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1. Introduction 

There is a great deal of interest in the U.S. military in monitoring the health of assets in operation 
in the field. The primary motivation is so that timely, efficient, and effective decision making can 
be made both for operations and logistical support. With this in mind, the U.S. Army Research 
Laboratory (ARL) has teamed with the U.S. Army Tank and Automotive Research, 
Development and Engineering Center (TARDEC) to investigate approaches for assessing the 
health of diesel engines (Technology Program Annex TA-SE-2010-5). Seeded fault testing was 
executed with the assistance of Millennium Integrated Services (MIS) 2000/Global Defense 
under ARL contract W911NF-09-2-0036. The focus of this report is to present progress in this 
area, and specifically, to review the efficacy of algorithms that can detect anomalous conditions 
intentionally imposed on the system (seeded faults) and then identify the source of the variation 
that caused the anomaly. It is also anticipated that the effort in this particular subject will be 
applicable to other areas of interest in ARL’s prognostics and diagnostics (P&D) program. 

2. Experimental 

A military version of the CAT 7 diesel engine (Model C7 DITA) was installed and instrumented 
in a dynamometer (dyno) test cell at TARDEC’s facilities in Warren, MI (figure 1). The basics of 
the setup and data collected are described here; for a detailed description of the experiment, see 
reference 1. The setup was designed so that the engine could be operated and controlled without 
the presence a vehicle. The test stand supported provision of fuel, coolant, inlet air, and 
exhausting of the engine as well as a load (eddy current dyno, computer controlled). Data were 
collected from a variety of sources including existing sensors on the engine through the 
controller-area network (CAN) vehicle bus standard, several sensors in the test cell recorded by 
the cell data acquisition system (DAQ), and a few “add-on” sensors that were recorded at a 
higher rate (referred to as “analog data”). A small portion of the data that is referred to as “digital 
data” is primarily used for timing. There were also sensors inserted and data collected by the 
Pennsylvania State University (Penn State) Applied Research Laboratory. Both the CAN and 
dyno data were collected at a relatively low rate and provided to ARL at 1 Sample/s, and could 
be monitored continuously during a test run. The analog data were collected at 10 kiloSamples/s 
and, due to the high rate, “snapshots” of data of between 1 and 30 s were collected at select times 
during a test run. The Penn State data were collected independently without time synchronization 
of the TARDEC data at 102.4 kiloSamples/s. A diagram of the engine control, instrumentation, 
and data flow is shown in figure 2. 
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Figure 1. Instrumented CAT 7 engine in the TARDEC test cell. 

 

Figure 2. Engine control, instrumentation, and data flow. 
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Test runs were performed with various seeded faults and no fault cases. A test run consisted of 
running the engine through a stepwise sequence of designated speeds for a short time at each 
speed, as shown in figure 3; all with either no fault or a particular seeded fault. The engine 
speeds with associated duration were duplicated for all the tests. As can be seen, there are six 
speeds with duration of between 1 and 3 min each; the time duration at a given speed set point 
was not precisely controlled.  

 

Figure 3. Typical stepped control of engine speed for a performance run. 

3. Data for Analysis 

The current focus is on the performance test data since these files have several baseline runs 
along with several seeded fault runs. Baseline runs are test sequences at the beginning of a test 
day in which there was no fault but the standard test sequence was followed, and as such are 
viewed as “healthy states.” Table 1 shows the 15 baseline runs that were identified. For principal 
component analysis (PCA) and autoassociative neural network based methods (AANN), training 
data is required; the first column of table 1 shows the runs that were selected for training (50% of 
the runs, using a random number generator). Table 2 shows the 33 seeded fault performance 
runs; however, three of these test runs are considered a baseline condition since their gain was 
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set to 1.0, which is the nominal value. As a note, several files contained more than one run, 
where the additional runs were various levels of the same fault type.  

Table 1. Baseline performance runs. 

 

Table 2. Seeded fault performance runs. 

