure 192. 
 
The strains were expected to be larger during the summer as compared to the winter because the 
material stiffness was smaller at higher temperatures leading to larger deformations. Also, the 
material was expected to display a higher degree of viscoelasticity at higher temperatures while 
displaying higher elasticity at lower temperatures. 
 
Figure 193 through figure 198 show the strain distributions for the above analysis when the 
wheel load reached the center of the pavement. The temperature distribution across the depth is 
also shown in each of the figures. Figure 193 and figure 194 show the vertical strain distribution, 
and, as expected, the strains were smaller for the winter loading than for the summer loading. 



 

 206

Also, the strain distribution was more or less symmetrical around the wheel location for winter 
loading as compared to the summer loading which showed some residual strain from the passing 
of the wheel. Thus, the viscoelastic behavior was more prominent at higher temperatures. 
 
Figure 195 and figure 197 show the strain distributions for longitudinal and transverse strains. 
The strains were consistently higher in the case of summer loading than in winter loading, and 
the elastic nature of the material (symmetry about the wheel) was more prominent during the 
winter loading. Thus, the results of the FEM analysis of the effects of temperature on the 
material properties agreed well with the expected outcome. 
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Figure 192. Graph. Temperature variations used for simulations. 
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Figure 193. Illustration. Vertical strains in winter. 
 
 

 
Figure 194. Illustration. Vertical strains in summer. 
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Figure 195. Illustration. Longitudinal strains in winter. 

 
 

 
Figure 196. Illustration. Longitudinal strains in summer. 
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Figure 197. Illustration. Transverse strains in winter. 

 
 

 
Figure 198. Illustration. Transverse strains in summer. 
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7.3. EFFECT OF MATERIAL 

The effect of material properties on pavement behavior was analyzed next. Pavements under 
summer conditions, with the ALF Control mixture and the ALF SBS mixture for the asphalt 
concrete layer, were used for the simulations, and a wheel speed of 26.82 m/s was applied. 
Because the SBS pavement was less stiff compared to the ALF Control pavement, the strains 
were expected to be higher for the SBS pavement. 
 
Figure 199 through figure 204 show the strain distributions for the above analysis when the 
wheel load reached the center of the pavement. Figure 199 and figure 200 show the vertical 
strain distribution; the SBS pavement had higher strains compared to the Control pavement. Also, 
the strains in the SBS pavement located away from the wheel location were higher, indicating 
that the strains in the SBS pavement took longer to recover from the passing of a wheel than 
those of the Control pavement. 
 
Figure 201 and figure 202 show the longitudinal strains for the two mixtures. Again, the strains 
were larger for the SBS mixture than for the Control mixture, leading to larger regions of tension 
and compression. 
 

 
Figure 199. Illustration. Vertical strains for Control mixture. 
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Figure 200. Illustration. Vertical strains for SBS mixture. 

 
 

 
Figure 201. Illustration. Longitudinal strains for Control mixture. 
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Figure 202. Illustration. Longitudinal strains for SBS mixture. 

 
 

 
Figure 203. Illustration. Transverse strains for Control mixture. 
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Figure 204. Illustration. Transverse strains for SBS mixture. 

 
Figure 203 and figure 204 show the transverse strains. Again, the strains were larger for the SBS 
mixture than for the Control mixture. Also, the region of maximum tension at the bottom of the 
pavement was much larger for the SBS pavement than for the Control pavement. The area of 
influence on the surface of the pavement was higher for the SBS mixture than the Control 
mixture. 
 
Again, the results were as expected. The SBS pavement deformed more than the Control 
pavement, and the area of influence was larger due to its lower stiffness. 

7.4. EFFECT OF WHEEL SPEED 

Finally, the effect of the wheel speed on pavement behavior was analyzed. The analysis was 
performed on a pavement using the ALF Control mixture for the asphalt concrete layer under 
summer conditions for two cases with wheel speeds of 13.41 and 26.82 m/s, respectively. 
Because the viscoelastic model was quasistatic, dynamic effects (acceleration/velocity) were not 
considered, and the effect of the wheel speed essentially affected only the load duration at each 
point on the pavement. Thus, the effect of a slower wheel speed could be a longer duration of the 
load pulse and, consequently, larger vertical strains compared to a faster wheel speed. Also, the 
slower wheel load could create a larger area of influence because the material recovery time may 
be comparable to the wheel passing time. 
 
