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Cover.  Map showing location of 339 selected streamflow study sites used to develop maximum likelihood  
logistic regression models for estimating drought streamflow probabilities for 259 hydrologic basins in Virginia.  
Taken from figure 1 (p. 3).
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Conversion Factors 

 Inch/Pound to SI

Multiply By To obtain

Length
foot (ft) 0.3048 meter (m)
mile (mi) 1.609 kilometer (km)

Area
acre 0.4047 hectare (ha)
square foot (ft2)  0.09290 square meter (m2)
square mile (mi2) 259.0 hectare (ha)

Volume
gallon (gal)  0.003785 cubic meter (m3) 
cubic foot (ft3)  0.02832 cubic meter (m3) 
acre-foot (acre-ft) 1,233 cubic meter (m3)

Flow rate
acre-foot per day (acre-ft/d) 0.01427 cubic meter per second (m3/s)
foot per second (ft/s)  0.3048 meter per second (m/s)
cubic foot per second (ft3/s)  0.02832 cubic meter per second (m3/s)

Hydraulic gradient
foot per mile (ft/mi)  0.1894 meter per kilometer (m/km)

Vertical coordinate information is referenced to the North American Vertical Datum of 1988 (NAVD 88).

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).

Altitude, as used in this report, refers to distance above the vertical datum.
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Abstract 
Maximum likelihood logistic regression model equations 

used to estimate drought flow probabilities for Virginia 
streams are presented for 259 hydrologic basins in Virginia. 
Winter streamflows were used to estimate the likelihood of 
streamflows during the subsequent drought-prone summer 
months. The maximum likelihood logistic regression models 
identify probable streamflows from 5 to 8 months in advance. 
More than 5 million streamflow daily values collected over 
the period of record (January 1, 1900 through May 16, 2012) 
were compiled and analyzed over a minimum 10-year (maxi-
mum 112-year) period of record. The analysis yielded the 
46,704 equations with statistically significant fit statistics and 
parameter ranges published in two tables in this report. These 
model equations produce summer month (July, August, and 
September) drought flow threshold probabilities as a function 
of streamflows during the previous winter months (November, 
December, January, and February). Example calculations are 
provided, demonstrating how to use the equations to estimate 
probable streamflows as much as 8 months in advance.

Introduction 
Planning for drought conditions in Virginia streams is 

essential to the sound management of water resources and 
associated riparian and watershed ecosystems. Reliable 
estimations of the likelihood that streamflows during drought-
prone months will exceed specific low-flow thresholds can 
provide advance warning of drought conditions, allowing 
extended lead times for improved drought awareness and 
effective management response. Improved knowledge and 
estimation of low flows in drought-prone months provide 
extended lead time for drought response even as precipitation, 
water withdrawals, land uses, and climate variables change 
over time. Drought streamflow probability estimates can be 
used for the management of riparian systems and the ecology 
associated with forested, agricultural, and urban landscapes. 
Drought streamflow probability estimates provide a basis for 
analysis of future streamflow response to changes in ecosys-
tem and climate.

This study was conducted through a cooperative partner-
ship between the Virginia Department of Environmental Qual-
ity (DEQ) and the U.S. Geological Survey (USGS). The DEQ 
and the USGS maintain a statewide network of more than 
290 continuous streamgaging stations with many additional 
partial-record streamgaging stations. Together USGS and 
DEQ develop computations, analyses, and tools to support the 
understanding and effective management of streamflows. For 
this study the probabilities that streamflows in July, August, 
and September would exceed specific drought low-flow 
thresholds, as a function of streamflows during the previous 
November, December, January, and February, were estimated. 
The low-flow characteristics for each station were described 
previously by Austin and others (2011a). Maximum likelihood 
logistic regression (MLLR) was used to determine the prob-
ability of exceeding a set of flow thresholds.

Empirically determined MLLR equations were used to 
estimate drought streamflow probabilities for Virginia streams. 
Winter streamflows which correspond to the critical time for 
the majority of effective recharge to the groundwater system 
(Nelms and Moberg, 2010a, b) were used to estimate the 
likelihood of streamflows, composed mostly of base flow from 
groundwater discharge (Harlow and others, 2005; Nelms and 
Moberg, 2010b), during drought-prone summer months. This 
information aids in the understanding of water availability and 
the environmental health of watersheds and their associated 
ecosystems, and extends the lead-time of drought response by 
as much as 8 months.

Purpose and Scope

This report presents a set of 46,704 predictive equations 
that describe the likelihood of streamflow during summer 
months exceeding each low-flow threshold, based on previ-
ous streamflows at 259 streamgaging stations for a minimum 
of 10 years and a maximum of 112 years. The development 
of the equations is described, and examples are provided to 
demonstrate how to use the equations to estimate probable 
streamflow as much as 8 months in advance. The predictive 
equations are listed in a table. MLLR drought threshold prob-
abilities are shown in illustrations. 
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Streamflow Requirements During Dry Times

Streamflows support fluvial processes and ecosystem 
functions that are particularly important during dry times and 
include maintaining channel shape (morphology). The dimen-
sion, pattern, and profile of a stream contribute to the physical 
properties associated with channel function, such as the move-
ment of sediments and maintenance of streamwater width and 
depth. Ecosystems and habitat for aquatic organisms require 
these and other channel functions to maintain transportation 
corridors and sources of food and water for aquatic and ter-
restrial animals and plants.

Humans withdraw streamwater for industrial, agricultural, 
and domestic uses. Streamflows are an integrated response to 
the conditions upstream created by natural and anthropogenic 
sources, including precipitation received in previous months. 
When streamflows are low and available water is scarce, 
concern for maintaining water uses is heightened. Estimates 
of water availability allow water withdrawals to be adjusted, 
helping to ensure that fluvial processes, ecosystem functions, 
and human uses are maintained.

Why Predict Drought Streamflow Probabilities?

Estimating drought streamflow probabilities allows for 
the anticipation of water availability during critical periods. 
Estimates facilitate improved planning for, and manage-
ment of, water resources, particularly during intervals when 
streamflows are low. The benefits of accurate drought stream-
flow probabilities include (1) extended lead-times for drought 
response, as much as 8 months, (2) improved understanding of 
low flows in drought-prone months, and (3) accurate anticipa-
tion of future low flows as functions of change in precipita-
tion, water withdrawals, land-use management, and climate. 
These benefits enhance management of water withdrawals and 
land uses, so that water availability may be sustained during 
dry months.

Previous Studies

Previous studies have reported low-flow characteristics 
or analyzed low-flow data for Virginia streams. A study by 
Nuckels (1970) analyzed data from long-term, continuous-
record streamgaging stations throughout Virginia. Hayes 
(1991) provides an analysis of low-flow characteristics in Vir-
ginia streams. Austin and others (2011a) provide a comprehen-
sive analysis of low-flow characteristics in Virginia streams. 
Other studies, including those by Cushing and others (1973), 
Trainer and Watkins (1975), Mohler and Hagan (1981), Smith 
(1981), Wetzel and Bettandorff (1986), Lynch (1987), and 
Lynch and others (1987), focused on analysis of streamflow 
characteristics in portions of the State.

Methods of Study
Analysis was conducted for five areas of focus: site 

selection, data evaluation, MLLR, model development, and 
model verification and diagnostics. Each of these focus areas 
is described below.

Site Selection

A total of 361 Virginia streamgaging stations registered in 
the USGS National Water Information System (NWIS) were 
considered for analysis. Of these, 22 streamgaging stations 
were identified as not useful for estimating drought streamflow 
probabilities, including 20 streamgaging stations for which no 
daily value (DV) data are available in NWIS and 2 streamgag-
ing stations with insufficient DV data in NWIS (less than 
1 year of recorded DV data), when streamgaging station data 
were accessed on May 17, 2012. More than 5.12 million 
streamflow daily values (DV) collected over the period of 
record and compiled for the remaining 339 streamgaging sta-
tions were obtained from NWIS. These data and their support-
ing information were used to develop MLLR models to predict 
drought streamflow probabilities. Of these 339 streamgaging 
stations, 259 produced models with accompanying p-value sta-
tistics that are less than or equal to 0.05 based on streamflow 
data spanning a minimum 10-year (maximum 112-year) period 
of record. Models predicting drought streamflow probabilities 
for these 259 basins are presented in this report.

Data Evaluation

Daily values of streamflow were grouped by streamgag-
ing station for analysis, then organized into categories corre-
sponding to the 11 major river basins in Virginia—Big Sandy, 
Chowan, James, Kanawha, Piankatank, Potomac, Rappahannock, 
Roanoke, Tennessee, Ware, and York (fig. 1). Within each 
river basin category, data for each streamgaging station were 
placed in one of two groups—(1) streamgaging stations for 
which flow duration statistics had been previously developed 
and (2) streamgaging stations without previously developed 
flow duration statistics. This helped to speed data evaluation 
by facilitating analysis of data for streamgaging stations with 
previously developed flow duration statistics.

