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ABSTRACT

This paper attempts to characterize and present a
state of the art view of several quantitative models
and metrics of the software life cycle. These models
and metrics can be used to aid in managing and engin-
eering software-projects. They deal with various
aspects of the software process and product, including
resource allocation and estimation, changes and errors,
size, complexity and reliability. Some indication is
given of the extent to which the various models have
been used and the success they have achieved.

INTRODUCTION

The past few years have seen the emergence of a
new quantitative approach to software management and
software engineering. It includes the use of models
and metrics based on historical data and experience.
It covers resource estimation and planning, cost,
personnel allocation, computer use, and quality
assurance measures for size, structure and reliability

~~.qf the product.

j A quantitative methodology is clearly needed to
'aid in the software development process. It is
needed for understanding and comparison. It was said
by Lord Kelvin that if you cannot measure something,
then you do not understand it. This is certainly
true in the software development domain and is the
reason why various models and metrics have been de-
veloped, tested, refined and established as aids. One
needs models and quantification for comparisons. In
cost tradeoffs, for example, it is important to know
whether to add another feature, how much an extra
level of reliability will'cost, or whether a modi-
fication to an existing system will be cost effective.

It should be noted, however, that the quanti-
tative approach should augment and not replace good
management and engineering judgment. Models and metrics
are only tools for the good manager and engineer. This
is especially true since the state of the art is newly
emerging and not yet well established. Some models
and metrics have only been proposed but not fully
tested. Others have been tested only in the environ-
ment in which they have been developed. However, more
and more are being tested and used in environments
other than that of the developer. In this paper, some
indication of the level of experience with the models
or metrics discussed will be given.

Models and metrics must be established via sound
testing and experimentation and, before using a model,
the manager or engineer should have sufficient know-
ledge about how much to trust the results of the model.
This requires insight into the model, a known confi-
•jnce level with regard to its reliability and, most

-important, knowledge of the activity being modeled.

None of these models are black boxes and should not be
treated as such. Thus, before applying any model, the
user should know the nature of his project, whether the
assumptions of the model match the environment of his
project, and the weaknesses of the model so that he can
be careful in evaluating the results..

In what follows, we will cover a large, though by
no means exhaustive, set of models. The emphasis will
be on those areas where quantitative management can
give the greatest payoff. We will discuss process-
oriented measures such as size, complexity, and relia-
bility. Each of the measures will be treated to varying
degrees. The emphasis will be on categorizing the
measures, defining a typical measure or set in the
category, and pointing out other measures only when they
are different. The references in the back of the paper
should help the interested reader pursue a particular
measure further or find additional measures not mention-
ed in this paper.

PROCESS MEASURES

Resources

It is important that we have a better understand-
ing of the software development process and be able to
control the distribution of resources such as computer
time, personnel, and dollars. We are also interested
in the effect of various methodologies on the software
development process and how they change the distribu-
tion of resources. For this reason, we are interested
in knowing the ideal resource allocation, how it may be
modified to fit the local environment, the effect of
various tradeoffs, and what changes should be made in
the methodology or environment to minimize resources
expenditure.

There has been a fair amount of work towards de-
veloping different kinds of resource models. These
models vary in what they provide (e.g., total cost,
manning schedule) and what factors they use to calculate
their estimates. They also vary with regard to the type
of formula, parameters, use of previous data, and
staffing considerations. In an attempt to characterize
the models, we will define the following set of attri-
bute pairs. Models can be characterized by the type of
formula they use to calculate total effort. A single
variable model uses one basic variable as a predictor
of effort, while a multi-variable model uses several
variables. A model may be static with regard to staff-
ing, which means a constant formula is used to determine
staffing levels for each activity, or it may be dynamic,
implying staffing level is part of the effort formula
itself. Within the static multi-variable models, there
are various subcategories: adjusted baseline, adjusted
table-driven, and multi-parameter equation. The
adjusted baseline uses a single variable baseline
equation which is adjusted in some way by a set of other
variables. An adjusted table-driven model uses a
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baseline estimate which is adjusted by a set of
variables where the relationships are defined in
tables built from historical data. A multi-parameter
model contains a base formula which uses several vari-
ables. A model may be based upon historical data or
derived theoretically. An historical model uses data
from previous projects to evaluate the current project
and derive the weights and basic formula from analysis
of that data. For a theoretical model, the formula
is based upon assumptions about such things as how
people solve problems. One last categorization is that
some models are macro models, which means they are
based upon a view of the big picture, while others are
micro models in that the effort equation is derived
from knowledge of small pieces of information scaled
up. We will try to discuss at least one model in each
of these categories.

Static single variable models. The most common
approach to estimating effort is to make it a function
of a single variable, project size (e.g., the number
of source instructions or object instructions). The
baseline effort equation is of the form

EFFORT = a * SIZE1*

where a and b are constants. The constants are deter-
mined by regression analysis applied to historical
data. In an attempt to measure the rate of production
of lines of code by project as influenced by a number
of product conditions and requirements, Walston and
Felix (1) at IBM Federal Systems Division started with
this basic model on a data base of 60 projects of
4,000 to 467,000 source lines of code covering an
effort of 12 to 11,758 man.months. The basic relation
they derived wr.s

1.4L
.94

.915.2L

where E is the total effort in man months and L is the
size in thousands of lines of delivered source code,
including comments. Beside this basic relationship,
other relations were defined. These include the rela-
tionships between documentation DOC (in pages) and
delivered source lines

DOC = 49L1'01

project duration D (in calendar months) and lines of
code

D = 4.1L-36

project duration and effort

D = 2.47E'35

and average staff size S (total staff months of effort/
duration) and effort

.6
.54E

The constants a and b are not general constants.
They are derived from the historical data of the
organization (in this case, IBM Federal Systems Divi-
sion). They are not necessarily transportable to
another organization with a different environment. For
example, the Software Engineering Laboratory (SEL) on a
data base consisting of IS projects of 1.5 to 112
thousand source lines of code covering efforts of 1.8
to 116 staff months have calculated for their environ-
ment the following set of equations (2):

