
December 2014

NASA/TM-2010-215855_Rev.1

James Rash
NASA Goddard Space Flight Center, Greenbelt, Maryland

An Optimizing Space Data-Communications Scheduling
Method and Algorithm with Interference Mitigation,
Generalized for a Broad Class of Optimization Problems

•

•

•

•

•

•

•

•

•
 443) 757-5803

• 443
757-5802

•

 7115
 1 7

Available from

NASA Center for AeroSpace Information National Technical Information Service
7115 Standard Drive 5285 Port Royal Road

Available electronically at http://gltrs.grc.nasa.gov.

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

December 2014

James Rash
NASA Goddard Space Flight Center, Greenbelt, Maryland

NASA/TM-2010-215855_Rev.1

An Optimizing Space Data-Communications Scheduling
Method and Algorithm with Interference Mitigation,
Generalized for a Broad Class of Optimization Problems

James Rash revised the original NASA Technical Memorandum after his retirement, during his term in the NASA
Emeritus Program. He can be contacted through the Office of Human Capital Management, NASA’s Goddard Space
Flight Center, Greenbelt, Maryland 20771, USA.

Acknowledgments
The author thanks Frank J. Stocklin of NASA Goddard for supporting this research, which culminated in both the
original draft of the algorithm and its embodiment in a prototype automated interference-mitigation scheduler. David
Joesting of Allied Signal Technical Services Corporation is thanked for useful criticisms on an early draft of the
algorithm. Allen J. Levine of NASA Goddard (retired) is thanked for generating data from the Network Planning
and Analysis System (NPAS) for comparison with output from the implementation of the predecessor of the herein
disclosed algorithm, and is thanked for useful comments on a draft of this paper.
This document was prepared with open-source software for the Macintosh® computer: the LATEX application
program TeXShop and the bibliographic application program BibDesk. Also used was the Macintosh built-in appli-
cation Grapher. The author wishes to acknowledge the developers for the quality of these applications.

Document Change History
This document, numbered as NASA-TM-2014-215855_Rev.1, replaces the previous version,
NASA-TM-2010-215855. Changes include the following:
1. Expanded index

2. Added reference

3. Errata
a. Corrections of mathematical expressions
b. Typographical corrections and minor corrections/alterations (punctuation, word-choice, and spelling

corrections, formatting changes, etc.), silently incorporated

4.

5. Explanatory remarks added

6. Passages or remarks added or sentences reworded for clarity

7.

Notice for Copyrighted Information
This manuscript has been authored by James Rash with the National Aeronautics and Space Administration. The
United States Government has a non-exclusive, irrevocable, worldwide license to prepare derivative works, publish,
or reproduce this manuscript, and allow others to do so, for United States Government purposes. Any publisher
accepting this manuscript for publication acknowledges that the United States Government retains such a license
in any published form of this manuscript. All other rights are retained by the copyright owner.

Level of Review: This material has been technically reviewed by technical management

Trade names and trademarks are used in this report for identification only. Their usage does not constitute an official
endorsement, either expressed or implied, by the National Aeronautics and Space Administration.

CONTENTS CONTENTS

Contents
1 Introduction 7

1.1 Background on NASA Data-Communications Scheduling . 7

1.2 Toward an Optimizing Scheduler . 7

1.3 Incorporating RF Interference-Mitigation Constraints . 7

1.4 Concerning Processes, Methods, and Algorithms . 8

1.5 The Essential Technology Used in the Present Disclosure . 8

1.6 Innovations Disclosed . 9

1.7 Audience for the Present Disclosure . 9

1.8 Organization of Paper . 9

2 Space-Data Communications-Scheduling Problem Definition 10
2.1 Space-Data Communications Scheduling . 10

2.1.1 Scheduling-System Objective . 10

2.1.2 Primary Factors Affecting Achievability of Objective . 10

2.1.3 Technical Factors Affecting Achievability of Objective . 10

2.2 Size of the Solution Space . 10

2.2.1 Determining Factors . 10

2.2.2 A Simple Example . 11

2.2.3 A More Realistic Example . 11

2.2.4 Possible Approach to Reducing the Size of the Solution Space . 12

2.3 Alternative Approaches . 13

2.3.1 Brute Force and Constructive Techniques . 13

2.3.2 Necessity of Special Search Techniques . 13

2.4 Evolutionary Search . 13

2.4.1 Genetic Algorithms . 13

2.4.2 Representations of Solutions of the Scheduling Problem . 13

2.4.3 Processes for Selection and Creation of Working Population Members 14

2.4.4 Principle of Operation of Genetic Algorithms . 14

2.4.5 Progress of Evolutionary Search . 14

2.4.6 Effect of Internal Parameters of the Genetic Algorithm . 15

2.4.7 Fitness Functions, Minima, Maxima, and Optima . 15

2.4.8 Metrics for Evaluation of the Scheduling System . 16

2.4.9 Random Numbers and Their Role . 16

3 Communications-Scheduling Assumptions 16
3.1 Necessary Input Data . 16

3.2 Scope Limitations . 17

3.2.1 Two-Week Scheduling on a Weekly Cycle . 17

3.2.2 Dynamic Rescheduling . 17

3.2.3 Near-Earth Communications Environment . 17

4 Definitions 17
4.1 Basic Space-Data-Communications Definitions . 17

4.2 General Notation . 18

4.3 Domain-Specific Definitions . 21

4.3.1 System Input Data . 21

4.3.2 Scheduling-Algorithm-Specific Definitions . 24

5 Optimal Schedule-Generation Algorithm 35
5.1 Specification of Optimal Schedule-Generation Algorithm . 35

5.2 Schedule-Generation Algorithm: Internal Parameters . 36

1

CONTENTS CONTENTS

6 Internal-Parameter Optimization: The S� Problem 37
6.1 The S� Problem: Introduction . 37

6.2 The S� Problem: Definitions . 38

6.3 Algorithm for Solving the S� Problem . 38

6.4 The S� Problem: Discussion . 39

7 A Further Abstraction: The S�� Problem 40
7.1 The S�� Problem: Introduction . 40

7.2 Regression-Analysis Approach . 40

7.3 Operational Use of Derived Estimation Function . 41

7.4 The S�� Problem: Discussion . 41

8 Implementation 42
8.1 Prototype Implementation of Predecessor Algorithm . 42

8.2 Implementing the Disclosed Methods and Algorithms . 42

9 Conclusion 43

10 Appendix A. Algorithm Performance 44
10.1 Best-Solution Fitness (Function of Algorithm-Iteration Count) . 44

10.2 Assumed-Model Versus Actual Performance . 44

10.3 Fitness as a Function of a Single Parameter . 46

10.4 Fitness as a Function of Elapsed Run Time . 48

10.5 Key Insight Afforded by the Assumed Model . 49

11 Appendix B. The Generalized Algorithms and Methods 49
11.1 The General Problem . 49

11.1.1 Introduction . 49

11.1.2 Basic Definitions . 49

11.1.3 Associating Generalized Problem Domains with Real Problem Domains 50

11.1.4 A Note on Applicability . 50

11.1.5 The Essential Evolutionary Search Functions . 51

11.2 The Type-G Problem . 53

11.3 Type-G Problems: The G-Algorithm . 53

11.3.1 Execution of a G-algorithm . 54

11.4 The G� Problem . 54

11.4.1 Regarding Type-G Meta Problems . 54

11.4.2 Meta-Problem Scenarios Compounded Indefinitely . 54

11.4.3 Approaching the G� Problem . 54

11.4.4 The G� Problem: A Chain of Type-G Meta Problems . 56

11.4.5 Optimized G� Problem . 56

11.4.6 Practical Stopping Point in the G� Algorithm . 57

11.5 Overall Optimization: G�� Problem . 58

11.5.1 The Final Issue . 58

11.5.2 Regression Methods for Solving the G�� Problem . 59

11.5.3 Functions That Model a Given Data Set . 60

11.5.4 The G�� Problem . 61

11.5.5 The G�� Algorithm Employing Regression-Analysis Technology . 61

11.6 Implementation Process . 61

11.6.1 The Basic Implementation Alternatives . 61

11.6.2 The First Implementation Alternative (Basic Implementation of the G-Algorithm) 61

11.6.3 The Second Implementation Alternative (Implementation of the G�� Algorithm) 63

11.7 Estimation Function: Operational Use . 64

2

LIST OF TABLES LIST OF FIGURES

11.8 Which Regression Analysis Algorithm? . 65

11.9 Final Remarks . 65

12 Revisions and Changes Digest 65

References 67

Index 69

List of Tables
1 Space Network Forward and Return Link constraints from the Space Network Users’ Guide (SNUG) 28

2 Ground Network Forward and Return Link constraints . 28

List of Figures
1 Communications events placed relative to the 90-minute-orbit time line . 11

2 An example prototype event for a (more) realistic communications scheduling scenario 12

3 An example illustrating the skip-factor concept . 25

4 Best-Solution Fitness modeled as a function of algorithm iteration count, with its derivative 45

5 Best-Solution Fitness versus iteration count . 45

6 Best-Solution Fitness as a function of parameter n, the change in the number of new members added each step 46

7 Derivative of best-solution fitness as a function of n, the change in the number of new members added each step 47

8 Best-solution fitness modeled as a function of elapsed run time . 48

3

This page intentionally left blank.

4

Abstract

NASA’s space data-communications infrastructure—the Space Network and the Ground Network—provide scheduled (as
well as some limited types of unscheduled) data-communications services to user spacecraft. The Space Network operates sev-
eral orbiting geostationary platforms (the Tracking and Data Relay Satellite System (TDRSS)), each with its own service-
delivery antennas onboard. The Ground Network operates service-delivery antennas at ground stations located around the
world. Together, these networks enable data transfer between user spacecraft and their mission control centers on Earth.
Scheduling data-communications events for spacecraft that use the NASA communications infrastructure—the relay satellites
and the ground stations—can be accomplished today with software having an operational heritage dating from the 1980s or ear-
lier. An implementation of the scheduling methods and algorithms disclosed and formally specified herein will produce glob-
ally optimized schedules with not only optimized service delivery by the space data-communications infrastructure but also
optimized satisfaction of all user requirements and prescribed constraints, including radio frequency interference (RFI) con-
straints. Evolutionary algorithms, a class of probabilistic strategies for searching large solution spaces, is the essential technol-
ogy invoked and exploited in this disclosure. Also disclosed are secondary methods and algorithms for optimizing the execution
efficiency of the schedule-generation algorithms themselves. The scheduling methods and algorithms as presented are adapt-
able to accommodate the complexity of scheduling the civilian and/or military data-communications infrastructure within the
expected range of future users and space- or ground-based service-delivery assets. Finally, the problem itself, and the meth-
ods and algorithms, are generalized and specified formally. The generalized methods and algorithms are applicable to a very
broad class of combinatorial-optimization problems that encompasses, among many others, the problem of generating opti-
mal space-data communications schedules.

General Terms: Scheduling, Algorithm, Computing, Space

Additional Key Words and Phrases: System specification, formal mathematical specification, space-data communications, ra-

dio frequency interference mitigation, combinatorial optimization, genetic algorithm, evolutionary programming, probabilistic

search, regression analysis

5

6

1.3 Incorporating RF Interference-Mitigation Constraints 1 INTRODUCTION

1. Introduction

1.1. Background on NASA
Data-Communications Scheduling

Scheduling data-communications events for spacecraft that

use the NASA communications infrastructure [26]—the re-

lay satellites [19] and the ground stations [7]—can be accom-

plished today with software having an operational heritage

dating from the 1980s or earlier [10, 31] with emphasis on

incremental and reactive scheduling [22]. Neither the legacy

scheduling system nor any subsequent system described in

the public literature possessed the capability to generate true

optimized schedules for reasons that will be explained be-

low, but the scheduling system described in publicly avail-

able documents can (when the option was invoked) generate

schedules free of radio frequency interference (RFI) effects

by blocking out portions of the problem-solution space from

consideration whenever those portions appeared with any

predicted RFI effects. Similarly, the algorithms implemented

in the legacy system pruned away portions of the solution

space upon encountering violations of the various other con-

straints. This approach, which perforce ignores large portions

of the solution space, necessarily means that true schedule

optimization was not an actual achievable objective of the

legacy scheduling system.

Present space data-communications schedulers commonly

have the capability of algorithmically generating schedules

using techniques for representing and exploring the problem-

solution space as either a graph or a tree of related sub-

solutions. A number of standard algorithms for searching a

solution space represented as a graph or tree are available.

These, in general, operate by eliminating branches of the tree

where constraint violations (e.g., unacceptable levels of RFI)

are found (although any “slash and burn” approach or any

“branch and bound” technique has the undesirable conse-

quence that it incorporates no mechanism by which to avoid

discarding sections of the tree that represent solutions that are

better than any others that can be found in the course of run-

ning the scheduler). NASA’s legacy scheduling system, us-

ing such standard search methods, was capable of produc-

ing workable schedules, albeit with certain significant con-

cessions to the compute-intensive nature of the search (in-

cluding certain problem simplifications that themselves, even

ignoring the performance of the search techniques, precluded

the possibility of true schedule optimization). See Revisions

and Changes Digest item 1, page 65.

1.2. Toward an Optimizing Scheduler

Current space data-communications scheduling sys-

tems, which lack a true schedule-optimization capability,

leave open the possibility that new methods for search-

ing the solution space might result in improved infrastruc-

ture performance and overall schedule-quality improvement,

bringing increased overall customer satisfaction.