Figure 205 through figure 210 show the strain distribution for the analysis when the wheel load 
reached the center of the pavement. Figure 205 and figure 206 show the vertical strains, which 
were slightly larger for the slower wheel speed. The memory effect was slightly more 



 

 214

pronounced for the slower wheel speed, as shown by the larger strains in the pavement region 
passed by the wheel. 
 
Figure 207 through figure 210 show the longitudinal and transverse strains; these strains 
displayed similar characteristics to the vertical strains, although the effects were much less 
pronounced. The vertical strains seemed to be most sensitive to the wheel speed. 
 

 
Figure 205. Illustration. Vertical strains for a wheel speed of 13.41 m/s. 
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Figure 206. Illustration. Vertical strains for a wheel speed of 26.82 m/s. 

 

 
Figure 207. Illustration. Longitudinal strains for a wheel speed of 13.41 m/s.  
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Figure 208. Illustration. Longitudinal strains for a wheel speed of 26.82 m/s.  

 
 

 
Figure 209. Illustration. Transverse strains for a wheel speed of 13.41 m/s. 
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Figure 210. Illustration. Transverse strains for a wheel speed of 26.82 m/s. 
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CHAPTER 8. CONCLUSIONS AND FUTURE WORK 

8.1. CONCLUSIONS 

The approach adopted in this research to characterize asphalt concrete over a wide range of 
temperatures and loading rates encountered in the field divided the problem into two 
components: (1) characterizing the viscoelastic response and (2) characterizing the viscoplastic 
response. The VECD model described the time-dependent behavior of asphalt concrete with 
growing microcrack damage. The irrecoverable (whether time-dependent or independent) strain 
was described by the VP model. These two models were integrated based on the strain 
decomposition principle to form the VEPCD model. This model was found to be applicable to 
the tension mode and, in principle, to the compression mode of loading. 
 
Through the model characterization procedures, it was also found that the dynamic modulus, if it 
was determined according to strict guidelines so that the linear limits of the material were not 
exceeded, was not dependent upon loading direction (tension compression or compression only). 
Further, it was found that this loading direction independence held under different confined 
stress states. From these confined dynamic modulus tests, a state-dependent model similar to the 
one used for unbound paving materials was developed and characterized.  
 
The viscoelastic damage characteristics were found to differ in the compression and tension 
loading modes, with the compression mode showing the more favorable results (i.e., less 
reduction in the pseudo stiffness, C, for the same amount of increase in the damage parameter, S). 
These results were also consistent with the hypotheses that the damage parameter, S, was related 
to cracking density or crack volume and that the primary direction of this cracking was 
perpendicular to the tensile loading direction or parallel to the compressive loading direction. A 
simple, empirically-based viscoplastic model was found to be sufficient for explaining the tensile 
behavior of asphalt concrete, but it did not explain the compressive behavior.  
 
For the compressive behavior, a rate-dependent softening mechanism, which operated during 
unloading, was found to be a significant factor that affected the viscoplastic characteristics of 
asphalt concrete. Several existing viscoplastic models that included flow rules and a yield 
criterion had been evaluated, but they were found to be insufficient for describing this softening 
behavior. To account for this characteristic behavior, the rate-dependent, hardening-softening 
function was suggested using Perzyna’s flow rule. The relaxation modulus determined from the 
linear viscoelastic characterization was utilized in this process. It was shown that the developed 
model could account for the effects of rest periods and loading sequence on viscoplastic strain 
development. 
 