..92DOC = 29.5L'

. .267
4.4L'

D = 4.4E.26

S = 2.3E-74

Some other variables, including different ways of count-
ing code, were measured by the Software Engineering
Laboratory and the equations derived are given here.
Letting DL • number of developed, delivered lines of
source code (new code + 20% of reused code), M » number
of modules, DM = total number of developed modules (all
new or more than 202 new) we have

E = 1.58DL

..28

E = .063M

.33

.1.186
E = .19DM

..3

,1.0

D = 4.6DL"-", D = 2.0M"", D = 2.5DM'

D - 2.0D'26, DOC » 35.7DL'92, DOC - 1.5M1'17,

DOC = 4.8DM'"

Most of the SEL equations lie within one standard
error of the IBM equation and, since the SEL environ-
ment involves the development of more standardized
software (software the organization has experience in
building), the lower effort for more lines of code seems
natural. It is also worth noting that the basic effort
vs. lines-of-code equation is almost linear for the
SEL—more linear than the Walston/Felix equation. Re-
member that the project sizes are in the lower range of
the IBM data. Lawrence and Jeffery (3) have studied
even smaller projects and discovered that their data
fits a straight line quite well, i.e., their baseline
effort equation is of the form

EFFORT - a * SIZE + b

where again a and b are constants derived from historical
data. The implication here is that the equation becomes
more linear as the project sizes decrease.

Static multi-variable models. Another approach to
effort estimation is what we will call the static multi-
variable model. A resource estimate here is multi-
variable because it is based on several parameters, and
static because a single effort value Is calculated by
the model formula. These models fall into several sub-
categories. Some start with the baseline equation just
discussed based on historical data and adjust the initial
estimate by a set of variables which attempt to incor-
porate the effects of Important product and process
attributes. In other models, the baseline equation
itself involves more than one variable.

The models in the adjusted baseline class differ in
the set of attributes that they consider important to
their application area and development environment, the
weights assigned to the attributes, and the constants
of the baseline equations.

Walston and Felix (1) calculated a productivity
index by choosing 29 variables that showed a signifi-
cantly high correlation with productivity in their en-
vironment. It was suggested that these be used in
estimating and were combined in a productivity index
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where I Is the productivity index, w is a factor
weight based upon the productivity change for factor i
and x. • +1, 0, or -1, depending on whether the factor
indicates increased, nominal or decreased productivity.

One model that fits into the single-parameter
baseline equation with a set of adjusted multipliers
is the model of Boehm (4), whose baseline effort
estimate relies only upon project size. His set of
attributes are grouped under four areas: (1) product —
required fault freedom, data base size, product com-
plexity, adaptation from existing software; (2) compu-
ter — execution time constraint, machine storage
constraint, virtual machine volatility, computer
response time; (3) personnel — analyst capability, appli-
cations experience, programmer capability, virtual
machine experience, programming language experience;
(4) project — modern programming practices, use of
software tools, required development schedule. For
each attribute Boehm gives a set of ratings ranging
from very low to very high and, for most of the attri-
butes, a quantitative measure describing each rating.
The ratings are meant to be as objective as possible
(hence the quantitative definitions) , so that the
person who must assign the ratings will have some in-
tuition as to why each attribute could have a signifi-
cant effect on the total effort. In' two of the cases
where quantitative measures are not possible, required
fault freedom and product complexity, Boehm provides
a chart describing the effect on the development
activities or the characteristics of the code corre-
sponding to each rating. Associated with the ratings
is a chart of multipliers ranging from about .1 to 1.8.
Another model which falls Into this category is the
model of Doty (5). The Doty model, however, provides
a different set of weights for different applications
besides two ways to estimate size.

One model which falls into the category of
adjusted table-driven is that of Wolverton (6). Here
the basic algorithm involves categorizing the software
routines. The categories Include control, I/O, pre-
or post-algorithm processor, algorithm, data manage-
ment, and time critical routines. Each of these
routines has its own cost-of-development curve, depend-
ing upon the degree of difficulty (easy, medium, or
hard) and the newness of the application (new or old).
The cost is then the number of instructions by cate-
gory and degree of difficulty times the corresponding
cost taken from a table. Another model of this type,
but more simplistic, ts Aron (7).

The GRC model (8) involves a set of equations
derived from historical data and theory for the
various activities, several of which are multi-
parameter equations of more than one variable. For
example, the equation for code development is

MMCD - .9773 x Nj'
2583

 x e"°
8953 * YEXP

where MMCD is the baseline staff months for code
development task group for a subsystem, N » the
number of output formats for a subsystem and Y is
the average years of staff experience in code exp

development. It is worth noting that sire of the code
is not a factor in this formula. Other formulas exist
for the effort involved In analysis and design, system
level testing, documentation, installation, training,
project control, elapsed time *nd a reasonable check
for the total staff months for the project

Dynamic multi-variable models. Once an effort
.estimate is made, the next question of concern is how
to assign people to the project so that the deadlines
for the various development activities will be met.
Here again there are basically two approaches: the
one empirical, the other theoretical. Each of the
methods discussed so far uses the empirical approach
which tries to identify the activities which are a
part of the development process of a typical project
for their software house. Then, using accounting data
from past projects, they determine what percentage of
the effort was expended on each activity. These
percentages serve as a baseline and are intuitively
adjusted to meet the expected demands of a new project.
For example, in the Wolverton model, total cost is
allocated into five major subareas: analysis cost
(20% of total), design cost (18.7% of total), coding
cost (21.7% of total), testing cost (28.3% of total)
and documentation cost (11.3% of total). Each of
these subarea costs are subdivided again, depending
upon the activities in the subareas. In this way,
each activity can be staffed according.to its indi-
vidual budget. Allocation of time is determined by
history and good management intuition.