Disclosed and formally (mathematically) specified

herein are methods and algorithms for an optimiz-

ing, constraint-satisfying, automated scheduling sys-

tem that potentially could be implemented in NASA’s

space-data-communications infrastructure. Conceived and

developed in the early 1990s, this is the first such sys-

tem (i.e., methods and algorithms) disclosed publicly

that—

1. is capable of true schedule optimization considering

prescribed constraints such as mitigation of RF inter-

ference,

2. is specified rigorously, and

3. is implementable with adequate performance.

The system (the methods and algorithms taken together) ad-

dresses (a) the issue of performance and efficiency of

the communications infrastructure and (b) the impor-

tant space-mission operations-planning problem of op-

timizing data-communications schedules. The desired

optimization not only would include minimizing radio fre-

quency interference effects that can reduce achievable data

rates for space missions, but also would include accommo-

dating other prescribed constraints such as hours of operation

of mission control centers and anticipated or planned re-

source outages.

1.3. Incorporating RF Interference-Mitigation
Constraints

Practically all of the major emitters that produce RFI ef-

fects are known as to both location (or dynamic position

in space) and signal characteristics (frequency, power, signal

structure, polarization, etc.). There are many such sources of

RFI: ground-based radars, radio and television transmitters,

other spacecraft, and even cellular telephone service-provider

towers and their customers, among other emitters. (Individ-

ual cell phone users are each insignificant, but in the aggre-

gate, they represent an RF noise “floor” that can be charac-

terized, predicted, and mitigated in various ways.)

Beyond interference mitigation techniques (e.g., spread-

spectrum signal structures that are built into both the NASA

data-communications infrastructure and a user spacecraft’s

onboard hardware and software), various RFI-avoidance

mechanisms can be invoked during the process of schedul-

ing communications-service delivery to users. Some of

these mechanisms do not lend themselves to automa-

tion, while others are based on rules of thumb and problem

7

1.5 The Essential Technology Used in the Present Disclosure 1 INTRODUCTION

simplifications that, in general, do not promise the best pos-

sible schedules (in terms of optimizing user satisfaction

and service delivery by the data-communications infras-

tructure), even if automated. The former category (i.e.,

manual mechanisms) does not represent practical ap-

proaches for NASA, but an automated mechanism in the

latter category (the application of rules of thumb and prob-

lem simplifications) has been used in NASA’s scheduling

system at least since the operational date of the Space Net-

work. The herein-disclosed algorithm represents a third

category of techniques for RFI avoidance in schedule gener-

ation: it poses no difficulty for automation, is not based on

rules of thumb (but, instead, closed-form calculations of in-

terference effects), and supports true schedule optimiza-

tion.

An optimizing scheduler that satisfies constraints on RF

interference requires prior RF analysis of the factors in-

volved in the delivery of data-communications services, in-

cluding the RF environment in which the communications

occur as well as the user’s requirements and the specific

characteristics of the user spacecraft. In the early 1990s,

NASA’s Communications Link Analysis and Simulation Sys-

tem (CLASS) [8]Communications Link Analysis and Simu-

lation System (CLASS) fielded an interference analysis sys-

tem [15]—the CLASS IAS. The CLASS software is able to

produce all of the auxiliary data needed as input for the op-

eration of an interference-mitigation scheduling system (see

Section 3.1 for a representative list of these inputs).

1.4. Concerning Processes, Methods, and
Algorithms

Although it represents one of the most essential concepts

in computer science, the term “algorithm”, perhaps surpris-

ingly, has no generally accepted technical (or formal) defini-

tion 1. Further, definitions of “process” and “method” typ-

ically are non technical and imprecise. Trying to identify,

with accuracy, distinctions between these three terms there-

fore would be adventurous. However, for the purposes of this

paper, we see (at least minor) conceptual differences, and

these differences are reflected in the way the terms are used

herein.

A process is “a series of actions or steps taken in order to

achieve a particular end”2.

A method, considered as a “process by which a task is

completed; a way of doing something”3, entails a list of steps

1 Wikipedia article entitled “Algorithm” at http://www.wikipedia.org/
(accessed 18 October 2009).

2 Oxford American Dictionaries accessed 28 October 2009.

3 Wictionary entry at http://en.wiktionary.org/ (accessed 28 October
2009).

to be performed to accomplish an objective or intended re-

sult. An algorithm, of course, also includes a list of steps to

be performed. For the purposes of this paper, it is assumed

that every algorithm, but not every method, can be performed

mechanically, at least in principle. Consequently, every algo-

rithm, but not every method, must be specifiable with preci-

sion sufficient to make it accurately implementable as a com-

puter program.

In this paper, we endeavor to adhere to the following

scheme: a sequence of steps or actions is said to be a(n)—

1. “Algorithm” when the steps are expected to be imple-

mented in and performed by a computer application and

the result of the completion of the sequence of steps is

representable as a data structure.

2. “Method” when the goal of the sequence of steps is

broad or high-level and a human must perform at least

one of the steps.

3. “Process” when each of the steps is definite and pre-

cisely specifiable, when a human must perform at least

one of the steps, and when the result of performing each

of the steps in the sequence is not necessarily repre-

sentable as a data structure.

1.5. The Essential Technology Used in the
Present Disclosure

The algorithms and methods disclosed herein apply princi-

ples from the computer-science field of evolutionary search

and combinatorial optimization [2, 4, 9, 30] to solve the prob-

lem of finding an optimal overall schedule [25, 32, 12] that

(a) will satisfy user requirements for communications sup-

port from NASA’s communications infrastructure and (b)

will be consistent with NASA’s Space Network User’s Guide

(SNUG) [19] as well as the operations guidelines for the

Ground Network [7]. The quality of the schedules generated

by a computer application program that implements this al-

gorithm will be a monotonic function of the program’s ex-

ecution time. During the search for better and better solu-

tions, the best solutions found so far are retained and given

a chance to influence the creation of new, possibly better so-

lutions. When execution is terminated arbitrarily, the output

will be the best solution found so far during the run, and the

longer the run, the better the solution is expected to be. More

will be said regarding the notion of optimization (see Sec-

tion 2.4.7 (page 15)).

In the remainder of this paper, any mention of “the dis-

closed algorithm” will, depending on context, be understood

to mean “the disclosed methods and algorithms”.

8

1.8 Organization of Paper 1 INTRODUCTION

1.6. Innovations Disclosed

The present disclosure incorporates well-known technolo-

gies, namely, genetic algorithms (evolutionary search) and

regression analysis (in the broad sense encompassing the

general concept of the mathematical modeling of relation-

ships between data). The primary contributions disclosed

herein are as follows:

1. formal specification of methods, algorithms, and pro-

cesses for employing evolutionary-search technolo-

gies in an optimizing scheduling system for the NASA

space-data communications infrastructure;

2. formal specification of a method and algorithm for op-

timizing the internal parameters of a genetic algorithm

(specifically the algorithms identified in item 1); and

3. a description and formal specification of a method and

algorithm for deriving a function that, given an arbi-

trary problem scenario in the problem domain identi-

fied in item 1, will, in a cost-effective manner, return an

estimate of the optimal values of the internal parame-

ters of a genetic algorithm for solving the given prob-

lem scenario.

The author is not aware of any other disclosures equivalent

to items 1, 2, or 3.

Further, the methods and algorithms described and spec-

ified formally in Appendix B (Section 11 (page 49)) gen-

eralize those in items 1, 2, and 3 above and are applica-

ble to a very broad class of problems. Many of the prob-

lems in this general class (referred to as problems of Type

G) pertain to NASA and the space program (e.g., the space

data-communications scheduling problem treated in the main

body of this paper, as well as space-mission design optimiza-

tion and spacecraft-design optimization). But numerous other

fields (particularly those related to design optimization, and,

more broadly, virtually any field where actual solutions can-

not be computed directly with closed-form techniques but

can be described as finite data structures that can be evalu-

ated as to “goodness”) are encompassed under the general-

ized problem of Type G as defined in Appendix B. Finally,

the formal (mathematical) specifications of the methods and

algorithms are sufficiently rigorous and detailed to facilitate

not only the process of relating them to this broad class of

real-world problems, but also the process of implementing

them in a computer-application program. (See Revisions and

Changes Digest item 2, page 65.)

1.7. Audience for the Present Disclosure

As indicated above, the main body of this paper concerns

a particular application (NASA space-data communications

scheduling), while Appendix B broadens the topic to en-

compass a very broad range of application domains. The

audience for the former would include groups responsible

for designing and implementing space-data communications

scheduling systems (or identifying appropriate technologies

that could be used in such systems), while for the latter the

audience would include practitioners generally and, espe-

cially, groups designing and implementing any system for

reaching optimal solutions for the generalized problem do-

mains of Type G as defined in Appendix B. Any interest in

this paper on the part of researchers and academics would

likely be limited to the possible application, described herein,

of well-known techniques from the field of evolutionary pro-

gramming, and from the field of regression analysis gener-

ally.

1.8. Organization of Paper

Section 2 describes the scheduling-problem domain in terms

of the question of tractability and identifies a viable approach

to searching for optimal solutions. Such an approach (to the

author’s knowledge) has not been implemented or considered

for use in NASA’s space-data communications infrastructure,

which is the context (or, rather, the primary context) of the

present disclosure. Section 3 presents the assumptions under-

lying the specification of the disclosed algorithms. Section 4

defines general domain terms and specific notations used in

specifying the algorithm. The algorithm itself is precisely

specified in Section 5. Section 6 presents an additional algo-

rithm (also based on the principles of evolutionary search) for

optimizing the search itself—producing the optimal choice

of the values of the schedule-generation algorithm’s internal

parameters. In a further abstraction of the overall space data-

communications scheduling problem, Section 7 outlines ap-

proaches for determining a function by which to estimate the

optimal choice of the values of the schedule-generation al-

gorithm’s internal parameters, given a scheduling scenario.

The prototype implementation of the schedule-generation al-

gorithm and the internal parameter optimization algorithm

are briefly mentioned in Section 8. Concluding remarks are

given in Section 9. Section 10 (Appendix A) considers a

possible model to describe the performance of the schedule-

generation algorithm, and describes a key insight afforded by

analysis of the model. Finally, Section 11 (Appendix B) de-

scribes and specifies, in abstract terms, a broad class of prob-

lems—one member of which is the scheduling problem of

the kind targeted by the methods and algorithms that are pre-

sented in the main body of this disclosure—and discloses

and specifies generalized methods and algorithms for solv-

ing problems in this general class.

9

2.2 Size of the Solution Space 2 SPACE-DATA COMMUNICATIONS-SCHEDULING PROBLEM DEFINITION

2. Space-Data
Communications-Scheduling
Problem Definition

2.1. Space-Data Communications Scheduling

2.1.1. Scheduling-System Objective

In the overall data-communications scheduling problem, the

primary objective is to find a solution (i.e., a schedule) that

(a) maximizes delivery of services to users according to their

requirements and (b) maximizes the utilization of NASA

service-delivery assets4.

The evaluation of candidate solutions will involve numer-

ous factors that will be described in subsequent sections. In

addition to various technical factors, the evaluation may also

reflect NASA policy-level considerations such as the relative

priority officially assigned to each spacecraft or mission.

2.1.2. Primary Factors Affecting Achievability of
Objective

Numerous factors bear on the achievability of the primary ob-

jective. For example, the service-delivery assets in the data-

communications infrastructure are subject to outages, both

planned and unplanned. Planned outages result from equip-

ment maintenance and upgrade activities. Unplanned outages

are relatively rare and would include service interruptions

due to severe weather or natural calamities like earthquakes.

By definition, the process of searching for a solution of the

overall scheduling problem does not incorporate unplanned

outages.

2.1.3. Technical Factors Affecting Achievability of
Objective

Technical factors, as well, bear on the achievability of the

primary objective. These factors include any phenomenon or

circumstance that potentially could measurably degrade data-

communications performance:

1. radio frequency interference

2. signal multipath interference

4 The possibility of requirements for cross communications (between user
spacecraft, or between infrastructure assets) has not been overlooked
and is not unimportant in the foreseeable future. Such requirements are
beyond the scope of the present disclosure, but could be readily included
in future adaptations of the methods and algorithms specified herein.

3. signal-to-noise ratio reduction by noise due to space-

craft charging 5, antenna blockage, atmospheric effects,

rocket plume effects, etc.

The effects of all of these factors are dynamic, but they

can be predicted through link analysis and simulation tech-

niques [8, 15], given a user’s planned spacecraft orbit and at-

titude profile to enable the determination of the effects listed

above as items 2 and 3. Item 1 is determined by the num-

ber and characteristics (including the orbital parameters and

attitude profile) of all other spacecraft (not only US space-

craft but also the spacecraft flown by other nations). The pre-

dictability of the listed effects suggests that the process of

searching the solution space could be made more efficient

if all candidate schedules at least avoided communications

events rendered useless by the above factors. This strategy,

described in general terms in [25, 33] in relation to space-

craft mutual interference, is an integral part of the algorithm

disclosed herein and is applicable in general to all other pre-

dictable phenomena and circumstances that potentially could

measurably reduce data-communications performance. Fol-

lowing this strategy, the herein-disclosed algorithm mitigates

these effects automatically and produces optimal solutions

of the overall scheduling problem. In the foregoing, the word

“spacecraft” should be broadly interpreted to include user as-

sets of other kinds (e.g., habitats or surface rovers).