Data were inspected and evaluated for each streamgag-
ing station in an iterative fashion. Each list of daily values was 
visually scanned for errors, then after tabulation, daily values 
were scrutinized a second time. Each dataset was reviewed 
again as models were developed, and for selected models, 
plots of data in probability space produced as part of modeling 
output were evaluated for consistency with a previous tabula-
tion of the same data. Finally, datapoints were plotted on each 
modeled MLLR plot to facilitate continued evaluation.
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Figure 1.  Location of 339 selected streamflow study sites used to develop maximum likelihood logistic regression 
models for estimating drought streamflow probabilities for 259 hydrologic basins in Virginia.

Maximum Likelihood Logistic Regression

MLLR is used to predict the chance of exceeding, or not 
exceeding, a particular streamflow threshold. MLLR describes 
the odds of a particular outcome on the basis of the value of 
a predictive variable and provides a method to estimate the 
probability of a response level as a smooth function of a fac-
tor. For this study, the probability of streamflow exceeding a 
predefined drought flow threshold during dry months of the 
year was estimated as a function of mean streamflow during 
the previous wet months of the year. The regression is called 
a logistic regression because an S-shaped logistic curve is 

used to fit the probabilities. This type of fitted curve is called a 
logistic function (Sall and others, 2007).

In its simplest form, the response (y-value) of a MLLR 
has two levels, and is, therefore, a binary response. In this 
study, the binary response is an indication of whether a 
drought streamflow threshold will, or will not, be exceeded. A 
“yes” response indicates that a particular drought streamflow 
threshold will be exceeded, and a “no” response indicates 
that a particular drought streamflow threshold will not be 
exceeded. The logistic curve is fitted on the basis of the dif-
ference in the logs of the two probabilities of the yes and no 
binary response, expressed as a linear function of the factor 
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variable. In this case, the factor variable is the mean stream-
flow during the wet months of the year.

If p denotes the probability of the first response level, 
“yes,” then 1–p denotes the probability of the second response 
level, “no.” The linear model may then be written as shown in 
equation 1, an example of a logistic model in linear form. 

Equation 1: Example of a logistic model in linear form.

 (1)

where 
 
	 	 is called the logit of p, also known as the log 

odds-ratio,
 		
	 p	 is the probability of exceeding a particular 

streamflow threshold,
 	 β0	 is an intercept parameter, 
 	 β1	 is a slope parameter, and 
 	 X	 is an explanatory variable (x-axis value).

There is no error term associated with equation 1 
because the predicted value (y-value) is not a response level 
as usually is expected in a linear regression model but rather 
a probability distribution of a response level. Because a 
probability distribution describes a chance, or likelihood, of 
either of two outcomes (yes or no) relative to an explanatory 
variable (x-value), an error cannot be associated with the fitted 
curve in the manner commonly identified with, and expressed 
in, regression models. Just as a weather forecast predicting 
a 90-percent chance of rain is not incorrect if rain does not 
occur, so too the MLLR models are correct even when the less 
likely of this study’s two possible outcomes occurs (Sall and 
others, 2007).

There is, however, a probability value (p-value) asso-
ciated with each MLLR model, indicating the strength of 
each probability distribution relative to the likelihood that 
the distribution could simply be a product of chance. Each 
p-value is identified with the help of a Likelihood-ratio Chi-
Square (Chi-Square) test for the hypothesis that all regression 
parameters are zero. The Chi-Square is computed by taking 
twice the difference in negative log-likelihoods (–2 Log L) 
between the results of the fitted MLLR model and the results 
of the reduced version of the model that has no explanatory (x) 
variable, only intercepts. This score statistic is a function of 
the first and second derivatives of the log-likelihood function 
(Allison, 2012). The p-value is determined as the probability 
of obtaining a greater Chi-Square value by chance alone, if the 
fit of the specified model is no better than the fit of the reduced 
model that includes only intercepts. We can think of this as 
asking, “Is the MLLR probability model better than nothing?” 
Low p-values indicate that, yes, the MLLR probability model 
is highly significant and better than nothing (Allison, 2012).

( ) ( ) 0 1

0 1

log log 1  •            

log •   ,
1

p X or

p X
p

ρ β β

β β

− − = +

 
= + − 

log p
p1−











The accounting to determine each modeled probability is 
done by summing the negative logarithms of the probabilities 
attributed by the model to the events that actually did occur. 
For example, if p represents a drought streamflow threshold 
probability, then the MLLR model assigns a value of –log(p) 
to represent a chance of “yes”—the drought streamflow 
threshold will be exceeded—and a value of –log(1–p) to 
represent a chance of “no”—the drought streamflow threshold 
will not be exceeded. A model that predicts perfectly yields 
p = 1 when the drought streamflow threshold is exceeded 
since –log(p) = 0 when p = 1. This same perfectly predicting 
model yields p = 0 when the drought streamflow threshold is 
not exceeded because –log(1–p) = 0 when p = 0. A value for 
the negative logarithm of the probability that is equal to zero 
(0) indicates that a perfect prediction has been made. That is 
to say, if –log(p) = 0, then a perfect prediction has been made. 
Why does –log(p) equal to 0 mean a perfect prediction? We 
can think about it this way: If we tried reversing the assign-
ments of these negative logarithms of the probabilities such 
that a probability of zero (0) is attributed to an event that had 
actually occurred, rather than attributing a probability of one 
(1) to that event, then the –log-likelihood of the event would 
be infinity because when p = 0 then –log(p) = infinity (∞). 
Because the accounting mechanism to determine modeled 
probability minimizes the sum of the negative logarithms of 
each modeled probability, that is, minimizes the sum of each –
log(p), the sum of these negative logarithms (–log-likelihood) 
would be infinity in this reversed assignment case, yielding a 
very high minimum value and therefore a very bad forecast-
ing score. However, because the assignments of probability 
attributes are actually not reversed, attributing a probability of 
one (1) to an event that has actually occurred yields a very low 
–log-likelihood value because when p = 1, –log(p) = zero (0). 
This yields a low minimum value, which is a good forecasting 
score (Sall and others, 2007).

As described in equation 1, the logit of the logistic model 
is                  , which is the inverse logit of the model β0 + β1

 ̇ 
X. 

The logit expresses the probability of each response level as a 
function of an explanatory variable (x-value), and these 
estimates are in the MLLR so as to maximize the likelihood of 
their occurrence. This is equivalent to minimizing the negative 
log-likelihood (–log-likelihood) of their occurrence, which is 
the negative sum of logs of the probabilities attributed to the 
response level (“yes” or “no”) for each streamflow observa-
tion. Therefore, plots of each MLLR trace a curve that solves 
for p in equation 1, which for a “yes” response is equivalent to

Equation 2: Logistic model of a “yes” response

 ,   and                   (2)

and for a “no” response is equivalent to

Equation 3: Logistic model of a “no” response

 ,                           (3)

log p
p1−











p
e X1
1

1 0 1
=

+ + •( )β β

p
e X2
1

1 0 1
=

+ + •−( )β β

,
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where
 	 e	 is the base of the natural logarithm,
 	 p1	 is the probability of exceeding a particular 

streamflow threshold (y-axis value is 
“yes”),

 	 p2	 is the probability of not exceeding a particular 
streamflow threshold (y-axis value is 
“no”),

 	 β0	 is an intercept parameter, 
 	 β1	 is a slope parameter, and 
 	 X	 is an explanatory variable (x-axis value).

Equation 2 evaluates the probability of a “yes” response. 
Equation 3 evaluates the probability of a “no” response. The 
probability of a “yes” response is equivalent to 1–p2, and the 
probability of a “no” response is equivalent to 1–p1 because 
the “yes” response and the “no” response must sum to 1 (Sall 
and others, 2007).

The strength of the x–y relation in a maximum like-
lihood logistic regression may be identified using three 
categories of curve shape, each illustrating a typical degree 
of relation strength. The phrase “strength of x–y relation” is 
deliberately used rather than “goodness of fit” because we 
are predicting probabilities, and all equation fits are equally 
“good.” However, predictions of the probability of a “yes” or a 
“no” response relative to an explanatory (x-axis) variable may 
be more distinct and, therefore, potentially more useful for 
decision making as a consequence of the shape of the MLLR 
response curve.

Three useful categories of MLLR response curve shape 
are illustrated in figure 2.