The theoretical approach attempts to justify
its resource expenditure curve by deriving it from
equations which model problem-solving behavior. In
other words, the resource model lays out the staffing
across time and within phases. We will refer to
this approach as the dynamic multi-variable model.
It is dynamic because the model produces a curve which
describes the variation of staffing level across time.
The model is multi-variable because it involves more
than one parameter.

Two models in this category will be discussed
which differ in the assumptions they make. The first
model, which is the most widely known and used, is the
Putnam model (9).

The model is based on a hardware development
model (10) which noted that there are regular patterns
of manpower buildup and phase-out independent of the
type of work done. It is related to the way people
solve problems. Thus, each activity could be plotted
as a curve which grows and then shrinks with regard to
staff effort across time. For example, the cycles in
the life of a development engineering project look as
follows:

PLANNING &
SPECIFICA-
TION CYCLE

""PROJ - -0218 *

MONTHS

Similar curves were derived by Putnam for software
cycles which are: planning, design and implementation,
testing and validation, extension, modification and
maintenance.

where N is as defined above.
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The theoretical basis of the model is that soft--
ware development is a problem-solving effort and design
decision-making is the exhaustion process. The various
development activities partition the problem space
into subspaces corresponding to the various stages
(cycles) in the life cycle. A set of assumptions is
then made about the problem subset: (1) the number of
problems to be solved is finite, (2) the problem-
solving effort makes an impact on and defines an en-
vironment for the unsolved problem set, (3) a decision
removes one unsolved problem from the set (assumes
events are random and independent) and (4) the staff
size is proportional to the number of problems "ripe"
for solution. Because the model is theoretically based
(rather than empirically based) some motivation for the
equation is given. Consider a set of independent de-
vices under test (unsolved problem set) subject to
some environment (the problem-solving effort) which
generates shocks (planning and design decisions). The
shocks are destructive to the devices under test with
some dependent conditional probability distribution
p(t) which is random and independent with some rate
parameter X. Assume the distribution is Poisson and
let T be a random variable associated with the-time
interval between shocks

the integral form of the life cycle equation

Pr(T > t) = Pr
(no event occurs in interval (o, t))

(1)

where t = o is the time of the most recent shock
letting p(t) be the conditional probability of a fail-
ure given that a shock has occurred and X be the
Poisson rate parameter, then

where

3 so

(1 -

Is the cumulative manpower used through
time t
is the total manpower required by the cycle
stated in quantities related to the time
period used as a base, e.g., man-months/
month
is a parameter determined by the time period
in which y* reaches its maximum value
(shape parameter)
is time in equal units counted from the
start of the cycle

39t of total e f f o r t used

The life cycle equation (derivative form) is

Pr(T>t)
-XI P(x) dx)

and

(2)

(3)

y' = 2 K a t e
-a t

and the p.d.f. associated with (3) is

f(t) = X'p(t)*e~X(d r p(x)dx). t>o

This leads to the class of Weibull distributions (known
in reliability work) with the physical interpretation
that the probability of devices succumbing to destruc-
tive shocks is changing with time. Based upon observed
data on engineering design-projects, a special case of
(3) can be used

y = f (t| = 1 - e'3

where p (t) = a t

and a = *?-

(5)

(6)

Note that this implies engineers learn to solve problems
with an increasing effectiveness (i.e., familiarity with
the problems at hand leads to greater insight and sure-
ness). Parameter a consists of an insight generation
rate X and a solution finding factor a. Equation (5) is
a special linear case of the family of learning curves:
y = a xb.

Equation (4) is then the normalized form of the
life cycle equation. By introducing a parameter (K)
xpressed in terms of effort, we get an effort curve,

where y' is the manpower required in time period t
stated in quantities related to the time period used
as a base and K is the total manpower required by the
cycle stated in the same units as y'.

The curve (called the Rayleigh Curve) represents the
manpower buildup. The sum of the individual cycle
curves results in a pure Rayleigh shape. Software de-
velopment is implemented as a functionally homogenous
effort (single purpose). The shape parameter a depends
upon the point in time at which y' reaches its maxi-
mum , i.e.

where t is the time to reach peak effort. Putnam has
empirically shown t, corresponds closely to the design
time (time to reach initial operational capability).
Substituting for a we can rewrite the life cycle
'equation as
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The equations given are for the entire life cycle.
To find development effort only

take

K * (l-e"at )

substitute

K •

then the development effort is time to

= K * (1-e"'5)

= .3935K

or DE = 40Z of 1C effort

The life cycle and development costs may be calcu-
lated by multiplying the cost for that cycle by staff
year cost

$LC » K*MC
where MC • mean cost (in $) per man year of

effort
K = total manpower (in man years) used

by the project
(Note: the equation neglects computer time,
inflation, overtime, etc.)

and
$DEV = MC * (.3935K)s».4 * $LC

Putnam found that the ratio K/(t.) has an inter-
esting property. It represents the difficulty of a
system in terms of programming effort required to pro-
duce it. He defines

To illustrate how management decisions can in-
fluence the difficulty of a project, assume a system
size of K = 400 MY and t • 3 years. Then the diffi-
culty D = 400 / 9 = 44.4 man years per year squared.

Consider a management decision to cut the life
cycle cost of the system by 10%. Now, K = .9 * (400) •
360 MY and D «• 360 / 9 - 40. This results in a 10%
decrease in assumed difficulty of the project. This
decision assumes the difficulty is less than it really
is, and the result is less product.