2.2. Size of the Solution Space

2.2.1. Determining Factors

It is instructive to estimate, or at least establish a lower bound

on, the size of the solution space for the data-communications

scheduling problem for some simple combinations of users,

user requirements, and service-delivery assets. Analysis of

simple scheduling scenarios leads naturally to a better appre-

ciation of how large might be the solution space for realis-

tic scheduling scenarios. For any given scheduling scenario,

the solution space comprises all possible schedules, each sat-

isfying at least one requirement of at least one user.

Each schedule consists of a set of communications events.

Each event represents partial satisfaction of a user require-

ment and is defined in terms of a number of parameters (most

of which will not be discussed further herein):

• start and end times for each forward link (when a NASA

support antenna is radiating signals to the user asset)

5 John Kennewell and Andrew McDonald, “Satellite Communications
and Space Weather”, Australian Government, Bureau of Meteorol-
ogy, Ionospheric Prediction Service Radio and Space Services, Space
Weather Agency web site, http://www.ips.gov.au/Educational/1/3/2 (ac-
cessed 20 August 2008).

10

2.2 Size of the Solution Space 2 SPACE-DATA COMMUNICATIONS-SCHEDULING PROBLEM DEFINITION

• start and end times for each return link (when the user

asset is radiating signals to the NASA support antenna)

• the frequency selection for each forward link

• the frequency selection for each return link

• the polarization of each forward link

• the polarization of each return link

• the data rate (or symbol rate) of each forward link

• the data rate (or symbol rate) of each return link

• pseudo-random-noise (PN) spread indicator for each

forward link

• pseudo-random-noise (PN) spread indicator for each re-

turn link

• NASA support-antenna selection for each forward link

• NASA support-antenna selection for each return link

2.2.2. A Simple Example

The start and end times for a scheduled event have a one-

second granularity and are represented as seconds of offset

from some prescribed epoch (usually specified as a reference

date such as 1 January 1970 that is “over the horizon” of past

time in the current context). For a normal two-week schedul-

ing period, there are 14×24×60×60 = 1, 209, 600 possible

values for a start or end time. The event-duration minimum

is nominally ten seconds and the duration maximum is nomi-

nally 80 minutes. For a given start time, there would be 80×
60 − 10 = 4790 allowed intervals each representing a com-

munications event at the given start time without violating the

80-minute maximum limit or the 10-second minimum limit.

If a schedule had only a single communications event with

a single link for a given user during the two-week schedul-

ing period, with no other constraints, there would be approx-

imately 4790× (1209600− 4790/2) or 5.78× 109 allowed

instantiations of the event without violating the 80-minute

maximum limit or the 10-second minimum limit. In a two-

week scheduling period, with nominal duration of 90 minutes

per orbit, there would be (14× 24× 60)/90 = 224 orbits. If

in a two-week scheduling period, the given user required one

single-link event in each orbit (see Figure 1), there would be

224 events in the schedule. In each orbit, there would be ap-

proximately 60× (4790×10+4790×80/2) = 14, 370, 000
possible events without violating the 80-minute maximum

limit or the 10-second minimum limit. The number of pos-

sible schedules—that is, the number of possible combina-

tions of the possible events (with exactly one event in each

of the 224 orbits) (ignoring other constraints)—would be ap-

proximately (1.437× 107)224. Thus, for this trivial schedul-

ing scenario, the scheduling problem would have more than

101603 possible solutions. Even if the maximum allowed du-

ration of each event were reduced to 10 minutes, the cardinal-

ity of the solution space would still exceed 101450. For per-

spective, consider this number in relation to the number of

neutron-size spheres that could be packed into a sphere the

size of the known universe—a number on the order of 10135.

orbit
start

orbit
end

0 10 20 30 40 50 60 70 80 90 minutes

} 80-minute comm events

} shorter comm events

Figure 1. Communications events placed rel-
ative to the 90-minute-orbit time line, as al-
lowed in the simple example scheduling sce-
nario. Three possible maximum-duration com-
munications events are shown, each with a dif-
ferent start time offset from the start of the
orbit. Three other possible communications
events are shown with different allowed du-
rations and start-time offsets. In the simple
example scenario, the user requires only one
communications event in the orbit.

2.2.3. A More Realistic Example

The next factor bearing on the estimate of the size of the so-

lution space for the TDRSS scheduling problem is the con-

cept of the prototype event. A prototype event (to be defined

more exactly in Subsection 4.3 (Definition 53 on page 23)) is,

in general terms, a combination of data-communications link

activations for actual forward and return data flows by which

a user will accomplish various purposes, including forward

links for delivering commands, data, and software loads to

the spacecraft. Other purposes will pertain to returning data

via return links to the mission control center or to scientists.

Each of the links is defined in terms of parameters that spec-

ify data rate, frequency, polarization, support antenna, etc.

The specification of the values of these parameters, along

11

2.2 Size of the Solution Space 2 SPACE-DATA COMMUNICATIONS-SCHEDULING PROBLEM DEFINITION

with the start and stop times in seconds of relative offset, and

the allowed tolerance in these offsets, makes up the defini-

tion of a prototype event.

If, in a given scheduling-problem scenario, a prototype

event has a required duration of 45 minutes and consists of

five links, each with five allowed choices of NASA service-

delivery antennas, and each with nominal duration of 10 min-

utes, start-time tolerance of three minutes, and duration tol-

erance of three minutes, then in comparison with the above

example (a single spacecraft requiring one event per orbit),

the size of the solution space (or its lower bound) would be-

come a much larger number. This number is roughly calcu-

lated by first calculating the number of possible instances

of each prototype event that could be instantiated for any

given prototype-event start time, and then calculating the

number of possible instantiations of the prototype event in

a given orbit. Allowing any start time that does not exceed

45−(10+3) = 32 minutes of offset from the prototype-event

start time, the number of possible instantiations of one of the

links (ignoring the choices for service delivery antenna) is

60× 32× 60× ((10 + 3)− (10− 3)) = 691200. Allowing

any start time offset between 32 minutes and 45−(10−3) =
38 minutes from the prototype-event start time, the num-

ber of possible instantiations of one of the links (ignoring

the choices for service-delivery antenna) is approximately

60 × (38 − 32) × 60 × ((10 + 3) − (10 − 3))/2 = 64800.

The minimum allowed duration of a link represents a con-

straint to ensure that a link is not allowed to start with an

offset of more than (in the present example) 38 minutes.

Thus, for a given instantiation of the prototype event, the to-

tal number of allowed instantiations of one of the links (ig-

noring the choices for service-delivery antenna) would be

691200 + 64800 = 756000.

To simplify calculations and yet establish a lower bound

on the number of possible instantiations of the given proto-

type event, assume there is only one allowed start time for

a prototype event in each orbit (although, typically, the al-

lowed start time for a 45-minute prototype event would be

any time in the first 45 minutes of the 90-minute orbit, so

that there would be 2700 different allowed start times in

each orbit). Then the number of possible instantiations of

the prototype event per orbit—each instantiation being an al-

lowed combination of five prototype-event links—would be

7560005 = 2.469 × 1029. Therefore, the number of possi-

ble combinations of prototype events in the 224 orbits in the

scheduling period would exceed (1029)224 = 106496.

Thus, with consideration of all possible solutions allow-

ing all possible combinations of prototype events for multi-

ple users, with all possible combinations of allowed choices

of data rate, frequency, polarization, support antennas, etc., it

quickly becomes apparent that the solution space for a real-

istic scheduling scenario would be much larger yet.

Prototype event

start end
0 15 30 45 minutes

TDRS-8 MA
TDRS-5 SA2
TDRS-8 SA1
TDRS-5 SA1
TDRS-5 MA

�
�
�
�
�

Figure 2. An example prototype event for
a more realistic communications scheduling
scenario. The user’s specification for a proto-
type event requires five links established and
completed between the start time and end time
of the prototype event. Each link has allowed
tolerances on start time and duration, and has
one of five allowed service-delivery antennas
assigned to it (e.g., the TDRS-5 SA2 antenna).
The user requires that an instance of the pro-
totype event is to be scheduled relative to
some prescribed mission event (e.g., the start
of an orbit), with some prescribed tolerance on
the start time.

2.2.4. Possible Approach to Reducing the Size of the
Solution Space

A reduction of the size of the solution space could be real-

ized by increasing the granularity of the allowed start times

and durations for events. For example, one might allow only

even-numbered seconds of offset from the prescribed epoch.

At best, this would reduce the size of the solution space in the

above simple example by a factor of (2−5)224 = 2−1120, or

10−337, from 106496 to a number that yet still exceeds 106159.

Such an approach, if it results in a significant reduction in the

size of the solution space, will not effect a tractable prob-

lem without at the same time effectively eliminating the pos-

sibility of finding optimal solutions. Making optimal solu-

tions less likely (or impossible) to be found does not repre-

sent an attractive characteristic of an approach for reducing

the size of the solution space: enabling worse solutions to be

found faster presents a dubious gain.

12

2.4 Evolutionary Search 2 SPACE-DATA COMMUNICATIONS-SCHEDULING PROBLEM DEFINITION

2.3. Alternative Approaches
2.3.1. Brute Force and Constructive Techniques

From the very large size of the solution space—even for

very simple scheduling scenarios as trivial as the above ex-

amples—it becomes clear that the feasibility of finding op-

timal schedules will depend on the feasibility of a method

that does not rely on brute-force search (i.e., a search strat-

egy that requires the examination/evaluation of every possi-

ble solution (i.e., every possible schedule)). Inescapably, only

an exceedingly large number could represent the size of the

solution space for real-world scheduling scenarios for the ac-

tual users of NASA’s space data-communications services,

and the idea of examining all of the possible solutions is un-

tenable without resorting to some truly exotic method, such

as the yet-to-become-practical idea of quantum computing.

The general problem of creating optimal schedules to satisfy

users’ data-communications requirements cannot be solved

using a single, general prescriptive formula, nor with brute-

force search through the solution space, even with power-

ful computers (possibly excepting future quantum comput-

ers) and the most sophisticated graph or tree-traversal algo-

rithms (such as the A* algorithm [3, 22] (not to be confused

with the set of all antenna IDs (Definition 36 (page 21)))).

From the foregoing examples, it will have been seen that the

general optimal-solution search problem cannot be attacked

with such approaches.

However, workable solutions can be generated with the

techniques that are in use in the current operational schedul-

ing system, and these solutions are free of violations of con-

straints (e.g., RF interference, if this option is activated in the

scheduler). However, there is no expectation that the current

operational approach will produce solutions that are near op-

timum. Further, since an optimum solution (in the absolute

sense) would necessarily remain unknown, it cannot be de-

termined how nearly optimum these found solutions might

be (and even if an upper bound on the difference could be

calculated, it would be without benefit, since the approach of

the present operational system offers no way to use the infor-

mation to produce better schedules).

2.3.2. Necessity of Special Search Techniques

From the foregoing, it becomes a convincing proposi-

tion that neither a brute-force strategy nor the approach

of the current or any previous NASA scheduling sys-

tem can offer the possibility of discovering an opti-

mal solution for realistic scheduling scenarios: other

techniques are required. While brute-force search per-

formed using quantum-computing techniques might be

explored in the future, a more immediately available ap-

proach is worth considering for the interim. Research and

application experience since the 1980s has resulted in es-

tablishing the viability of probabilistic search strate-

gies for certain types of optimization problems that have

very large solution spaces. In particular, genetic algo-

rithms [2, 4, 9, 30] (or, more generally, evolutionary

algorithms) have been successfully applied to schedul-

ing and planning problems [1, 5, 13, 17, 28, 29, 32]. While

other probabilistic search strategies (including those un-

der the heading of regression-analysis techniques) are in-

voked at a high level herein (see Sections 7.2 and 11.5.2),

their detailed treatment is beyond the scope of this disclo-

sure.

2.4. Evolutionary Search
2.4.1. Genetic Algorithms

Genetic algorithms belong to a well-studied class of algo-

rithms abstractly inspired by biological selection and gen-

eration, individual inheritance and mutation, species adapta-

tion, species survival, and fitness [11]. Both in the algorith-

mic realm and in biology, selected individuals in each gener-

ation mate and produce offspring. The offspring have some

but not all of the traits of their parents, and in fact have new

traits as a result of genetic crossover and mutation. Individ-

uals die and make way for individuals in the new genera-

tion, who will survive better or not, depending on their fitness

for survival in their given environment—which environment

will favor the more-fit individuals with more power to pro-

duce offspring for the next generation. Over successive gen-

erations, the principle of “survival of the fittest” implies the

expectation that the survival of individuals will improve over-

all, i.e., the average fitness of members of the population will

improve progressively.