When the fit strength of an x–y relation is weak, the 
absolute value of the slope parameter in the MLLR model is 

relatively small. This results in a gentle slope of the MLLR 
line over the range of the explanatory data, as illustrated by 
curve A in figure 2. When the fit strength of the x–y relation 
is strong, the absolute value of the slope parameter in the 
MLLR model is relatively large. This results in a steeper 
slope of the MLLR line over the range of the explanatory 
data, as illustrated by curve B in figure 2. In curve B, the 
logistic (s-shaped) nature of the regression line also becomes 
more pronounced. When the fit strength of the x–y relation is 
approaching a “perfectly definitive fit,” the absolute value of 
the slope parameter in the MLLR model becomes quite large, 
approaching infinity as the middle line segment of the curve 
approaches an orientation perpendicular to the x-axis of the 
graph. This results in an s-shaped MLLR line with sharper 
breaks in inclination and a section of near vertical slope, as 
illustrated by curve C in figure 2. With a highly definitive 
gradient such as this, distinctions between the y-axis categori-
cal probabilities of “yes” and “no” become quite clear relative 
to the x-axis explanatory variable. With a perfectly defini-
tive fit, the probability of “yes” changes from 0 to 1, and the 
probability of “no” changes from 1 to 0, at the same position 
on the x-axis. A perfectly definitive fit means that, before a 
certain value of X, all the responses are at one level (either a 
level of “yes” or “no”), and after that same value of X, all the 
responses are at another level (either a level of “yes” or “no”) 
(Sall and others, 2007).

In addition to the nuances of curve shape as a useful 
indicator of x–y relation fit strength, curve position within 
the probability space of the MLLR plot helps identify the 
predictive power of each relation. Three zones of predictive 
power may be associated with each MLLR curve—two zones 
of strong predictive power and one zone of weak predictive 
power. These are illustrated in figure 3.
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Figure 2. Three categories of maximum likelihood logistic regression curve shape illustrating the degree of relation strength.
 Curve (A) illustrates a weak relation between the explanatory variable (x-value) and the probablilty response (y-value), (B)
illustrates a strong relation, and (C) illustrates an even stronger relation, a perfectly definitive fit (after Sall and others, 2007).

Figure 2.  Three categories of maximum likelihood logistic regression curve shape illustrating the degree 
of relation strength. Curve A illustrates a weak relation between the explanatory variable (x-value) and the 
probability response (y-value). Curve B illustrates a strong relation. Curve C illustrates an even stronger 
relation, a perfectly definitive fit (after Sall and others, 2007).
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strong predictive power (A) and (C), and (B) relatively weak predictive power.
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Figure 3.  Three “zones of predictive power” for each maximum likelihood logistic regression plot, illustrating areas of strong 
predictive power A and C, and relatively weak predictive power B.

Thus, relation fit strength identified in figure 2 and pre-
dictive power identified in figure 3 may be used together to 
further refine the understanding of MLLR plots. A curve that 
moves through the three zones identified in figure 3 exhibits 
a strong x–y relation with strong predictive power. Figure 2B 
and figure 2C are examples of such a curve. A curve confined 
to the upper one-third or the lower one-third of an MLLR plot 
exhibits strong predictive power, as identified in figure 3A and 
figure 3C; a weak x–y relation is shown in figure 2A. Finally, 
a curve confined to the middle one-third of an MLLR plot 
exhibits weak predictive power, as identified in figure 3B, a 
line of equal probability defines a 0.5 probability of either 
response, and a weak x–y relation is shown in figure 2A.

Reading Maximum Likelihood Logistic 
Regression Plots

MLLR plots may be thought of as cumulative probabil-
ity plots, where the line of fit partitions the entire probability 
space into response categories. The two response categories 
in the drought threshold probability plots—the probability 
of exceeding a particular drought threshold labeled as “yes” 
on the right vertical axis of the plot and the probability of 
not exceeding the same particular drought threshold labeled 
as “no” on the right vertical axis of the plot—may each be 
identified using the left vertical axis of the plot, as shown in 
figure 4. The probability of “no” is read directly from the left 
vertical axis of the plot. The probability of “yes” is equivalent 
to 1 minus the value read directly from the left vertical axis of 
the plot and represents the distance from the regression line to 
the top of the graph box. The probability of “yes,” therefore, 
equals 1 minus the probability of “no” or, using the variables 
identified in equation 2 and equation 3, p1 = (1–p2 ).  

Figure 4 illustrates how to read MLLR plots. It is an 
example MLLR drought threshold probability plot showing 
the chance of exceeding and not exceeding a July 25-percent 
daily streamflow threshold as a function of the average of 
mean daily values from November, December, January, and 
February. On the graph, the line of fit partitions the whole 

probability space into two response categories. A “no” 
response category occupies the area below the blue line, and 
a “yes” response category occupies the area above the blue 
line. The division into two areas is identified with the labels 
“Yes” and “No” on the right vertical axis. The probability of 
not exceeding a drought flow threshold (labeled “No”) may 
be read directly from the left vertical axis. For example, the 
probability of not exceeding a July daily streamflow threshold 
equal to 25-percent of historic July daily streamflow, when 
the average daily streamflow during the previous November, 
December, January, and February was 120 cubic feet per sec-
ond (ft3/s), may be read from the graph as follows: (1) Enter 
the explanatory variable axis (x-axis) at a value of approxi-
mately 120 ft3/s, then (2) move vertically to the blue regres-
sion line, and (3) proceed horizontally to the left vertical axis 
(y-axis), then (4) read the probability value on the left verti-
cal axis. This sequence of steps yields a probability value of 
approximately 0.26, as illustrated by the red and blue arrows 
in figure 4.

Similarly, the probability of exceeding a July daily 
streamflow threshold (labeled “Yes”) equal to 25-percent of 
historic July daily streamflow, when the average daily stream-
flow during the previous November, December, January, and 
February was 120 ft3/s, may be traced in like manner from the 
top of the graph-box downward and determined using simple 
subtraction, as follows: (1) Find the vertical above the blue 
regression line that corresponds to the vertical below the blue 
regression line associated with the explanatory variable (x) 
value of interest, in this case again, a value of approximately 
120 ft3/s, (2) move vertically downward from the top of the 
graph box to the blue regression line, and (3) proceed horizon-
tally to the left vertical axis, (4) read the probability value on 
the left vertical axis, and (5) subtract this value from the left 
vertical axis value of 1.00 at the top of the graph box. This 
sequence of steps yields a probability value of approximately 
1.00 minus 0.26, which equals 0.74, as illustrated by the green 
and blue arrows in figure 4. For each explanatory variable 
value on the x-axis, a “yes” probability value is equal to 1 minus 
a “no” probability value, and a “no” probability value is equal 
to 1 minus a “yes” probability value (see fig. 4).
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Yes

Figure 4. An example MLLR drought threshold probability plot showing the chances of exceeding,
and not exceeding, an historical July twenty-five percent daily streamflow threshold as a function
of the average of mean daily streamflow values from November, December, January, and February.
Reading the 0.26 non-exceedance probability (”No” -value) of an explanatory variable value (x-axis
value) of 120 cubic feet per second is demonstrated by red and blue arrows. Reading the 0.74 (1.00
minus 0.26) exceedance probability (”Yes” -value) an explanatory variable value (x-axis value)
120 cubic feet per second is demonstrated by orange and blue arrows. (Site number 02030000,
Hardware River at route 637 below Briery Creek (Run), near Scottsville, Virginia).
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Figure 4.  An example MLLR drought threshold probability plot showing the chances 
of exceeding, and not exceeding, an historical July 25-percent daily streamflow 
threshold as a function of the average of mean daily streamflow values from November, 
December, January, and February (N-D-J-F). Reading the 0.26 non-exceedance 
probability (“No”-value) of an explanatory variable value (x-axis value) of 120 ft3/s is 
demonstrated by red and blue arrows. Reading the 0.74 (1.00 minus 0.26) exceedance 
probability (“Yes”-value) of an explanatory variable value (x-axis value) of 120 ft3/s is 
demonstrated by green and blue arrows. (Site number 02030000, Hardware River at 
Route 637 below Briery Creek [Run], near Scottsville, Virginia).

Model Development

MLLR models were developed to describe the chance 
of a particular average streamflow exceeding or not exceed-
ing an identified drought streamflow threshold. A total of 
70,120 MLLR models were developed describing a range of 
streamflow probabilities for each of 339 streamgaging stations. 
Of these, 55,428 models had very low p-values, less than or 
equal to a p-value of 0.05, and were identified as candidates for 
publication. Of these, 46,704 models were based on streamflow 
data spanning a period of record of 10 years or more. These 
46,704 models for 259 basins were selected for publication in 
this report. Specifically, the models describe the chance of a 
particular average streamflow exceeding or not exceeding an 
identified streamflow threshold, as a function of streamflows 
from an earlier time period. The models answer the question: 
“What is the chance (likelihood) that a particular flow value 
will exceed a certain stream-flow threshold as a function of 
measured streamflows from an earlier time period?”

These logistic regression models fit nominal Y responses 
to a linear model of X terms. More specifically, the models fit 
probabilities for two response levels using a logistic function, 
as described in the previous section “Maximum Likelihood 
Logistic Regression.”