 
 

Baseline Performance Test # Date MatLAB File Name Run # in File Train (0) or Test (1) 
Training 1 May 27, 2011 PerfM3_JP8_May27_ext 1 0
Training 2 May 27, 2011 PerfM3_JP8_May27_ext 2 0

Test 1 June 1, 2011 Perf_Jun1_ext 1 1
Training 3 June 3, 2011 Perfor_Jun3_ext 1 0
Training 4 June 8, 2011 Perfor_Jun8_par 1 0

Test 2 June 10, 2011 Perfor_Jun10_ext 1 1
Training 5 June 15, 2011 Perfor_Jun15_ext 1 0

Test 3 June 16, 2011 Perfor_Jun16_ext 1 1
Test 4 June 22, 2011 Perfor_C_Jun22_ext 1 1
Test 5 June 29, 2011 Perfor_jun29_ext 1 1
Test 6 July 1, 2011 Perf_Jul1_ext 1 1

Training 6 July 6, 2011 Perfor_Jul6_ext 1 0
Training 7 July 8, 2011 Perfor_Jul8_ext 1 0

Test 7 July 27, 2011 Perfor_Jul27_ext 1 1
Test 8 August 3, 2011 Perfor_ext3_ext 1 1

Test # Date MatLAB File Name Fault Type Run in File Severity
9 May 27, 2011 PerfM3_IntRestr_May27_ext IntakeAir Restric Test 1 Pos # 4

10 May 27, 2011 PerfM3_IntRestr_May27_ext IntakeAir Restric Test 2 Pos # 6
11 June 8, 2011 PerfM3_OilP_Jun8_par OilPress High Gain 1 Gain 1.0
12 June 8, 2011 PerfM3_OilP_Jun8_par OilPress High Gain 2 Gain 0.7
13 June 8, 2011 PerfM3_OilP_Jun8_par OilPress High Gain 3 Gain 1.3
14 June 10, 2011 PerfM3_AirChgT_Jun10_ext Air Charge Temperature Increase 1 Increased by 20oF
15 June 10, 2011 PerfM3_AirChgT_Jun10_ext Air Charge Temperature Increase 2 Increased by 30oF
16 June 10, 2011 PerfM3_AirChgT_Jun10_ext Air Charge Temperature Increase 3 Increased by 50oF
17 June 15, 2011 Perfor3_AirRestr_Jun15_ext AirRestriction Low 1 Pos # 2
18 June 15, 2011 Perfor3_AirRestr_Jun15_ext AirRestriction Low 2 Pos # 3
19 June 15, 2011 Perfor3_AirRestr_Jun15_ext AirRestriction Low 3 Pos # 4
20 June 15, 2011 Perfor3_B_AirRestr_Jun15_ext AirRestriction High 1 Pos #5
21 June 15, 2011 Perfor3_B_AirRestr_Jun15_ext AirRestriction High 2 Pos #6
22 June 15, 2011 Perfor3_C_AirChgT_high_Jun15_ext AirChgHigh 1
23 June 15, 2011 Perfor3_C_AirChgT_high_Jun15_ext AirChgHigh 2
24 June 16, 2011 PerforM3_AirChg_low_Jun16_ext AirCharge 1
25 June 16, 2011 PerforM3_AirChg_low_Jun16_ext AirCharge 2
26 June 16, 2011 PerforM3_AirChg_low_Jun16_ext AirCharge 3
27 June 29, 2011 PerfM3_B_AirIntRes_Jun29_ext IntRestriction 1 Pos #5
28 June 29, 2011 PerfM3_B_AirIntRes_Jun29_ext IntRestriction 2 Pos #6
29 June 29, 2011 PerfM3_B_AirIntRes_Jun29_ext IntRestriction 3 Pos #7
30 July 6, 2011 PerforM3_B_BoostG_Jul6_ext Boost 1 Gain 0.85
31 July 6, 2011 PerforM3_B_BoostG_Jul6_ext Boost 2 Gain 0.95
32 July 6, 2011 PerforM3_B_BoostG_Jul6_ext Boost 3 Gain 1.00
33 July 13, 2011 PerforM3_ExhRestr_Jul13_ext ExhRestr 1 60%
34 July 13, 2011 PerforM3_ExhRestr_Jul13_ext ExhRestr 2 55%
35 July 13, 2011 PerforM3_ExhRestr_Jul13_ext ExhRestr 3 50%
36 July 13, 2011 PerforM3_B_ExhRestr_Jul13_ext ExhRestr 1 42%
37 July 13, 2011 PerforM3_B_ExhRestr_Jul13_ext ExhRestr 2 46%
38 July 13, 2011 PerforM3_B_ExhRestr_Jul13_ext ExhRestr 3 50%
39 August 3, 2011 PerforM3_InjPresG_ext3_ext InjPress 1 Gain 1.0
40 August 4, 2011 PerforM3_InjPresG_ext3_ext InjPress 2 Gain 0.9
41 August 5, 2011 PerforM3_InjPresG_ext3_ext InjPress 3 Gain 1.1
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From the data described, it was determined to initially work with the 45 signals from the CAN 
and dyno. Working with this set of low-cost sensor and CAN bus signals provides a path for a 
practical onboard implementation, and thus, is conducted first prior to considering vibration and 
other signals for developing health models. They also have been interpolated and aligned to the 
same 1 Sample/s acquisition rate, so were in a format that was ready to process. The CAN and 
dyno signals are identified in table 3. The 32 signals highlighted in orange were used in the 
analysis. The other 13 signals were not included because they are either operating conditions or 
have a low amount of variability. 