In light of practical concerns related to the use of constant rate tests in the AMPT and due to the 
complexities of performing true time-dependent analysis of cyclic fatigue tests, a simplified 
VECD model was presented. This model utilized results from fatigue tests performed at nominal 
levels that were possible with the AMPT equipment, as well as the VECD model that specialized 
in such loading so as to arrive at a simple formulation to characterize the model. This 
formulation was found to generally agree with the results from the constant rate tests, 
particularly under conditions of minimal viscoplastic strain.  
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Another major finding in this research was the verification of the time-temperature superposition 
principle with growing damage, both in compression and tension, in a confined stress state. This 
principle was proven valid using constant rate tests under various temperatures and strain rates 
with an applied confining stress. Therefore, the response of a mixture with growing damage at 
one temperature could be predicted by shifting its response at another temperature using the 
time-temperature shift factor determined from the LVE complex modulus tests.  
 
The major contribution of the time-temperature superposition principle and the damage 
characteristic curve was the significant reduction in testing requirements. The model allowed the 
prediction of the material’s behavior at any temperature from a test result obtained from a single 
temperature and the time-temperature shift factors obtained from temperature sweep complex 
modulus tests. The experimental results from the previous FHWA project (DTFH61-03-H-
00116) and this project verified that the time-temperature superposition principle with growing 
damage was valid in both tension and compression, regardless of the confined state (i.e., 
unconfined or confined).  
 
To realize the full potential of the VEPCD material model for predicting pavement performance, 
a robust FEP++ was developed to account for the effects of loading and boundary conditions. 
FEP++ was designed using a top-down, object-oriented approach with great care so that further 
enhancements could be made by the research team in an efficient manner. Furthermore, special 
elements and implementation techniques were employed to increase the computational efficiency. 
The 2D version of the resulting software has the ability to predict stresses, strains, and damage of 
the pavement under repeated traffic loading. FEP++ was also extended to 3D stress analysis with 
the ultimate goal of 3D damage modeling of moving traffic loads. All these capabilities were 
made accessible to the user through carefully designed and powerful graphical pre and 
postprocessors. As part of the ongoing HMA-PRS project sponsored by the FHWA (DTFH61-
08-H-00005), FEP++ is now being molded into an integrated software tool that can be used for 
robust pavement performance predictions. 
 
To illustrate the capabilities of FEP++ and its preprocessor, a full 3D finite-element analysis was 
carried out. The effects of temperature, material, and wheel speed were studied and found to be 
in accordance with the expected results. Namely, the pavement showed an increased viscous 
response with increased temperature and decreased speed. The simulations also showed lower 
strains with higher temperatures, increased wheel speed, and a stiffer asphalt concrete material. 

8.2. FUTURE WORK 

The following items are recommended for future research: 
 

• Modeling multiaxial VEPCD: Sensitivity analyses considering true in-field conditions 
should be carried out for both tensile and compressive loading to determine the influence 
of simplifications to and the need for the complete multiaxial formulation. If complete 
multiaxial modeling does not substantially change the predicted performance of the 
asphalt concrete, then less testing is needed for accurate pavement performance modeling.  

• Further Simplifying VECD model development: Although constant rate tests are simple to 
perform, the capacity of the recently developed AMPT equipment limits the use of such 
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tests. A simplified model further specialized for more moderate load amplitude cyclic 
tests and derived rigorously will expand the application of the VECD model for further 
routine testing and analysis. 

• Hardening in the MVECD compression model: A possible drawback to the current 
MVECD model for compression is the lack of a function to account for hardening due to 
aggregate interlock. It is known that such a function becomes important, especially at low 
confinement levels and high temperatures, but the implication of aggregate interlocking 
under more moderate conditions is unknown.   

• Yielding criteria in the VP compression model: In this research, the model parameters 
were determined for each specific confining pressure condition. Although these 
parameters are not sufficient to explain the general behavior of HMA pavements, which 
experience an almost uniform confining pressure for certain time periods, they are, 
nonetheless, reasonable for introducing a yield criterion that can account for the entire 
confining pressure. 

• Hardening-softening of the function in the VP compression model: Even though the 
current hardening-softening function reasonably accounts for the rate-dependent 
softening of HMA, some over and underpredictions were observed for certain stress 
histories. These observations may be explained by an inaccuracy in the hardening-
softening function, and therefore, more research into the hardening-softening function is 
required. 

