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Atmospheric Mining in the Outer Solar System: 
Resource Capturing, Exploration, and Exploitation 

 
Bryan Palaszewski 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

Summary 
Atmospheric mining in the outer solar system (AMOSS) has been investigated as a means of fuel 

production for high-energy propulsion and power. Fusion fuels such as helium 3 (3He) and hydrogen can be 
wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy 
production. 3He and hydrogen (deuterium, etc.) were the primary gases of interest, with hydrogen being the 
primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of 
analyses were undertaken to investigate resource capturing aspects of AMOSS. These analyses included the 
gas capturing rate, storage options, and different methods of direct use of the captured gases. Additional 
supporting analyses were conducted to illuminate vehicle sizing and orbital transportation issues. While 
capturing 3He, large amounts of hydrogen and helium 4 (4He) are produced. With these two additional 
gases, the potential exists for fueling small and large fleets of additional exploration and exploitation 
vehicles. Additional aerospacecraft or other aerial vehicles (UAVs, balloons, rockets, etc.) could fly through 
the outer-planet atmosphere to investigate cloud formation dynamics, global weather, localized storms or 
other disturbances, wind speeds, the poles, and so forth. Deep-diving aircraft (built with the strength to 
withstand many atmospheres of pressure) powered by the excess hydrogen or 4He may be designed to probe 
the higher density regions of the gas giants. 

Nomenclature 
3He  helium 3 
4He  helium (or helium 4) 
AMOSS atmospheric mining in the outer solar system 
delta-V  change in velocity (km/s) 
GPS Global Positioning System 
ISRU  In-Situ Resource Utilization 
Isp  specific impulse (s) 
Mp propellant mass 
MT  metric tons 
NTP  nuclear thermal propulsion 
NTR  nuclear thermal rocket 
UAV  unmanned aerial vehicle 

Atmospheric Mining in the Outer Solar System 
Atmospheric mining of the outer solar system (AMOSS) is one of the options for creating nuclear 

fuels, such as 3He, for future fusion-powered exploration vehicles or powering reactors for Earth’s 
planetary energy. Uranus’s and Neptune’s atmospheres would be the primary mining sites, and robotic 
vehicles would wrest these gases from the hydrogen-helium gases of those planets. Preliminary estimates 
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of the masses of the mining vehicles have been created (Refs. 1 to 8), and additional supporting vehicles 
may enhance the mining scenarios (Refs. 9 to 20). Storing the mined gases at automated bases on outer-
planet moons was conceived to ease the storage requirements on interplanetary transfer vehicles (that 
would return the cryogenic gases to Earth or deliver them to other destinations). 

Resource Capturing Studies 

Studies of the gas capture rate and its influence on mining time in the atmosphere were conducted. 
Aerospacecraft cruisers have been identified as a “best” solution for atmospheric mining (Refs. 1 to 8). To 
power these vehicles, atmospheric hydrogen gas would be liquefied and used as a rocket propellant for 
the ascent to orbit. A nuclear gas-core rocket is a likely candidate for the cruiser (Figure 1, Refs. 17 to 
20). Gaseous or liquid hydrogen would be used to power the engines during atmospheric mining 
operations. Helium 3 (3He) would be separated from the atmospheric hydrogen, and helium (helium 4, 
4He) would be captured, liquefied, and stored as a payload that would be returned to orbit. Table I and 
Figure 2 provide the amount of 3He in the outer-planet atmospheres (Ref. 1). Figure 3 and Figure 4 show 
the mining time versus the capture rate for Uranus and Neptune, respectively (Ref. 1). A 500-kg payload 
of 3He is captured during the mining time.  

Figure 5 and Figure 6 provide the sizing of the gas-core-powered vehicles and a comparison of the 
solid-core and gas-core vehicle options, respectively (Refs. 1 and 2). The relatively low thrust-to-weight 
ratio of the nuclear engines may necessitate the use of a more advanced gas-core nuclear engine over the 
solid-core nuclear thermal propulsion (NTP). Although the gas-core engine is likely more attractive for 
mining missions that require a return to orbit, other smaller nuclear thermal engines will be more 
applicable to atmospheric exploration missions that do not require orbital access. 