The fitting principal of maximum likelihood means that 
the variable coefficients (βs) are chosen to maximize the joint 
probability attributed by the model to the responses that did 
occur. This fitting principal essentially minimizes the negative 
log-likelihood (–LogLikelihood), as attributed by the model. 
Each model is fitted iteratively with negative log-likelihood 
values converging to the final estimates (SAS Institute, 2012). 
(See the section “Maximum Likelihood Logistic Regression.”) 

The probability of exceeding nominal monthly and daily 
streamflow threshold response values for July, August, and 
September is predicted using November, December, January, 
and February mean daily streamflow values as explanatory 
variables. These explanatory variables are used as surrogates 
for precipitation.
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The MLLR models describe the MLLR probability of 
“Yes” (P[Yes]), as shown in equation 2, and the maximum 
likelihood logistic regression probability of “No” (P[No]), as 
shown in equation 3. Drought streamflow threshold values for 
models of drought streamflow probabilities were identified 
using guidance from the Virginia DEQ and indicator stream-
flow values provided by the Virginia Drought Monitoring 
Task Force (http://www.deq.virginia.gov/Programs/Water/
WaterSupplyWaterQuantity/Drought/DroughtIndicators.aspx, 
accessed May 18, 2012).

The following drought streamflow threshold categories 
were used to test streamflow probabilities in MLLR models:

•	 the 5-percent streamflow quantile for the month, over 
the period of record;

•	 the 10-percent streamflow quantile for the month, over 
the period of record;

•	 the 25-percent streamflow quantile for the month, over 
the period of record; and

•	 the 50-percent streamflow quantile for the month, over 
the period of record.

The questions addressed using these drought flow thresh-
old categories are 

•	 What is the chance that streamflow exceeds the 
monthly 5-percent streamflow quantile?

•	 What is the chance that streamflow exceeds the 
monthly 10-percent streamflow quantile?

•	 What is the chance that streamflow exceeds the 
monthly 25-percent streamflow quantile? 

•	 What is the chance that streamflow exceeds the 
monthly 50-percent streamflow quantile?

Data were prepared and models developed to perform 
analyses. As many as 240 individual MLLR probability models 
were developed for each streamgaging station, represented 
using 120 probability plots each illustrating 2 probability 
models, (P[Yes] and P[No]). The group of MLLR models 
developed and tested for each streamgaging station may be 
visualized using three matrices. For each station a 12-element 
matrix may be identified containing response (y) variable 
choices (fig. 5A), and a 10-element matrix may be identified 
containing explanatory (x) variable choices (fig. 5B). A third 
matrix may also be identified containing the two potential 
model probability outcomes (P[Yes] and P[No]) (fig. 5C). 
Multiplying the 12 elements in the first matrix, the 10 elements 
in the second matrix, and the 2 elements in the third matrix 
yields 240 individual MLLR probability models for testing 
and evaluation per streamgaging station, a potential total of 
81,360 MLLR probability models for the 339 streamgaging 
stations. The 70,120 MLLR models were developed rather 
than 81,360 because data for some explanatory variables were 
unavailable in some instances.

For each station, the response (y) variable choices com-
bine three response variable months (July [J], August [A], 
and September [S]) with four distinct streamflow thresholds 
(the 5-, 10-, 25-, and 50-percent streamflow quantiles). The 
explanatory (x) variable choices combine two explanatory 
variable flow statistics, mean monthly streamflow (Flow), and 
daily value flow (DV) with four distinct explanatory variable 
months plus the average of these four as a fifth explanatory 
variable (November [N] mean streamflow, December [D] mean 
streamflow, January [J] mean streamflow, February [F] mean 
streamflow, and the average N, D, J, F mean streamflow). 
Individual probability models combine selected response and 
explanatory variables (fig. 5). Ten examples of individual 
probability model types are listed in figure 5.
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Figure 5. A diagram identifying MLLR probability models developed for evaluation and testing. For each streamgaging station up to
240 individual MLLR probability models were developed for a combination of 3 potential response variable months (matrix
(A) column labels), and 4 potential response drought flow quantile threshold categories (matrix (A) row labels), from 5 potential
explanatory variable months (matrix B row labels), 2 potential explanatory variable flow statistics (matrix B column labels), and 2
potential model probability outcomes (matrix C). Colors show the progression of several example variable selections listed at the
right of the figure.

Figure 5.  A diagram identifying MLLR probability models developed for evaluation and testing. For each streamgaging 
station, up to 240 individual MLLR probability models were developed for a combination of 3 potential response variable 
months (matrix A column labels), and 4 potential response drought streamflow quantile threshold categories (matrix A row 
labels), from 5 potential explanatory variable months (matrix B row labels), 2 potential explanatory variable streamflow 
statistics (matrix B column labels), and 2 potential model probability outcomes (matrix C ). Colors show the progression of 
several example variable selections listed at the right of the figure.

http://www.deq.virginia.gov/Programs/Water/WaterSupplyWaterQuantity/Drought/DroughtIndicators.aspx
http://www.deq.virginia.gov/Programs/Water/WaterSupplyWaterQuantity/Drought/DroughtIndicators.aspx
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Models were prepared using iterative methods in which 
the MLLR model fit converged to minimize the negative log-
likelihood of each probable outcome, P[Yes] and P[No], over 
the range of explanatory variable (x) values. Minimizing nega-
tive log-likelihood is equivalent to maximizing log-likelihood, 
yielding MLLR probabilities. Model results were compiled 
in a table organized by streamgaging station number, listing 
model parameters and equations, and in graphs, showing a 
logistic regression response in probability space of probable 
outcomes over the range of a selected explanatory variable. 
These tabulated and plotted results were then evaluated.

Model Verification and Diagnostics

Visual inspections of MLLR model response curves and 
evaluations of p-values associated with each MLLR model 
were used for model verification and diagnostics. Since a 
MLLR model describes a chance, or likelihood, of either of 
two possible outcomes, P[Yes] or P[No], relative to an explan-
atory variable (x-value), an error cannot be associated with the 
fitted model in the manner customarily used with regression 
models. An error term is not associated with a MLLR model 
because the predicted value (y-value) is not a response level 
as usually expected in a linear regression model, but rather a 
probability distribution of a response level. Thus, these MLLR 
models are correct even when the less likely of the two possi-
ble outcomes, P[Yes] or P[No], occurs (Sall and others, 2007).

A probability value (p-value) is associated with each 
MLLR model, indicating the strength of each probability dis-
tribution relative to the likelihood that the distribution could 
simply be a product of chance. Each p-value is determined 
by a Chi-Square test for the hypothesis that all regression 
parameters are zero. The Chi-Square is computed by calculat-
ing twice the difference in negative log-likelihoods (–2 Log L) 
between the fitted MLLR model and a reduced version of 
the fitted MLLR model that has no explanatory (x) variable 
parameters, only intercepts, and then the resulting p-value 
is evaluated. The resulting p-value gives the probability of 
obtaining a greater Chi-Square value by chance alone, if the fit 
of the specified model is no better than the fit of the reduced 
model that includes only intercepts. Low p-values indicate 
that there is very little likelihood that the probability distribu-
tion associated with the MLLR model could be produced by 
chance alone. Thus, low p-values indicate it is highly likely 
that the fitted curve explaining the probabilities expressed in 
the MLLR model is an accurate response to the explanatory 
variable in the model. Model equations were ranked by the 
probability of obtaining a greater Chi-Square value by chance 
alone (Prob>ChiSq, or p-value). Smaller p-values were con-
sidered better than larger p-values. Only models with very low 
p-values, those less than or equal to a p-value of 0.05, were 
identified as candidates for publication. Of these 55,428 mod-
els, only those based on streamflow data spanning a period of 
record of 10 years or more (46,704 models), were selected for 

publication in this report. This set of 46,704 models may be 
considered highly significant, with a high likelihood that the 
fitted model curve explains the probabilities expressed in the 
model and is an accurate response to the explanatory variable.

Visual inspection of each MLLR model response curve 
was used to identify the strength of the x–y relation and 
the predictive power of the x–y relation within each MLLR 
model. The strength of the x–y relation in each MLLR model 
was identified by comparing the shape of the response curve 
plotted for each model with the three categories of curve shape 
identified in figure 2. Each curve shape shown in figure 2 
illustrates a distinct degree of relation strength. Note that 
relation strength is not goodness of fit because probabilities 
are predicted and all equation fits are considered “good” at 
predicting the likelihood of each response outcome within the 
given probability distribution. Predictions of P[Yes] or P[No] 
response relative to an explanatory (x-axis) variable may be 
more definitive, however, and therefore potentially more use-
ful for decision making as a consequence of the shape of the 
MLLR response curve. When the fit strength of an x–y relation 
is weak, the absolute value of the slope parameter in the 
MLLR model is relatively small, producing a gentle slope of 
the MLLR line over the range of the explanatory data. When 
the fit strength of the x–y relation is strong, the absolute value 
of the slope parameter in the MLLR model is relatively large, 
producing a steeper slope of the MLLR line over the range of 
the explanatory data. When the fit strength of the x–y relation 
is approaching a “perfectly definitive fit,” the absolute value of 
the slope parameter in the MLLR model becomes quite large, 
approaching infinity as a segment of the curve approaches 
an orientation perpendicular to the x-axis of the graph, that 
is almost vertical. (See figure 2 and the section “Maximum 
Likelihood Logistic Regression” for additional illustration and 
discussion of the strength of the x–y relation.)