Table 3. Signals recorded from CAN and dyno. 

 
 

4. Modeling Approaches 

Modeling approaches identified for the CAT 7 data, in order of complexity, included single 
parameter monitoring, correlation analysis, PCA monitoring methods, and AANN residual 
methods. Each of these methods has its advantages and disadvantages; table 4 lists each method 
along with important trade-offs. For the present study, only correlation analysis and PCA 
monitoring were undertaken. Single parameter modeling is very simple and can be done in real 
time; however, it requires extensive experience for setting thresholds for each variable, thus only 
an example of its application is presented at this time. The AANN method is well suited for this 
data and is being considered for future work.  
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Table 1. Advantages and disadvantages for each modeling approach identified for the CAT 7 data. 

Method Training 
Requirements Threshold Setting Positive/Negative 

Single parameter 
monitoring None 

Experience or 
requires historical 
data 

Simple but does not take into 
account relationship among 
variables 

Correlation analysis Multiple baseline data 
sets 

Experience or 
requires historical 
data 

Takes into account variable 
interaction but a less 
established method than PCA 

PCA monitoring Multiple baseline data 
sets 

Established 
statistical limits 

Well-established method but 
does not account for nonlinear 
interaction between variables 

AANN method 
Multiple baseline data 
sets and more 
computation 

Statistical limits 
Handles nonlinear variable 
interaction but requires more 
computation for training 

 

4.1 Single Parameter Monitoring 

Single parameter monitoring assumes that degradation in engine performance can be evaluated 
by one or more of the signals independently. It appears likely that this method can be applied to 
this data, but as mentioned, fault thresholds for a signal must be expertly set. Here we present 
only an example of how this method could be applied. First, it is noted that when the exhaust was 
restricted, the exhaust gas temperature is seen to be increased above baseline runs, as shown in 
figure 4. If it was known that an exhaust stack temperature above 1100 °F at an operating speed 
of 1450 RPM indicated that there was a blockage in the exhaust stack, then the faulted condition 
could be identified. Note that our example does not take into account what other variables might 
cause the exhaust stack temperature to increase. 
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Figure 4. Exhaust stack temperature for an exhaust restriction of 50% compared with baseline data. 

4.2 Correlation Analysis 

The main concept of this approach is to look for correlation changes with respect to a template 
file. The seven baseline runs identified for training in table 1 were used as the template. The list 
of processing steps follows:  

1. Select the regime and signal subset. 

2. Perform the correlation matrix calculation for the baseline/template. 

3. Perform the correlation matrix calculation for the test run. 

4. Calculate the correlation difference matrix with respect to the template file. 

5. Calculate a figure of merit (FOM) for the test run. 

6. Health classification using a FOM threshold from the receiver operating characteristic 
curve (ROC curve) 

The initial step includes the option of considering a particular operating regime or signal subset. 
A FOM value is calculated and provides a single indicator that can be used to assess the health 
condition of the engine. Additionally, searching the correlation difference matrix for maximum 
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changes provides a way of identifying which signals are contributing to the anomalous 
performance.  

1. Signal Subset and Operating Regime 

 The correlation analysis focused on the 32 signals highlighted in table 3. Only data that 
were in the operating regime with engine speed above 1500 RPM and engine load above 
80% were considered; this included all of the standard run data, but cuts out deviations 
from the standard run that are in the actual data.  

2. Correlation and Correlation Difference Matrix 

Correlation between two signals, si and sj, is defined as the covariance between those two 
signals normalized by the variance of each signal ssi and sj, as shown in equation 1. 

 
ji ss

ji
ij

ssCov
r

σσ
),(

= , (1) 

 where covariance is defined as the expected value expression in the numerator (equation 2). 
Note that the correlation is calculated for each signal pair and provides a matrix that is  
N x N in size, where N is the number of signals (2). 