AMOSS can be a powerful tool in extracting fuels from the outer planets and allow fast human and 
robotic exploration of the solar system. Preliminary designs of aerospacecraft with gas-core rocket nuclear 
engines for mining the outer planets have been developed (Refs. 1 and 2). The analyses showed that gas-
core engines can reduce the mass of such aerospacecraft mining vehicles very significantly: from  
72 to 80 percent reduction over NTP solid-core-powered aerospacecraft mining vehicles. Although this 
mass reduction is important in reducing the mass of the overall mining system, the complexity of a 
fissioning plasma gas-core rocket is much higher than the more traditional solid-core NTP engines. 
Additional analyses were conducted to calculate the capture rates of hydrogen and 4He during the mining 
process. Very large masses of hydrogen and 4He are produced every day during the often lengthy process of 
3He capture and gas separation. Figure 7 shows the mass of hydrogen needed for the gas-core rocket and the 
potentially excess hydrogen captured every day (Ref. 1). Typically, these very large (excess) additional fuel 
masses can dwarf the requirements needed for hydrogen capture for ascent to orbit. Thus, the potential for 
fueling small and large fleets of additional exploration and exploitation vehicles exists. Aerial vehicle 
designs can take on many configurations. Additional aerospacecraft or other unmanned aerial vehicles 
(UAVs), balloons, rockets, and so forth, could fly through the outer-planet atmospheres for activities such as 
global weather observations, localized storm or other disturbance investigations, wind speed measurements, 
and polar observations. Deep-diving aircraft (built with the strength to withstand many atmospheres of 
pressure) powered by the excess hydrogen or 4He may be designed to probe the higher density regions of the 
gas giants. 

Based on these analyses, there will likely be several possible future ways to effectively use the gases 
of the outer planets for exciting and scientifically important atmospheric exploration missions. The 
analyses focused on Uranus and Neptune, as these planets offer vast reservoirs of fuels that are more 
readily accessible than those from Jupiter and Saturn (as Uranus and Neptune require lower energies 
needed to attain orbit and present less danger from powerful atmospheric lightning) and, with the advent 
of nuclear fusion propulsion, may offer us the best option for fast interplanetary travel and the first 
practical interstellar flight. 
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Atmospheric Exploration Missions and Vehicles 
This section will discuss the issues of future atmospheric exploration and the vehicles that may 

conduct that exploration. 

Uranus and Neptune—Clouds and Dynamism 

A series of exploration missions for the Uranus and Neptune clouds and overall atmosphere would 
yield many great discoveries of their dynamics. Appendix A provides a number of cloud images from 
Earth-based (Keck) and space-based (Hubble) telescopes and spacecraft (Voyager). Appendix B notes the 
cloud changes of many years of observations (Refs. 21 to 29). As an example, when the Voyager 
spacecraft flew by Neptune in 1989, it photographed the Great Dark Spot at 15° south latitude. Imaging 
conducted by the Hubble Space Telescope in 1991, 1996, and 1998 revealed that the Spot had completely 
disappeared, and no other clouds or disturbances were seen on or near that latitude (Refs. 25 to 29). At 
Uranus, the cloud structures were revealed with Earth-based telescopes and the Hubble Space Telescope 
in the 1990s and 2000s, whereas previous Voyager flyby images (from 1986) showed no clouds (Refs. 21 
to 24). Gathering data on the clouds’ dynamics and the related atmospheric wind speeds can be 
accomplished with in situ UAV flights. Measuring wind velocities at varying altitudes can lead to 
improved understanding of the lifetime of the cloud features noted in the telescopic observations of the 
atmosphere. Also, atmospheric sampling may reveal the best places or safest places for 3He or hydrogen 
mining, or both. Thus, with the right array of probes and UAVs, exploration and exploitation of the 
atmospheric phenomena and resources can be simultaneously conducted. 

Atmospheric Exploration Vehicles 

A series of UAV and probe concepts were identified for atmospheric exploration. Table II provides 
the classes of probes and UAVs that can significantly augment future atmospheric exploration. Probes 
that use free fall or parachutes as they take data in the atmosphere are the first and most mature option. 
The Galileo Probe shown in Figure 8 (Refs. 30 and 31) is the baseline for many future atmospheric probe 
missions. A more aggressive approach to probe- or UAV-based exploration is the rocket assisted probe. 
As it can take many hours to access the deeper parts of the atmosphere (Ref. 32), a rocket assist to 
accelerate the probe to deep depths was considered. In addition to this, a rocket return was also conceived. 
Of course, high-pressure atmospheric flight operation of such vehicles will be a major challenge. Table III 
shows the ranges of masses for the probes and UAVs. The mass of the vehicles may be high based on the 
structure and wall thicknesses to withstand many atmospheres of pressure. Unique designs using pulsed 
detonation engines have been conceived, and such high-pressure detonation engines may be crucial to any 
future designs. Alternatively, balloons may be inflated to allow rapid ascent of the probe to higher 
altitudes. Balloons for rising to higher attitude may be a lower mass option than the rocket return, but a 
high-speed option for gaining altitude may be essential (for escaping high winds, wind shear, etc.), 
favoring the rocket return option. Taking advantage of more traditional UAV designs will also provide 
many operational benefits. Remote-sensing instruments on subsonic winged UAVs can potentially 
provide extensive data sets on outer-planet winds, cloud dynamics, and cloud formation. References 33 to 
41 provide a range of applicable UAV designs and engine options. 