2.4.2. Representations of Solutions of the Scheduling
Problem

The present disclosure invokes the principles of genetic algo-

rithms to attack the problem of scheduling space-data com-

munications, with the incorporation of the further, secondary

objective of minimizing the effects of RF interference in the

optimization. (Note that this further objective represents a

primary example of the general constraint-satisfying capa-

bilities of the disclosed algorithms and methods.) Under the

conceptual description given above, a solution, by definition,

is a schedule. The question of how to represent a solution for

the purpose of searching the entire solution space for an op-

timal solution is fundamentally important, and has an imme-

diate answer. The answer, since every solution in the solution

space is a schedule, is that a solution is a finite data struc-

ture in computer memory that represents a schedule, which,

by definition, is simply a list of communications events each

13

2.4 Evolutionary Search 2 SPACE-DATA COMMUNICATIONS-SCHEDULING PROBLEM DEFINITION

of which at least partially satisfies at least one user require-

ment for communications services. The combined data struc-

ture that represents the whole evolving population of candi-

date solutions at a given iteration of the running search pro-

cess is just the combined list of individual members of the

current population. The data structure for any individual (be-

ing one possible solution of the entire scheduling problem)

is subjected to evaluation by a fitness function that deter-

mines the individual’s survivability or fitness, i.e., the degree

to which the individual measures up to prescribed criteria for

selection as a member of, or to produce offspring for, the next

generation.

2.4.3. Processes for Selection and Creation of Working
Population Members

The fitness function is the essence of the problem to be

solved by the genetic algorithm and remains unaltered for

the duration of the entire search for a solution. Each member

(i.e., each schedule) of a given generation would have a fit-

ness score determined by the prescribed fitness function. In

each generational cycle, to prepare a new generation, a pre-

scribed process (sub-algorithm) operates to perform a selec-

tion of individuals (schedules) to survive into the new gen-

eration and/or to be used to generate offspring. Another pre-

scribed process (sub-algorithm) then (a) creates the offspring

of the selected individuals by mathematically transforming

and combining their traits (i.e., the values in the data struc-

ture representing an individual), and (b) adds new members

using an algorithm for randomly generating new schedules,

to effect the probabilistic exploration of the entire solution

space. The probabilistic nature of the exploration arises from

the use—during the execution of both the selection process

and the new-member-creation process—of random-number

generators in the computing platform on which the genetic

algorithm executes. More will be said in Section 2.4.9 con-

cerning random numbers in relation to the algorithms dis-

closed herein.

2.4.4. Principle of Operation of Genetic Algorithms

Operation of the genetic algorithm begins with the creation

of an initial population of some size. The manner in which

the members of the initial population are generated can af-

fect the search progress, although the nature of the algorithm

tends to diminish the effect over the course of the search. A

new generation results from applying a variety of mathemat-

ical transformations not only to individuals (i.e., their data

structures), but also to pairs of individuals in the current gen-

eration, which each will already have been evaluated by the

fitness function during the process of selecting the members

of the previous generation to compose the current generation.

The more-fit individuals, being relatively favored (and, con-

sequently, more likely themselves to persist for multiple gen-

erations), will have relatively more offspring than will result

from less-fit individuals. However, randomly selected indi-

viduals will also produce offspring at some rate, and new in-

dividuals randomly created are also introduced into the pop-

ulation at some rate. The new generation will then undergo

the same process of evaluation and transformation to result

again in a new generation. After some number of repetitions

of the foregoing generational process, the current generation

will, with some likelihood, include individuals that are more

fit than the best members of any previous generation. Even-

tually, after many generations, the expectation is that an ad-

ditional iteration of the evolutionary search process will have

a vanishingly small likelihood of producing further signifi-

cant improvement of the best individuals of the new gener-

ation over those of the previous generations (see Footnote 6

(page 46)).

2.4.5. Progress of Evolutionary Search

After an expected initial rapid improvement in the fitness of

the best individuals, each successive generation will see, on

average, less and less improvement. There occasionally can

be sharp improvements from one generation to the next. Such

improvements can occur by virtue of the probabilistic nature

of the genetic algorithm-based search strategy: occasionally,

during the search, a newly created individual (schedule) will,

by chance, be much better (as evaluated by the fitness func-

tion) than any other individual found earlier in the search. In

this way, the algorithm can find and explore another region

with a local minimum/maximum—which, with some prob-

ability, could be the global minimum/maximum. However,

the search effort/time required to produce significant new im-

provement in the best individuals eventually will become un-

tenable. Ultimately, the search must be terminated and the

best individual (or rather one of possibly multiple individ-

uals having the same best value of the fitness score) would

then be used as the search result—with no guarantee, how-

ever, that this solution is in fact the absolute best, and, fur-

thermore, with no good way to show that it is not.
Exploration of the solution space using a genetic algo-

rithm may entail certain difficulties that have been described

in the literature, e.g., “premature convergence” and “genetic

drift”. A determination of the degree to which such diffi-

culties might be present in the disclosed methods and algo-

rithms has not been undertaken and is beyond the scope of

this paper. However, the disclosed methods and algorithms

include the S� Algorithm (Section 6 (page 37)) that directly

addresses these issues, effectively “tuning” the genetic algo-

rithm that finds an optimal solution for a given space-data-

communications-scheduling problem scenario. Further, Sub-

14

2.4 Evolutionary Search 2 SPACE-DATA COMMUNICATIONS-SCHEDULING PROBLEM DEFINITION

section 11.4 (page 54) presents methods and algorithms that

effectively address similar issues relative to solving the gen-

eralized problem.

2.4.6. Effect of Internal Parameters of the Genetic
Algorithm

A genetic algorithm, in the general case, has internal param-

eters that affect the efficiency and effectiveness of the search,

including—

• the size of the initial population

• the size of subsequent generations

• the proportion of each generation that is selected ran-

domly for survival into the next generation

• the number of offspring produced by selected individu-

als

• the number of randomly created individuals added to

each new generation

• the mutation rate, (i.e., the number of new members cre-

ated in each new generation via the mutation mecha-

nism)

• the crossover rate, (i.e., the number of new members

created in each new generation via the crossover mech-

anism)

• the number of “gene” crossover points (where, infor-

mally, “gene” refers to values in the data structure that

specifies an individual member of the population

It is natural to ask how best to set the values of the inter-

nal parameters when the objective is to run an implementa-

tion of the algorithm and achieve the greatest possible degree

of effectiveness and efficiency in generating an optimal so-

lution to the scheduling problem. Some understanding of the

effect of different combinations of the possible values of the

parameters can be gained through systematic experimenta-

tion—testing different combinations to reveal how they af-

fect the efficiency and effectiveness of the search process.

Such a process, if performed manually, would be time con-

suming and tedious. It also might present conceptual and the-

oretical difficulties relative to drawing reliable conclusions.

By asking what might be the best combination of the val-

ues of the internal parameters, one then sees another, some-

what more abstract optimization problem. The author’s im-

plementation of the unpublished predecessor of the herein

disclosed algorithm included the use of a genetic-algorithm

approach to solve this problem as well, to derive an optimal

combination of those values. Details of this optimization ap-

proach are found in Section 6 for the schedule-generation al-

gorithm to be presented in Section 5 and (relative to the gen-

eralization of the algorithms and methods that will be pre-

sented in the main body of this disclosure) in Appendix B

(Subsection 11.4 (page 54)).

2.4.7. Fitness Functions, Minima, Maxima, and Optima

The fitness function applied to an individual (i.e., a sched-

ule) in a given generation will produce a numerical value.

In principle, the fitness score could be determined for ev-

ery schedule in the entire solution space. If this were done, a

kind of hypersurface (representing the fitness score (the de-

pendent variable) as a function of the schedule (the indepen-

dent variable)) could be constructed and analyzed mathemat-

ically, and could be visualized as having contours, peaks, and

valleys. The visualization of the function would also exhibit

discontinuities resulting from, for instance, the discreteness

of the allowed values for many of the parameters in the def-

inition of a communications event. The sheer magnitude of

the size of the solution space makes such a surface infeasible

to construct, but the very class of probabilistic exploration al-

gorithms we are concerned with in this disclosure could (if

desired) even be used to approach the question of character-

izing how “nice” the hypersurface is. In any case, the dis-

closed algorithm is well suited to exploration of the whole

solution space, “nice” or not.

The essence of the optimization question pertains to find-

ing the global maximum (or the global minimum, depending

on how the fitness function is defined) of the search space.

No known practical method exists to reach an “absolute” an-

swer to this question for the general case. At this writing,

no other available method has been shown to surpass the re-

sults that can be attained through a method based upon evo-

lutionary (probabilistic) search: no known non-probabilistic

method for addressing the general scheduling problem has

been shown to be capable of surpassing the results that can

be attained using available probabilistic search methods.

The term optimizing, as applied to the algorithms de-

scribed herein, reflects this aspect of directed, iterative prob-

abilistic search, where the search space is probed by a ran-

dom process to find more and more minima/maxima (local

as well as global), and by another process that gives each

of the best candidate solutions from the current generation a

chance to have “children” that are still more fit as solutions

to the scheduling problem.

In general, the nature of the problem, with its extremely

large solution space, leaves open the possibility that, at the

termination of any arbitrarily long run of the application pro-

gram on a computer, a “better” solution might have been

found by letting the application produce just one more gener-

ation. When the run is terminated, the best solution found is

considered to be optimized in terms of the probabilistic cov-

erage of the entire search space. This is the primary sense in

which the term “optimal” is used in this disclosure, but there

15

3 COMMUNICATIONS-SCHEDULING ASSUMPTIONS

is, in a practical vein, an additional consideration, namely, the

cost of the process of searching through the solution space

for the best possible solution. Absent any limit on the speed

or storage capacity of computing resources, there would be

no trade-off between solution quality and search time. Actual
limits on computational speed and storage will necessarily

mean that, for any computer application that solves the kind

of optimization problems addressed herein, solution optimal-

ity will be directly related to the duration of the run of the ap-

plication, which can never be unbounded. Thus, the designa-

tion of “optimal” implies that enough computing power has

been applied to reach a point where the law of diminishing re-

turns (or at least a similar principle; see Footnote 6 (page 46))

would mean that a relatively large additional search effort

would not have any significant expectation of improvement

in the best solution found to that point. Conversely, if such a

point has not been reached, then nothing can be asserted as

to the optimality of any solution found.

An unavoidable issue arises from the above dis-

cussion—the question whether it could be determined

in advance what computing resources would be suffi-

cient to reach the point described in the preceding para-

graph (i.e., the point where it would be legitimate to de-

clare that no reasonable additional search time would

provide any reasonable expectation of significant improve-

ment in the solution found). No known method can answer

this question, except the empirical method, i.e., experi-

mentation, although the kind of algorithm-performance

modeling described in Appendix A may afford additional in-

sights.

2.4.8. Metrics for Evaluation of the Scheduling System

Possible metrics to evaluate a scheduling system include

(a) determining the percentage utilization of service-delivery

assets (e.g., TDRSS antennas) and (b) assessing the de-

gree of satisfaction of customer requirements. In general,

closed-form algorithms and techniques (including construc-

tive techniques and graph-search techniques) do not afford

in a scheduling system a strategy for directly optimizing, in

the true sense, these metrics or indeed any other metrics. The

herein disclosed algorithm, based upon probabilistic search,

lends itself to incorporation of, and optimizing, a wide range

of possible combinations of metrics to meet future goals for

overall infrastructure performance. However, a full discus-

sion of the possible metrics for evaluating the scheduling sys-

tem is beyond the scope of this disclosure. (See Revisions and

Changes Digest item 3, page 66.)

Directly comparing the current operational system with

one following the present disclosure might be accomplished

by evaluating schedule quality using the herein disclosed fit-

ness function (see Definition 102 (page 32)) or a combination

of its constituent submetrics (e.g., the function satisfied* (see

Definition 100 (page 31)), which measures the degree of sat-

isfaction of data-return requirements of all users.)

2.4.9. Random Numbers and Their Role

Random numbers play a crucial role in the probabilistic

search strategy and algorithms embodied in the present dis-

closure, including the schedule-generation algorithm (Al-

gorithm 1 (page 35)) and the S� algorithm (Algorithm 2

(page 35)), as well as algorithms in Appendix B (Section 11

(page 49)).

It is noted that “random” numbers are generated by spe-

cial software or hardware on the platform that constitutes

the computing resources on which an implementation of the

herein disclosed algorithms will run. On typical platforms,

the random-number generator implements a special algo-

rithm that can be configured with a “seed” as the starting

point for calculations to produce a random number. Repeata-

bility of results can be assured by selecting the same seed

for repeated runs—which is a feature that supports applica-

tion software testing and debugging. The generated random

numbers are not truly random, which is a well recognized as-

pect of all known algorithms for generating random numbers.

Interestingly, characterizing the difference between the out-

put of random-number generators and the output of true ran-

dom processes is not a settled matter, necessarily involving

arcane argumentation.

The fact that the generally available random-number gen-

erators do not produce “true” random numbers does not in-

validate their use in ordinary applications (such as the one

described in this disclosure), where their use is generally ac-

cepted. We accept the proposition that the use of a true (or at

least the best possible) random-number generator would not

improve the results or performance of a system that imple-

mented the algorithms disclosed herein.