• Refining analysis program: Current VEPCD modeling is aided by a software package 
developed at NCSU. The program is currently in the development stage and is considered 
to be research-grade software. Usability, therefore, is somewhat limited. Refinement of 
this program into a complete black box package will greatly aid the implementation of 
VEPCD modeling at the industrial level. 

• Advancing material models with FEP++: Currently the 3D FEP++ code includes 
modules for linear elastic and linear viscoelastic materials. The MVECD model should be 
implemented along with other material models and functions. To model unbound paving 
materials accurately, a module should be added to include a nonlinear elastic material 
model. In addition, models that account for the effects of temperature and moisture 
gradients in pavement systems and the effects of aging of the HMA layer on pavement 
performance need to be incorporated into the FEP++. Additionally, anisotropy of the 
HMA and slip elements at the pavement-base interface should be included. The modular 
design of the 3D FEP++ allows for incorporation of new modules that pertain to 
advanced materials, more efficient solution techniques, and fast solvers with little or no 
change to the existing code. 
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APPENDIX. USER MANUAL FOR FEP++ 

A.1. INSTALLATION OVERVIEW 

FEP++ can be installed using the supplied windows installer. The installer file is named 
“Setup.exe.” Executing the binary launches the installation wizard, which then guides through 
the rest of the installation procedure. Once the installation is completed successfully, an entry for 
FEP++ should be created in the Start Menu of Windows®. FEP++ can be launched by choosing 
the program from the Start Menu. 
 
The following section describes the data entry windows in FEP++ and provides information on 
their functionality and the type of input they accept. 

A.2. LIST OF INPUT DIALOGS 

A.2.1. General Information Dialog 

Figure 211 shows a screenshot of the General Information dialog. This is used to input 
information regarding the model and the type of analysis. This information is used by the 
preprocessor to customize the interface presented. 
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Figure 211. Screen capture. General Information dialog.  

 
A short explanation of the entry fields is given below. 

A.2.1.1. Data Entry Fields 

Title, Description: This information is used in creating report/summary files and does not affect 
the analysis in anyway. 
 
Model Type and Analysis Type: These data describe the type of model being solved. Depending 
on the model type, the user interface and analysis parameters are customized. Currently, 3D 
analysis, plane strain, and axisymmetric are supported. 

A.2.2. Material Properties Dialog 

Figure 212 shows a screenshot of the Material Properties dialog, which is used to configure the 
properties of materials used in the analysis. Currently, only elastic and viscoelastic materials are 
supported. 
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Figure 212. Screen capture. Material Properties dialog. 

 
A short explanation of the entry fields is given below. 

A.2.2.1. Data Entry Fields 

Material Name: This is a string identification used to uniquely identify a material. This is both 
an entry and a control. On choosing an existing identification, the dialog is populated with the 
properties of the material corresponding to the identification; however, entering a new value 
creates a new material.  
 
Material Type: This field indicates the type of material. If an existing material is chosen, then 
this field is automatically populated with the material type. On creating a new material, the user 
should choose the material type to continue configuring the specific type of material. Currently 
supported types are elastic and viscoelastic. 
 
The other fields correspond to parameters depending on the type of material and are discussed in 
subsequent sections. 
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A.2.3. Elastic Material Properties Dialog 

Figure 213 shows a screenshot of the elastic material properties dialog. 
 

 
Figure 213. Screen capture. Elastic material properties dialog. 

 
A short explanation of the entry fields is given below. 

A.2.3.1. Data Entry Fields 

Material Properties Block: These fields are used to input the material properties like density, 
Poisson’s ratio, and elastic modulus. 
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Thermal Stresses Block: These fields describe the coefficient of thermal expansion of the 
material. If thermal stresses are to be ignored, then the Include box should be cleared. 

A.2.4. Viscoelastic Material Properties Dialog 

Figure 214 shows a screenshot of the viscoelastic material properties dialog. 
 