The predictive power of the x–y relation in each MLLR 
model was identified by comparing the position of the 
response curve plotted in probability space for each model 
with the three categories of curve position identified in figure 3. 
A curve that moves through all three zones of predictive power 
identified in figure 3 exhibits strong predictive power for prob-
abilities P[Yes] and P[No] and strong explanatory power asso-
ciated with the MLLR explanatory variable. A curve confined 
to the upper one-third or the lower one-third of an MLLR 
plot as identified in figure 3 also exhibits strong predictive 
power for probabilities P[Yes] and P[No] but weak explana-
tory power associated with the MLLR explanatory variable. 
A curve confined to the middle one-third of an MLLR plot 
exhibits weak predictive power for probabilities P[Yes] and 
P[No] and weak explanatory power associated with the MLLR 
explanatory variable. (See figure 3 and the section “Maximum 
Likelihood Logistic Regression” for additional illustration and 
discussion of the predictive power of the x–y relation.)
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Drought Streamflow Probability 
Estimates

A total of 70,120 MLLR models were developed, 
describing 70,120 drought streamflow probability estimates 
for 339 streamgaging stations. Of these, 55,428 models had 
an accompanying p-value statistic of 0.05 or less, indicating 
a highly statistically significant model of drought streamflow 
threshold probabilities. Of these, 46,704 models were based 
on streamflow data spanning a period of record of 10 years 
or more. These 46,704 highly significant models based on at 
least 10 years of streamflow data were selected for publica-
tion (table 1). Each of these models describes the chance of 
a particular daily-value streamflow or mean-monthly stream-
flow exceeding or not exceeding a 5-, 10-, 25-, or 50-percent 
streamflow quantile threshold for July, August, or Septem-
ber, as a function of mean streamflow from the previous 
November, December, January, or February, or the average 
of the previous November-December-January-February 
mean streamflows. The models were prepared using iterative 
methods in which the MLLR model fit converged to minimize 
the negative log-likelihood of each probable outcome, P[Yes] 
and P[No], over the range of explanatory variable (x) values. 
Because minimizing negative log-likelihood is equivalent to 
maximizing log-likelihood, this yields MLLR probabilities. 

Drought streamflow probability estimates are compiled 
in a table organized by streamgaging station number, listing 
model parameters and equations, and in graphs, for each 
model showing a logistic regression response in probability 
space of probable outcomes over the range of an explana-
tory variable. These tabulated drought streamflow probability 
model parameters and equations are listed in table 1. A list of 
the minimum and maximum values of each explanatory (x) 
variable, identifying the range of x-variable values over which 
drought streamflow threshold probabilities are estimated for 
Virginia streams, is presented in table 2.

Selection of an Equation
As several models are available for each response vari-

able (y) at each streamgaging station for predicting the chance 
of July, August, or September streamflow exceeding or not 
exceeding a particular drought streamflow threshold as a 
function of November, December, January, or February mean 
daily-flow values, questions may arise as to which model 
is best or which equation to choose. An analyst potentially 
interested in using the models may wonder “How do I choose 
the best equation?” In this section, guidance is provided for 
selecting an appropriate equation.

The choice of most appropriate equation is often indi-
cated by a mix of at least five factors: (1) the availability of an 
explanatory (x) variable value to use in the equation; (2) the 

time-frame within which the prediction will be useful; (3) the 
degree of accuracy and reliability associated with the selected 
explanatory variable measurement; (4) the strength of the x–y 
relation in the MLLR accompanying each equation choice, 
as described in the section “Maximum Likelihood Logistic 
Regression;” and (5) the predictive power of the MLLR curve 
corresponding to each equation choice, also described in the 
section “Maximum Likelihood Logistic Regression.”

Reliable and accessible explanatory (x) variable values 
are essential and may narrow the field of equation choices. 
If reliable explanatory variable values are available for only 
one particular month of the year, say for example February, 
then equations that use only February as their explanatory (x) 
variable become the viable alternatives. Potential explanatory 
variable data need to be carefully evaluated, ensuring 
that measurements have been made accurately and using 
accepted methods.

The time frame within which the estimate will be useful 
may dictate viable equation options. For a given management 
decision, an analyst may need to predict drought streamflow 
probabilities within a particular interval of time. For example, 
if management policies direct adjustments to July stream-
flow withdrawals in order to avoid July drought streamflow 
conditions and at least 5 months are required to implement 
the adjustments, then equations that use explanatory vari-
able values for March are best avoided because these values, 
although potentially accurate, provide predictions 4 months 
in advance of July streamflows when a minimum 5-month 
window is needed to successfully make the streamflow adjust-
ments dictated by management policy. In contrast, if the time 
window for successful implementation of a particular drought 
management policy is relatively short, perhaps 2 months rather 
than 5 months, then the decision calculation may change. For 
example, if one set of equations using February values as the 
explanatory variable is available and a second set of equations 
using March values as the explanatory variable is available, 
and both equation sets have comparable x–y relation strength 
and predictive power, then equations that use March values 
as the explanatory variable may be preferred as these provide 
predicted drought streamflow probabilities using the most 
recently acquired data as explanatory variable values, while 
still providing a time-window sufficient to successfully imple-
ment the streamflow adjustment management policy.

The degree of accuracy and reliability of an explanatory 
variable, relative to other explanatory variable choices may 
point to an appropriate equation choice. A certain explanatory 
variable streamflow statistic may be more accurate or reliable 
than another. For example, if a streamgaging station has 
few daily value data available for November and many data 
accurately measured and collected during January or February, 
then streamflow values from January or February may prove 
to be more accurate and reliable explanatory variables than 
those for November. Graphs of each MLLR model, plotting 
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the fitted MLLR line, can be compared to identify explanatory 
variables determined using more complete data coverage. 

The strength of the x-y relation in the MLLR associated 
with a potential equation contributes to the usefulness of the 
MLLR equation as an estimator. As described in the section 
“Maximum Likelihood Logistic Regression,” the strength 
of the x-y relation in each MLLR model may be identified 
by comparing the shape of the response curve plotted for 
each model with the three categories of curve shape shown 
in figure 2. Each curve shape shown in figure 2 illustrates a 
distinct degree of x–y relation strength. Predictions of P[Yes] 
or P[No] response relative to an explanatory variable may be 
more definitive or less definitive and, therefore, potentially 
more or less useful for management decision making as a 
consequence of the shape of the MLLR response curve. When 
the fit strength of an x–y relation is weak, the MLLR line has a 
relatively gentle slope over the range of the explanatory data, 
as shown in figure 2A. When the fit strength of the x-y rela-
tion is strong,  the MLLR line has a varying yet consistently 
relatively steep slope over the range of the explanatory data, 
expressing a more pronounced sigmoidal (s-shaped) curve, as 
shown in figure 2B. When the fit strength of the x-y relation is 
very strong, approaching a perfectly definitive fit, the absolute 
value of the slope of the MLLR line becomes quite large, often 
approaching infinity in a segment of the curve with a near-
perpendicular orientation relative to the x-axis of the graph 
(almost vertical), as shown in figure 2C. Equations exhibiting 
highly definitive curve shapes are best chosen over equations 
exhibiting weak curve shapes.

The predictive power of the MLLR curve, correspond-
ing to each equation choice can also help determine useful-
ness as a predictor. As described in the section “Maximum 
Likelihood Logistic Regression,” the predictive power of each 
MLLR model may be identified by comparing the position of 
the response curve plotted in probability space for each model 
with the three categories of curve position identified in figure 3. 
Equations with accompanying model graphs displaying  
MLLR curves that move through all three zones of predictive 
power (fig. 3) exhibit strong predictive power with strong and 
highly definitive curve shapes. Equations and curves of this 
type are preferred over equations and curves exhibiting weak  
predictive power and weak curve shape. In practice, a combi-
nation of the three zones of predictive power plus curve shape 
and the relative importance of each, as determined by the 
analyst, will identify the most appropriate equation for useful  
predictions of drought streamflow probability in each  
particular circumstance.