 ( )( )[ ]
ji

ji

ss

sjsi
ij

ssE
r

σσ

µµ −−
=  (2) 

 The correlation difference matrix is generated by subtracting the elements of the correlation 
matrix for the run data from the template and squaring it to produce a magnitude (equation 
3).  

 ( )2__ TemplaterRunrd ijijij −=
 (3) 

 Correlation difference matrix plots are shown in figures 5 and 6. Figure 5 shows difference 
plots for two of the baseline runs (healthy) and indicates a low level of variation in healthy 
sets. Figure 6 is for an exhaust restriction run and shows distinct differences in correlation 
from the healthy template, particularly, in the T-ExhStack sensor compared with almost 
every other sensor. 
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Figure 5. Correlation difference matrices for baseline runs (left) 3 and (right) 6. 
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Figure 6. Correlation difference matrix for a 46% exhaust restriction (run 36). 

FOM Calculation and Health Assessment 

For each test run, a FOM value based on the correlation difference matrix was calculated. The 
FOM was defined as the summation of the values of the correlation difference matrix (equation 
4): 

 ∑∑
= =

=
n

i

n

j
ijdFOM

1 1
 (4) 

To evaluate health of the system based on this FOM, there needs to be a threshold established 
above which the engine will be considered to be in a faulted state. The receiver operating 
characteristic curve (ROC curve) is a common way of showing classification/detection results as 
a function of false positives and false negatives as a threshold is varied (3). Figure 7 shows the 
ROC curve for the FOMs of this data. In this case, a threshold of approximately 44.6 for the 
FOM value offers the best trade-off. This provides a false alarm rate of 5.56% and a missed 
detection of 46.7%.  
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Figure 7. ROC curve for the correlation-based FOM. 

The FOM health values are shown along with the threshold in figure 8. For the baseline runs, 10 
of the 11 runs were classified correctly as healthy (9.1% false alarm rate). Note that three 
additional baseline runs were added and given a later test number since these are from the files in 
which the gain was varied, but for these runs the gain was 1.0. For the seeded fault runs, 14 of 
the 30 were misclassified as healthy. The missed detection rate is quite high and highlights that 
this method has difficulty in detecting lower levels of degradation (associated with the lower 
levels of particular faults). There is some implication, however, that some lower fault levels may 
not degrade engine performance, and it may not be correct to call them “unhealthy.” In general, 
this method is detecting the more severe induced faults but not the lower levels of the same fault. 
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Figure 8. Correlation FOM for all runs The first eight are baseline runs and the remainder are by test 
number from table 2. The plot excludes training runs. 

4.3 Principal Component Analysis 

The primary concept is to extract useful information from the data set by projecting the data into 
a new set of orthogonal coordinates. PCA does this by performing an eigenvalue/eigenvector 
calculation on the covariance matrix (4). Its use for data analysis is diverse; for health 
monitoring, the application here, its use for dimension reduction (5) is applied and it is also used 
to calculate monitoring statistics (6). Specifically, the statistics T2 and square prediction error 
(SPE) are calculated for the block of data in each operating regime. The mean of the health value 
in that block is used to decide on the health status based on thresholds derived from statistical 
theory. If any values are above those thresholds, contribution plots are used to further identify 
the source of the fault. Listed below are the steps that were followed. Details of the basic PCA 
calculations are omitted, and the reader is referred to references 4–8 for specifics on the use of 
PCA and formulae used: 

1. Select the regime and signal subset 

2. Normalize the data and calculate the covariance matrix for the training set. 

3. Perform eigenvalue/eigenvector calculation of the covariance matrix. 

4. Save PCA baseline models with normalization and eigenvalue/eigenvector information. 

5. Normalize and project data from the monitored engine using baseline models. 
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f. Calculate the T2 and SPE health statistics and calculate the mean of these for the block of 
data. 

g. Calculate the top contributors for each fault.  

The initial step is to select operating regimes and the signal list. The signals were the same as 
those used for the correlation analysis. Four regimes were selected, which represent steady state 
operating points in the performance test runs, as shown in table 5. To avoid transient effects, the 
first and last 20 s in a particular operating regime were not included in the calculations. 

Table 2. Operating regimes for PCA analysis. 