Now consider the more common case of attempted
time compression. Assume management makes a decision
to limit the expended effort to 400 MY, but wants the
system in 2.5 years instead of 3 years. Now, K »
400 MY, t, - 2.5 years, and D - 400 / 6.25 - 64 (a
44% increase). The result of shortening the natural
development time is a dramatic increase in the system
difficulty.

The Putnam model generates some interesting
notions. Productivity is related to the difficulty
and the state of technology; management cannot arbitra-
rily increase productivity nor can it reduce develop-
ment time without increasing difficulty. The tradeoff
law shows the cost of trading time for people.

In deriving an alternate model, Parr (11) ques-
tions the assumption of the Rayleigh equation that
the initially rising work rate is due to the linear
learning curve which governs the skill available for
solving problems. He argues that the skill available
on a project depends on the resources applied to it
and that the assumption confuses the intrinsic con-
straints on the rate at which software can be developed
with management's economically-governed choices about
how to respond to these constraints.

As an alternative to this assumption, his model
suggests that the initial rate of solving problems is
governed by how the problems in the project are re-
lated, i.e., the dependencies between them. For
example, the central phase of development is naturally
suited to rapid rates of progress since that is when
the largest number of problems are visible. Letting
V(t) be the expected size of this set of visible
(available for solving) problems at time t, Parr's model
yields the equation

V(c) Ac

where

a is the proportionality constant relating the
rate of progress and the expected size of the
visible set

A is a measure of the amount of work done on the
project before the project officially starts

y- is a structuring index which measures how much
the development process is formalized and uses
modern techniques.

The curve represented by V(t) differs from the
Rayleigh/Norden curve for y'(t) in two important ways.
The Rayleigh curve is constrained to go through the
origin; the Parr curve is not. Making y'(0) = 0
corresponds to setting an official start date for the
project. Before that point, the effort expended on
the project is assumed to be minimal. In reality, there
is often a good deal of work done before that date, in-
cluding such activities as requirements analysis and
feasibility studies. In Putnam's environment, these
were handled by a separate organization and could be
ignored. Another factor that affects the problem space
is past experience in the application area, or even
more tangible is the influence of design or code taken
from past projects. All of these have the effect of
structuring the problem space at the beginning, so that
more progress can be made early. The Parr curve accounts
for this; the Putnam curve does not. See Fig.l for a
comparison of the two curves.

A second distinction between the two curves is
the flexibility of where the point of maximum effort can
come. By using a structuring index greater than one,
this point of maximum effort can be delayed almost to
acceptance testing and effort could still be drastically
reduced before project completion. With the Rayleigh
curve, a late point of maximum effort constrains the
curve to have a slow buildup and almost no decay at
the end.

Parr does not say how to estimate the parameters
for V(t) in terms of data the project manager would
have on hand. This is a problem in doing resource
estimation currently, but the model could use the ex-
isting resource allocation schedule, based on early
data points, to predict the latter part of the curve.
The Parr model is only currently being tested on real
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software for the first time and the results are not
yet available. The Rayleigh model, on the other hand,
has been used in many environments and has been quite
successful on the whole.

Single variable, theoretical. The two previous
theoretical models may be thought of as macro models
in that the estimate of staffing levels relies on
process oriented issues, such as total effort, schedule
constraints, and the degree that structured methodol-
ogy is used. Product oriented issues, such as source
code, are not a factor. Most of the other models are
less macro oriented in that they consider product
characteristics, such as lines of code and input/
output formats. In this section, we will discuss
another type of theoretical model, based upon lower
level aspects of the product, which we will call a
micro model. The particular model discussed' here deals
with the idea that some basic relationships hold with
regard to the number of unique operators and operands
used in solving a problem and the eventual effort and
time required for development. This notion was pro-
posed by Halstead as part of his software science (12).
Here there is only one basic parameter—size—measured
in terms of operators and operands. The model tran-
scends methodology and environmental factors. Most of
the work in this area has dealt with programs or algo-
rithms of module size rather, than with entire systems,
but that appears to be changing.

In the language of software science, measurable
properties of algorithms are

n1 number-of unique or distinct operators in
an implementation

n. number of unique or distinct operands in
an implementation

f number of occurrences of the j most
frequent operator, j = 1, 2, ..n..

f. . number of occurrences of the J most
'3 frequent operand, j =1, 2, . .n2

then the vocabulary of an algorithm is

n = n + n2

and the implementation length is

N - N: + N2

where

n, n_ iy n
N = I1 f, . , N0 = I

2 f, . , N = I i; f

Based only on the unique operators and operands,
the concept of program length N can be estimated as

N is actually the number of bits necessary to represent
all things that exist in the program at least once, i.e.,
the number of bits necessary to represent a symbol table.
Over a large set of programs in different environments,
it has been shown that N approximates N very well.

To measure the size of an algorithm, software
science transcends the variation in language and charac-
ter set by defining algorithm size (volume) as the
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__Tilnimal number of bits necessary to represent the imple-
"""mentation of the algorithm. For any particular case,
there Is an absolute minimum length for representing
the longest operator or operand name expressed in bits.

. It depends upon n, e.g., a vocabulary of 8 elements re-
•—quires 8 different designators, or log. 8 is the mini-
mal length in bits necessary to represent all individual
elements in a program. Thus, a suitable metric for size
of any implementation of any algorithm is V » N log n,
called volume.

The most succinct form in which an algorithm can
be expressed requires a language in which the required
operation is already defined and implemented. The po-

~"~tential volume, V*, is defined as

V* (N* + N*) Iog2 (n* n*)

but minimal form implies N* - n* and N* - n* because
""there should be no repetition. The number 5f operators
should consist of one distinct operator for the function
lame and another to serve as an assignment or grouping
symbol so n* - 2. Thus, V* - (2 + n*) log, (2 + n*)

—where n* represents the number of different input/output
parameters. Note: V* is considered a useful measure
}f an algorithm's content. It is roughly related to the
lasic GRC model concept of input/output formats. In

.,.,.:act, the GRC equation for man months of the project
(MH_R ) is an exponential relationship between HHpRQg
and an estimate of V*. .