Application of the Equations 
with Examples

MLLR equations are provided that predict the chance of 
exceeding or not exceeding one of a set of identified drought 
streamflow thresholds during the historically dry months of 
the year—July, August, and September—as a function of mean 
streamflow values from the previous historically wet months 
of the year—November, December, January, and February. 
Because equations are provided for each of the two probability 
categories associated with each response variable, these cal-
culations are easy to make and easy to interpret. For a given 
streamgaging station, an equation may be chosen from table 1 
that addresses the probability of exceeding a streamflow 
threshold value of interest P[Yes] or not exceeding a stream-
flow threshold value of interest P[No] on the basis of a mean 
monthly streamflow value for one of the preceding explana-
tory variable months of November, December, January, or 
February or the averaged mean monthly streamflow of these 
four months.

The following four example exercises provide step-by-
step guidance for how to perform these calculations using 
the equations supplied in this report to predict the probability 
of exceeding or not exceeding a streamflow threshold. Each 
example exercise shows how to apply equations to calculate 
the probability of exceeding a drought streamflow threshold, 
P[Yes], and how to apply equations to calculate the probability 
of not exceeding a drought streamflow threshold, P[No]. The 
example exercises describe these calculations for each of the 
four response drought streamflow quantile thresholds identi-
fied in figure 5A and 4 of the 5 explanatory variable months 
identified in figure 5B.

Example 1. Predicting the probability of 
exceeding a 5-percent July drought streamflow 
quantile threshold as a function of mean monthly 
streamflow from the previous December

Problem:	 At the start of the new year, you need to 
predict July drought streamflow probabilities 
for Stave Run, a stream in the Potomac River 
Basin near Reston, Virginia, in order to man-
age water withdrawals and avoid severe low 
flows. 

Question:	 What is the chance that July streamflow will 
exceed the monthly 5-percent streamflow 
quantile if the average December daily stream-
flow is 0.02 ft3/s?

Given:	 Mean monthly streamflow from the 
previous December.
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Solution:	 A streamgage identified as USGS 01644291 is 
on this stream below Parking Lot Road, near 
Reston, Virginia.

Step 1:	 In table 1, find station 01644291.

Step 2:	 Find the streamflow threshold criteria listed 	
in table 1 that corresponds to this station num-
ber and the information given. In this 	case the 
flow threshold criteria in table 1 is listed as DV 
> Quantile 5% July DV POR By December 
Mean DV.

Step 3:	 Read Equation: Probability of “Yes” from 
table 1 corresponding to this station number 
and flow threshold criteria. In this instance, it 
is 
P[Yes] = 1/(1 + e(0.46159633 + –11.06522•X)) .

Step 4:	 Read Equation: Probability of “No” from 
table 1 corresponding to this station number 
and flow threshold criteria. In this instance, it 
is 
P[No] = 1/(1 + e–(0.46159633 + –11.06522•X)) .

Step 5:	 Calculate the probability P[Yes] that July 
streamflow will exceed the monthly 5-percent 
streamflow quantile if the average December 
daily streamflow is 0.02 ft3/s by substituting 
0.02 for the X variable in the equation and then 
simplifying as follows:  
P[Yes]0.02 = 1/(1 + e(0.46159633 + –11.06522•X))  
P[Yes]0.02 = 1/(1 + e(0.46159633 + –11.06522•0.02))
P[Yes]0.02 = 1/(1 + e(0.46159633 + –0.22130)) 
P[Yes]0.02 = 1/(1 + e0.24029) 
P[Yes]0.02 = 1/(1 + 1.27162)
P[Yes]0.02=1/2.27162 
P[Yes]0.02 = 0.44

Step 6:	 Calculate the probability P[No] that July 
streamflow will not exceed the monthly 
5-percent streamflow quantile if the average 
December daily streamflow is 0.02 ft3/s by sub-
stituting 0.02 for the X variable in the equation 
and then simplifying as follows:  
P[No]0.02 = 1/(1 + e–(0.46159633 + –11.06522•X)) 
P[No]0.02 = 1/(1 + e–(0.46159633 + –11.06522•0.02)) 
P[No]0.02 = 1/(1 + e–(0.46159633 + –0.22130)) 
P[No]0.02 = 1/(1 + e–0.24029) 
P[No]0.02 = 1/(1 + 0.78640) 
P[No]0.02 = 1/1.78640 
P[No]0.02 = 0.56

Answer:	 P[Yes]: There is a 0.44 (44-percent) chance 
that July streamflow will exceed the monthly 
5-percent streamflow quantile if average 

December daily streamflow is 0.02 ft3/s. 
P[No]: There is a 0.56 (56-percent) chance that 
July streamflow will not exceed the monthly 
5-percent streamflow quantile if average 
December daily streamflow is 0.02 ft3/s.

A plot of the MLLR line for the Potomac River Basin site 
number 01644291 confirms these values as shown in figure 6.

Example 2. Predicting the probability of 
exceeding a 10-percent August drought 
streamflow quantile threshold as a function of 
mean monthly streamflow from the previous 
January

Problem:	 You need to predict August drought streamflow 
probabilities for the South Fork of the Roa-
noke River in the Roanoke River Basin near 
Shawsville, Virginia, in order to determine the 
feasibility of potential large-scale water with-
drawals requested by a new business.

Question:	 What is the chance that August streamflow 
will exceed the monthly 10-percent streamflow 
quantile if the average January daily stream-
flow is 20 ft3/s?

Given:	 Mean monthly streamflow from the previous 
January.

Solution:	 A streamgage identified as USGS 02053800 
is on the South Fork of the Roanoke River at 
Route 637 near Shawsville, Virginia.

Step 1:	 In table 1, find station number 02053800.

Step 2:	 Find the streamflow threshold criteria listed in 
table 1 that corresponds to this station number 
and the information given. In this case the flow 
threshold criteria in table 1 is listed as “DV 
> Quantile 10% August DV POR By January 
Mean DV.”

Step 3:	 Read Equation: Probability of “Yes” from table 1 
corresponding to this station number and flow 
threshold criteria. In this instance, it is 

	 P[Yes] = 1/(1 + e(0.09725373 + –0.0223555•X)) .

Step 4:	 Read Equation: Probability of “No” from table 1 
corresponding to this station number and flow 
threshold criteria. In this instance, it is 
P[No] = 1/(1 + e–(0.09725373 + –0.0223555•X)) .

Step 5:	 Calculate the probability P[Yes] that August 
streamflow will exceed the monthly 10-percent 
streamflow quantile if the average January 
daily streamflow is 20 ft3/s by substituting 20 



Application of the Equations with Examples    13

No

Yes

Figure 6. A MLLR drought threshold probability plot showing the chances of exceeding,
and not exceeding, an historical July five percent daily streamflow threshold as a function
of mean daily streamflow values from December. Red and blue arrows illustrate reading a
P [no] = 0.56 response with an explanatory variable value of 0.02 cubic feet per second.
Orange and blue arrows illustrate reading a P [yes] = 0.44 response with an explanatory
variable value of 0.02 cubic feet per second. (site number 01644291, Stave Run below
Parking Lot Road, near Reston, Virginia). 
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Figure 6. A MLLR drought threshold probability plot showing the chances of exceeding, and not 
exceeding, an historical July 5-percent daily streamflow threshold as a function of mean daily streamflow 
values from December. Red and blue arrows illustrate reading a P[No] = 0.56 response with an 
explanatory variable value of 0.02 ft3/s. Green and blue arrows illustrate reading a P[Yes] = 0.44  
response with an explanatory variable value of 0.02 ft3/s. (Site number 01644291, Stave Run Below  
Parking Lot Road, near Reston, Virginia.)

	 for the X variable in the equation and then 
simplifying as follows: 
P[Yes]20 = 1/(1 + e(0.09725373 + –0.0223555•X))  
P[Yes]20 = 1/(1 + e(0.09725373 + –0.0223555•20)) 
P[Yes]20 = 1/(1 + e(0.09725373 + –0.44711)) 
P[Yes]20 = 1/(1 + e–0.34986) 
P[Yes]20 = 1/(1 + 0.70479) 
P[Yes]20 = 1/1.70479 
P[Yes]20 = 0.59

Step 6:	 Calculate the probability P[No] that August 
streamflow will not exceed the monthly 
10-percent streamflow quantile if the average 
January daily streamflow is 20 ft3/s by substi-
tuting 20 for the X variable in the equation and 
then simplifying as follows: 

P[No]20 = 1/(1 + e–(0.09725373 + –0.0223555•X))  
P[No]20 = 1/(1 + e–(0.09725373 + –0.0223555•20)) 
P[No]20 = 1/(1 + e–(0. 09725373 + –0.44711)) 
P[No]20 = 1/(1 + e0.34986)P[No]20 = 1/(1 + 1.41886)
P[No]20 = 1/2.41886 
P[No]20 = 0.41

Answer:	 P[Yes]: There is a 0.59 (59-percent) chance 
that August streamflow will exceed the 
monthly 10-percent streamflow quantile if aver-
age January daily streamflow is 20 ft3/s. 
P[No]: There is a 0.41 (41-percent) chance that 
August streamflow will not exceed the monthly 
10-percent streamflow quantile if average 
January daily streamflow is 20 ft3/s.