3. Communications-Scheduling
Assumptions

3.1. Necessary Input Data

The disclosed method and algorithm assume the availability

of inputs from a computational resource that provides the fol-

lowing information:

• predicted user-communications view periods relative to

each NASA support antenna

• user-spacecraft orbit start and end times, with orbit

numbers

16

4 DEFINITIONS

• start and end times for intervals during which the user’s

Project Operations Control Center (POCC) (or, synony-

mously, Mission Operations Control Center (MOCC))

is in operation

• start and end times for other relevant mission events

(user-spacecraft sunrise, user-spacecraft-over-land,

etc.) whenever there are active user requirements that

specify any relationship to such events

• potential-interference intervals (predicted intervals dur-

ing which RF signal interference would prevent NASA

from satisfying a particular user requirement or request

for communications services)

• intervals of predicted user-antenna blockage and multi-

path interference with respect to each support antenna,

based on planned user-spacecraft attitude profiles

• outage intervals (predicted/planned intervals dur-

ing which service-delivery resources will be unavail-

able)

Such a computational resource, the Communications Link

Analysis and Simulation System (CLASS) [8, 15, 20], has

been in operation at the NASA Goddard Space Flight Center

since the early 1980s. The CLASS system was used in gener-

ating input data for runs of the prototype implementation of

the predecessor of the disclosed algorithm, which implemen-

tation is described in Section 8.1.

3.2. Scope Limitations
3.2.1. Two-Week Scheduling on a Weekly Cycle

NASA’s present operational scheduling system per-

forms the scheduling function on a weekly basis for a

two-week scheduling period. The second week of the pre-

viously generated two-week schedule becomes the first

week of the new two-week schedule and is adjusted by the

scheduling system to reflect updated or revised informa-

tion concerning user requirements, planned outages, and

other factors. The second week is scheduled afresh. Al-

though it was not a design goal of the algorithm disclosed

herein, it could be revised to provide this rescheduling func-

tionality. However, it may be appropriate to reconsider the

need for a two-week scheduling cycle when a new opti-

mal schedule could efficiently be generated weekly (or

on demand) by means of the method and algorithm dis-

closed herein.

3.2.2. Dynamic Rescheduling

Although NASA’s present operational scheduling system can

perform rescheduling under dynamic operational conditions

(where, for example, a spacecraft has a declared emergency,

or a service-delivery resource has an unplanned outage),

rescheduling is not considered herein and does not corre-

spond to a design goal of the disclosed algorithms. Further

discussion of dynamic rescheduling is beyond the scope of

the present disclosure, but it has not been seen to present

technical difficulties in a possible revised version of the dis-

closed methods and algorithms.

3.2.3. Near-Earth Communications Environment

NASA has been pursuing goals for crewed (as well as new

un-crewed) missions that may be developed to explore the

Moon and Mars over the next several decades. Such mis-

sions crucially depend on adequate communications involv-

ing RF links between the Earth and numerous remote as-

sets including the mission vehicles and habitats. The future

evolved infrastructure to provide the needed communications

capabilities is in the early stages of definition, but is likely

to have considerable similarities to the current space data-

communications infrastructure serving near-Earth missions.

For example, it is likely to have capabilities for “demand ac-

cess” as well as a large reliance on scheduled communica-

tions events, where infrastructure support antennas and as-

sociated equipment would be scheduled to be configured to

support user assets. While it was not a specific design goal

to include the non near-Earth infrastructure in the disclosed

methods and algorithms, the essential concepts already em-

bodied in the present near-Earth infrastructure would con-

tinue to be applicable. The one major issue that would need

to be addressed for the non near-Earth infrastructure pertains

to RF signal latency due to the large distances involved, es-

pecially between the Earth and Mars.

4. Definitions

4.1. Basic Space-Data-Communications
Definitions

CLASS— Communications Link Analysis and Simulation

System. CLASS is a software system developed, main-

tained, and operated at NASA Goddard Space Flight

Center for the purpose of supporting all aspects of space

communications including spacecraft and communica-

tions infrastructure design and operations. (See Subsec-

tion 1.3 (page 7) and Subsection 3.1 (page 16).)

Communications View Period— A time interval dur-

ing which a given NASA service delivery antenna

is capable of being pointed toward a given user as-

set (spacecraft, rover, etc.), with a clear RF path that

will permit data transfer using radio signals that have

17

4.2 General Notation 4 DEFINITIONS

prescribed characteristics (frequency, power, polar-

ization, etc.). (See formal definition of M (and the

explanation), Definition 46 in Subsection 4.3, page 22.)

Epoch— A date and time specified precisely and used as

a reference time to specify later points in time as off-

sets from the epoch. For example, a NASA mission may

specify time as seconds of offset from the epoch date

and time of 00:00 Hours on 1 January 1970.

Forward— The direction of data flow from a NASA sup-

port antenna to a user asset (spacecraft, rover, etc.).

(Note that this definition may admit some ambiguity

under various operational circumstances using particu-

lar protocols (e.g. “acknowledgment” protocols as used

in standard communications networks). The term is es-

sentially meaningless in the context of two-way voice

communications over a space communications link.)

Link— An established RF connection between a transmit-

ter and receiver configured with compatible signal fre-

quencies, polarization, framing, coding, and data for-

mats, with sufficient received signal power to enable

data transfer. The description of such a connection.

MA— Multiple Access; identifies the electrically “steer-

able”, phased-array antenna on a TDRS spacecraft.

MAF/MAR (MA Forward/Return). See definition of

SA.

MOCC— Mission Operations Control Center. A facility

housing personnel, equipment, software systems, and

other resources, with necessary communications inter-

faces with external entities, for the control and opera-

tion of a space mission. Synonymous with Project Op-

erations Control Center (POCC).

Outage Interval— A planned or anticipated interval during

which a service-delivery resource will not be in service.

This includes intervals designated for equipment main-

tenance, upgrade, or calibration. (See formal definition

of O, Definition 39 in Subsection 4.3, page 21.)

POCC— Project Operations Control Center. Synonymous

with Mission Operations Control Center (MOCC).

Potential Interference Interval— A predicted interval dur-

ing which unacceptable RF interference would affect

signals received by either a user antenna or a service-

delivery antenna. (See formal definition of I , Defini-

tion 49 in Subsection 4.3, page 22.)

Priority— A NASA-assigned numerical value that estab-

lishes the order of precedence of a given user relative

to others, for the purpose of determining which of any

two users will have precedence whenever they are in dy-

namic contention for NASA communications services.

(See formal definition of Φ, Definition 50 in Subsec-

tion 4.3, page 22.) The priority value is increased when

a user has a declared contingency (e.g., the unexpected

failure of a gyroscope on a spacecraft), although such

a circumstance is not relevant for a scheduler, since by

definition a declared contingency is not planned.

Return— The direction of data flow from a user as-

set (spacecraft, rover, etc.) to a NASA support antenna.

(See remark under “Forward” regarding ambigu-

ity of the term in certain circumstances.)

SA— Single Access; refers to the two steerable dish an-

tennas on a TDRS spacecraft. KSAF/KSAR (K-band

SA Forward/Return). SSAF/SSAR (S-band SA For-

ward/Return). See definition of MA.

Schedule— A collection of communications support events

placed on a time line for a given time period (typically

two weeks) and identified by a set of parameter values

that enable the NASA communications infrastructure to

be properly configured to provide communications ser-

vices to users. (See formal definition of Θ in Subsec-

tion 4.3, page 26.)

User— A spacecraft or (depending on context) its as-

sociated mission project that is authorized and

properly configured to make use of NASA space

data-communications services. A user can also be a

rover on the surface of the Moon, or a special de-

vice on the Earth’s surface designed to enable calibra-

tion of TDRSS ranging capabilities. An example of a

user is the Hubble Space Telescope.

User Requirement (or User Request)— A specification of

data-communications services needed by a user. Such

a specification can be either specific or generic. Spe-

cific requirements give start time and end time either

as absolute times (e.g., as a date and time in the Ju-

lian calendar or as seconds of offset from a prescribed

epoch) or as seconds of offset from a prescribed mission

event (e.g., spacecraft sunrise in orbit number 694). A

generic requirement represents a repeating support ser-

vice, with start and end times always defined in terms

of a repeating mission event such as spacecraft sunrise.

For both specific and generic requirements, the specifi-

cation refers to some user-defined prototype communi-

cations event (see formal definition of C, Definition 53

in Subsection 4.3, page 23), which defines the commu-

nications links required for each instance of the event,

along with other relevant parameters.

4.2. General Notation
The formal specifications of the herein disclosed algorithms

depends on precise mathematical notation (in particular, set-

18

4.2 General Notation 4 DEFINITIONS

builder notation) involving a number of general terms and

symbols defined in this subsection.

In set-builder notation, a set may be specified by using

“curly braces” to enclose a list of its elements. For exam-

ple, the set A consisting of the squares of the first five count-

ing numbers could be specified as A = {1, 4, 9, 16, 25}. Al-

ternatively, a set may be specified using the “set builder” no-

tation, by which the same set could be specified as {x : x
is the square of one of the first five counting numbers} or

{x : ∃i ∈ N
+ � i < 6, x = i2}, which translates to En-

glish as “the set to which x belongs if and only if there ex-

ists i belonging to the set of all positive integers such that i is

less than 6 and x is the square of i”.

A fundamental concept in logic is that of logical nega-

tion, denoted by the symbol ¬ (pronounced “not” or “being

not true that”). ¬ has the meaning of “not” in a logical ex-

pression. The expression ¬x has a value opposite the logi-

cal value of x: that is, the expression is “true” if x is “false”

and “false” if x is “true”.

(See item 4 (page 66) in Revisions and Changes Digest.)

Definition 1: • (pronounced “bullet”) is a placeholder sym-

bol representing any allowed value in the indicated place in a

formula or expression, without regard to which allowed value

might be chosen.

Definition 2 (Universe): Ω is the universe of discourse, i.e.,

the set of all objects that can be a member of a set defined in

the present disclosure.

Definition 3 (Empty Set): Ø denotes the empty set, i.e., the

set that has no member.

Definition 4 (Set of All Integers): Z is the set of all integers.

Definition 5 (Set of All Nonnegative Integers): N is the set

of all nonnegative integers.

Definition 6 (Set of All Positive Integers): N
+ is the set of

all positive integers.

Definition 7 (Set of all real numbers): R is the set of all real

numbers.

(See Revisions and Changes Digest item 6, page 66.)

Definition 8 (Cardinality): ∀Q ⊆ Ω,
∣∣Q∣∣ denotes the cardi-

nality of Q (i.e., the number of members of Q). n =
∣∣Q∣∣ ⇔

n ∈ N and Q has exactly n members.

Note that
∣∣Ø∣∣ = 0.

Definition 9 (Power Set): ∀Q ⊆ Ω, ℘(Q) denotes the power
set of Q, i.e., y ∈ ℘(Q) ⇔ y ⊆ Q.

The power set of Q is the set of all subsets of Q. (See Revi-

sions and Changes Digest item 7, page 66.)

Definition 10 (Set of All Finite Sets):
ΩF ⊆ ℘(Ω) � Q ∈ ΩF ⇔ ∃n ∈ N � ∣∣Q∣∣ = n.

ΩF is the set of all finite sets.

Definition 11 (Cartesian Product): ∀A,B ⊆ Ω, the Carte-
sian product A× B =

{
(a, b) : a ∈ A, b ∈ B

}
, i.e., A× B

is the set of all ordered pairs (a ∈ A, b ∈ B). ∀Q ⊆ Ω, Q2 =
Q×Q.

[
Q ⊆ Ω, 2 < n ∈ N

] ⇒ Qn = Q×Qn−1.

Definition 12 (Function): ∀A,B ⊆ Ω, f is said to be a func-

tion from A to B, denoted by f : A → B, if and only if

f ⊆ A×B � (a, b), (a, c) ∈ f ⇒ b = c. A function is con-

sidered to be a mapping from a domain to a codomain. If

f is a function, dom(f) denotes {a : (a, •) ∈ f}, the do-

main of f , and codomain(f) denotes {b : (•, b) ∈ f}, the

codomain of f .

Definition 13 (Set of All Functions From Y to X):
∀X,Y ⊆ Ω, XY =

{
f :

[
f : Y → X

]}
, the set of all

functions from Y to X .

Note that in some contexts (when not each of X and Y is

a set), the meaning of XY differs (e.g., see Definition 56

(page 24)). Note also that X and Y in this context are free

variable names, not to be confused with any domain-specific

objects defined later.

Definition 14 (Function composition):[
X,Y, Z ⊆ Ω, f ∈ XY , g ∈ ZX

] ⇒ g ◦ f ∈ ZY .

The symbol ◦ (read as “circle” or “composed with”) denotes

“function composition”, representing the process of using the

output of one function as the input to another. In performing

the process for a given value a in Y (the domain of f), the

function f is used to obtain the value f(a) (a value in X (the

codomain of f)), and this output from f is used as the in-

put to the function g (whose domain isX) to obtain the value

g(f(a)), which is a member of Z, the codomain of g. Thus,

g◦f is a function mapping Y to Z. (Note thatX , Y , and Z in

this context are free variable names, not to be confused with

any domain-specific objects defined later. Also, note that free

variable Z is not to be confused with Z, the set of all inte-

gers (see Definition 4, page 19).) See Revisions and Changes

Digest item 5, page 66.

Definition 15 (set difference): ∀Q ⊆ Ω, ∀A ⊆ Q,Q\A =
{x ∈ Q : ¬x ∈ A}, the set of members of Q that do not be-

long to A.

Q\A denotes set difference.

Definition 16 (Set of All Integer Intervals): Given integers

a, b ∈ Z � a < b, the integer interval [a, b] is the set of all in-

tegers between and including a and b. Z̄ is the set of all inte-

19

4.2 General Notation 4 DEFINITIONS

ger intervals, that is, Z̄ =
{
x ⊂ Z : ∃a, b ∈ Z � a < b and

i ∈ x⇔ i ∈ Z, a ≤ i ≤ b
}

.