Short-term observations (of several hours) can be accomplished with atmospheric entry probes that 
enter and then begin parachuting to lower altitudes. After a Galileo-class probe’s atmospheric entry, it 
would slow to Mach 1 and deploy a parachute, sending back data for approximately 60 min (Ref. 30). 
Alternatively, the probe can be cut free of the parachute, and the lower altitudes can be attained more 
quickly in free fall. Figure 9 depicts the descent time for atmospheric probes exploring Uranus’s and 
Neptune’s atmosphere (Ref. 32).  
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As noted in Reference 32, 
 

“The times to descend to a given pressure level are shown in Figures 7(a) and 7, for 
Uranus and Neptune, respectively. The maximum time boundary is associated with a 
complete descent on the parachute as shown by the upper descent profile in the figures. 
Descent times to a pressure level of 200 bar on the parachute are about 5.5 hr in the 
Uranus atmosphere and 4.4 hr in the Neptune atmosphere. To descend to 400 bar will 
require 8 hr at Uranus and 7 hr at Neptune. These times are very large compared to with 
the actual descent time for the Galileo Probe at Jupiter (of 1 hr). The Galileo Descent 
Module was designed to reach a pressure level of about 10 to 20 bar before either the 
system fails or the communications are terminated. 

The principal design problems associated with long descent times for Uranus and 
Neptune are: (1) maintaining the line of sight communications between the UAV or 
aerospacecraft and the probe for such a long period and (2) providing sufficient power 
during the long descent.”  

 
A UAV for AMOSS can be used as a data relay for the deep probes to cover their descent, which can take 
many hours. With nuclear atmospheric gas-powered UAVs, the relay and exploration functions can be 
completed by two complementary vehicles. One UAV will fly near the top of the atmosphere while the 
other conducts the deeper atmospheric surveys. Figure 10 shows the line-of-sight data transmission 
visibility geometry (Ref. 32). As the complementary UAVs will both be in the atmosphere, the 
transmission visibility issues will be ameliorated. 

Figure 11, Figure 12, and Figure 13 provide a series of UAV configuration options: supersonic and 
subsonic (Refs. 36 and 37). Atmospheric gases are very attractive fuel for future UAV nuclear engines 
(Refs. 38 to 41). A ramjet UAV was investigated for operation on the Jovian atmosphere (Refs. 39 and 
40). Figure 13 illustrates the nuclear ramjet (Refs. 39 to 42). The ramjet design is based on a small nuclear 
reactor called MITEE (Refs. 39 to 41). The engine inlet takes in the outer-planet atmospheric gases, feeds 
it to the reactor, and the reactor heats the gases and expands them through a nozzle for propulsion. Engine 
masses for the reactors are noted in Table IV (Refs. 38 to 41). Final designs must be based on specific 
configurations and the pressure field during the deep atmospheric flight. 

The mass of each of the rocket-assisted UAVs was predicted for a range of vehicle delta-V values. 
Total UAV delta-V values were selected at 1, 5, and 10 km/s. Figure 14 and Figure 15 are for the 1 km/s 
delta-V cases, Figure 16 and Figure 17 represent the cases for the 5-km/s delta-V values, and Figure 18 
and Figure 19 show the results for UAVs with a 10-km/s delta-V capability. The vehicle dry mass (tank 
dry mass, without propellant) range was 0 to 10 000 kg. This mass range was selected to accommodate a 
range of dry mass values for a wide range of expected atmospheric pressures. More detailed analyses are 
needed to assess the specific masses for specific configurations. Tankage dry mass fractions were set at  
2 and 10 percent of the total propellant mass (or 0.02 and 0.10 Mp). The engine specific impulse (Isp) was 
selected to represent a nuclear engine at an Isp of 900 s. The UAV payload mass was 1000 kg. For a  
1-km/s delta-V UAV, a tankage mass of 0.10 Mp, and a 10 000-kg dry mass, the mass is approximately 
12 530 kg. For 10-km/s delta-V, a tankage mass of 0.10 Mp, and a 10 000-kg dry mass, the mass is 
approximately 44 450 kg. For example, the 10 km/s delta-V UAVs would have a capability of 1/2 orbital 
speed and may allow simultaneous measurements with two of more UAVs on opposite sides of the planet. 
More detailed mission analyses can lead to specific mission selections for polar or more equatorial 
exploration flights or multivehicle campaigns.  

Supporting Analyses and Observations 
In addition to the capturing studies, reviews of outer-planet spacecraft design issues were initiated. 

A list of the issues to be addressed is noted below 
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• Mission planning 
• Cryogenic fuel storage issues 
• Cryogenic dust (outer-planet moons, ice migration), mass concentrations (mascons) on the 

moons, and so forth 
• Global Positioning System (GPS) vehicles in outer-planet orbits for navigation 
• Observational satellite for outer-planet weather monitoring, diverting cruisers from harm 

 
Also, Appendix B illuminates some of the issues to be analyzed. Appendix C contains gas and shock 

properties for a hydrogen-helium atmosphere (85 percent hydrogen and 15 percent helium by volume), 
and Appendix D provides some data of detonation engines operating in extremely high-pressure 
environments. 