 
Figure 214. Screen capture. Viscoelastic material properties dialog. 

 
A short explanation of the entry fields is given below. 

A.2.4.1. Data Entry Fields 

Material Properties Block: These fields are used to input the material properties like density and 
Poisson’s ratio. 
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Prony Series: This field is used to input the Prony series to be used for characterizing the 
relaxation modulus of the material. Existing Prony series can be chosen by selecting from the 
dropdown list. New Prony series can be added by clicking the View/Edit button to invoke the 
Prony Series dialog. Section A.2.5 describes the configuration of fields on the Prony Series 
dialog. 
 
Shift Factors Block: These parameters are used along with the Prony coefficients to adjust the 
material properties for the temperature effects. These parameters are used to find the time-
temperature shift factor. 
 
Thermal Stresses Block: These fields describe the coefficient of thermal expansion of the 
material. If thermal stresses are to be ignored, then the Include box should be cleared. 
 
Damage Parameters Block: These are the parameters for characterizing the damage law as 
discussed in subsection 2.2.4. If damage effects are to be ignored, then the Damage checkbox 
should be cleared. 

A.2.4.2. Control Actions 

View/Edit: This control invokes a Prony series dialog that can be used to add new series or edit 
an existing series. On successful completion, the identification of the selected/configured series 
is displayed in the Prony series dropdown list. 
 
Delete: This control is active only when an existing material has been chosen. It can be used to 
delete the material from the database. 
 
Apply: This control performs validations on the modified/input data, and if no errors are found, it 
saves the data to the database; however, if the validation fails, an appropriate error message is 
raised, and the data are not saved to the database. This does not close the dialog on successful 
completion and can be used to make multiple changes without having to open/close the dialog 
multiple times. 
 
OK: This is similar to the Apply control in functionality; however, on successful completion, this 
control saves the data and closes the dialog. 
  
Cancel: This control discards any changes made to the data and closes the dialog. 

A.2.5. Prony Coefficients Dialog 

Figure 215 shows a screenshot of the Prony Coefficients dialog. This dialog can be used to 
Add/Edit the Prony series. 
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Figure 215. Screen capture. Prony Coefficients dialog. 

 
A short explanation of the entry fields is given below. 

A.2.5.1. Data Entry Fields  

Series Name: This field is a string identification used to uniquely identify the Prony series. 

A.2.5.2. Control Actions 

Import Data: This control is used to import the Prony coefficients from a text file. Each record in 
the file is expected to be in the format, “E_i Tai_i”, that is, space separated values of Prony 
coefficients and relaxation times. 
  
Insert Before: This control is used to edit the Prony coefficients table. It adds a new blank row 
above the current selected row. 
 
Insert After: This control is used to edit the Prony coefficients table. It adds a new blank row 
below the current selected row. 
 
OK: This control performs validations on the modified data, and if no errors are found, it saves 
the data and closes the dialog. If validation fails, an appropriate error message is raised. 
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Cancel: This control discards any changes made to the data and closes the dialog. 

A.2.6. Layer Properties Dialog 

Figure 216 shows a screenshot of the Layer properties dialog. This dialog is customized 
depending on the analysis type (2D or 3D). This dialog also supports the configuration of the 
subgrade as a half-space. 
 

 
Figure 216. Screen capture. Layer properties dialog. 

 
A short explanation of the entry fields is given below. 

A.2.6.1. Data Entry Fields  

The fields for this dialog are represented in the form of a table. Each row of the table represents a 
layer of the pavement. The column headings specify the property being configured. The columns 
of the table are described as follows: 
 
Pavement Width (cm): This shows the width of the pavement layer. This can be configured only 
for a 3D analysis. 
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Pavement Length (cm): This shows length of the pavement section to be simulated. This can be 
configured only for a 3D analysis. 
 
Layer: This shows a unique string identifying the pavement layer. 
 
Type: This specifies the type of pavement layer. The valid options are AC, Base, SubBase, 
SubGrade, and InfiniteSubgrade. AC refers to asphalt concrete layer, and InfiniteSubgrade refers 
to a subgrade that is treated as a half-space. This field is not editable. 
 