Regime No Engine RPM Engine Load Pedal % 

1 1620–1820 60–100 80–100 

2 1820 – 2020 60–100 80–100 

3 2020–2200 60–100 80–100 

4 2220–2420 60–100 80–100 

 
After calculating the principal components, its is seen that the first few principal components can 
explain most of the variation seen in the data. The typical approach for determining the number 
of principal components to retain is to look at the eigenvalues (ranked in decreasing order) and 
select the ones that explain a high percentage of the variability in the data. In this analysis, the 
percentage was set to 85%. As an example, in the case of Regime 4, the top principal component 
accounts for 37% of the variability in the data set and the first eight account for 85%. Figure 9 
shows the decay in the variability for the first 10 signals; the variability continues to decay for 
the remaining 22.  
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Figure 9. Percent of variability explained by each principal component (Regime 4). 

Critical to the use of PCA for health monitoring are the calculation of the monitoring statistics T2 

and SPE, which are defined here with a full description available in reference 7. The T2 

calculation is similar to Mahalanobis distance, but is performed with the principal components, 
in our case, retained principal components, instead of the original data matrix (equation 5). 

 { } [ ] { }T
xrrxrxr uuT 1

1
1

2 −∑= , (5) 

 

where r is the number of retained principal components,{ } xru 1  are the retained principal 
components, and rxrΣ  are the retained eigenvalues   

The residuals, E, are calculated, which are essentially the difference between the model and 
actual data values (equation 6): 

 { } { } { } [ ]Tnxrxrxnnxn PuxE 111 −= , (6) 

where, n are the number signals, { } xnx 1  are the actual signal values, and T
nxrP][  are the retained 

eigenvectors. 

SPE is the sum of the residuals (summed from residuals for each sensor) (equation 7): 

 ∑
=

=
n

i
iESPE

1

 (7) 
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To make health assessments based on T2 and SPE values, thresholds were calculated using 
commonly accepted techniques described below (8, 9). The thresholds for T2 is calculated using 
equation 8, where r is the number of principal components retained, m is the number of samples 
in the training data set, a is the confidence level, and F is the F value from the F-distribution 
table: 

 ( )
αα ,,

2 1
rmrF

rm
mrT −−
−

= . (8) 

The SPE thresholds calculation is provided in equation 9. It is quite involved because the 
distribution of SPE is a summation of Chi-square distributions. See reference 9 for more details. Ca is the Z-value corresponding to a given confidence level (Normal Distribution Table) and l 
are the eigenvalues calculated from the training data set: 

  
  (9) 

 
 

 

 

 

PCA Results 

Based on calculations for a 99% confidence level, the detection results are very good for most 
cases; the detection rates are shown in table 6. The results, in general, improve with engine 
speed. The false alarm rate is zero in all regimes except Regime 1. Even so, the two false alarms 
in Regime 1 had values that were only slightly above the detection threshold. Plots of SPE and 
T2 for each regime along with the thresholds are presented in figures 10–17. Note that the x-axes 
are the original test numbers and that the y-axes are on a logarithmic scale (this is because of the 
large range in values). As a significant note, the majority of the missed detections were for air 
intake restrictions. For example, four of the five missed detections in Regime 4 occurred for the 
air intake seeded fault; this unfortunately significantly reduces the overall detection rate. Also of 
value, the monitoring statistics show a correlation with fault severity, in that faults of increasing 
severity had higher (more degraded) health values.  
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Table 3. Results of SPE and T2. 

Regime Fault Detection Rate 
(SPE) 

False Alarm 
Rate (SPE) 

Fault Detection 
Rate (T2) 

False Alarm 
Rate (T2) 

1 80% 18.18% 73.33% 0.00% 

2 80% 0.00% 70.00% 0.00% 

3 83.33% 0.00% 73.33% 0.00% 

4 83.33% 0.00% 83.33% 0.00% 

 

 

Figure 10. Regime 1 SPE health values for each run. 
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Figure 11. Regime 1 T2 health values for each run. 

 

Figure 12. Regime 2 SPE health values for each run. 
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Figure 13. Regime 2 T2 health values for each run  

 

Figure 14. Regime 3 SPE health values for each run. 
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Figure 15. Regime 3 T2 health values for each run. 

 

Figure 16. Regime 4 SPE health values for each run. 
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Figure 17. Regime 4 T2 health values for each run. 

It is of interest to know which signals had the greatest contribution for a particular fault. The T2 

and SPE contribution values for each of the signals are calculated using equations 7 and 8 (9). 
The results are presented in tables 7 and 8. An additional benefit from this study is that the 
contribution plot results could provide insight on what signals are important for single parameter 
monitoring. 