The level of the implementation of a program is
defined as its relation to Its most abstract form, V*,
i.e., V*

L • rj~. L < 1 and the most succinct expression
for an algorithm has a level of 1. V* • L x V implies
that when the volume goes up the level goes down. Since
it is hard to calculate V*, an approximation for L, L,
is calculated directly from an implementation

2n
~L. The reciprocal of level is defined as

"1N2
the difficulty, D - 1/L, which can be viewed as the
amount of redundancy within an implementation.

Based on these primitives, formulas for program-
ming effort (E) and time (T) are derived. Assuming the
y.mplementation of an algorithm consists of N selections
from a vocabulary of n elements and that the selection
•is non-random and of the order of a binary search (im-
plying log. n comparisons for the selection of each
element), the effort required to generate a program is
f log. n mental comparisons (this is equal to the
/olume (V) of the program). Each mental comparison re-
quires a number of elementary mental discriminations
where this number is a measure of the difficulty (0) of
che task. Thus, the total number of elementary mental
liscrlminations E required to-generape a given program
"should be E • V * D • V/L • V /V*. This says the mental
effort required to implement any algorithm with a given
potential volume should vary with the square of its
/olume in any language. E has often been used to measure
che effort required to comprehend an implementation
rather than produce it, i.e., E may be a measure of pro-
gram clarity.

To calculate the time of development, software
science uses the concent of a moment, defined by the
psychologist Stroud as the time required by the human
.)rain to perform the most elementary discrimination.
These moments have been shown to occur at a race of 5
to 20 per second. Denoting moments (or Stroud's number)
by S, we have 5 £ S f 20 per second. Assuming a pro-
grammer does not "time share" while solving a problem,
md converting the effort equation (which has dimensions

of both binary digits and discriminations) we get

E V V
T «• — =s~ » ~^. Halstead empirically estimated S = 18

for his.,environment, but this may vary from environment
to environment.

Software science metrics have been validated in a
variety of environments but pradominantly for module
size developments.

Other resources. In what has been stated so far,
resource expenditure and estimation have been pre-
dominantly computed in terms of effort. The formula for
cost may be a simple multiplication of the staff months
times the average cost of a staff member or it may be
more complicated. It may include some difference for
the cost of managers versus the cost of programmers
versus the cost of support personnel whose role varies
across the life cycle (13).

The schedule may be derived based upon historical
data, with effort allocated to different activities
based upon the known percentages or it may be dictated
by the model itself, as with the Rayleigh curve. How-
ever, the dynamic models generate what they consider'the
ideal staffing conditions which may not be the actual
ones available. Thus, in fitting actual effort to the
estimated or proposed effort, some decisions and trade-
offs must be made.

Computer time is yet another resource. Unfor-
tunately, none .of the above models treats this within
the same formula. In general, they have a separate
formula for computer time again based upon computer use
in similar projects. These models vary from a simple
table type model (6) to some very sophisticated proba-
bility distribution based on reliability modeling for
phases of the development, such as testing (14).

Changes and Errors

There are process aspects other than resource ex-
penditures that provide information about managing and
engineering the process and the product. One such
aspect is the changes and errors generated during de-
velopment or maintenance. Monitoring the changes in the
software provides a measure of level of effort to get
the product in order. If we can classify the types of
changes that occur or their source of origin, we can
categorize the environment and gain insight into how
to manage or minimize the effect of particular types of
changes. For example, suppose the user is generating a
series of major changes at a continual rate. This may
provide management with the Information it needs to
reclassify the environment from its original one to a
more complex one, permitting modification of the cost
parameters in the resource estimation model and a re-
estimation of cost part way through the project. It
could also provide management with the necessary insight
to change the development approach or methodology to one
that is more insensitive to externally generated change,
such as some incremental development approach.

Monitoring errors provides information with regard
to the quality of the product. A product developed
with only a few errors or with errors found early and
an error rate decreasing during development and testing
will warrant more confidence in its quality. Keeping
track of the time to find and fix errors gives insights
into cost. Knowing the types of errors being made helps
in focusing attention to particular problems during the.-
code-reading and design-review sessions.
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Program evolution measures. Belady and Lehman (15)
have examined the changes occurring in software during
maintenance and derived a set of laws for program
evolution. Based on such parameters as size.of the
system, number of modules added, deleted or changed,
the release data, manpower, machine time and cost, they
derived the following laws:

1. Law of continuing change. A system that is
used undergoes continuing change until it is judged
more cost effective to freeze and recreate it.

2. Law of increasing entropy. The entropy of a
system (its unstructuredness) increases with time,
unless specific work is executed to maintain or reduce
it.

3. Law of statistically smooth growth. 'Growth
trend measures of global system attributes may appear
to be stochastic locally in time and space, but, sta-
tistically, they are cyclically self-regulating with
well-defined long-range trends.

These laws can be demonstrated by using the following
metrics:

RSN,

D ,

M ,

MH

HR

the release number

the age of system at release R

the time between releases R-l and R

the number of modules in the system

, the number of modules handled during release
interval I (estimator of activity under-
taken in each release)

= MH /I , the handle rate

= MH /M , the complexity which is the frac-
tion of released system modules that
were handled during the course of
the release R.

Time

C has been observed to be monotonically increasing
and approaching unity over time (for OS 360, approxi-
mately 20 releases over 10 years).

Using these metrics, management can predict when
it is too costly to modify a system, i.e., when it is
cheaper to redesign than make the next change. It
can also determine whether enough effort is being de-
voted to keep future changes at a reasonable cost.

