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1. Introduction

In this report we consider how two parties can rapidly and securely replace their shared

symmetric encryption keys. Our randomized algorithm produces nondeterministic key

sequences whose recovery is difficult for adversaries and yet easy for intended parties. We

label the keys used for data encryption as temporal. We assume that the parties also share

a session key that is used to rekey the temporal keys. Rekeying is necessary because keys

can be compromised by adversaries; the possibility of a key compromise increases with the

frequency of its use (1, 2 ). It is therefore important to replace the temporal key before

compromise is probable, and much sooner than that, if possible. Our distinction between

key types indicates that the temporal keys, since they are constantly being used for

encryption, should be replaced much more often than the session key. However, unless

efficient rekeying algorithms are used, the additional protection of the temporal keys may

require significant overhead. This is of particular concern in energy constrained devices

such as in mobile ad-hoc or sensor networks.

Symmetric keys are often used for high rate transfers because encryption/decryption has

relatively low complexity. Further, it is well known that in terms of security per bit,

symmetric keys are the strongest (3 ) (followed by elliptic curve [4, 5 ] and asymmetric keys

[6 ]). That is, for the same length key, symmetric key systems are the hardest to defeat.

However, the main obstacle of using symmetric encryption is the difficulty in distributing

and replacing the keys. The three main philosophies used to generate, and occasionally

replace, the initial session keys are not suited for the rapid rekeying of the temporal keys

for various reasons:

1. Distributing secret keys over a secure channel (e.g., [7 ]) is not always a suitable

solution because it assumes the availability of a separate secure channel. For

example, this is hard to achieve in wireless situations. There is a fundamental

tradeoff between how many keys are initially distributed and how long before the

secure channel is needed again to rekey.

2. Negotiating keys over an insecure channel (e.g., [8, 9 ]) can be expensive in terms of

communication and computation. Handshaking messages are generally required to

establish the new key. As the rate of rekeying increases, the computation and

communication costs become prohibitive.

3. Relying on third parties to help manage keys (e.g., [10 ]) is not always an option (in

mobile ad-hoc networks, for example [11 ]). Even if the computational load is pushed

to the third party, the fundamental cost of using the channel to distribute keys is

that rekeying messages take the place of data and hence reduce the data rate.
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When a symmetric key is used to encrypt traffic, the adversary has more information that

allows her to possibly recover the key. Therefore, the keys are typically reestablished

through another round of authentication and key negotiation (as in the previous

references), where both parties contribute entropy towards the next shared key. However, if

the rekeying can occur often enough, there is very little possibility of compromise by the

adversary, and the precautions of reauthentication and renegotiation may not be strictly

necessary. In our proposed method, we have a session key that helps generate the temporal

keys that are used for encryption. By changing the temporal keys rapidly, it is difficult for

an adversary to compromise them. Further, by selecting temporal keys in a

nondeterministic way, it is very difficult for an adversary to gain information about the

session key.

We are motivated by the unsuitability of standard keying methods for use over constrained

devices and use the preceding reasoning to arrive at a novel method that exploits the

randomness of Markov models to efficiently replace the temporal keys. In this report we

show that the proposed key replacement method:

• produces sequences of temporal keys with a positive key entropy rate

• does not require explicit key replacement communication between the sender and

receiver

• does not require the presence or cooperation of trusted third parties

• has very low storage requirements

• has computational requirements comparable to or lower than other secure key

replacement methods

• increases the difficulty for the adversary to gain session key information

We quantify the security of our key replacement method by the equivocation of the generated

keys. With careful selection of parameters, we show that key security can be very high with

only modest communication, computation, and memory requirements. In particular, we show

that it is difficult for adversaries to deduce the current temporal key. Further, even when

able to compromise the temporal key, teh adversary is unable to gain significant advantage

in deducing past or future keys because the session key remains well protected.
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2. Problem Overview

Any rekeying method must satisfy some security requirements in order to be useful. A

method that is also efficient allows for more frequent key replacements; this can enhance

system security. We detail first our security requirements and then our efficiency metrics.

2.1 Key Security

We assume the following scenario. Alice and Bob share a pre-distributed session key l,

which is used to select a Markov model from a large collection. This model is used to

generate all the temporal keys {ki} that will be used. They use the temporal key ki to

encrypt their messages in the ith epoch. In the next epoch, they replace it with the fresh

key ki+1.

There is an adversary, Eve, who wants to deduce the secret keys (session or temporal)

given her observations of the encrypted messages. We are interested in the ability of Eve to

deduce the secret keys both as an outsider∗ and as a one-time insider.† In particular, when

Eve is a one-time insider we are concerned about the secrecy of past keys (perfect forward

secrecy) and future keys (susceptibility to known-key attacks) (12 ).

Perfect forward secrecy refers to the protection of past temporal keys given the compromise

of the session key. That is, if Eve obtains the session key l during epoch i, she is unable to

infer the temporal keys used in prior epochs {k1, . . . , ki−1} above a small probability (the

messages remain secret forward in time). The resistance of the method to known-key

attacks refers to the protection of future temporal keys given knowledge of past temporal

keys (but not the session key). Taken together, these two requirements state that in the

event of a key breach, Eve is able to recover past or future temporal keys with only a small

probability.