  (7) 

 

  (8) 

 

where k varies from 1 to n for both equations 6 and 7. 

In general, the top contributors for the SPE agree with a physical understanding of the engine 
and the faults that were seeded. For example, seeded faults with boost are showing that the boost 
sensor is the main contributor, and likewise seeded faults with exhaust restriction are showing 
that the exhaust pressure sensor is showing the most contribution. The contribution results from 
the T2 are more difficult to interpret in some instances, for example, the boost sensor is the top 
contributor for the higher exhaust restriction faults. The faults that were induced by adjusting a 
sensor gain gave virtually the same contribution results for both T2 and SPE; however, the 
mechanical faults based on restricting airflow resulted in different top contributors. Whether this 
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is always the case would require further experimentation and study. Figure 18 shows a particular 
run, 50% exhaust restriction, with the relative contributions of each sensor from SPE. In this 
case, the exhaust pressure sensor has a much higher contribution than the others, with the second 
largest contributor being the exhaust gas temperature. 

Table 4. Signal contribution to fault detection from T2 calculation. 

 

 Test # MatLAB File Name Fault Type Severity  T Contribution 1 T Contribution 2
9 PerfM3_IntRestr_May27_ext IntakeAir Restric Test Pos # 4 'P-ExhB4Turbo2' 'P-ExhB4Turbo1'
10 PerfM3_IntRestr_May27_ext IntakeAir Restric Test Pos # 6 'ECM1-Boost' 'Sensor-Boost'
12 PerfM3_OilP_Jun8_par OilPress High Gain Gain 0.7 'ECM1-OilPres' 'EngOilP'
13 PerfM3_OilP_Jun8_par OilPress High Gain Gain 1.3 'ECM1-OilPres' 'EngOilP'
14 PerfM3_AirChgT_Jun10_ext AirCharge Temp high Shift Increased by 20oF 'Sensor-AirIntMani' 'ECM1-AirIntMani'
15 PerfM3_AirChgT_Jun10_ext AirCharge Temp high Shift Increased by 30oF 'IntManiAirT' 'Sensor-AirIntMani'
16 PerfM3_AirChgT_Jun10_ext AirCharge Temp high Shift Increased by 50oF 'IntManiAirT' 'Sensor-AirIntMani'
17 Perfor3_AirRestr_Jun15_ext AirRestriction Low Pos # 2 'Sensor-InjPres' 'ECM1-InjPres'
18 Perfor3_AirRestr_Jun15_ext AirRestriction Low Pos # 3 'InjCtrlP' 'Sensor-InjPres'
19 Perfor3_AirRestr_Jun15_ext AirRestriction Low Pos # 4 'P-ExhB4Turbo2' 'P-ExhB4Turbo1'
20 Perfor3_B_AirRestr_Jun15_ext AirRestriction High Pos #5 'P-ExhB4Turbo2' 'P-ExhB4Turbo1'
21 Perfor3_B_AirRestr_Jun15_ext AirRestriction High Pos #6 'ECM1-Boost' 'Sensor-Boost'
22 Perfor3_C_AirChgT_high_Jun15_ext AirChgHigh 'IntManiAirT' 'Sensor-AirIntMani'
23 Perfor3_C_AirChgT_high_Jun15_ext AirChgHigh 'T-IntAirMani' 'Sensor-AirIntMani'
24 PerforM3_AirChg_low_Jun16_ext AirCharge 'Sensor-AirIntMani' 'ECM1-AirIntMani'
25 PerforM3_AirChg_low_Jun16_ext AirCharge 'ECM1-AirIntMani' 'IntManiAirT'
26 PerforM3_AirChg_low_Jun16_ext AirCharge 'P-ExhB4Turbo2' 'InjCtrlP'
27 PerfM3_B_AirIntRes_Jun29_ext IntRestriction Pos #5 'P-ExhB4Turbo2' 'ECM1-EngCoolT'
28 PerfM3_B_AirIntRes_Jun29_ext IntRestriction Pos #6 'P-ExhB4Turbo2' 'T-ExhB4Turbo2'
29 PerfM3_B_AirIntRes_Jun29_ext IntRestriction Pos #7 'ECM1-Boost' 'Sensor-Boost'
30 PerforM3_B_BoostG_Jul6_ext Boost Gain 0.85 'ECM1-Boost' 'Boost'
31 PerforM3_B_BoostG_Jul6_ext Boost Gain 0.95 'Sensor-Boost' 'P-ExhB4Turbo2'
33 PerforM3_ExhRestr_Jul13_ext ExhRestr 60% 'P-ExhB4Turbo2' 'P-ExhStack'
34 PerforM3_ExhRestr_Jul13_ext ExhRestr 55% 'P-ExhB4Turbo2' 'P-ExhStack'
35 PerforM3_ExhRestr_Jul13_ext ExhRestr 50% 'ECM1-Boost' 'Sensor-Boost'
36 PerforM3_B_ExhRestr_Jul13_ext ExhRestr 42% 'Sensor-Boost' 'ECM1-Boost'
37 PerforM3_B_ExhRestr_Jul13_ext ExhRestr 46% 'Sensor-Boost' 'ECM1-Boost'
38 PerforM3_B_ExhRestr_Jul13_ext ExhRestr 50% 'ECM1-Boost' 'Sensor-Boost'
40 PerforM3_InjPresG_ext3_ext InjPress Gain 0.9 'Sensor-InjPres' 'T-ExhB4Turbo2'
41 PerforM3_InjPresG_ext3_ext InjPress Gain 1.1 'Sensor-InjPres' 'T-ExhB4Turbo2'
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Table 5. Signal contribution to fault detection from SPE calculation. 