Concluding Remarks 
Atmospheric mining at Uranus and Neptune can allow for the production of fuels for significant 

exploration and exploitation missions. While capturing helium 3 (3He), large amounts of hydrogen and 
helium 4 (4He) are produced. With these two additional gases, the potential for fueling small and large 
fleets of additional exploration and exploitation vehicles exists. Additional aerospacecraft or other aerial 
vehicles (unmanned aerial vehicles (UAVs), balloons, rockets, etc.) could fly through the outer-planet 
atmospheres, for global weather observations, localized storm or other disturbance investigations, wind 
speed measurements, polar observations, etc. Deep-diving UAV aircraft (built with the strength to 
withstand many atmospheres of pressure) powered by the excess hydrogen or 4He may be designed to 
probe the higher density regions of the gas giants. Both nuclear ramjet and other rocket-powered probes 
were suggested. As there are powerful wind shear forces in the atmosphere, a compact ramjet UAV may 
be a best choice. The high aspect ratio and flexibility of a low-subsonic UAV may lead to serious damage 
during its flight due to wind shear. 

The mass of the rocket-assisted UAVs was predicted for a range of vehicle delta-V values. For a 
1 km/s delta-V UAV, the highest mass is approximately 12 530 kg. For 10 km/s, the largest mass was 
approximately 44 450 kg. The 10 km/s delta-V UAVs would have a 1/2 orbital speed capability, and may 
allow simultaneous measurements with each on opposite sides of the planet. Issues of storing the large 
caches of propellants not needed for the orbital 3He deliveries must be addressed. Small or large 
cryogenic hydrogen and helium tank farms in the atmosphere may be a solution. As the production rate 
and the amount of hydrogen and helium are high, the tank farms may have a similar configuration to the 
large aerospacecraft that carry the 3He to orbit. 
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TABLE I.—FRACTION OF 3He IN OUTER-PLANET ATMOSPHERES 
 Uranus Neptune 
Amount of 3He in 4He 1.00×10–4 1.00×10–4 
Amount of 4He in atmosphere 0.152 0.19 
Amount of 3He in atmosphere 1.52×10–5 1.90×10–5 

 
 
 
 
 

TABLE II.—PROBE AND UNMANNED AERIAL VEHICLE (UAV) CLASSES 
Probes in free fall (no parachutes) 
Probes (with parachutes) 
Probes with rocket booster for accelerated attainment of low altitude (deep probe) 
Probes with rocket (booster) return for return to high altitude 
UAV (long persistence) 
Mining aerospacecraft (long persistence) 

 
 
 
 
 
 

TABLE III.—PROBE AND UNMANNED AERIAL  
VEHICLE (UAV) MASS REGIMES 

Exploration UAV size ranges 
Probe design Mass, 

MT 
Free fall 1 to 10 
Parachute 1 to 10 
Rocket boost 10 to 100 
Rocket return 10 to 1000 
Long duration, subsonic 10 to 1000 
Aerospacecraft (mining) 100 to 10 000 

 
 
 
 
 

 
TABLE IV.—UNMANNED AERIAL  

VEHICLE (UAV) NUCLEAR ENGINE  
MASSES AND THRUST LEVELS (REFS. 38 TO 41) 

Engine Mass, 
kg 

Thrust, 
lbf 

MITEE 200.0 14 000 
Nuclear thermal rocket (NTR) 2223.5 15 000 
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Figure 1.—Gas-core propulsion for cruiser (from Refs. 1 and 9). 

 
 
 
 

 
Figure 2.—Fractions of captured atmospheric gases for Neptune (from Ref. 1). 
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Figure 3.—Mining time versus capture rate for Uranus (Ref. 1). 

 
 
 
 

 
Figure 4.—Mining time versus capture rate for Neptune (Ref. 1). 
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Figure 5.—Aerospacecraft mass, 1800-s Isp, Tankage mass = 10 percent Mp for H2, 

representative of gas core nuclear propulsion (Ref. 1). 
 
 
 

 
Figure 6.—Nuclear thermal propulsion: solid-core and gas-core vehicle 

mass comparison, 100 000 kg dry mass, 2 percent Mp for H2 (Ref. 1). 
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Figure 7.—3He mining time and hydrogen capture (mass per day) versus atmospheric 

gas capture rate for Neptune (Ref. 1). 
 
 

 
Figure 8.—Galileo mission atmospheric probe mass summary (reprinted from Ref. 30 with permission). 
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Figure 9.—Probe descent times for Uranus (upper) and Neptune (lower); 

descent time begins at Mach = 1.0 (Ref. 32). From Deep Atmospheric Probe 
Missions to Uranus and Neptune, Byron L. Swenson et al.; reprinted by 
permission of the American Institute of Aeronautics and Astronautics, Inc. 
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Figure 10.—Probe and receiver (unmanned aerial vehicle (UAV) or 

aerospacecraft) data transmission visibility geometry (Ref. 32). 
From Deep Atmospheric Probe Missions to Uranus and Neptune, 
Byron L. Swenson et al; reprinted by permission of the American 
Institute of Aeronautics and Astronautics, Inc. 