2.2 Replacement Efficiency

The efficiency of a key replacement algorithm or method can be quantified in a variety of

ways:

∗An outsider knows only what is generally available (e.g., the key replacement method) but not privileged
information (e.g., any of the keys).

†An insider (cf. outsider) has access to privileged information (e.g., one or more keys); a one-time insider
gains such information at only one point in time.
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• Number and bandwidth of messages required

• Complexity of the computation at Alice and Bob, measured by the number of simple

operations

• Size of storage and memory requirements

In this report, we demonstrate a method that can generate high quality key replacements

without requiring explicit key replacement communications or unreasonable amounts of

memory. We accomplish this by using large Markov models in a synchronized way to

choose the replacement keys. However, the transitions between states are random ; this has

the effect of exponentially increasing Eve’s search space while our method keeps the search

space of Alice and Bob manageable.

The storage requirements are minimized by using a pseudo-random number generator

(PRNG) to generate only the portions of the Markov model in use. This avoids the need

for Alice and Bob to store the entire model in memory. As we discuss in section 4, reliance

upon a PRNG is a potential vulnerability and thus we require PRNGs that are

crytographically secure. Secure PRNGs generally require more computations than

non-secure PRNGs, and a variety of them exist, offering varying levels of security and

complexity. We note that the computational requirement of our method is comparable

with other secure key replacement methods. In section, 7 we contrast our new approach

with some existing key exchange methods, exploring the various tradeoffs between security

and efficiency.

3. Markov Key Replacement Method

We introduce our key replacement method with a simple example. We assume that Alice

and Bob synchronize their key replacements, e.g., they may agree to change their keys at

regular time intervals.

Illustrating Example:

Suppose that there is a large family of Markov models. Let Alice and Bob choose the

particular model shown in figure 1. Eve does not know which model is chosen. Each model

state represents a unique temporal key. Suppose that Alice and Bob are currently using

4



1

2 3

4
.5 .5

.5 .5

.5 .5

.5 .5

a) b)

Figure 1. Simple Markov model when K = 4 and b = 2. The states and possible
transitions are shown in (a) while a corresponding probability matrix is shown
in (b). Note that A is sparse.

key 2. At the next key replacement time, Alice starts to use either key 1 or key 3 with

equal probability. Suppose Alice chooses key 1.

Bob, having both the model and the current key, knows that the replacement key is either

1 or 3. He is able to determine which key is correct by checking the message integrity

(detailed below) after decrypting with each possible key. After the check, Bob knows that

Alice is using key 1, and starts to use key 1. Alice and Bob thus regain synchrony. These

steps are repeated at each key replacement time.

Note that for each rekey, Alice makes a random (constrained) decision on the next

temporal key. This adds entropy to the rekeying step and is the fundamental difference

between this method and the use of a seeded PRNG’s output as the sequence of temporal

keys. That method has the illusion of increasing key randomness but the sequence is

actually deterministic given the initial seed; in comparison, by making the random key

choice Alice increases the entropy of the key sequence with each rekey (section 4.4).

In the following sections, we describe how the temporal keys are used to encrypt messages

and how Bob determines if he is using the correct key. This ability to identify the correct

key is a central assumption in the proposed method. Then, the specification and

construction of the family of Markov models are detailed, and their use is described in the

context of Alice and Bob’s key replacement algorithms. Finally, we analyze the efficiency of

the method.

5



3.1 Message Model

We use the superscripts a, b to denote the influence or ownership of Alice or Bob,

respectively.

During key epoch i, Alice forms the ciphertext xi by encrypting the message sa
i with her

temporal key ka
i

xi = fe(s
a
i , k

a
i ), (1)

and Bob recovers the message by decrypting the ciphertext with his key

sb
i = fd(xi, k

b
i ). (2)

The encryption and decryption functions satisfy

s = fd(fe(s, k), k) (3)

and hence when ka
i = kb

i Bob receives the message correctly (sb
i = sa

i ).

We assume that the message includes an integrity check so that the receiver knows when

the message is received correctly. For example, the message may be appended with a cyclic

redundancy check (CRC)-32 which will match when the correct key is used to decrypt.

Writing the integrity check as ψ(·), we test a particular key m with the message xi:

ψ(xi, m) =

{
0 =⇒ sa

i �= sb
i or ka

i �= m
1 =⇒ sa

i = sb
i and ka

i = m
. (4)

That is, when the integrity check fails (ψ(·) = 0), Bob is certain that the message is

received in error or that the tested key is incorrect (mismatched with Alice’s key).

Conversely, when the integrity check passes, Bob knows that the message and key are both

correct. Therefore, Bob can use the outcome of ψ(·) to determine if he is using the correct

key.

For clarity of the following discussion, we assume that a passed integrity check implies

perfect message reception with the correct key. However, in actuality, there may be a

non-zero probability that an incorrect key or message can lead to a passed integrity check.

For instance, it is possible to pass a CRC check when the incorrect key was used to

decrypt. We elaborate on the effect of such errors in section 6.

3.2 Family of Markov Models

Alice and Bob choose the same Markov model λ from a large family of models Λ using an

index l. We view l as the session key shared by Alice and Bob. For security, let each model

6



be chosen with equal probability 1/L, where |Λ| = L. They use this model to determine the

subsequent temporal keys that they will use to encrypt/decrypt their traffic. There should

be many possible Markov models and temporal keys to resist successful brute-force attacks.