Program-changes. Dunsmore and Gannon have proposed
a measure called program-changes which correlates very
highly with errors (16). A program-change is a textual
revision in the source code of a module during the de-
velopment period. One program-change should represent
one conceptual change to the program. Thus, a program-
change is defined as one or more changes to a single
statement, one or more statements inserted between ex-
isting statements, or a change to a single statement

followed by the insertion of new statements. On the
other hand, the following are not counted as program-
changes: the deletion of one or more existing state-
ments, insertion of standard output statements or
special compiler-provided debugging directives, and
insertion of blank lines or comments. Basil! and
Reiter showed that program-changes were minimal when a
good software development method was used (17).

Error-day. An error-based measure of product
quality was proposed by Mills (18) which he called the
error-day. The motivation is that the longer an error
remains in the system the more expensive and less re-
liable it is. The error-day measure is simply the sum
over each error of the number of days it has existed
within a system. 'It weights errors by their duration
in the system. Clearly, a low error-day count is an
indicator of a well-engineered program. This measure
could be automated by using the concept of program-
changes and plotting them against time.

Job-steps. An indication of the amount of effort
expended in development can be the number of computer
accesses or job-steps. A computer job-step is a
single programmer-oriented activity performed on a com-
puter at the operating system command level, which is
basic to the development effort and involves nontrivial
expenditures of computer or human resources. Typical
job-steps might be text editing, module compilation,
link editing, and program execution. Basil! and
Reiter (17) found job-steps to be a serious differ-
entiator of development environments, and that good
methodology leads to a smaller number of job-steps.

There exist many other measures of the software
development process. The interested reader is re-
ferred to some general references in the literature,
e.g., Curtis (19), Mohanty (20), Belady (21).

PRODUCT MEASURES

. Actually, all the previous measures could have
been considered measures of the product. If a product
takes a long time or a large effort to develop, we may
consider it a complex product. If there were lots of
errors found at the tail end of product development
or if the rate of finding errors was increasing every
day, we would say the quality of the product was very
low. However, each of those indicated as much, if not
more, about the process than the product.

The measures discussed in this section are probes
into the product. They are taken at a discrete point
in time, usually on the final deliverable product.
Even though examining the changes in value of the
metrics on the product over time could be very informa-
tive with regard to the process, we will classify them
as product measures. We categorize these measures with
respect to size, structure and reliability.

Size

The size of a product is a simplistic measure and
easy to calculate. It is a reasonable indicator of the
amount of work expended and correlates well with effort.
Size metrics are used for cost estimation, comparison
of products, and for measures of productivity. Although
it may be a basic ingredient in effort and productivity
measures, it must be modified by many other factors,
such as reliability and complexity. These measures
will be treated in subsequent sections.

The most common measure of size is lines of code.
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However, what gets measured depends to a great extent
_jn our interests. For example, if we are interested

in measuring effort, then source lines including com-
ments and data are a reasonable measure and have been
used in several studies (1, 2). If we are interested
in function size, a better approximation may be exe-
cutable statements. If our interest is in comparing
the size of resulting products for operational use, a
common denominator is number of machine language in-
structions. Clearly, there is little agreement on the

—appropriate measure of lines of code and the choice
should depend upon the issue under consideration. It
is important in reading the literature that we clearly
understand which measure of size is being used, since
the authors do not always make it clear.

Another measure of size is to treat units larger
than lines of code. One common unit is the module.
Modules are used in the measures of Belady and Lehman
(21) and were shown to be reasonable measures for cost
estimation by Freburger and Basili (2). Smaller units,
such as procedures or functions, were used by Basili
and Reiter (17). Again, the choice is dependent upon

—the purpose of the measure. For estimation, it is
sometimes easier to predict the number of modules
rather than the number of lines. However, comparison
•nay be difficult since there is no standard definition
of module.

On the other end of the size spectrum is the num-
ber of operators and operands as defined in software
science by Halstead (12). More specifically, the
length and volume measures are potential measures for
size of an implementation and size of the function,
respectively. There have been several studies thac
support these metrics as reasonable approximations to

-what they purport to measure. They make good metrics
for comparison and possible evaluation, but there is
potential for using them for estimation also.

..Structure

The structure of a program is often a good indi-
cator of whether that product is well designed, under-
standable, and easy to modify. Structure measures

"are often proposed as measures of the complexity of
the product. In examining structure, we may be con-
cerned with the control structure, the data structure,
or a mixture of the two.

Control structure measures. The simplest control
structure metric is the number of decisions (17) as
measured by the number of constructs that represent
branches in the flow of control, such as if then else
or while do statements. There is a basic belief that
the more control flow branching there is in a system
the more complex it is. A variation of this measure
is the relative percentage of control flow branching,
i.e., the number of decisions divided by the number of
executable statements. Early studies by Aron (7)
showed that varying levels of this type of complexity
could account for a nine to one difference in
productivity.

A more refined measure of control complexity is
cyclomatic complexity as proposed by McCabe (22). The
cyclomatic complexity of a graph is defined as the
number of edges minus the number of nodes plus the
number of connected components, and is equal Co the
minimum number of basic paths from which all other paths
may be constructed. Given a program in which all state-
"ments are on a path from the entry node to an exit node,
the cyclomatic complexity can be defined as the number
of predicates plus the number of segments. A predicate

is defined as a simple Boolean expression governing
the flow of control and a segment is defined as an in-
dividual routine (procedure or function).

The measure originated as a count of the minimum
number of program'paths to be tested. This is one
quantitative measure of a program's complexity. The
measure is usually applied at the module level and
McCabe proposed a cyclomatic complexity of ten as an
upper bound for the safe range with regard to the com-
plexity of a module. Several variations of the basic
cyclomatic complexity measure have been studied by
Basili and Reiter (23). They evaluated their sensi-
tivity to different software development environments
with reasonable success. They have also defined some
approaches to using the measure at the product level
rather than the module level in a way that is reason-
ably insensitive to system modularization.