A plot of the MLLR line for the Roanoke River Basin site 
number 02053800 confirms these values, as shown in figure 7.
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Figure 7. A MLLR drought threshold probability plot showing the chances of exceeding, and
not exceeding, an historical August ten percent daily streamflow threshold as a function
of mean daily streamflow values from January. Red and blue arrows illustrate reading a
P[No] = 0.41 response with an explanatory variable value of 20 cubic feet per second
Orange and blue arrows illustrate reading a P[Yes] = 0.59 response with an explanatory variable
value of 20 cubic feet per second.(Site number 02053800, South Fork Roanoke River at route 637
near Shawsville, Virginia).
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Figure 7.  A MLLR drought threshold probability plot showing the chances of exceeding, 
and not exceeding, an historical August 10-percent daily streamflow threshold as a 
function of mean daily streamflow values from January. Red and blue arrows illustrate 
reading a P[No] = 0.41 response with an explanatory variable value of 20 ft3/s. Green 
and blue arrows illustrate reading a P[Yes] = 0.59 response with an explanatory variable 
value of 20 ft3/s. (Site number 02053800, South Fork Roanoke River at Route 637 near 
Shawsville, Virginia.)

Example 3. Predicting the probability of 
exceeding a 25-percent September drought 
streamflow quantile threshold as a function 
of mean monthly streamflow from the 
previous February

Problem:	 You have noticed over the past 5 years that 
intervals of drought during the month of 
September have become more frequent and 
of longer duration than they seemed to be 
previously. You have good streamflow data 
from February and need to predict September 
drought streamflow probabilities for the North 
Mayo River in the Roanoke River Basin near 
Spencer, Virginia, in order to anticipate condi-
tions that may warrant implementing voluntary 
water-use reduction programs or mandatory 
water-rationing policies during occasions of 
severe drought.

Question:	 What is the change in the probability that 
September streamflow will exceed the monthly 
25-percent streamflow quantile if the average 
February daily streamflow drops from 200 ft3/s 
to 40 ft3/s?

Given:	 Mean monthly streamflow from the previous 
February.

Solution: 	 A streamgage identified as USGS 02070000 
is on the North Mayo River below Route 629, 
near Spencer, Virginia.

Step 1: 	 In table 1, find station number 02070000.

Step 2: 	 Find the streamflow threshold criteria listed in 
table 1 that corresponds to this station number 
and the information given. In this case the 
flow threshold criteria in table 1 is listed as 
DV > Quantile 25% September DV POR By 
February Mean DV.
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Step 3:	 Read Equation: Probability of “Yes” from table 1 
corresponding to this station number and flow 
threshold criteria. In this instance, it is 

	 P[Yes] = 1/(1 + e(1.4162127 + -0.0184251•X)).

Step 4:	 Read Equation: Probability of “No” from table 1 
corresponding to this station number and flow 
threshold criteria. In this instance, it is

	 P[No] = 1/(1 + e-(1.4162127 + -0.0184251•X)).

Step 5:	 Calculate the change in probability P[Yes] 
that September streamflow will exceed the 
monthly 25-percent streamflow quantile if the 
average February daily streamflow drops from 
200 ft3/s to 40 ft3/s by first substituting 200 for 
the X variable in the equation, then simplify 
the equation. Then, for comparison, solve the 
equation again this time substituting 40 for the 
X variable in the equation, and simplifying as 
follows:

	 Solve the first P[Yes] equation:

	 P[Yes]200 = 1/(1 + e(1.4162127 + –0.0184251•X))  
P[Yes]200 = 1/(1 + e(1.4162127 + –0.0184251•200)) 
P[Yes]200 = 1/(1 + e(1.4162127 + –3.68502)) 
P[Yes]200 = 1/(1 + e–2.26881) 
P[Yes]200 = 1/(1 + 0.10344) 
P[Yes]200 = 1/1.10344 
P[Yes]200 = 0.91

	 Solve the comparative P[Yes] equation:

	 P[Yes]40 = 1/(1 + e(1.4162127 + –0.0184251•X))  
P[Yes]40 = 1/(1 + e(1.4162127 + –0.0184251•40)) 
P[Yes]40 = 1/(1 + e(1.4162127 + –0.73700)) 
P[Yes]40 = 1/(1 + e0.67921) 
P[Yes]40 = 1/(1 + 1.97232) 
P[Yes]40 = 1/2.97232 
P[Yes]40 = 0.34

Step 6:	 Calculate the change in probability P[No] 
that September streamflow will not exceed 
the monthly 25-percent streamflow quantile if 
the  daily streamflow drops from 200 ft3/s to 
40 ft3/s by substituting 200 for the X variable 
in the equation, then simplify the equation. For 
comparison, solve the equation again, this time 
substituting 40 for the X variable in the equa-
tion, and simplify as follows:

	 Solve the first P[No] equation:

	 P[No]200 = 1/(1 + e-(1.4162127 + -0.0184251•X))  
P[No]200 = 1/(1 + e-(1.4162127 + -0.0184251•200)) 
P[No]200 = 1/(1 + e-(1.4162127 + -3.68502)) 
P[No]200 = 1/(1 + e2.26881) 
P[No]200 = 1/(1 + 9.66786) 
P[No]200 = 1/10.66786 
P[No]200 = 0.09

	 Solve the comparative P[No] equation:

	 P[No]40 = 1/(1 + e-(1.4162127 + -0.0184251•X))  
P[No]40 = 1/(1 + e-(1.4162127 + -0.0184251•40)) 
P[No]40 = 1/(1 + e-(1.4162127 + -0.73700)) 
P[No]40 = 1/(1 + e-0.67921) 
P[No]40 = 1/(1 + 0.50702) 
P[No]40 = 1/1.50702P[No]40 = 0.66

Answer: 	 P[Yes]200: There is a 0.91 (91-percent) chance 
that September streamflow will exceed the 
monthly 25-percent streamflow quantile if 
average February daily streamflow is 200 ft3/s. 
P[No]200: There is a 0.09 (9-percent) chance 
that September streamflow will not exceed 
the monthly 25-percent streamflow quantile if 
average February daily streamflow is 200 ft3/s. 

P[Yes]40: There is a 0.34 (34-percent) chance 
that September streamflow will exceed the 
monthly 25-percent streamflow quantile if 
average February daily streamflow is 40 ft3/s. 
P[No]40: There is a 0.66 (66-percent) chance 
that September streamflow will not exceed 
the monthly 25-percent streamflow quantile if 
average February daily streamflow is 40 ft3/s.
The probability that September streamflow 
will exceed the monthly 25-percent stream-
flow quantile if the average February daily 
streamflow drops from 200 ft3/s to 40 ft3/s is 
reduced from P[Yes]200 = 0.91 to P[Yes]40 = 0.34, 
a decrease of 0.57 (57 percentage points). 

The probability that September streamflow will 
not exceed the monthly 25-percent streamflow 
quantile if the average February daily stream-
flow drops from 200 ft3/s to 40 ft3/s is increased 
from P[No]200 = 0.09 to P[No]40 = 0.66, an 
increase of 0.57 (57 percentage points).

	 A plot of the MLLR line for the Roanoke River 
Basin site number 02070000 confirms these 
values, as shown in figure 8.
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Figure 8. A MLLR drought threshold probability plot showing the chances of exceeding, and
not exceeding, an historical September 25 percent daily streamflow threshold as a function
of mean daily streamflow values from February. Red and blue arrows illustrate reading a
P[No]200 = 0.09 response with an explanatory variable value of 200 cubic feet per second and
a P[No]40 = 0.66 response with an explanatory variable value of 40 cubic feet per second.
Orange and blue arrows illustrate reading a P[Yes]200 = 0.91 response with an explanatory variable
value of 200 cubic feet per second and a P[Yes]40 = 0.34 response with an explanatory variable
value of 40 cubic feet per second.(Site number 0207000, North Mayo River below route 629
near Spencer, Virginia).
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Figure 8.  A MLLR drought threshold probability plot showing the chances of 
exceeding, and not exceeding, an historical September 25-percent daily streamflow 
threshold as a function of mean daily streamflow values from February. Red and blue 
arrows illustrate reading a P[No]200 = 0.09 response with an explanatory variable value 
of 200 ft3/s, and a P[No]40 = 0.66 response with an explanatory variable value of 40 ft3/s. 
Green and blue arrows illustrate reading a P[Yes]200 = 0.91 response with an explanatory 
variable value of 200 ft3/s, and a P[Yes]40 = 0.34 response with an explanatory variable 
value of 40 ft3/s. (Site number 02070000, North Mayo River below Route 629 near 
Spencer, Virginia.)