3.2.1 Markov Model Specification

Denote a Markov model by λ = (A, π), where A is the transition probability matrix and π

contains the initial key probabilities. Suppose that the temporal keys are drawn from a

keyspace K with size K, i.e., |K| = K. Then A is a K ×K matrix and π is a K × 1 column

vector. We use the convention that A(m,n) is the probability of transitioning from key m

to key n, and likewise π(m) is the probability of having initial key m.

Looking forward to section 3.3, we limit the complexity of the receiver by allowing each key

to transition to one of exactly d possible keys. We call d the branching factor of the model

and specify that the key transitions are equiprobable. That is, if a transition from key m to

n exists, it is taken with probability 1/d.∑
n

I(A(m,n)) = d, ∀m (5)

A(m,n) ∈
{

0,
1

d

}
, ∀m,n (6)

When d� K, the transition matrix is sparse.

3.2.2 Construction

We motivate our Markov model construction method by first considering the memory

requirements of a naive approach. A single Markov model requires O(dK) memory, since

limiting the branching factor d makes the number of total transitions linear in K. For

32-bit keys with branching factor 2, the model requires at least 1 gigabyte of memory.

Storing the entire family of L Markov models thus requires O(dKL), and quickly becomes

infeasible when L or K grow large. Even with small key sizes L = K = 232 and a modest

branching factor of d = 2, the storage requirement is approximately 232+32+1, or 4.3 billion

gigabytes. Clearly, storing entire models in memory is not feasible when realistic key sizes

are considered.

Note that Alice and Bob only need to know the current key and the set of possible next

keys in order to replace their temporal key. We therefore turn our attention towards an

algorithm that allows Alice and Bob to directly access the transition probabilities from any

given key without having to store the entire model in memory. Note that specifying the

possible transitions from each state is equivalent to specifying the Markov model.

7



Let us assume q-bit temporal keys. Given the current key ki = m, how do we find the set

of possible next keys, i.e., the set of n for which A(m,n) is nonzero? One possibility is

diagrammed in figure 2 and outlined below:

1. Seed a PRNG with a value f(l,m), where l is the session key and m is the value of

the current temporal key ki. For the experiments in this report we use

f(l,m) = K ∗ l +m (7)

though, in general, f(·) can be any deterministic mapping.

2. Select q-bit segments of the PRNG output. Each segment corresponds to a candidate

for the next key. Repeat until there are d unique keys.

3. The transition probabilities of each candidate key are 1/d.

Figure 2. Construction and use of a random access Markov model with 4-bit temporal
keys. PRNG is seeded based on the current key and model to generate the set
of next keys.

Note that we reseed the PRNG each time we calculate transition probabilities from a

different key. For the remainder of this report we assume that the Markov models appear

statistically random. This is true for a good PRNG, the requirements of which are

described in section 4.

Let π(1) = 1 so that the initial temporal key is k0 = 1. This key is not used to encrypt any

messages because it is known to everyone, but it is used to generate the first temporal key

k1. We elaborate on this in the next section.

3.3 Key Replacement Algorithm

Before we present the simple key replacement algorithms, we first define the goal of key

replacement methods in terms of key synchrony.

8



Definition 1 The keys of Alice and Bob are synchronized for n key epochs when

ka
i = kb

i , ∀0 ≤ i < n (8)

Definition 2 The time-to-failure of the method is n0, where

n0 = arg min
i>0

ka
i �= kb

i (9)

We wish to assert that n0, the time-to-failure, is large. We show that n0 = ∞ when the

integrity check is perfect (section 3.3). The synchrony time for imperfect integrity checks is

addressed in section 6.

We now introduce the key replacement algorithm. We assume that messages are

transmitted starting in epoch 1 so that the first temporal keys are ka
1 and kb

1.

Initialization:

1. Alice and Bob choose a Markov model

λa = λb = Λ(l), (10)

where integer l is chosen uniformly from {1, . . . , |Λ|}
2. Alice and Bob initialize their temporal keys

ka
0 = kb

0 = 1. (11)

3. Alice performs a Key Replacement (below) to select the first temporal key k1.

Key Replacement:

Alice uses l and ka
i to generate the next temporal key ka

i+1, which is used to

encrypt the messages in epoch i+ 1. She does not explicitly signal any key

information to Bob.

1. Find the set of possible keys from ka
i : N = {n|A(kb

i , n) > 0}. See figure 2

or section 3.2.2 for details.

2. Assign ka
i+1 = n ∈ N w.p. 1/d

9



Key Recovery:

At the beginning of key epoch i+ 1, Bob starts to receive messages

encrypted with a different key. Assume that the temporal keys were

synchronized in the previous epoch, i.e., ka
i = kb

i . Since Bob shares the same

model as Alice, he knows the next set of possible keys.

1. Find the set of possible keys from kb
i : N = {n|A(kb

i , n) > 0}. See figure 2

or section 3.2.2 for details.

2. For each key n ∈ N :

• If ψ(xi+1, n) = 1, then assign kb
i+1 = n and halt.

• Else continue checking other keys.