 

 

Figure 18. SPE contribution plot, showing the relative contribution of each signal (50% exhaust restriction). 

 Test # MatLAB File Name Fault Type Severity  Q Contribution 1 Q Contribution 2
9 PerfM3_IntRestr_May27_ext IntakeAir Restric Test Pos # 4 'P-ExhB4Turbo2' 'P-AirB4Mani'
10 PerfM3_IntRestr_May27_ext IntakeAir Restric Test Pos # 6 'AirFlow' 'T-ExhB4Turbo2'
12 PerfM3_OilP_Jun8_par OilPress High Gain Gain 0.7 'ECM1-OilPres' 'EngOilP'
13 PerfM3_OilP_Jun8_par OilPress High Gain Gain 1.3 'ECM1-OilPres' 'EngOilP'
14 PerfM3_AirChgT_Jun10_ext AirCharge Temp high Shift Increased by 20oF 'T-IntAirMani' 'IntManiAirT'
15 PerfM3_AirChgT_Jun10_ext AirCharge Temp high Shift Increased by 30oF 'T-IntAirMani' 'IntManiAirT'
16 PerfM3_AirChgT_Jun10_ext AirCharge Temp high Shift Increased by 50oF 'T-IntAirMani' 'IntManiAirT'
17 Perfor3_AirRestr_Jun15_ext AirRestriction Low Pos # 2 'T-ExhB4Turbo2' 'P-ExhStack'
18 Perfor3_AirRestr_Jun15_ext AirRestriction Low Pos # 3 'Torque' 'P-ExhB4Turbo1'
19 Perfor3_AirRestr_Jun15_ext AirRestriction Low Pos # 4 'P-ExhB4Turbo2' 'AirFlow'
20 Perfor3_B_AirRestr_Jun15_ext AirRestriction High Pos #5 'P-ExhB4Turbo2' 'AirFlow'
21 Perfor3_B_AirRestr_Jun15_ext AirRestriction High Pos #6 'AirFlow' 'P-ExhB4Turbo2'
22 Perfor3_C_AirChgT_high_Jun15_ext AirChgHigh 'T-IntAirMani' 'T-ExhB4Turbo2'
23 Perfor3_C_AirChgT_high_Jun15_ext AirChgHigh 'Sensor-AirIntMani' 'ECM1-AirIntMani'
24 PerforM3_AirChg_low_Jun16_ext AirCharge 'T-IntAirMani' 'ECM1-EngCoolT'
25 PerforM3_AirChg_low_Jun16_ext AirCharge 'Sensor-AirIntMani' 'ECM1-EngCoolT'
26 PerforM3_AirChg_low_Jun16_ext AirCharge 'P-ExhB4Turbo2' 'P-aftTurbo'
27 PerfM3_B_AirIntRes_Jun29_ext IntRestriction Pos #5 'P-ExhB4Turbo2' 'AirFlow'
28 PerfM3_B_AirIntRes_Jun29_ext IntRestriction Pos #6 'P-ExhB4Turbo2' 'AirFlow'
29 PerfM3_B_AirIntRes_Jun29_ext IntRestriction Pos #7 'AirFlow' 'P-ExhB4Turbo2'
30 PerforM3_B_BoostG_Jul6_ext Boost Gain 0.85 'ECM1-Boost' 'Sensor-Boost'
31 PerforM3_B_BoostG_Jul6_ext Boost Gain 0.95 'ECM1-Boost' 'Sensor-Boost'
33 PerforM3_ExhRestr_Jul13_ext ExhRestr 60% 'P-ExhStack' 'P-ExhB4Turbo2'
34 PerforM3_ExhRestr_Jul13_ext ExhRestr 55% 'P-ExhStack' 'P-ExhB4Turbo2'
35 PerforM3_ExhRestr_Jul13_ext ExhRestr 50% 'P-ExhStack' 'T-ExhStack'
36 PerforM3_B_ExhRestr_Jul13_ext ExhRestr 42% 'P-ExhStack' 'T-ExhStack'
37 PerforM3_B_ExhRestr_Jul13_ext ExhRestr 46% 'P-ExhStack' 'T-ExhStack'
38 PerforM3_B_ExhRestr_Jul13_ext ExhRestr 50% 'P-ExhStack' 'T-ExhStack'
40 PerforM3_InjPresG_ext3_ext InjPress Gain 0.9 'Sensor-InjPres' 'ECM1-InjPres'
41 PerforM3_InjPresG_ext3_ext InjPress Gain 1.1 'Sensor-InjPres' 'ECM1-InjPres'
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5. Discussion 