Note that in this disclosure, the notation [a, b] can apply to ei-

ther integer intervals or closed intervals of real numbers, de-

pending upon context. In some contexts, square brackets are

only typographical grouping marks, similar to parentheses

and curly braces. See Revisions and Changes Digest item 8,

page 66.

Definition 17: rndint : Z× Z → Z � i, j ∈ Z, i ≤ j ⇒
rndint(i, j) is a random integer in the closed interval [i, j].

rndint is a “pseudo-function” in the sense that, in any two in-

vocations for the same arguments, it does not necessarily re-

turn the same result, assured by the use of a randomizing

mechanism in the processing system on which the applica-

tion is running.

A further note concerning functions is in order: except

when a “pseudo-function” like rndint is involved, the mem-

bers of the mapping (the ordered pairs) are fixed.

Definition 18 (Left-Most and Right-Most Points of an Inter-

val): ∀η = [a, b] ∈ Z̄, η− = a and η+ = b.

Definition 19 (Ordering Relation for Intervals):
∀η, β ∈ Z̄, η < β ⇔ η+ ≤ β−.

This is the ordering relation for intervals.

Definition 20 (Ordering Relation for Sets of Intervals):
∀A,B ∈ ℘(Z̄), A < B ⇔ [

η ∈ A, β ∈ B ⇒ η < β
]
.

This is the ordering relation for sets of intervals.

Definition 21 (Sequence): s is said to be a sequence if and

only if

s ∈ ΩN �
1. ∃a ∈ Ω � (0, a) ∈ s and

2. (j ∈ N
+, •) ∈ s⇒ ∃b ∈ Ω � (j − 1, b) ∈ s.

Note that the first element of a sequence has index value

0, and that no index value is skipped. See Revisions and

Changes Digest item 9 on page 66.

Definition 22: For each sequence s, if (i, a) ∈ s, then a is

denoted by si, s[i], or s(i).

Definition 23 (Length of a sequence): For each finite se-

quence s,

1. the number of elements of s is denoted by len(s) and

2. s is represented as 〈s0, s1, . . . , sn−1〉, where

n = len(s).

Definition 24 (Tuple): ∀n ∈ N
+, q is said to be an n-tuple

if and only if q is a list of objects indexed by their position

in the list, where the first element of the list has index value

1, the second element has index value 2, etc., and the last has

index value n. An ordered pair is a two-tuple.

An alternative, and equivalent, representation for an n-tuple

(q1, q2, . . . , qn) would be the sequence 〈s0, s1, . . . , sn−1〉,
where ∀i ∈ {1, 2, . . . , n}, si−1 = qi. It may also be noted

that an element of a Cartesian product can be represented as

a tuple. Thus, given n ∈ N, an n-tuple drawn from some

set A is a member of the Cartesian product An. (See Revi-

sions and Changes Digest item 10 on page 66.)

Definition 25 (Subsequence): The sequence t is said to be

a subsequence of sequence s if and only if ∃r ⊆ s, ∃ a se-

quence q ∈ rN �
1.

[(
i, (m, a)

)
,
(
i+ 1, (n, b)

) ∈ q
]
⇒

(a) m < n and

(b) ¬
[
∃(k, c) ∈ r � m < k < n

]
and

2. t =
{
(i, v) : ∃(m, v) ∈ r � (

i, (m, v)
) ∈ q

}
.

Definition 26 (Set of Sequences of Members of a Set With-

out Repeats): Ξ* : ℘(Ω) → ℘(ΩN) �
∀Q ∈ ℘(Ω), s ∈ Ξ*(Q) ⇔ s is a sequence �

1. (•, a) ∈ s⇒ a ∈ Q and

2. (i, a), (j, a) ∈ s⇒ i = j.

For each set Q, the function Ξ*defines the set of all possible

sequences of (not necessarily all) members of Q, without re-

peats, i.e., if s ∈ Ξ*(Q), then no member of Q appears twice

in s.

Definition 27 (Set of Sequences of Members of a Subset of

a Set Allowing Repeats): Ξ** : ℘(Ω) → ℘(ΩN) �
∀Q ∈ ℘(Ω), s ∈ Ξ**(Q) ⇒ s is a sequence �[
(•, a) ∈ s⇒ a ∈ Q

]
.

Definition 28 (Set of Sequences of All Members of a Finite

Set Without Repeats):
Ξ: ΩF → ℘(ΩN) � ∀Q ∈ ΩF , s ∈ Ξ(Q) ⇔
s is a sequence �

1. len(s) =
∣∣Q∣∣ and

2. a ∈ Q⇔ ∃(•, a) ∈ s.

For each finite set Q, the function Ξ(Q) defines the set of the

sequences of all of the members of Q.

Definition 29 (Random member of a set):
rndmember : ΩF → Ω �

∀Q ∈ ΩF , ∃ξ ∈ Ξ(Q) �
rndmember(Q) = ξ

[
rndint(0,

∣∣Q∣∣− 1)]
]
.

Given a finite setQ, rndmember(Q) returns a random mem-

ber of Q.

20

4.3 Domain-Specific Definitions 4 DEFINITIONS

Definition 30 (Random subset of finite set): RND : N+ ×
ΩF → ΩF �[

Q ∈ ΩF ,
∣∣Q∣∣ ≥ n ∈ N

+
]
⇒

RND(n,Q) = rndmember
({
A ⊆ Q :

∣∣A∣∣ = n
})

.

Given a non-empty finite set Q and a positive integer n ≤∣∣Q∣∣, RND(n,Q) returns a random subset of Q whose cardi-

nality is n.

Definition 31 (Function to return the maximum value of a set

of values):
max : ℘

(
R
) → R � ∀ closed set Q ⊂ R, ∃x ∈ Q �

1. y ∈ Q⇒ y ≤ x

2. max(Q) = x

(See Revisions and Changes Digest item 11, page 66.)

The function max returns the largest value in a set of nu-

merical values.

Definition 32 (Function to return the minimum value of a set

of values):
min : ℘

(
R
) → R � ∀ closed set Q ⊂ R, ∃x ∈ Q �

1. y ∈ Q⇒ y ≥ x

2. min(Q) = x

(See Revisions and Changes Digest item 12, page 66.)

The function min returns the least value in a set of numer-

ical values.

Definition 33 (String): s is said to be a string if and only if

s ∈ Ξ**({x : x is an ASCII character}).

Definition 34 (S): S = {s : s is a string}.

4.3. Domain-Specific Definitions
4.3.1. System Input Data

Definition 35 (Set of network-station IDs): S0 =
{
s ∈ S : s

represents the ID of a station in either the Space Network or

the Ground Network
}

The string “TDRS-B” is an example of a station ID. S0 is

supplied as input data to the scheduling system.

Definition 36 (Set of antenna IDs):
A* =

{
a ∈ S : a represents an antenna ID

}
A* is supplied as input data to the scheduling system.

Definition 37 (Set of antenna-attribute tuples): A0 ⊆
[
S0 ×

A* × {“S”,“K”,“K1”,“K2”} × {“MA”,“SA”}
]
�[

a = (a1, . . . , a4) ∈ A0, a4 =“MA”
]
⇒ a3 =“S”

A0 contains a 4-tuple for each antenna in the communications

support infrastructure. The elements of each 4-tuple identify

the basic antenna attributes (the station where the antenna is

located, the antenna’s ID, the antenna’s frequency band, and

the antenna’s signal service capability). A0 is supplied as in-

put data to the scheduling system.

Note: It is assumed that all SA antennas are able to sup-

port S band.

Definition 38 (Function to return the number of SA antennas

in service at a given station): SSA
0 : S0 → N � s ∈ S0 ⇒

SSA
0 (s) =

∣∣∣{a ∈ A0 : a1 = s, a4 = “SA”
}∣∣∣.

Given station s, SSA
0 (s) returns the number of SA antennas in

service at station s. This information is computed from input

data for the scheduling system.

Definition 39 (Set of communications resource-outage inter-

vals): O ⊆ S0 ×A* × N
2 � (o1, . . . , o4) ∈ O ⇒

o3 is a start time and o4 is an end time.

O is the set of communications resource-outage intervals,

each corresponding to times known in advance when data

communications via prescribed antennas will be unavailable.

O is supplied as input data to the scheduling system.

Definition 40 (Set of user IDs):
U0 =

{
u ∈ S : u represents a user ID

}
A user (see definition of User on page 18) is any system ca-

pable of communications via an antenna in NASA’s space

data-communications infrastructure. U0 is supplied as input

data to the scheduling system.

Definition 41 (POCC Operation Periods): P : U0 → ℘(Z̄).

Given user u, P (u) is the set of time intervals during which

the user’s Project Operations Control Center (POCC) is in

operation. The intervals belonging to the set P (u) have start

and end times specified as seconds of offset from some stan-

dard epoch. If a POCC is always in operation, then there is

only one interval specified, the start time of which is the start

of the scheduling period and the end time of which is an ar-

bitrary, sufficiently large number. P is supplied as input data

to the scheduling system.

Definition 42 (Set of all link IDs):
L* =

{
x ∈ S : x represents a link ID

}
L* is provided as input data to the scheduling system

Definition 43 (Set of all mission event types): M * =
{
x ∈

S : x represents a mission event type
}

M * is provided as input data to the scheduling sys-

tem. An example of the set of mission event types would

be:
{

“NIL”, “ORBIT”, “COMM-VIEW-PERIOD”, “IN-

21

4.3 Domain-Specific Definitions 4 DEFINITIONS

VIEW”, “DAY-LIGHT”, “NIGHT”, “OVER-WATER”,

“OVER-LAND”, “SUN-RISE”, “MOON-RISE”, “SUN-

SET”, “MOON-SET”, “DAY”, “WEEK”, “MONTH”
}

.

Some mission event types do not relate to a station in the sup-

port infrastructure. For example, for the mission event type

“MOON-SET”, a station ID is irrelevant, and so, for a mem-

ber of M (see Definition 46, page 22) for that mission event

type, the value of μ3 could be given as •. Mission event type

“NIL” is reserved for cases where a user-support require-

ment/request is specified in relation to an exact time interval

(i.e., a “specific” requirement, as opposed to a “generic” re-

quirement; see definition of User Requirement, page 18).

COMM-VIEW-PERIODs are assumed to be intervals dur-

ing which RF communications with a given user via a given

network station are possible. COMM-VIEW-PERIODs are

determined in advance (and are assumed herein to be pro-

vided as input data), by considering all factors that affect

communications performance, as computed, for example, by

the NASA Communications Link Analysis and Simulation

System (CLASS) [19] and the “Automated Conflict Resolu-

tion System” and the “TDRS Look Angle System” [20]. It is

assumed that, according to the mission plan, the spacecraft

attitude will be adjusted and maintained as needed to enable

the appropriate on-board antenna(s) to receive and/or radi-

ate signals from/to the designated support antenna.

Definition 44 (Users’ communications links information):
L0 ⊆ U0 × L* × {“S”,“K”,“K1”,“K2”}×

{“MA”,“SA”} × {“FWD”,“RTN”} × {“RCP”,“LCP”}×
N

+ � (λ1, . . . , λ7) ∈ L0 ⇒
1. λ4 indicates which type of signal service (Multiple Ac-

cess or Single Access) is required,

2. λ5 indicates the direction of data flow,

3. λ6 indicates the signal polarization required, and

4. λ7 represents a data rate in units of Kbps (i.e., 103 bits

per second).

L0 provides all relevant information about all users’ commu-

nications links. The schedule-generation algorithm requires

this information in order to find a schedule that will satisfy

requests for communications services. L0 is supplied as in-

put data to the scheduling system.

Definition 45 (Maximum allowed return data rate):
MAXALLOWEDRTNRATE is a fixed parameter, pro-

vided as input data for a given scheduling scenario, ap-

plicable to the entire data-communications support infras-

tructure, defining the maximum allowed data rate (in units

of Kbps) for all return-data communications links com-

bined at any given instant.

Definition 46 (Set of mission event instances):
M ⊆ U0 ×M * × S0 × N

2 � (μ1, . . . , μ5) ∈M ⇒

1. μ4 is a start time

2. μ5 is an end time.

M , supplied as input data to the scheduling system, is the set

of mission event instances. The preparation of M requires a

computational resource such as CLASS.

Definition 47 (Set of communications links for given user):
L : U0 → ℘(L0) � L(u) =

{
λ = (u, λ2, . . . , λ7) ∈ L0

}
For a given user u, L(u) is u’s set of communications links.

The function L can be regarded as a table of data supplied as

input to the scheduling system.

Definition 48: V : S0 × U0 → ℘(M) �[
(s, u) ∈ S0 × U0, (μ1, . . . , μ5) ∈ V (s, u)

]
⇒[

μ1 = u, μ2 = “COMM-VIEW-PERIOD”, μ3 = s
]

The function V , given (s, u) ∈ S0 ×U0, returns the set of all

communications view periods for station s and user u. V , ef-

fectively a table of data, is supplied as input to the scheduling

system.