Under our assumptions of epoch synchrony and correctly functioning integrity checks, Bob

and Alice will remain in key synchrony, i.e., n0 = ∞. We treat the case of imperfect

integrity checks in section 6.

3.4 Method Efficiency

We now consider the communication, computation, and memory requirements of this

scheme.

Communication: Aside from the initial synchronization of Markov models, there are no

explicit key replacement messages sent between Alice and Bob.

We have also assumed that Alice and Bob remain in synchrony so that they know when to

replace their keys. In typical networks, synchrony may already be maintained so that this

requirement adds little or no overhead. Alternatively, if the integrity check works perfectly,

Bob no longer needs to know a priori when Alice changes her key. Alice can change the

temporal key at will and Bob will be able to detect the change and search for the new key.

Computation: The transmitter only needs to select a key from the set of d possible future

keys. The receiver, however, needs to check the set of possible keys until the correct one is

found. Thus, he needs to perform up to d decryptions and integrity checks. Since the next

key is chosen with equal probability from the set, on average the receiver will perform d/2

decryptions and integrity checks.

Since the possible key transitions from the current key are not stored in memory, we must

consider the computation costs required to generate them. As we discuss in section 4, for

security purposes, we require the use of cryptographically secure PRNGs (CSPRNGs),

10



which generally have higher complexity than non-CS PRNGs. For example, the Blum

Blum Shub CSPRNG has a security proof based on the hardness of integer factorization,

but has complexity equal to RSA (13 ). Lower complexity CSPRNGs such as Yarrow have

been shown through practice to be resistant to attack, but no such proofs of security exist

for them (14 ).

Memory: We have shown in section 3.2.1 that it is not necessary (or possible in most

instances) to store the entire set of Markov models in memory. In particular, we show that

Alice and Bob only need to store the session key and the current temporal key, since the

set of possible future keys can be computed directly from the model. The minimum storage

requirement is therefore log2(L) + log2(K) bits.

4. Security of the Proposed Method

In this section, we show that the proposed method has perfect forward secrecy and is

resistant to known-key attacks. Further, little information about the session key is revealed

by the replacements. That is, we show that the following properties about the codebook Λ

hold:

1. H(kj |l, ki) ∼= H(K) for j < i

2. H(ki+1|ki) ∼= H(K)

3. H(l|ki) ∼= H(Λ)

where K is the collection of temporal keys, Λ is the collection of Markov models, and H(·)
is Shannon entropy defined on a random variable X as

H(X) =
∑

x

−p(x) log2 p(x) (12)

The properties state that (1) compromise of the session key does not expose the previous

temporal keys, and that compromise of the current temporal key reveals little information

about (2) subsequent temporal keys or (3) the session key (i.e., the Markov model in use).

To ensure keys with high equivocation, the transition probabilities of the Markov models

should be uniformly distributed. Since the models are pseudo-randomly generated, the

PRNG output should appear to be statistically random, i.e., nearly uniformly distributed

so that there is little skew or bias. For this reason, for simulations we use the Mersenne

Twister PRNG, whose output has good statistical properties (15 ).

11



However, we should note that PRNGs that pass statistical tests are not necessarily

sufficient for security purposes. For example, though the digits of the scalar constant π

may pass any statistical test for randomness, they are predictable and hence exploitable by

any reasonably capable adversary. Thus, the PRNG needs to not only produce seemingly

random output but also be unpredictable to the adversary.

Finally, we show that the entropy of the generated key is limited to the branching factor d.

In the ideal case, the entropy would be H(K), but the proposed method trades the key

entropy for computation costs. However, as is shown in the sequel, the method has good

equivocation properties that make it resistant to attack.

4.1 Forward Secrecy

Suppose that Eve is able to discover the session key l as well as the temporal key ka
i = kb

i .

Is she able to recover the previous temporal keys {k1, . . . , ki−1}? While the forward

transitions are easy to calculate, by the nature of the construction (section 3.2.2), it is not

as easy to find the backward transitions. When Eve does not know about the structure of

the Markov model in use, she has no choice but to brute-force search the keyspace to find

the possible previous keys. In other words, the key equivocation is near maximal

H(kj |l, ki) ∼= H(K) for j < i (13)

since Eve gains no information about the previous keys. This is the ideal case in terms of

security since it offers perfect forward security. Note that even Alice and Bob, who know

which model they are using, have no advantage in specifying the structure of the model

since they do not store it entirely in memory. Again, we emphasize that this property relies

heavily on the unpredictability of the PRNG.

Since the models are (pseudo-)randomly generated, we rely on the security afforded by the

underlying PRNG. If Eve is able to discover the structure of the PRNG, she is potentially

able to discover the prior temporal keys. Thus, the forward security of the proposed key

replacement method relies on the unpredictability of the PRNG. CSPRNGs are designed to

be unpredictable at the cost of increased computation compared to non-CS PRNGs.

4.2 Entropy of Next Temporal Key

Given a model and the current temporal key, there are d candidates for the next temporal

key. Over all L possible models that are generated from the same PRNG, there are

therefore dL candidates uniformly distributed over the K possible keys. The probability of

transitioning from key m to key n is therefore

1

dL

∑
l

Al(m,n) =
1

dL
|A(m,n)| (14)

12



The entropy is therefore

H(ki+1|ki = m) =
∑

n

h

(
1

dL
|A(m,n)|

)
(15)

where h(y) = −y log2(y) (16)

Since the keys are chosen uniformly over each A, P (|A(m,n)| = x) is approximated by the

Poisson distribution

P (|A(m,n)| = x) = f(x, x̄) (17)

=
x̄xe−x̄

x!
(18)

where x̄ is the expected number of occurrences. In our case, x̄ = dL/K.