Several items of interest were discovered in this preliminary study including relative 
performance of the methods evaluated as well as salient characteristics of the results. First, when 
faults were applied, differences in the sensor outputs were detected. Therefore, it is reasonable to 
assume that single parameter modeling can be applied to health assessment of the engine. Again, 
the caveat of requiring expert knowledge to set signal thresholds inhibits our use of this method 
at this time. Although such information is difficult to come by, if it were to become available, 
then this method would be simple to implement. Second, it is seen that PCA is better suited to 
detect faults in this data than correlation analysis. The primary drawback of correlation analysis 
here is its inability to detect lower-level faults. There are several items of interest with PCA on 
this data set. It is a curiosity that the results improve with engine speed and we speculate that the 
effects of the fault are exacerbated as the speed increases. It is a matter for further study why the 
faults that were induced by adjusting a sensor gain gave the same contribution results for both T2 
and SPE, while the mechanical induced faults gave different top contributors. Finally, there is the 
matter that both methods could not detect the faults in all but the highest states of intake air 
restriction. At this time, we can only suggest that the lower states do not appear to have a 
significant effect on engine performance. This emphasizes a point regarding the nature of this 
testing; although named seeded faults, the runs may be more accurately described as 
perturbations in operating variables and are not faults in the traditional sense. These 
perturbations may or may not adversely affect engine performance. With this in mind, our work 
is on the detectability of the perturbations; and whether or not they are critical to the actual 
“health” of the engine is uncertain. 

6. Conclusion and Recommendations 

Single parameter monitoring, correlation analysis, and PCA with two independent statistics—T2 
and SPE—all show applicability to this problem.  As discussed, single parameter monitoring can 
be pursued further if thresholds in signals become available. Encouragingly, both PCA statistics 
and correlation analysis detect the majority of the faults. PCA by far outperformed correlation 
analysis, and between the two any further work should focus on PCA. For the PCA method, 
various model refinements can be done, such as adjusting how many principal components to 
retain, using a smaller sensor subset, or incorporating the analog and Penn State data in the 
analysis. Finally, it is recommended to evaluate the data using nonlinear PCA; AANN is a 
proven way of implementing this approach (11). The motivation for using the AANN approach 
is based on the belief that some of the sensors in the engine have a nonlinear 
relationship/correlation.  
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List of Symbols, Abbreviations, and Acronyms 

AANN auto-associative neural network based methods 

ARL U.S. Army Research Laboratory 

CAN controller-area network 

DAQ data acquisition system 

dyno dynamometer  

FOM figure of merit  

MIS Millennium Integrated Services 

P&D prognostics and diagnostics 

PCA principal component analysis 

Penn State Pennsylvania State University  

ROC receiver operating characteristic curve 

SPE square prediction error 

TARDEC U.S. Army Tank and Automotive Research, Development and Engineering Center 
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