Other measures of control complexity involve the
weighting of various types of control structures as
to whether they are simple or complex, where simple
means easy to read and prove correct based upon the
graph structure. For example, single-entry single-exit
program graphs that contain a single predicate node
are easier to understand and abstract from than more
complicated graph structures. Thus, one approach
would be to weight various graph structures based upon
this complexity. This type of measure requires a more
detailed analysis of the program structure than does
the cyclomatic complexity measure, but tends to be a
deeper measure of control flow and can include other
complexity factors, such as nesting level. One such
measure is essential complexity (22), which assigns
every program using only structured programming con-
trol structures a complexity of one.

Data structure measures. Data structure metrics
try to measure the complexity of the program structure
by the way the data is used, organized, and allocated.
Clearly, the simpler the reader's ability to abstract
the use of data the easier the program will be to
understand and modify. Several measures have been
used for evaluating the structuring of the data in a
program and a feu will be discussed here.

The segment-global usage pair metric (24) attempts
to measure the goodness of the use of globals in the
program. A segment-global usage pair (p, r) is an
instance of a global variable r being used by a seg-
ment p (i.e. , r is either modified or accessed by p.
Each usage pair represents a unique "use connection"
between a global and a segment. Let actual usage pair
(AUP) represent the count of realized usage pairs, i.e.,
r is actually used by p. Let possible usage pair (PUP)
represent the count of potential usage pairs, i.e.,
given the program's globals and their scopes, the scope
of r contains p so that p could potentially modify or
access r. This represents a worst case. Then the
relative percentage usage pairs (RUP) is RUP - AUP/PUP
and is a way of normalizing the number of usage pairs
relative to the problem structure. The RUP metric is
an empirical estimate of the likelihood that an
arbitrary segment uses an arbitrary global.

The data binding metric (24, 25) is an attempt at
measuring the inter-relationship of modules or segments
within a program. A segment-global-segment data bind-
ing (p, r, q) is an occurrence of the following:
(1) segment p modifies global variable r, (2) variable
r is accessed by segment q, and (3) p i* q. The exist-
ence of a data binding (p, r, q) implies that q is
dependent on the performance of p because of r. Binding'
(p, r, q) does not equal binding (q, r, p). (p, r, q)
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represents a unique communication path between p and q
and the total number of data bindings represents the
degree of a certain kind of "connectivity," i.e., be-
tween segment pairs via globals, within a complete
program. Let actual data bindings (ADB) represent the
absolute number of realized data bindings in the pro-
gram, i.e., the realized connectivity, and possible
data bindings (PDB) represent the absolute number of
potential data bindings given the program's global
variables and their declared scope (i.e., same worst
case). Then we can normalize the number of data bind-
ings by calculating the relative percentage RDB =
ADB/PDB. This gives some relative measure of the amount
of information exchanged in the program.

A measure of the amount of data required to be
understood by the programmer while reading a program
is span (26). A span is the number of statements be-
tween two consecutive textual references to the same
identifier. Thus, for n appearances of an identifier
in the source text, n-1 spans are measured. All appear-
ances are counted except those in declare statements.
If the span of a variable is greater than one hundred
statements, then one new item of information must be
remembered for a hundred statements until it is read
again. The complexity of the program would be the num-
ber of spans at any point, i.e., the amount of data
the reader must be aware of when reading any particular
statement.

Control and data structure measures. There are
models of structure that address the integration of
control and data flow. One such model is slicing (27).
Informally, slicing reduces a program to a minimal
form which still produces a given behavior for a sub-
set of the data. The desired behavior is specified
as a projection from the program's original behavior.
•For instance, if a program computes values for vari-
' ables X, Y, and Z, then one projection might be the
value of X at program termination. The minimal pro-
gram is obtained by eliminating program statements
which do not affect the projected behavior. The re-
sult is a smaller program which contains only those
statements from the original program which affect the
selected behavior.

There are several possible metrics based on pro-
gram slicing. These include (1) coverage, the ratio
of slice length to program length; (2) overlap, a
measure of the sharing of statements among different
slices; (3) clustering, the percentage of statements
in the slice which were adjacent in the original pro-
gram; (4) parallelism, the number of almost disjoint
slices; and (5) tightness, the ratio of statements
found in every slice to total statements in the original
program. Each of these metrics gives some view of the
complexity of the program with respect to the control
and data flow.

Reliability

Measuring the reliability of a product may involve
an analysis of the (1) distribution or classification
of errors, or (2) execution of the product in a testing
or operational environment. Metrics involving the dis-
tribution of errors can include the program changes
and error-day metrics discussed earlier. Other metrics
involve distributions, such as fixes per line of code,
fixes per phase, errors per person hour, errors per
type of change causing the error, fixes per detection
and correction technique, etc. Weiss (28) has studied
various distributions in evaluating a development
methodology by showing a profile of the error distribu-
tions made when using the methodology. Endres (29) used

error classification schemes to analyze the reliability
of a release of an operating system.

With regard to the operation of the program,
several reliability models have been proposed in the
literature (14, 30, 31, 32). Software reliability
here is defined as the probability that a given soft-
ware program operates for some time period without
software error which is detectable by executing the
code on the machine for which it was designed, given
that it is used within design limits. Reliability
measurement can be done for evaluation purposes as well
estimation purposes. The models measure reliability as
a function of calendar time, computer usage or accumu-
lated man hours and require parameters, such as the
error detection rate and the total number of errors in
the system, before testing. These estimates can be
based on theoretical assumptions or historical data.