 

 

 

 
Figure 11.—UAV configuration options (reprinted from Ref. 36 with permission). 
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Figure 12.—Low-subsonic-speed-class UAV (Ref. 36). 

 
 
 
 
 

 
Figure 13.—Nuclear ramjet engine integrated into aircraft/UAV (Ref. 42). From Application of the 

MITEE Nuclear Ramjet for Ultra Long Range Flyer Missions in the Atmospheres of Jupiter and Other 
Giant Planets, George Maise et al.; reprinted by permission of the American Institute of Aeronautics 
and Astronautics, Inc. 
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Figure 14.—Mass of UAV for atmospheric mining in the outer solar system (AMOSS) at 1 km/s 

delta-V capability and Mtank = 0.02 Mp. 
 
 

 
Figure 15.—Mass of UAV for AMOSS at 1 km/s delta-V capability and Mtank = 0.1 Mp. 
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Figure 16.—Mass of UAV for AMOSS at 1 km/s delta-V capability and Mtank = 0.02 Mp. 

 
 

 
Figure 17.—Mass of UAV for AMOSS at 5 km/s delta-V capability and Mtank = 0.1 Mp. 
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Figure 18.—Mass of UAV for AMOSS at 10 km/s delta-V capability and Mtank = 0.02 Mp. 

 
 

 
Figure 19.—Mass of UAV for AMOSS at 10 km/s delta-V capability and Mtank = 0.1 Mp. 
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Appendix A.—Planet Data—Uranus and Neptune 
This appendix presents cloud images from Earth-based (Keck) and space-based (Hubble) telescopes 

and spacecraft (Voyager). Figure 20 to Figure 24 show the cloud changes over many years of 
observations.  
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 20.—Uranus cloud features (Keck II, Ref. 25).  
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Figure 21.—Uranus cloud features and rings (Keck II, Ref. 25). 

  



NASA/TM—2015-218096 19 

 
 
 
 
 
 
 
 
 

 
Figure 22.—Neptune cloud features (Voyager, Hubble, Ref. 27).1  

  

                                                      
1Reprinted from Icarus, vol. 156, no. 1, L.A. Sromovsky, P.M. Fry, and K.H. Baines, The Unusual Dynamics of 
Northern Dark Spots on Neptune, pp.16–36, 2002, with permission from Elsevier.  
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Figure 23.—Neptune cloud features (Hubble, Ref. 26).2  

  

                                                      
2Reprinted from Icarus, vol. 163, L.A. Sromovsky et al., The Nature of Neptune’s Increasing Brightness: Evidence 
for a Seasonal Response, pp. 256–261, 2003, with permission from Elsevier. 
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Figure 24.—Uranus winds velocities (from Ref. 43). 
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Appendix B.—Issues for Cryogenic Operations 
Cryogenic moons and operations on those bodies is important for outer-planet moon and planet 

exploration. Data for identifying the moons, their apparent densities, and the technological consideration 
in operations on those moons are presented in Figure 25 to Figure 28. 

 

 
Figure 25.—Outer-planet moon densities (Ref. 44).3 

 
 

 
Figure 26.—Issues for cryogenic outer-planet moon surface operations 

(Revolutionary Aerospace Concepts (RASC), Human Outer Planet Exploration 
(HOPE) study, Ref. 45).  

                                                      
3Reprinted from Icarus, vol. 185, no. 1, Hauke Hussmann, Frank Sohl, and Tilman Spohn, Subsurface Oceans and 
Deep Interiors of Medium-Sized Outer Planet Satellites and Large Trans-Neptunian Objects., pp. 258‒273, 2006, 
with permission from Elsevier 

Moon Bases in Cryogenic 
Environments: Issues

• Power sources 
• Seals
• Rotating components
• Adhesives
• Flexible – inflatable surfaces
• Dust, ice characteristics
• Robots, for maintenance, etc.
• Warmth for, maintenance of astronauts
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Figure 27.—Uranus atmospheric structure, haze phenomena (Ref. 46).4 

 
 

 
Figure 28.—Atmospheric mining issues. 

  

                                                      
4Reprinted from Icarus, vol. 172, K.A. Rages, H.B. Hammel, and A.J. Friedson, Evidence for Temporal Change at 
Uranus’ South Pole, pp. 548–554, 2004, with permission from Elsevier. 
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Appendix C.—Gas and Shock Properties  
(85 Percent Hydrogen, 15 Percent Helium by Volume) 

Figure 29 and Figure 30 (Ref. 47) present normal shock properties for hydrogen-helium mixtures with 
velocities to 70 km/s. 
 