Definition 49 (Potential Interference Intervals):
I : S2

0 × L2
0 → ℘(Z̄) �[

(s, s′, λ, λ′) ∈ S2
0 × L2

0, ζ ∈ I(s, s′, λ, λ′)
]
⇔

∃(μ1, . . . , μ5) ∈ V (s, λ1), ∃(μ′
1, . . . , μ

′
5) ∈ V (s′, λ′1) �

1. ζ ⊆ [μ4, μ5] ∩ [μ′
4, μ

′
5] �= Ø,

2.
[
t ∈ ζ, links λ and λ′ are active at time t via stations

s and s′, respectively
] ⇔ link λ suffers unacceptable

degradation due to interference by link λ′,

3. ∀β ∈ Z̄ � ζ ⊂ β, ∃t ∈ β\ζ � at time t,

(a) links λ and λ′ are active via stations s and s′, re-

spectively, and

(b) link λ does not suffer unacceptable degradation

due to interference by link λ′.

Potential interference intervals are supplied as input data by

(for example) the NASA CLASS interference analysis sys-

tem (IAS) (see Introduction, page 8). Note that CLASS can

supply potential interference intervals for the cases where a

user’s communications link would be degraded by RF energy

from a non-specific source such as cellular-telephone signal

emitters or other non NASA sources such as radars. In such

cases, the interfering “link” would have a CLASS-supplied

link ID and user ID.

Definition 50 (Function to return NASA-assigned user prior-

ity):
Φ0 : U0 → N � ∀u ∈ U0,Φ0(u) is the NASA-assigned

mission-priority value �
[u′ ∈ U0, u

′ �= u, and u′ has lower priority than u] ⇒

22

4.3 Domain-Specific Definitions 4 DEFINITIONS

Φ0(u
′) < Φ0(u).

NASA-assigned mission priorities are supplied to the

scheduling system as input data.

Definition 51 (Normalized user priority mapping):
Φ: U0 → R �[
u ∈ U0,m = max

({
x : ∃u′ ∈ U0, x = Φ0(u

′)
})] ⇒

Φ(u) = m−1Φ0(u).

Φ, supplied as input data to the scheduling system, maps

NASA-assigned mission priorities to the interval [0, 1].

Definition 52 (Service):
Y ⊆ L0 × N

4 � (λ, s−, s+, d−, d+) ∈ Y ⇒
1. s− and s+ represent, respectively, the minimum and

maximum allowed start-time offset from some given

reference time, and

2. d− and d+ represent, respectively, the minimum and

maximum allowed duration of the service.

Y is the set of tuples (λ, s−, s+, d−, d+) that specifies users’

services in terms of links, earliest and latest start-time off-

sets, and minimum and maximum durations, and is supplied

as input data to the scheduling system.

Definition 53 (User-Prescribed Prototype Event List):
C : U0 → Ξ*

(
Ξ*(Y)

)
�[

u ∈ U0, k ∈ N
+, k < len(C(u)),

i ∈ N, i < len(C(u)[k]),
C(u)[k][i] = (λ, •, •, •, •)

]
⇒ λ ∈ L(u).

p is said to be a prototype event if and only if ∃u ∈ U0, ∃k ∈
N � (k, p) ∈ C(u). (See Revisions and Changes Digest

item 13, page 66.)

C(u) is the user-u prescribed list (sequence) of prototype

communications events for user u. Every communications

event scheduled by the algorithm for the given user u will

match the values of some element of C(u), with leeway on

the duration and the start-time offset relative to a given proto-

type event start time. The mission-operations project for each

user u supplies the list C(u) as input data to the scheduling

system.

Definition 54 (User Requirements): R0 is a set each element

of which is an ordered 17-tuple (r1, . . . , r17) �
1. r1 ∈ S represents a requirement ID,

2. r2 ∈ U0 is a string representing a user ID,

3. r3 is a subsequence of the sequence C(r2), the list of

prototype events prescribed by user r2,

4. r4 ∈ M * is a string representing a mission-event type

for user r2,

5. r5 ∈ N is a mission-event skip factor specifying how

many mission events of type r4 must be skipped be-

tween consecutive instances of prototype events in the

sequence r3,

6. r6 ∈ Z is seconds of offset of an instance of a proto-

type event in the sequence r3 from the start (if r8 =
“START”), or end (if r8 = “END”) of a mission event

of type r4,

7. r7 ∈ Z is seconds of offset of an instance of a proto-

type event in the sequence r3 from the start (if r9 =
“START”), or end (if r9 = “END”) of a mission event

of type r4,

8. r8 ∈ {“START”, “END”} indicates whether the start of

a prototype event instance is relative to the start or end

of an instance of a mission event of type r4,

9. r9 ∈ {“START”, “END”} indicates whether the end of

a prototype event instance is relative to the start or end

of an instance of a mission event of type r4,

10. r10 ∈ N
+ represents the total volume of data desired

to be returned from the user spacecraft in units of 103

bits during any instance of a prototype event in the se-

quence r3,

11. r11 ∈ {“Y”, “N”} indicates whether the user’s POCC

must be open during an instance of a prototype event

in the sequence r3, where “N” means the POCC is not

required to be open,

12. r12 ∈ {“Y”, “N”} indicates whether mutual interfer-

ence may be neglected in scheduling communications

events,

13. r13 ∈ N is the minimum allowed separation, in sec-

onds, between any two consecutive instances of a pro-

totype event in the sequence r3 during any given com-

munications event window as defined below,

14. r14 ∈ N is the maximum allowed separation, in sec-

onds, between any two consecutive prototype event in-

stances,

15. r15 ∈ N is the offset, in seconds, from the start of the

scheduling period to the earliest time at which any in-

stance of a prototype event in the sequence r3 is allowed

to start,

16. r16 ∈ N is the offset, in seconds, from the start of the

scheduling period to the latest time at which any in-

stance of a prototype event in the sequence r3 is allowed

to end, and

17. r17 ∈ N is the nominal prototype-event start time off-

set, in seconds, from the start of the scheduling period.

23

4.3 Domain-Specific Definitions 4 DEFINITIONS

R0, given as input data by the users, is a set each element

of which is a user requirement. A requirement specifies ei-

ther repeating or singleton (nonrepeating) communications

events to satisfy the user’s needs for communications via sta-

tions in the network. A requirement may specify (via param-

eters r13 through r16, and via the last four parameters in each

of the user’s defined services (see Definition 52 (page 23)))

loose or tight tolerances on positioning of events in time.

Example of a communications event window relative to

the mission event type “SUNRISE”: Starting 20 sec before

each third sunrise, ending 15 min after the sunrise. In this ex-

ample, the mission-event skip-factor (r5) would be 2.

For every requirement r = (r1, . . . , r17) where the mis-

sion event type is “NIL”, there is a mission-event instance

μ = (μ1, . . . , μ5) in M where μ2 = “NIL” and [μ4, μ5] =
[r15, r16].

4.3.2. Scheduling-Algorithm-Specific Definitions

Definition 55 (Service Instantiation):
Y I : Y → ℘(N×A0 × N

2) �
∀y = (λ = (λ1, . . . , λ7), s

−, s+, d−, d+) ∈ Y,

(t, a, s, d) ∈ Y I(y) ⇔
1. a = (a1, a2, a3 = λ3, a4 = λ4) ∈ A0,

2. s− ≤ s ≤ s+, and

3. d− ≤ d ≤ d+

Y I returns, for each defined service y, the set of all pos-

sible instantiations (t, a, s, d) of y where the link might

be activated on the assigned antenna a during the interval

[(t+ s), (t+ s+ d)].

Definition 56 (Function to return largest overlap of service

with given view period):
Y V : N×M × Y → Z̄ �[(
t, μV = (μV

1 , . . . , μ
V
5),

y = (λ = (λ1, . . . , λ7), s
−, s+, •, d+)

)
∈

N×M × Y � μV
1 = λ1, μ

V ∈ V (μV
3 , μ

V
1)

]
⇒

Y V(t, μV, y) = [μV
4 , μ

V
5] ∩

[
(t+ s−), (t+ s+ + d+)

]
.

Y V(t, μV, y) is the largest interval during which the service y
instantiation, relative to the given offset t from the start of the

scheduling period, would overlap the given view period μV.

The interval Y V(t, μV, y) covers any possible instantiation of

y relative to the given view period μV and the given offset t
from the start of the scheduling period.

Definition 57 (List of users):
U : R0 → U0 � r = (r1, . . . , r17) ∈ R0 ⇒ U(r) = r2.

U(r) represents the user for which r is a prescribed require-

ment.

Definition 58 (Time-ordered sequence of mission events for

a given user requiring a given mission event type):
Mtype : R0 → Ξ*(M) �

∀r = (r1, . . . , r17) ∈ R0,

Mtype(r) = ξ ∈ Ξ*(M) ⇔
1.

[
i ∈ N, i < len(ξ)

] ⇒ ξi[1] = r2 and ξi[2] = r4 and

2.
[
i, j ∈ N, i < j < len(ξ)

] ⇒[
ξi[4], ξi[5]

]
<

[
ξj [4], ξj [5]

]
(See Revisions and Changes Digest item 14, page 66.)

Given r ∈ R0,Mtype(r) is the time-ordered sequence of

all the members of M for user r2 that have mission event

type r4.

Definition 59 (Function to return a start time or an end time

for a given mission event):
MT : {“START”, “END”} ×M → N �
(x, μ = (μ1, . . . , μ5)) ∈ dom(MT) ⇒

MT(x, μ) =

{
μ4 if x = “START”

μ5 if x = “END”

MT returns a start time or an end time for a given mis-

sion event. The returned time is the reference time relative

to which a prototype event will be instantiated according to

r6.

Definition 60 (Function to return the reference time for a

given mission event):
tref : R0 ×M → Z �

∀(r = (r1, . . . , r17),

μ = (μ1, . . . , μ5)
) ∈ R0 ×M,

tref(r, μ) = tp ⇔
μ1 = r2, μ2 = r4,

tp =

{
r15 if r4 = “NIL”

MT(r8, μ) + r6 otherwise.

(See Revisions and Changes Digest item 15, page 66.)

tref(r, μ) returns the reference time specified by require-

ment r relative to any mission event μ of type r4, with re-

spect to which any prototype communications event would

be scheduled, subject to the skip factor r5.

Definition 61 (Function to return indexes to mission event in-

stances determined the skip factor):
Mskips : R0 × N → Ξ*(N) �
∀(r = (r1, . . . , r17), i

) ∈ R0 × N,

Mskips(r, i) = ξ ∈ Ξ*(N) ⇔
1. i ≤ r5,

24

4.3 Domain-Specific Definitions 4 DEFINITIONS

2. n = len(Mtype(r)) ⇒
len(ξ) =

[
n− n mod (r5 + 1)

]
/(r5 + 1), and

3.
[
j ∈ N, j < len(ξ)

] ⇒ ξ[j] = j(r5 + 1) + i

Mskips(r, i) is the list of indexes intoMtype(r) such that, start-

ing with the mission event instance Mtype(r)[i], these ele-

ments of Mtype(r) correspond to the mission event instances

determined by applying the skip factor r5. The concept (see

Figure 3 (page 25)) of applying a skip factor having the value

n entails the process of (1) starting with some given mission

event instance, (2) ignoring (i.e., skipping) the next n mis-

sion event instances, (3) keeping the next mission event in-

stance, (4) skipping the next n mission event instances, etc.

Note that in normal practice, the starting point for the pro-

cess will be not some arbitrary member of Mtype(r), but in-

stead will beMtype(r)[0], i.e., the first mission-event instance

of type r4. This practice satisfies the normal mission expec-

tation that in maximizing the satisfaction of mission require-

ments, no opportunities for enabling data communications

will be foregone.

Definition 62 (Function to return a given user’s POCC oper-

ation period that has the largest intersection with a given in-

terval):
Pmax : R0 × Z̄ → Z̄ �[
(r, β) ∈ R0 × Z̄, Pmax(r, β) = ζ ∈ Z̄

]
⇔

1. ζ ∈ P (U(r)),

2. g = ζ ∩ β �= Ø, and

3.
[
η ∈ P (U(r)), h = η ∩ β

]
⇒ g+ − g− ≥ h+ − h−

Pmax(r, β) returns the POCC operation period for user U(r)
that has the largest intersection with the given interval β.

Definition 63 (Function to return the largest interval in the

given view period during which a given service can be in-

stantiated):
Y I

max : R0 × N
2 ×M2 → N×A0 × N

2 �
∀(r = (r1, . . . , r17), k, n, μ = (r2, r4, μ3, μ4, μ5),

μV = (μV
1 , . . . , μ

V
5)
) ∈ dom(Y I

max),

Y I
max(r, k, n, μ, μ

V) =
(
tp, a, s, d

) ⇔
1.

(
tp, a = (a1, . . . , a4), s, d

) ∈ codomain(Y I
max),

2. μV ∈ V (a1, r2),

3. tp = tref(r, μ),
4. k < len(r3),
5. n < len(r3[k]),
6. (tp, a, s, d) ∈ Y I(r3[k][n]),

7.
[
(o1 = a1, o2 = a2, a3, o4) ∈ O ⇒

[o3, o4] ∩ [(tp + s), (tp + s+ d)] = Ø
]
,

Instances of mission event of a
type specified by parameter r4:

.
�����
�
��
�
��

0 1 2 3 4 5 6 7 8 9 10 11

indexes into Mtype(r)			
 ���
.