Material: This shows the type of material to be associated with the layer. The material can be 
chosen from the material database that was configured using the Material dialog (section A.2.2). 
 
Thickness: This shows the thickness of the pavement layer. This must be configured for all the 
layers except if the type of the layer is InfiniteSubgrade. In this case, special elements are used to 
treat the subgrade as a half-space. 
 
Temperature: This shows the mean temperature in the pavement layer. This is used in adjusting 
the viscoelastic material properties for the temperature effects. 

A.2.6.2. Control Actions 

Insert Before: This control adds a pavement layer above the selected pavement layer. 
 
Insert After: This control adds a pavement layer below the selected pavement layer. 
 
DeleteRow: This control deletes the selected pavement layer. 
 
ClearRow: This control clears the selected pavement layer. 
 
OK: This control performs validations on the modified data. If no errors are found, it saves the 
data and closes the dialog. If validation fails, an appropriate error message is raised. 
 
Cancel: This control discards any changes made to the data and closes the dialog. 

A.2.7. Mesh Parameters Dialog 

Figure 217 shows a screenshot of the Mesh Parameters dialog. This dialog is used to configure 
the mesh discretization parameters for the finite element analysis. It is customized depending on 
ModelType and AnalysisType that were input in the General Information dialog. 
 
The model is divided into the following two zones: 

Zone-I: The region corresponding to the actual pavement is called Zone-I. The length and width 
discretization is common for all the layers, but the thickness discretization can be configured 
independently for each layer. A uniform discretization is used for each layer. 
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Zone-II: Zone-II corresponds to the boundary of the pavements and is modeled using infinite 
elements to simulate the effect of a half-space (semi-infinite medium). A geometric series based 
discretization is used for each region. 

 
Figure 217. Screen capture. Mesh properties dialog. 

 
A short explanation of the entry fields is given below. 

A.2.7.1. Data Entry Fields (Mesh Parameters Block)  

Zone-I Length Ratio: This parameter corresponds to the length of the actual pavement. The 
length is calculated as (Zone-I Length Ratio) multiplied by (Load Length). 
 
Zone-I Length Divisions: This specifies the number of divisions in Zone-I along the length of the 
pavement. 
 
Zone-I Width Ratio (3D analysis): This parameter corresponds to the width of the actual 
pavement. The width is calculated as (Zone-I Width Ratio) multiplied by (Load Width). 
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Zone-I Width Divisions (3D analysis): This corresponds to the number of divisions in Zone-I 
along the width of the pavement. 
 
Zone-II Mesh Ratio: This specifies the geometric ratio used for creating the geometric series 
discretization in Zone-II. 
 
Zone-II Init Element Ratio: This parameter corresponds to the initial element size in the 
geometric series discretization of Zone-II. The initial element size along direction P is calculated 
as (Zone-II Element Ratio) multiplied by min(element size along perpendicular direction to P). 
 
Zone-II Num Elements: This parameter specifies the number of elements in Zone-II along any 
direction. 

A.2.7.2. Data Entry Fields (Layer Info Block) 

 The fields Layer, Type, and Thickness are not editable and are taken from the data used to 
configure the Layer properties. 
 
Divisions: This specifies the number of divisions for the discretization of the pavement layer 
along the thickness. If the layer is Infinite Subgrade, then this field is also not editable, and the 
data input from the Zone-II configuration is used. 

A.2.7.3. Control Actions 

OK: This control performs any validations on the modified data, and if no errors are found, it 
saves the data and closes the dialog. If validation fails, an appropriate error message is raised. 
 
Cancel: This control discards any changes made to the data and closes the dialog. 

A.2.8. Load Properties Dialog 

Figure 218 shows a screenshot of the Load properties dialog. This dialog is used to configure the 
loading conditions for the model. This interface is customized depending on ModelType and 
AnalysisType fields that were configured using the General Information dialog. In these 
configurations, the loading area is assumed to be rectangular, and the pressure distributions are 
assumed to be uniform in the loading area. 
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Figure 218. Screen capture. Load properties dialog. 