 
 

 
Figure 29.—Initial conditions ahead of incident normal shock in 0.85 H2-0.15 He (Ref. 47).  
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Figure 30.—Thermodynamic properties and flow velocity behind an incident normal shock into a 

0.85 H2-0.15 He mixture (Ref. 47).  
 



NASA/TM—2015-218096 27 

Appendix D.—Detonation Engine Data 
The appendix presents detonation rocket engine performance in Figure 31 and Figure 32. This type of 

engine was proposed for flight in high-pressure atmospheric environments.  
 
 
 
 
 
 
 
 
 

 
Figure 31.—Variation of specific impulse with ambient pressure for various ambient 

gases (carbon dioxide (CO2), nitrogen (N2), and helium (He)). with long-cone and 
firing-plug nozzles (Ref. 33). From Detonation Propulsion Experiments and Theory. 
Measurement of Detonation Propulsion in Helium and Performance Calculations, Lloyd 
H. Back, Warren L. Dowler, and Giulio Varsi; reprinted by permission of the American 
Institute of Aeronautics and Astronautics, Inc. 
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Figure 32.—Engine specific impulse, including high angle nozzles (Ref. 34). From Detonation Propulsion for High 

Pressure Environments, Giulio Varsi and Lloyd H. Back; reprinted by permission of the American Institute of 
Aeronautics and Astronautics, Inc. 

 

 
  



NASA/TM—2015-218096 29 

References 
1. Palaszewski, Bryan: Atmospheric Mining in the Outer Solar System: Resource Capturing, Storage, 

and Utilization. AIAA 2012‒3742, 2012. 
2. Palaszewski, Bryan: Atmospheric Mining in the Outer Solar System: Issues and Challenges for 

Mining Vehicle Propulsion. AIAA 2011‒6041, 2011. 
3. Palaszewski, Bryan: Atmospheric Mining in the Outer Solar System: University Studies of Mining 

Vehicles and Propulsion. AIAA 2010‒6573, 2010. 
4. Palaszewski, Bryan: Atmospheric Mining in the Outer Solar System: Mining Design Issues and 

Considerations. AIAA 2009‒4961, 2009. 
5. Palaszewski, Bryan: Atmospheric Mining in the Outer Solar System: Orbital Transfer Vehicles and 

Outer Planet Moon Base Options. AIAA 2008‒4861, 2008. 
6. Palaszewski, Bryan: Atmospheric Mining in the Outer Solar System: Mission Scenarios and Options 

for In-Situ Resource Utilization. AIAA 2007‒5598, 2007. 
7. Palaszewski, Bryan: Atmospheric Mining in the Outer Solar System: Vehicle Sizing Issues. AIAA 

2006‒5222, 2006.  
8. Palaszewski, Bryan: Atmospheric Mining in the Outer Solar System. AIAA 2005‒4319, 2005. 
9. Frisbee, Robert: Advanced Space Propulsion for the 21st Century. J. Propul. P., vol. 19, no. 6, 2003. 

10. Dunn, Bruce P.: High-Energy Orbit Refueling for Orbital Transfer Vehicles. J. Spacecr. Rockets, vol. 
24, no. 6, 1987, pp. 518‒522. 

11. Noca, Muriel; and Polk, James E.: Ion Thrusters and LFAs for Outer Planet Exploration. Presented at 
the AAF 6th International Symposium on Propulsion for Space Transportation of the XXIst Century, 
paper no. 228, Versailles, France, 2002. 

12. Hunt, James L.; Laruelle, Gerard; and Wagner, Alain: Systems Challenges for Hypersonic Vehicles. 
AGARD Future Aerospace Technology in Service to the Alliance Conference, AGARD Paper C37 
(NASA TM‒112908), 1997. http://ntrs.nasa.gov 

13. Starr, Brett R.; Westhelle, Carlos H.; and Masciarelli, James P.: Aerocapture Performance Analysis 
for a Neptune-Triton Exploration Mission. AIAA 2004‒4955, 2004. 

14. Bussard, R.W.: ASPEN 2: Two-Staging and Radiation Shielding Effects on ASPEN Vehicle 
Performance. LA‒2680, 1962. http://ntrs.nasa.gov 

15. Bussard, Robert W.; and Jameson, Lorin W.: The QED Engine Spectrum: Fusion-Electric Propulsion 
for Air-Breathing to Interstellar Flight. AIAA 93‒2006, 1993.  

16. Borowski, Stanley K.; Dudzinski, Leonard A.; and McGuire, Melissa L.: Artificial Gravity Vehicle 
Design Option for NASA’s Human Mars Mission Using “Bimodal” NTR Propulsion. AIAA‒99–
2545, 1999. 

17. Kendall, J.S.; and Stoeffler, R.C.: Conceptual Design Studies and Experiments Related to Cavity 
Exhaust Systems for Nuclear Light Bulb Configurations. (NASA-CR‒129298), 1972. 
http://ntrs.nasa.gov 

18. Latham, Thomas S.; and Rodgers, Richard J.: Small Nuclear Light Bulb Engines With Cold 
Beryllium Reflectors. AIAA Paper No. 72‒1093, 1972. 