A particular reliability model due to Shooman (30)
is based upon a set of assumptions, such as (1) the
operational software errors occur due to occasional
traversing of a portion of the program in which a
hidden software bug is lurking; (2) the probability
that a bug is encountered in the time interval At,
after t successful hours of operation is proportional
to the probability that any randomly chosen instruction
contains a bug, i.e., the fractional number of remain-
ing bugs f . Then the probability of a failure during
time interval (t, t + At), given no failures have oc-
curred up until t is proportional to the failure rate
z(t) (hazard function). Thus, the probability of
failure in interval At, given no previous failure, is
P (t < t •£ t + At | t > t) = z(t) * At = K6 (T) At
where t, is operating time to failure, K is In arbitrary
constant, T is the debugging time in man months, t is
the operating time in hours. K can be estimated by ex-
amining the history of errors detected, e.g.,

K— ^ catastrophic errors detected.
~~ total // errors detected

The probability of no system failure in the inter-
val (0, t) is given by the reliability function

-f z(x) dx

R(t) = e °

assuming reliability is related to the failure rate.
Assuming K and i (T) are independent of operating time
t we get

R(t) = e r =e

where ( is the number of corrected errors, E_ is the
total number of initial bugs in the program and IT is
the number of instruction in the program. This implies
the probability of successful operation witfiout soft-
ware bugs is an exponential function of operating time.

A simplier way to summarize the results of the re-
liability model is to compute the mean time to (software)
failure, MTTF using the reliability function

/

Q

R(t)dt = __ = —F~
K«r(T) K{hT/IT - CC(T)>

If the error correction rate p is constant, then < (T)
/ \ j ° c= P (T) and

o I T
MTTF = —r,T-- ^ = "

B ( l - o i )
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(here 3 = T K
I,

12 ..

and

1/4 1/2 3/4
normalized time

"Note the most improvement in MTTF occurs during the
last quarter of debugging.

Other models are based upon different assumptions,
—out all yield some measure of .the reliability of the
product.

The reader interested in other product measures
_s again referred to some general references in the
literature (19, 20, 21).

RODUCT MEASURES ACROSS TIME

As mentioned earlier, measures can be taken once
on the final product or at discrete intervals through-
ut the life cycle. In this latter approach, metrics
an be used to monitor the stability and quality of

-the product. By re-evaluating the metrics periodi-
cally, we can see if the product is changing its charac-
~er in any way. It can provide feedback during develop-
ent and maintenance. For example, if we find that

._ ver a period of time more and more control decisions
have entered the system, then something may have to be
done to counteract this change in character.

This approach is a way of providing a relativ-
ist̂  evaluation of the product. As such, it is
easier to understand than an absolute measure. That
s, it may be more informative to know that each
hange we make in the system increases the complexity

of the system, than to know the total complexity of
the system is some specific number. Here we need
-nly compare the values of the metrics with values of
he metrics on earlier versions of the system. The
rawback to an absolute measure is that we have

nothing to compare it to.

VTA COLLECTION

One major concern with performing measurement is
the ability to collect reliable data. Before we begin
Electing data, however, we must first understand
ne various factors that characterize our environment.

~£ must isolate those factors we hope to control,
measure, and understand so that we may analyze their
°ffect.

With regard to the actual data collection process,
there are various approaches. Data collection can be
automated, meaning there is no interference to the
•velopers, or non-automated, meaning the data is
)llected from the developers using forms or interviews.

Automated data collection tends to be more reliable
and can be done without the participants being aware
! what specific activities and factors are being
:udied. Reporting forms and interviews can provide

.-ore detailed insights into the process and give a
level of information that is not available in an auto-
-ited collection process, e.g., Insights into the

kinds of errors committed.

Clearly, the data collected should be driven by
the models and metrics we are interested in using;
however, it doesn't hurt to add other data which may
give us -information about refining and modifying those
models and metrics. All the data collected should be
entered into a data base and validated, as mych as
possible, for easy reference and access.

A first step in the validation of forms is a re-
view of the forms as they are handed in; someone con-
nected with the data collection process should ensure
that the appropriate forms have been handed in and
that the appropriate fields have been filled out. The
data should be entered into the data base through a
program that checks the validity of the data format
and rejects data out of the appropriate ranges. For
example, this program can assure that all dates are
legal dates and that system component names and pro-
grammer names are valid for the project by using a
prestored list of component and programmer names.

Ideally, all data in the data base should be re-
viewed by individuals who know what'the data should
look like. Clearly, this is expensive and not always _
possible. However, several projects should be re-
viewed in detail and the number and types of discrep-
ancies kept so that bounds can be calculated for the
unchecked data. This allows data to be interpreted
with the appropriate care.

Another type of validity check is to examine the
consistency of the data base by comparing redundant
data. For example, if effort data is collected both
at the budget level and at the individual programmer
level, there should be a reasonable correlation between
the two total efforts. Another approach is to use
cluster analysis to look for patterns of behavior that
are indicative of errors in filling out the forms.
For example, if all the change report forms filled out
by a particular programmer fall into one cluster, it
may imply that there is a bias in the data based upon
the particular programmer.

Data collection is a serious problem, especially
on large programming projects involving character-
istically different environments. One set of forms
may not be enough to capture what is happening across
all environments. However, if we are to use this data
in models and metrics, we need to know how valid that
data is in each case so as to avoid Improper conclusions.

CONCLUSION

Having fit the models to the data, we must analyze
and interpret their results carefully. As stated
earlier, we must understand the environmental parameters
under which the project was developed. We must know
the assumptions, strengths and weaknesses of the models
in order to interpret the results for the particular
project. Our level of confidence in the particular
model or metric should be based upon the level to which .
the model or metric has been tested. If the results
support our intuition, we understand what the model
means in our environment; if not, understanding the
model's shortcomings can yield insights into the model
and our environment.

Quantitative support can be an excellent aid and
risk reducer in making a difficult management or
engineering decision. An organization should build
up its knowledge and expertise in quantitative analysis
of software development. In this way, confidence in
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the various models and metrics can be acquired through
direct experience.
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