The entropy of the next key can thus be approximated

H(ki+1|ki = m) =
∑

x

E [|A(m,n) = x|]h
( x

dL

)

=
∑

x

Kf(x, x̄)h
( x

dL

)
(19)

Figure 3 shows that the entropy is close to the maximum when the branching factor d is

high and the number of models L is high. The critical point is that dL must be greater

than K; this ensures that over all the models the possible keys are sufficiently random.

Note that with sufficiently many models, the branching factor contributes only a small

amount of entropy.

A subtle but crucial point that arises is the question of key reachability. Namely, how do we

guarantee that given a particular temporal key, the set of possible subsequent keys is large?

It is certainly possible for temporal keys to traverse only a small space, which leads to poor

security since subsequent keys may be easily recovered. We show in section 5 that with

high probability, the set of possible subsequent keys for any given temporal key is large.

4.3 Entropy of the Session Key

The current temporal key should give little information about the session key, or

equivalently, which model λ is being used. From section 5, we know that the giant

connected component (GCC) G has size O(K) and that the number of non-zero stationary

probabilities μi are also O(K). For large d, we can approximate |G| ∼= K.

The temporal key sequence generated using the model forms a Markov chain. Assume that

the Markov chain is in steady state. Let the stationary probability of key i under model l

13
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Figure 3. Entropy of next key given the current key. The Markov model is not known
to the adversary. K = 264.

be μl
i. Then the entropy of the model given the current temporal key ki is

H(l|ki) =
∑

l

h

(
μl

i∑
l μ

l
i

)
(20)

We note from experiment that the stationary probabilities are well approximated by a

Rayleigh distribution when d is small and a normal distribution when d is large (figures 4

and 5, respectively). In the experiment, we assumed K = L = 1024 and used the Mersenne

Twister as the PRNG.

Figure 6 shows that the model entropy is close to the maximum when the branching

probability is high and the number of models L is high. Increasing the branching factor

improves the model entropy.
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4.4 Entropy Rate

Since the GCC is strongly connected, it is irreducible. With high probability, random

digraphs are also aperiodic. An irreducible and aperiodic Markov chain converges to its

unique stationary distribution μ (16 ), and the resulting entropy rate is

H(K) = −
∑

m,n∈G
μmAmn logAmn ≤ log d (21)

with equality when a transition between keys m and n implies that Amn = 1/d. Thus,

entropy rate is maximized when future keys are equiprobable.

In comparison, in section 4.2, we showed that when the model is not known, the entropy of

the next key was shown to be high, near the entropy of the keyspace K.

Having a higher entropy rate is beneficial for security since a single model can generate

many unique temporal key sequences. (Consider the multiplicity of paths that arise when d

is increased from 1.) This, in turn, makes it more difficult for the adversary to determine

which model is being used. She may try to use the Baum-Welch algorithm to determine

the underlying model, but the estimated parameters are not accurate unless the number of

observations is very high with respect to size of the state space (17 ). With a large

keyspace, it will take an infeasibly long time to make sufficient observations of each key.
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5. Random Markov Model: Structure

Since we are using the Markov models for temporal key replacement, we are interested in

the structure of the pseudo-randomly generated model. Though the models are

deterministic given the particular PRNG used for generation, we assume for analysis that

they are statistically random and unpredictable (as discussed in section 4). Thus, without

fully specifying the model, which is infeasible for realistic key sizes, the structure of the

model is apparently random. We are therefore unable to guarantee certain properties of the

models, but we can make probabilistic statements. We say that an event occurs with high

probability when it occurs with probability 1 as K increases without bound.

In this section, we show that for any temporal key, the set of possible subsequent keys is

large. This property makes it infeasible for the adversary, given reasonable constraints on

her ability to perform a successful brute-force attack (i.e., test every key). In other words,

we never want to be in a situation where choosing a particular key limits the choices of

subsequent temporal keys.

In terms of graph theory, the reachable subspace for most keys in K should be large, that

is, O(K). A key v is reachable from u if there exists a (directed) path from u to v: u → v.

The reachable subspace for a key u is the set of all v for which u→ v.

First, we introduce the concept of strongly connected components. We use results from

graph theory to show that the size of a single GCC depends on the branching factor d

(18 ). Finally, we show that with probability 1, (a) all keys can reach the GCC and (b) no

keys leave the GCC. That is, the random Markov models are guaranteed to give highly

random key replacements.

5.1 Size of the GCC

We define some terms to facilitate the following discussion.

Definition 3 A digraph S is a strongly connected when there exists a directed path

between any randomly chosen pair of vertices u, v ∈ S:

u → v (22)

v → u (23)

Definition 4 The strongly connected components (SCCs) of a digraph are the maximal

strongly connected subgraphs. For a given digraph, the SCCs may be identified using

efficient algorithms such as Tarjan’s algorithm (19) or Gabow’s algorithm (20).
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Definition 5 When the size of a SCC reaches O(K), it is typically referred to as the GCC

since it dominates the other SCCs in size.