19. Latham, Thomas S.: Summary of the Performance Characteristics of the Nuclear Light Bulb Engine. 
AIAA Paper No. 71‒642, 1971. 

20. Rodgers, R.J.; and Latham, T.S.: Analytical Design and Performance Studies of the Nuclear Light 
Bulb Engine. United Aircraft Corporation Report No. L‒910900‒16 (NASA CR‒129295), 1972.  

21. Sromovsky, L.A., et al.: Uranus at Equinox: Cloud Morphology and Dynamics. Icarus, vol. 203, no. 
1, 2009, pp. 265‒286. 

22. Sromovsky, L.A.; and Fry, P.M.: The Methane Abundance and Structure of Uranus’ Cloud Bands 
Inferred From Spatially Resolved 2006 Keck Grism Spectra. Icarus, vol. 193, no. 1, 2008, pp. 252–266. 

23. Hammel, H.B., et al.: The Dark Spot in the Atmosphere of Uranus in 2006: Discovery, Description, 
and Dynamical Simulations. Icarus, vol. 201, no. 1, 2009, pp. 257‒271.  

24. Sromovsky, Lawrence: Investigating Atmospheric Change on Uranus and Neptune. University of 
Wisconsin—Madison, Madison, WI, 2012. 

http://ntrs.nasa.gov/
http://ntrs.nasa.gov/
http://ntrs.nasa.gov/


NASA/TM—2015-218096 30 

25. Sromovsky, L.A., et al.: Episodic Bright and Dark Spots on Uranus. Icarus, vol. 220, no. 1, 2012,  
pp. 6‒22.  

26. Sromovsky, L.A., et al.: The Nature of Neptune’s Increasing Brightness: Evidence for a Seasonal 
Response. Icarus, vol. 163, 2003, pp. 256–261. 

27. Sromovsky, L.A.; Fry, P.M.; and Baines, K.H.: The Unusual Dynamics of Northern Dark Spots on 
Neptune. Icarus, vol. 156, no. 1, 2002, pp.16–36. 

28. Sromovsky, L.A., et al.: Neptune’s Atmospheric Circulation and Cloud Morphology: Changes 
Revealed by 1998 HST Imaging. Icarus, vol. 150, 2001, pp. 244–260. 

29. Sromovsky, Lawrence A.; Limaye, Sanjay S.; and Fry, Patrick M.: Clouds and Circulation on 
Neptune: Implications of 1991 HST Observations. Icarus, vol. 118, no. 1, 1995, pp. 25‒38. 

30. Wercinski, P., et al.: Outer Planet Probe Design—Entry System Challenges. 3rd International 
Planetary Probe Workshop, Anavyssos, Greece, 2005.  

31. Young, Richard E.: The Galileo Probe Mission to Jupiter: Science Overview. J. Geoph. Res., vol. 
103, no. E10, 1998, pp. 22775‒22790. 

32. Swenson, Byron L., et al.: Deep Atmospheric Probe Missions to Uranus and Neptune. AIAA‒90‒
2893‒CP, 1990. 

33. Back, Lloyd H.; Dowler, Warren L.; and Varsi, Giulio: Detonation Propulsion Experiments and 
Theory. AIAA J., 1983, vol. 21, no. 10, pp. 1418‒1427. 

34. Varsi, Giulio; and Back, Lloyd H.: Detonation Propulsion for High Pressure Environments. AIAA 
Paper No. 73‒1237, 1973. 

35. Kim, K.; Back, L.H.; and Varsi, G.: Measurement of Detonation Propulsion in Helium and 
Performance Calculations. AIAA J., vol. 14, no. 3, pp. 310‒312. 

36. Fleeman, E.L.; Berglund, E.; and Licata, W.H.: Technologies for Future Precision Strike Missile 
Systems (les Technologies des futurs systemes de missiles pour frappe de precision). RTO Lecture 
Series 221 bis., SCI‒087, RTO‒EN‒018 AC/323(SCI‒087 bis)TP/37, North Atlantic Treaty 
Organization Science and Technology Organization, 2001. 

37. Millis, Marc G., et al.: Hydrogen Fuel System Design Trades for High-Altitude Long-Endurance 
Remotely-Operated Aircraft. NASA/TM—2009-215521, 2009. http://ntrs.nasa.gov  

38. Borowski, S.: Robotic Planetary Science Missions Enabled With Small NTR Engine/Stage 
Technologies. NASA TM‒107094, 1996. http://ntrs.nasa.gov 

39. Maise, George, et al.: Exploration of Jovian Atmosphere Using Nuclear Ramjet Flyer. IAF Paper 98‒
S608, 1998. 

40. Powell, James, et al.: MITEE—An Ultra Lightweight Nuclear Engine for New and Unique Planetary 
Science and Exploration Missions. IAF Paper 98‒R101, 1998. 