Example 4. Predicting the probability 
of exceeding a 50-percent July drought 
streamflow quantile threshold as a function of 
averaged mean monthly streamflow from the 
previous November, December, January, and 
February

Problem: 	 A land-use re-classification (development) is 
proposed that may increase the demand for 
potable water. July river flow is frequently the 
lowest flow of the year in your district. County 
supervisors have scheduled a vote on the land-
use re-classification in 2 weeks time. You need 
to predict July drought streamflow probabilities 
for the Robinson River in the Rappahannock 
River Basin in order to determine whether 
water flows are sufficient to sustain the water 
demands of the proposed development.

Question 1: 	 What is the chance that July streamflow will 
exceed the monthly 50-percent streamflow 
quantile if the average of November, Decem-
ber, January, and February daily streamflow is 
maintained at 500 ft3/s?

Question 2: 	 What is the chance that July streamflow will 
exceed the monthly 50-percent streamflow 
quantile if the average of November, Decem-
ber, January, and February daily streamflow is 
reduced to 120 ft3/s?

Given: 	 The average of mean monthly streamflow from 
the previous November, December, January, 
and February.

Solution: 	 A streamgage identified as USGS 01666500 
is on the Robinson River at Route 614 near 
Locust Dale, Virginia.

Step 1: 	 In table 1, find station number 01666500.
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Step 2: 	 Find the streamflow threshold criteria listed in 
table 1 that corresponds to this station number 
and the information given. In this case, the 
flow threshold criteria in table 1 is listed as 
DV > Quantile 50% July DV POR By Average 
N-D-J-F Mean DV.

Step 3:	 Read Equation: Probability of “Yes” from table 1 
corresponding to this station number and flow 
threshold criteria. In this instance, it is 

	 P[Yes] = 1/(1 + e(2.12923861 + -0.0085836•X)).

Step 4:	 Read Equation: Probability of “No” from table 1 
corresponding to this station number and flow 
threshold criteria. In this instance, it is

	 P[No] = 1/(1 + e-(2.12923861 + -0.0085836•X)).

Step 5:	 Calculate the probability P[Yes] that July 
streamflow will exceed the monthly 50-percent 
streamflow quantile if the average November, 
December, January, and February daily stream-
flow is maintained at 500 ft3/s by substituting 
500 for the X variable in the equation and then 
simplifying as follows: 

	 P[Yes]500 = 1/(1 + e(2.12923861 + -0.0085836•X))  
P[Yes]500 = 1/(1 + e(2.12923861 + -0.0085836•500))
P[Yes]500 = 1/(1 + e(2.12923861 + -4.2918)) 
P[Yes]500 = 1/(1 + e-2.16256) 
P[Yes]500 = 1/(1 + 0.11503) 
P[Yes]500 = 1/ 1.11503 
P[Yes]500 = 0.90

Step 6:	 Calculate the probability P[No] that July 
streamflow will not exceed the monthly 
50-percent streamflow quantile if the average 
November, December, January, and February 
daily streamflow is maintained at 500 ft3/s by 
substituting 500 for the X variable in the equa-
tion and then simplifying as follows:

	 P[No]500 = 1/(1 + e-(2.12923861 + -0.0085836•X))  
P[No]500 = 1/(1 + e-(2.12923861 + -0.0085836•500)) 
P[No]500 = 1/(1 + e-(2.12923861 + -4.2918)) 
P[No]500 = 1/(1 + e2.16256) 
P[No]500 = 1/(1 + 8.69338) 
P[No]500 = 1/ 9.69338 
P[No]500= 0.10

Answer: 	 P[Yes]500: There is a 0.90 (90-percent) chance 
that July streamflow will exceed the monthly 
50-percent streamflow quantile if the average 
November, December, January, and February 
daily streamflow is maintained at 500 ft3/s.

	 P[No]500: There is a 0.10 (10-percent) chance 
that July streamflow will not exceed the 
monthly 50-percent streamflow quantile if the 
average November, December, January, and 
February daily streamflow is maintained at 
500 ft3/s.

Step 7:	 Calculate the probability P[Yes] that July 
streamflow will exceed the monthly 50-percent 
streamflow quantile if the average November, 
December, January, and February daily stream-
flow is reduced to 120 ft3/s by substituting 120 
for the X variable in the equation and then 
simplifying as follows: 

	 P[Yes]120 = 1/(1 + e(2.12923861 + -0.0085836•X))  
P[Yes]120 = 1/(1 + e(2.12923861 + -0.0085836•120))
P[Yes]120 = 1/(1 + e(2.12923861 + -1.030032)) 
P[Yes]120 = 1/(1 + e1.09921) 
P[Yes]120 = 1/(1 + 3.00178) 
P[Yes]120 = 1/4.00178 
P[Yes]120 = 0.25

Step 8:	 Calculate the probability P[No] that July 
streamflow will not exceed the monthly 
50-percent streamflow quantile if the average 
November, December, January, and February 
daily streamflow is reduced to 120 ft3/s by sub-
stituting 120 for the X variable in the equation 
and then simplifying as follows: 

	 P[No]120 = 1/(1 + e-(2.12923861 + -0.0085836•X))  
P[No]120 = 1/(1 + e-(2.12923861 + -0.0085836•120)) 
P[No]120 = 1/(1 + e-(2.12923861 + -1.030032)) 
P[No]120 = 1/(1 + e-1.09921) 
P[No]120 = 1/(1 + 0.33314) 
P[No]120 = 1/1.33314 
P[No]120 = 0.75

Answer: 	 P[Yes]120: There is a 0.25 (25-percent) chance 
that July streamflow will exceed the monthly 
50-percent streamflow quantile if the average 
November, December, January, and February 
daily streamflow is reduced to 120 ft3/s.

	 P[No]120: There is a 0.75 (75-percent) chance 
that July streamflow will not exceed the 
monthly 50-percent streamflow quantile if 
the average November, December, January, 
and February daily streamflow is reduced to 
120 ft3/s.

	 A plot of the MLLR line for the Rappahannock 
River Basin site number 01666500 confirms 
these values, as shown in figure 9.
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Figure 9. An example MLLR drought threshold probability plot showing the chances of exceeding,
and not exceeding, an historical July fifty percent daily streamflow threshold as a function
of the average of mean daily streamflow values from November, December, January, and February.
Red and blue arrows illustrate reading a P[No]500 = 0.10 response with an explanatory variable value
of 500 cubic feet per second and a P[No]120 = 0.75 response with an explanatory variable value of 
120 cubic feet per second. Orange and blue arrows illustrate reading a P[Yes]500 = 0.90 response with
an explanatory variable value of 500 cubic feet per second and a P[Yes]120 = 0.25 response with an
explanatory variable value of 120 cubic feet per second. (Site number 01666500, Robinson (Robertson)
River below route 614 near Locust Dale, Virginia).
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Figure 9.  A MLLR drought threshold probability plot showing the chances of exceeding, 
and not exceeding, an historical July 50-percent daily streamflow threshold as a 
function of the average of mean daily streamflow values from November, December, 
January, and February (N-D-J-F). Red and blue arrows illustrate reading a P[No]500 = 0.10 
response with an explanatory variable value of 500 ft3/s, and a P[No]120 = 0.75 response 
with an explanatory variable value of 120 ft3/s. Green and blue arrows illustrate 
reading a P[Yes]500 = 0.90 response with an explanatory variable value of 500 ft3/s, and 
a P[Yes]120 = 0.25 response with an explanatory variable value of 120 ft3/s. (Site number 
01666500, Robinson (Robertson) River at Route 614 near Locust Dale, Virginia.)

Summary

Anticipating drought conditions in Virginia streams is 
essential to sound management of the water resources and 
associated riparian and watershed ecosystems. Reliable esti-
mates of the likelihood that stream low flows during drought-
prone months will exceed specific low-flow thresholds can 
provide advance warning of drought conditions, allowing 
extended lead times for improved drought awareness and 
effective management response. This report, a product of a 
cooperative partnership between the Virginia Department 
of Environmental Quality (DEQ) and the U.S. Geological 
Survey, describes empirically determined maximum likeli-
hood logistic regression (MLLR) equations that predict 

drought streamflow probabilities for Virginia streams. Winter 
streamflows are used to estimate the likelihood of probable 
streamflows during drought-prone summer months. Prob-
abilities of streamflows exceeding specific drought streamflow 
thresholds are characterized in a set of 70,120 MLLR equa-
tions for 339 basins in Virginia. A 46,704-member subset of 
these equations is published in this report for 259 Virginia 
basins, each with an accompanying p-value statistic that is less 
than or equal to 0.05 and is based on streamflow data spanning 
a minimum 10-year (maximum 112-year) period of record. 
More than 5.12 million streamflow daily values, collected over 
the period of record, were compiled and used in the analysis. 
Example calculations are provided demonstrating how to use 
the equations to estimate probable streamflows up to 8 months 
in advance.
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