The significance of the GCC is that for any given key in the GCC, it can reach any other

key of the GCC given enough transitions. When the GCC is large, this implies that there

are many keys that can be chosen in the future, which is good for security.

We outline the procedure of finding the GCC size and then give the results. We need the

following definitions to proceed. We outline the procedure of finding the GCC size and

then give the results. We need the following definitions to proceed. The fan-in of a node v

is the set of vertices u for which u→ v.

The fan-out of a node u is the set of nodes v for which u→ v. The fan-out (or fan-in) of a

vertex is large when its size is O(K). Let L+ be the set of vertices with a large fan-out,

and let L− be the set of vertices with a large fan-in.

Intuitively, when a node u has a large fan-out and a distinct node v �= u has a large fan-in,

the path u→ v exists with high probability. Thus, nodes that have both large fan-in and

large fan-out are likely to be connected (18). We highlight the relevant results below.

Let π− (resp., π+) be the probability that a randomly chosen vertex has a large fan-in

(resp., large fan-out). It follows that |L−| = π−K and |L+| = π+K. They are the smallest

non-negative solutions of

1 − π− =
∑

i

p−i (1 − π−)i (24)

1 − π+ =
∑

i

p+
i (1 − π+)i (25)

where p−i (resp., π+) is the probability that a key has exactly i incoming (resp., outgoing)

transitions. These probabilities are calculated as

p−i =

(
K

i

)
pi(1 − p)K−i (26)

p+
i =

{
1 i = d
0 otherwise

(27)

where p is the probability that there exists a transition between a randomly chosen pair of

current and next keys. Since each vertex has constant out-degree d, we have p = d/K, and

so the in-degree distribution is given by the binomial probability mass function with

parameter p.

When d > 1, π− has a unique solution in (0, 1), and π+ = 1. In other words, a positive

fraction of vertices have large fan-in while all vertices have large fan-out (i.e., |L+| = K.
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Based on the argument above, the size of the GCC is approximately

|G| � |L− ∩ L+| (28)

� |L−| + |L+| − |L− ∪ L+| (29)

�

(
π+ + π− − (1 − ψ)

)
K (30)

where

ψ =
∑
i,j

pij(1 − π−)i(1 − π+)j (31)

= 0 (32)

since π+ = 1. Thus, the GCC G is unique with size

|G| � π−K (33)

with probability approaching 1 as K ↑ ∞.

Table 1 shows the theoretical and observed size of the GCC for various branching factors.

For each value of d, 100 matrices of size K = 210 were generated using the Mersenne

Twister PRNG. The size of the GCC was found using Tarjan’s algorithm and averaged

over each realization. Shown in the table is the ratio of GCC size to K. The theoretical

GCC size matches very well with the empirical evidence. Clearly, increasing d increases the

proportion of the GCC, though the gains diminish after d = 4.

Table 1. Size of the GCC.

Branching GCC Proportion Penalty
factor Theory Empirical (bits)

2 .7972 .7972 .3369
3 .9408 .9404 .0881
4 .9803 .9801 .0287
5 .9931 .9932 .0100
6 .9975 .9977 .0036
7 .9991 .9990 .0013
8 .9997 .9997 .0005

When the size of the GCC is less than K, the size of the reachable subspace is diminished.

In bits, we say that the penalty is

Penalty = − log 2(|G|/K) (34)

For example, if the GCC has size 29 but the keyspace has size 210, then the penalty is 1 bit.

Thus, the keys that are traversed offer the security of a 9-bit key instead of a 10-bit key.

Note the significant decrease in penalty as the branching factor is increased from 2 to 4.

We observe diminishing improvements for larger branching factors.
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5.2 Reachability of the GCC

Since the GCC G is large, any key k ∈ G has a reachable subspace with size O(K) by

definition. However, what about those keys that are not in G? In order to guarantee keys

that traverse a large space, we need to show that with high probability

• regardless of initial key, the key replacement algorithm eventually chooses members

of the GCC, and

• if the current temporal key is in the GCC, future replacement keys will remain in the

GCC.

First, observe that when a key leaves the GCC, it does not have a path that returns to the

GCC. To see why, suppose that the path G → v exists, where v /∈ G. If a path v → G
exists, then since G → v this implies that v ∈ G, which is a contradiction. In other words,

when the replacement key sequence transitions outside of the GCC, it can never return.

Therefore, we need to show that once a key from the GCC is chosen, keys outside the GCC

are never chosen in the future.

Let us term the keys that are not in G as external. Let G− be the set of external keys that

have a path to G and let G+ be the set of external keys that are reachable from G, i.e.,

G− = {u|u� G} (35)

G+ = {v|G � v} (36)

The resulting set B = G− ∪ G ∪ G+ forms a bowtie digraph as shown in figure 7. The bows

of the graph are formed by two wings: G+ = L+ ∩ L− and G− = L+ ∩ L−.

Recall that |L+| = K and hence L+ = K. Hence B = K, i.e., the bowtie graph encompasses

all vertices in the space. It follows that L+ = ∅ and therefore G− = ∅. Therefore, any

randomly chosen key is either in G+ or G.