 
A short explanation of the entry fields is given below. 

A.2.8.1. Data Entry Fields (Coordinates (in cm) Block) 

X: This shows the x coordinate of the load. 
 
Y: This shows the y coordinate of the load. 
 
Z: This shows the z coordinate of the load.  

A.2.8.2. Data Entry Fields (Magnitude and Dimensions Block) 

Load Magnitude: This parameter corresponds to the load magnitude. The user can choose to 
specify either the Total Load or Tire Pressure by choosing the appropriate type in the dropdown 
box. In the screen capture shown in figure 218 the Total Load option is selected. 
 
Load Length: This parameter specifies the length of the loading area. For the pavement problem, 
this is the length of the tire. 
 
Load Width: This parameter specifies the width of the loading area. For the pavement problem, 
this is the width of the tire. 
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A.2.8.3. Data Entry Fields (Moving Load Data Block) 

Velocity: This parameter specifies the velocity at which the loading area moves. For the 
pavement model, this corresponds to the vehicle speed. 

A.2.8.4. Control Actions 

OK: This control performs validations on the modified data, and if no errors are found, it saves 
the data and closes the dialog. If validation fails, an appropriate error message is raised. 
 
Cancel: This control discards any changes made to the data and closes the dialog. 

A.2.9. Analysis Parameters Dialog 

Figure 219 shows a screenshot of the Analysis Parameters dialog, which is used to configure the 
parameters for the solution algorithm used in the finite element analysis.  
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Figure 219. Screen capture. Analysis Parameters dialog. 

 
A short explanation of the entry fields is given below. 

A.2.9.1. Data Entry Fields 

Penalty Number: This parameter corresponds to the Penalty Number used to model stiffness of 
the rigid members in finite element analysis. 
 
Approximation Scheme Block: The parameters in this block correspond to the parameters used in 
the Newmark Method approximation scheme. 
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Iteration Scheme Block: The parameters in this block correspond to the standard parameters for 
an iterative solution scheme. The analysis engine currently supports only the Newton Iterations. 
 
Prony Configuration Block: Maximum Relaxation Time: This specifies an upper bound on the 
Prony coefficients configured for the AC Layers. 
 
Prony Configuration Block: Minimum Relaxation Time Factor: This specifies a lower bound on 
the Prony coefficients configured for the AC Layers. The lower bound is calculated as  
Min Relaxation Time = (time step size)/(Minimum Relaxation Time Factor). 
 
Simulation Info Block: Simulation Period: This specifies the total simulation time for the 
analysis. 
 
Simulation Info Block: Num Time Steps: This specifies the number of timesteps that will be used 
in the simulation and hence fixes the timestep size. 

A.2.9.2. Control Actions 

OK: This control performs validations on the modified data, and if no errors are found, it saves 
the data and closes the dialog. If validation fails, an appropriate error message is raised. 
 
Cancel: This control discards any changes made to the data and closes the dialog. 

A.2.10. Summary Dialog 

Figure 220 shows a screenshot of the Summary dialog, which is used to view a user readable 
report of the input data. 
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Figure 220. Screen capture. Summary dialog. 

 
A short explanation of the entry fields is given below. 

A.2.10.1. Control Actions 

OK: This control closes the dialog. 

A.2.11. Generating an Input File 

The user can generate an input file for FEP++ by choosing the Generate Input File item in the 
Control Panel. The user is prompted to specify a location for saving the generated file, and the 
file is created at that location. This can be used to configure multiple analyses and to store the 
generated input files that can then be run in a batch process.  

A.2.12. Running Analysis 

Figure 221 shows a screenshot of the view when an analysis is being run. The finite element 
analysis can be started by clicking the Run Analysis item in the Control Panel. When a user starts 
a new analysis, it is launched in a separate command window that displays the output from 
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FEP++. Once the analysis is completed, the window is closed, and the results are gathered and 
stored at the location of the current “db” file. 
 

 
Figure 221. Screen capture. FEP++ analysis in progress. 
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