41. Powell, James; Maise, George; and Paniagua, John: Nuclear Propulsion and Power Systems for Near 
Term Exploration of the Solar System. AIAA 2005‒2597, 2005. 

42. Maise, George, et al.: Application of the MITEE Nuclear Ramjet for Ultra Long Range Flyer 
Missions in the Atmospheres of Jupiter and Other Giant Planets. IAC-03-Q.4.09, 2003. 

43. Sromovsky, Lawrence: Investigating Atmospheric Change on Uranus and Neptune. Award No. 
NNX08AO51G, 2012. 

44. Hussmann, Hauke; Sohl, Frank; and Spohn, Tilman: Subsurface Oceans and Deep Interiors of 
Medium-Sized Outer Planet Satellites and Large Trans-Neptunian Objects. Icarus, vol. 185, no. 1,  
pp. 258‒273. 

45. Troutman, Patrick A., et al.: Revolutionary Concepts for Human Outer Planet Exploration (HOPE). 
Space Technology & Applications International Forum, Albuquerque, NM, 2003. 

46. Rages, K.A.; Hammel, H.B.; and Friedson, A.J.: Evidence for Temporal Change at Uranus’ South 
Pole. Icarus, vol. 172, 2004, pp. 548–554. 

47. Miller III, Charles G.; and Wilder, Sue E.: Table and Charts of Equilibrium Normal-Shock Properties 
for Hydrogen-Helium Mixtures With Velocities to 70 km-sec. Vol. 3, 85 H2—15 He (By Volume). 
NASA SP‒3085, 1976. 
 





REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

01-04-2015
2. REPORT TYPE
Technical Memorandum

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE
Atmospheric Mining in the Outer Solar System: Resource Capturing, Exploration, and
Exploitation

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Palaszewski, Bryan

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
WBS 432938.11.01.03.02.01.08

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio 44135-3191

8. PERFORMING ORGANIZATION
    REPORT NUMBER
E-18796

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSORING/MONITOR'S
      ACRONYM(S)
NASA

11. SPONSORING/MONITORING
      REPORT NUMBER
NASA/TM-2015-218096

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified-Unlimited
Subject Categories: 12, 28, and 20
Available electronically at http://www.sti.nasa.gov
This publication is available from the NASA STI Program, 757-864-9658

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Atmospheric mining in the outer solar system (AMOSS) has been investigated as a means of fuel production for high-energy propulsion and

power. Fusion fuels such as helium 2 ( 3He) and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned

to Earth or used in-situ for energy production. 3He and hydrogen (deuterium, etc.) were the primary gases of interest, with hydrogen being
the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to
investigate resource capturing aspects of AMOSS. These analyses included the gas capturing rate, storage options, and different methods of
direct use of the captured gases. Additional supporting analyses were conducted to illuminate vehicle sizing and orbital transportation issues.

While capturing 3He, large amounts of hydrogen and helium 4 (4He) are produced. With these two additional gases, the potential exists for
fueling small and large fleets of additional exploration and exploitation vehicles. Additional aerospacecraft or other aerial vehicles (UAVs,
balloons, rockets, etc.) could fly through the outer-planet atmosphere to investigate cloud formation dynamics, global weather, localized
storms or other disturbances, wind speeds, the poles, and so forth. Deep-diving aircraft (built with the strength to withstand many

atmospheres of pressure) powered by the excess hydrogen or 4He may be designed to probe the higher density regions of the gas giants.
15. SUBJECT TERMS
In situ resource utilization; Propellants; Metallized gelled fuels; Cryogenics; Nuclear power; Electric propulsion; Planetary exploration;
Balloons; Atmospheric cruisers; Aerospacecraft; Uninhabited aerial vehicles; Probes; Clouds; Weather
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

      ABSTRACT

UU

18. NUMBER
      OF
      PAGES

38

19a. NAME OF RESPONSIBLE PERSON
STI Help Desk (email:help@sti.nasa.gov)a. REPORT

U
b. ABSTRACT
U

c. THIS PAGE
U 19b. TELEPHONE NUMBER (include area code)

757-864-9658

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18






	TM-2015-218096
	Summary
	Nomenclature
	Atmospheric Mining in the Outer Solar System
	Resource Capturing Studies

	Atmospheric Exploration Missions and Vehicles
	Uranus and Neptune—Clouds and Dynamism
	Atmospheric Exploration Vehicles

	Supporting Analyses and Observations
	Concluding Remarks
	Appendix A.—Planet Data—Uranus and Neptune
	Appendix B.—Issues for Cryogenic Operations
	Appendix C.—Gas and Shock Properties (85 Percent Hydrogen, 15 Percent Helium by Volume)
	Appendix D.—Detonation Engine Data
	References

	Report Documentation Page