The structure of B yields the following properties:

1. If a key is not in G, then it is in G+. Therefore, with probability 1, the current state

will eventually be in G. With probability approaching 1 as K ↑ ∞, any randomly

chosen key will enter the GCC.

2. Once a key is in the GCC, it will not depart since with probability approaching 1 as

K ↑ ∞, |G−| = 0.
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GCC

G

G+ G-

Figure 7. An example bowtie digraph connected to the giant connected component G.
G+ leads into G, G− emanates from G.

In terms of temporal keys, the structure of the random Markov model guarantees that each

temporal key can reach a large subset (O(K)) of the keyspace. Therefore, the temporal

keys that will be generated from our key exchange algorithm traverse a large space thus

making the task of the adversary difficult.

6. Extension: Imperfect Key Recovery

In section 3, we assumed that as long as one of the keys Bob tests is the correct key, he is

able to determine the correct key without error. This is a good approximation in most

applications, but in this section we determine the effects of detection error on the proposed

key replacement method.

Suppose that the ciphertext xi has been encrypted with key ki as in equation 1. When we

test a single key m, there are two cases where the key recovery fails.

1. Missed detection: the correct key is tested (m = ki) but fails the check with

probability 1 − p > 0:

ψ(xi, m = ki) =

{
0 w.p. 1 − p
1 w.p. p

(37)

2. False alarm: the wrong key is tested (m �= ki) but passes the check with probability
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α > 0:

ψ(xi, m �= ki) =

{
0 w.p. 1 − α
1 w.p. α

(38)

Recall that the recovery performed by Bob (section 3.3) checks the validity of d keys. We

assume that the integrity checks have independent outcomes. Considering a set of d keys

where exactly one is correct, there are four possible types of outcomes.

1. The correct key passes the integrity check (all others fail). This occurs with

probability

Pr[Case 1] = p(1 − α)d−1 (39)

2. The wrong key passes the integrity check (all others fail). This occurs with

probability

Pr[Case 2] = (d − 1)(1 − p)α(1 − α)d−2 (40)

3. No keys pass the integrity check. This occurs with probability

Pr[Case 3] = (1 − p)(1 − α)d−1 (41)

4. Multiple keys pass the integrity check. This occurs with probability

Pr[Case 4] = 1 − Pr[Case 1, 2, or 3] (42)

Looking ahead to section 6.2, the probability of a correct detection (Pr[Case 1]) needs to

be sufficiently high, otherwise Alice and Bob will lose synchrony quickly. In the following

section, we modify the recovery algorithm to improve the detection probability in the midst

of errors.

6.1 Extended Recovery Algorithm

In general, a key is used to encrypt multiple messages during the same epoch. Rather than

determining the replacement key after a single message, consider how C messages can be

used to make the decision. For the key epoch i, we denote the encrypted messages by

x1
i , x

2
i , . . ..

We assume that the number of times each key passes the integrity check are independent.

Bob tallies the number of times a key passes the check over the C messages, and selects the

key that passed the most times. We assume that ka
i = kb

i and λb = λa so that Bob knows

the transition probabilities to the next key.
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1. Find the set of possible keys from kb
i : N = {n|A(kb

i , n) > 0}.
2. For each key n ∈ N :

T [n] =
C∑

c=1

ψ(xc
i+1, n) (43)

3. Select kb
i+1 = arg maxn T [n]

The probability that the correct key will be detected c times out of C is given by the

binomial probability B(c, C, p), where p is the probability of the correct key passing the

integrity check. Similarly, for the incorrect keys the probability is B(c, C, α), where α is the

probability of an incorrect key passing the integrity check. Since the trials have

independent outcomes, the probability that Bob chooses the correct key is given by

p̃ = Pr[kb
i+1 = ka

i+1] (44)

=

C∑
c=1

B(c, C, p)

(
c−1∑
d=0

B(d, C, α)

)d−1

(45)

Aside from the detection and false alarm probabilities (p, α, respectively), the number of

messages C determines the detection probability p̃ of the correct key. Figure 8 shows that

the probability of choosing the wrong key falls exponentially as C increases. Further, the

test does not need to consider large C when the detection probability p is high.
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Figure 8. Probability of choosing the incorrect key for various raw detection key proba-
bilities p when α = 10−7. Extending the key replacement over multiple mes-
sages encrypted with the same key improves the detection probability. Lower
p require more observations for good detection probability.

6.2 Synchronization Performance

The probability that Bob chooses the incorrect key is ε = 1 − p̃. Thus, the probability that

Alice and Bob lose synchrony at epoch n0 is

Pr(Lost at n0) = ε(1 − ε)n0−1 (46)

We are interested in the case when Alice and Bob maintain synchrony for at least n0 with a

certain probability. That is,

Pr(n0 > n) =
∑
n<n0

Pr(Lost at n0) (47)

= 1 − (1 − ε)n−1 (48)

n =
log(1 − Pr(n0 > n))

log(1 − ε)
(49)

For example, we calculate that when ε = 10−4, then with probability 99.99% Alice and Bob

remain synchronized for at least 9.2 ∗ 104 keys. Figure 9 shows the number of key

transitions before failure for various confidence levels.
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Figure 9. Number of key transitions before failure for various confidences.

6.3 Extension Efficiency

When the recovery of the key is extended for C messages, the number of computations and

memory requirements necessarily increase.

Communication: As in section 3, no explicit key replacement messages are exchanged.

However, there is an increased delay since the key decision requires the receipt of C > 1

messages.

Computation: Since the computations are identical for each message, the considering keys

over multiple messages times increases the computations by a factor of C . The final step of

selecting the key with the largest score requires negligible computation.

The cost of running the PRNG does not change and is the same as in section 3.4.

Memory: The set of possible keys remains constant over the duration of the test, so there

is no additional cost. However, there is the need to keep the tally of how many times each

key passes the integrity checks. This requires log2(C) bits per key, or d log2(C) bits in

total. Note that there was no need to keep score when the integrity check is perfect

because exactly one key would satisfy the integrity check.
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7. Related Work

We give a characterization of a few approaches towards key replacement and highlight their

differences with the proposed method.

One of the most trivial rekeying strategies has Alice and Bob using their session key to

seed a PRNG. Periodically, they update their keys by taking the next n digits as the new

temporal key. While this requires no extra communication, the security of this method is

weak—the new temporal keys have no more randomness than the session key used to seed

the PRNG. Once the PRNG is seeded, the sequence of temporal keys is completely

deterministic and hence vulnerable to attack. In fact, this rekeying strategy may be viewed

as a degenerate case of the proposed method with branching factor d = 1. For comparison,

the proposed method (with d > 1) adds key entropy during each rekey because of the

randomization (section 4.4).

A stronger method is to use a one-way‡ function with a nonce to generate the next key,

e.g., ki+1 = F (x, ki) with ki the current key, x the nonce, and F (·) the one-way function. In

order to recover this key, the receiver needs knowledge of the nonce—it can be encrypted

with the temporal key and transmitted. A weakness with this approach is that the

discovery of a temporal key reveals all subsequent keys. This also requires some bandwidth

to transmit the nonce. The proposed method uses Markov models to restrict the possible

nonces in order to avoid the use of nonces while also preventing subsequent keys from being

revealed.

Instead of using the session key to encrypt all the temporal keys, the idea behind hash

chains (21) is to derive past keys from future keys. In particular, the current temporal key

ki is calculated using the next key ki+1 and a one-way hash function F (·), i.e.,

ki = F (ki+1). Alice and Bob generate a chain of hash values derived from the same initial

key kn, and begin to use the key k0. To replace the key, they simply use the next key k1.

However, after n key replacements Alice and Bob need to resynchronize and generate

another hash chain. This is not a very big problem, however, since hash chains can be

computed very efficiently (22). A significant weakness of hash chains is that there is no

forward secrecy. Once a key is compromised, the revelation of all past keys is trivial due to

their deterministic dependencies. While this property makes the use hash chains less than

ideal for key replacement, hash chains have found interesting applications in routing

protocols in ad hoc networks (23).

‡A function is one-way when it is easy (feasible) to compute but hard (infeasible, given resource con-
straints) to invert.
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The “sign and MAC” (SIGMA) approach encompasses a large family of key exchange

protocols that build upon the well-known Diffie-Helman (DH) key agreement protocol (8,

9). Careful combinations of digital signatures and message authentication codes (MACs)

are used to provide the security basis for signature-based authenticated key exchange using

DH protocols (e.g., IKE [24]). Generally these protocols require at least three messages for

both parties to contribute entropy towards the new key, bind identities with signatures,

and authenticate each other. Each message is accompanied by the corresponding

computation, which can be expensive; modular exponentiation is not as cheap as

symmetric encryption or decryption.

Another well-known protocol is Kerberos (10) (based on the Needham-Shroeder shared-key

protocol [25]), which uses a trusted authentication server to facilitate key exchange. The

authentication server has session keys shared individually with Alice and Bob and creates

temporal keys for them to use among themselves. All the encryptions are symmetric and

are therefore cheap, but this protocol requires the exchange of more messages because Alice

and Bob need to interact with the authentication server. The biggest caveat, of course, is

the existence and cooperation of such an authentication server.

A summary of the requirements of the key replacement methods are shown in table 2. Note

that there is no method that is simultaneously low-complexity, independent of third

parties, and secure. The proposed key replacement method is conceptually simple and its

security depends on randomness of the underlying CSPRNG. The choice of CSPRNG

varies the computational requirements of the method.

Table 2. Comparison.

Method No. of Messages Computation Cost Third Party? Security
Seeded PRNG 0 Low No Low
Hash Chains 0 Low No Low
Diffie-Helman Variants 3+ High No High
Kerberos 4 Low Yes High
Proposed Method 0 Variable No High
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8. Conclusion

We have introduced a novel rekeying method that exploits the randomness of Markov

models to efficiently provide fresh keys to the users. The method is shown to generate

highly random symmetric keys while remaining lightweight in terms of communication and

storage costs. The security of the method depends on the underlying CSPRNG and

generally is improved at the cost of increased computational requirements. We have also

demonstrated that the proposed method has perfect forward secrecy as well as resistance to

known-key attacks. Finally, we note that the usefulness of the method is not restricted to

keys, but to any variable that is changed in a synchronous manner. For example, this

method can apply to frequency-hopped communications systems to vary the hop set

ordering.
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