2 5 8 11

Mtype(r) indexes listed in Mskips(r, 2)
(with r5 = 2)

����
����

��� ���

Figure 3. An example illustrating the skip-
factor concept. Twelve instances of a mission
event of type r4 are shown along the time line.
These instances have indexes 0 through 11 in
the sequence Mtype(r). The relevant parameter
values (see Definition 61 (page 24)) in this ex-
ample are the skip factor, r5 = 2, and the index,
i = 2, of the first (i.e., the left-most) instance of
a mission event of type r4 where an instance of
a prototype event is to be scheduled. Thus, af-
ter skipping the next two instances of a mis-
sion event of type r4, the next index in the
list is Mskips(r, 2)(1) = 5. Note, however, that
in normal practice, the starting point for this
process will be not some arbitrary member of
Mtype(r), but instead will be Mtype(r)[0], i.e., the
first mission-event instance of type r4, corre-
sponding to setting the index i to 0.

8.

[[
r4 = “NIL” ,[μ4, μ5] = [r15, r16],

β = Y V(tp, μ
V, r3[k][n])), β �= Ø,[[

r11 = “N” , η = β
]∨[

r11 = “Y” , ζ = Pmax(r, β), η = ζ ∩ β]]]∨[
r4 �= “NIL”, ζ = [tp, μ

V
5],

β = ζ ∩ Y V(tp, μ
V, r3[k][n])), β �= Ø,[[

r11 = “N” , η = β
]∨

[
r11 = “Y” , ζ = Pmax(r, β), η = ζ ∩ β]]]

]
,

9. tp + s = η−, d = η+ − (tp + s) > 0

Y I
max(r, k, n, μ, μ

V) gives the largest interval in the given

view period μV where, (a) with respect to [r15, r16] (when

25

4.3 Domain-Specific Definitions 4 DEFINITIONS

r4 = “NIL”) or (b) with respect to the given mission event μ
(when the given requirement specifies the start of the given

prototype event in relation to the given mission event), the

given service (stipulated by (r, k, n)) can be instantiated with

an antenna assigned avoiding any resource outage.

Definition 64 (Function to return the set of all possible in-

stantiations of the given prototype event for a given mission

event type with antenna assignments avoiding resource out-

age intervals):
CPRM

0 : N×R0 ×M → ℘(Ξ*(codomain(Y I))) �[
(k, r = (r1, . . . , r17), μ = (μ1 = r2, μ2 = r4, . . . , μ5))

∈ dom(CPRM
0),

p ∈ CPRM
0 (k, r, μ)

] ⇔
1. k < len(r3), len(p) = len(r3[k]),

2.

[[
tp = tref(r, μ), n ∈ N, n < len(p)

]
⇒

(a) ∃(tp, a, s, d) ∈ Y I(r3[k][n]) �
p[n] = (tp, a, s, d),

(b) ∃μV = (μV
1 , . . . , μ

V
5) ∈M, ∃[s*, d*] ∈ Z̄,

∃(tp, a, s*, d*) = Y I
max(k, r, n, μ, μ

V) �
[s, (s+ d)] ⊆ [s*, (s* + d*)]

]
.

CPRM
0 (k, r, μ) is the set of all possible instantiations of the

kth prototype event in the list r3 for the mission event μ of

type r4, with antenna assignments avoiding resource outage

intervals.

Definition 65 (Set of All Possible Schedules):
Θ ⊆ codomain(CPRM

0) � ∀θ ∈ Θ,[(
k, r = (r1, . . . , r17), μ = (μ1 = r2, μ2 = r4, . . . , μ5)

)
∈ N×R0 ×M,

k < len(r3),
x ∈ CPRM

0 (k, r, μ), y ∈ CPRM
0 (k, r, μ),

x ∈ θ, and y ∈ θ
]
⇒ x = y

Θ is the set of all possible schedules.

A schedule is a set of prototype-event instantiations, with

no more than one such instantiation for each instance of the

mission event type stipulated by each requirement.

For each (k, r = (r1, . . . , r17), μ = (r2, r4, . . . , μ5)) ∈
N × R0 ×M , with k < len(r3), the scheduling objective

is to schedule an instance of the prototype event r3[k] so as

to transmit a total quantity of data equal to r10 × 103 bits,

subject to

• the minimum and maximum communications-event

separations r13 and r14 and

• the mission-event skip factor r5.

Definition 66 (Function to return the degree to which a given

schedule satisfies a given requirement’s skip factor):
skipsatR* : Θ×R0 → R �[(
θ, r = (r1, . . . , r17)

) ∈ Θ×R0,

n = len(Mskips(r, 0)),

Q =
{
p : ∃j, k ∈ N � j < n, k < len(r3),

p ∈ CPRM
0

(
k, r,Mtype(r)

[
Mskips(r, 0)[j]

])
,

p ∈ θ
}]

⇒

skipsatR*(θ, r) =

{
n/

∣∣Q∣∣ if
∣∣Q∣∣ > 0

1000 if
∣∣Q∣∣ = 0.

(Note that the value 1000 is arbitrary, chosen to severely

reduce the fitness score of θ when the set Q is empty.)

Given a schedule θ and a requirement r, skipsatR* returns

a value representing the ratio of the number of elements in

Mskips(r, 0) to the number of prototype events scheduled for

the members indexed by Mskips(r, 0). This final value will be

exactly 1 if the skip factor requirement is satisfied (the pos-

sibility that prototype event instances will be scheduled for

other mission events is irrelevant for this metric), and will

be a larger value otherwise. The assumption is that, from

the start of the scheduling period, the first mission event of

type r4 will have a mandatory first prototype-event instanti-

ation, then r5 mission events of type r4 will be skipped, and

then the next mission event of type r4 will have a manda-

tory prototype-event instantiation, with this pattern repeated

for the remainder of the scheduling period.

(See Revisions and Changes Digest item 16, page 66, giving

an equivalent but simpler formulation.)

Definition 67 (Function to return the degree to which a given

schedule satisfies the skip factor for all requirements):
violationsSKIP* : Θ → R �
θ ∈ Θ ⇒ violationsSKIP*(θ) =∣∣R0

∣∣−1 ∑
r∈R0

skipsatR*(θ, r)

Given a schedule θ, violationsSKIP* returns the total of the

metrics for all requirements as to how well their skip factors

are satisfied—averaged over all requirements. For a perfect

schedule, this metric will be exactly 1, and will be a larger

value otherwise.

Definition 68: skipFILL-R* : Θ×R0 → R �[
(θ, r = (r1, . . . , r17)) ∈ Θ×R0, N = len(Mtype(r)),

h = len(Mtype(r))− len(Mskips(r, 0)),

Q =
{
p : ∃m, k ∈ N, k < len(r3),
m < len(Mtype(r)),¬m ∈Mskips(r, 0),

26

4.3 Domain-Specific Definitions 4 DEFINITIONS

p ∈ CPRM
0

(
k, r,Mtype(r)[m]

)
, p ∈ θ

}]
⇒

skipFILL-R*(θ, r) = 1 + h−1
∣∣Q∣∣

Given a schedule θ and a requirement r, skipFILL-R* returns

1 plus the ratio of
∣∣Q∣∣ (the number of prototype-event instan-

tiations that are not required under the mission-event skip re-

quirement r5 for mission events of type r4), to h (the number

of mission event instances of type r4 that are required to be

skipped). This metric has the value 1 if the schedule is perfect

(i.e., there are no prototype events instantiated when not re-

quired), and has a greater value otherwise. See the statement

of the assumption under Definition 66. (Note that h = 0 cor-

responds to an impossible condition, namely, that all of the

instances of the mission event of type r4 are to be skipped.)

Definition 69: violationsSKIPFILL* : Θ → N �
θ ∈ Θ ⇒ violationsSKIPFILL*(θ) =∣∣R0

∣∣−1 ∑
r∈R0

skipFILL-R*(θ, r)

Given a schedule θ, violationsSKIPFILL* returns the to-

tal count, for all requirements r, of prototype-event instanti-

ations that are not required under the mission event skip re-

quirement r5 for mission events of type r4—averaged over

all requirements.

Definition 70: startP : codomain(CPRM
0) → N �

1. p ∈ codomain(CPRM
0) ⇒ ∃(k, r, μ) ∈ N×R0 ×M �

p ∈ CPRM
0 (k, r, μ),

2.
[
Q =

{
v : ∃(t, •, s, •) ∈ p � v = t+ s

}] ⇒
startP(p) = min(Q)

Given the instantiation p of a prototype event, startP(p) re-

turns the earliest start time of any service instantiation in the

event.

Definition 71: endP : codomain(CPRM
0) → N �

1. p ∈ codomain(CPRM
0) ⇒ ∃(k, r, μ) ∈ N×R0 ×M �

p ∈ CPRM
0 (k, r, μ),

2.
[
Q =

{
v : ∃(t, •, s, d) ∈ p � v = t+ s+ d

}] ⇒
endP(p) = max(Q)

Given the instantiation p of a prototype event, endP(p) re-

turns the latest end time of any service instantiation in the

event.

Definition 72: minsepsatP* : Θ×R0 → N �[
(θ, r = (r1, . . . , r17)) ∈ Θ×R0,

Q =
{
(p, p′) ∈ θ × θ : ∃(k, r, μ) ∈ N×R0 ×M �
p ∈ CPRM

0 (k, r, μ),
∃(k, r, μ′) ∈ N×R0 ×M � p′ ∈ CPRM

0 (k, r, μ′),
startP(p′) > endP(p)

startP(p′)− endP(p) < r13
}] ⇒

minsepsatP*(θ, r) =
∣∣Q∣∣

Given a schedule θ and a requirement r, minsepsatP*(θ, r)
returns the total count of pairs of prototype-event instantia-

tions for requirement r in schedule θ that are separated by

less than the minimum allowed separation r13.

Definition 73: maxsepsatP* : Θ×R0 → N �[
(θ, r = (r1, . . . , r17)) ∈ Θ×R0,

Q =
{
(p, p′) ∈ θ × θ : ∃(k, r, μ) ∈ N×R0 ×M �
p ∈ CPRM

0 (k, r, μ),

∃(k, r, μ′) ∈ N×R0 ×M � p′ ∈ CPRM
0 (k, r, μ′),

startP(p′) > endP(p)

¬∃p′′ ∈ θ � startP(p) < startP(p′′) < startP(p′)

startP(p′)− endP(p) > r14
}] ⇒

maxsepsatP*(θ, r) =
∣∣Q∣∣

Given a schedule θ and a requirement r, maxsepsatP*(θ, r)
returns the total count of pairs of consecutive prototype-event

instantiations for requirement r in schedule θ that are sepa-

rated by more than the maximum allowed separation r14.

Definition 74: violationsMINSEP* : Θ → R �
θ ∈ Θ ⇒ violationsMINSEP*(θ) =

1 +
∣∣R0

∣∣−1 ∑
r∈R0

minsepsatP*(θ, r)

Given a schedule θ, violationsMINSEP*(θ) returns the value 1
plus the ratio, averaged over all requirements r, of the num-

ber of pairs of prototype-event instantiations for requirement

r in schedule θ that are separated by less than the minimum

allowed separation r13 to the number of elements (prototype-

event instantiations) in the schedule. This metric will be ex-

actly 1 for a perfect schedule and a greater value otherwise.

Definition 75: violationsMAXSEP* : Θ → R �
θ ∈ Θ ⇒ violationsMAXSEP*(θ) =

1 +
∣∣R0

∣∣−1 ∑
r∈R0

maxsepsatP*(θ, r)

Given a schedule θ, violationsMAXSEP*(θ) returns a value

equal to 1 plus the ratio, averaged over all requirements r,

of the number of pairs of prototype-event instantiations for

requirement r in schedule θ that are separated by more than

the minimum allowed separation r14 to the number of ele-

ments (prototype-event instantiations) in the schedule. This

metric will be exactly 1 for a perfect schedule and a greater

value otherwise.

Definition 76: schedolpairs : Θ → codomain(CPRM
0)2 �

θ ∈ Θ ⇒
schedolpairs(θ) =

{
(p, p′) ∈ θ × θ :

27

4.3 Domain-Specific Definitions 4 DEFINITIONS

startP(p) < startP(p′) < endP(p)
}

Given a schedule θ, schedolpairs(θ) returns a set of overlap-

ping pairs of members of θ so that not both (p, p′) and (p′, p)
belong to the set and (p, p) does not belong to the set.

Definition 77: interf* : Θ → R � ∀θ ∈ Θ,[
Q =

{
x : r = (r1, . . . , r17),

r′ = (r′1, . . . , r
′
17) ∈ R0, k, k

′ ∈ N,

μ is an element of the sequence Mtype(r),

μ′ is an element of the sequence Mtype(r
′),

k < len(r3), k′ < len(r′3),
p ∈ CPRM

0 (k, r, μ), p′ ∈ CPRM
0 (k′, r′, μ′),

(p, p′) ∈ schedolpairs(θ),
n, n′ ∈ N, n < len(r3[k]), n′ < len(r′3[k′]),
λ = (r2, λ2, . . . , λ7), λ

′ = (r′2, λ
′
2, . . . , λ

′
7) ∈ L0,

(λ, •, •, •, •) = r3[k][n],

(λ′, •, •, •, •) = r′3[k
′][n′],

p[n] = (t, a = (a1, . . . , a4), s, d),

p′[n′] = (t′, a′ = (a′1, . . . , a
′
4), s

′, d′),
e ∈ I(a1, a

′
1, λ, λ

′),
e ∩ [

t+ s, t+ s+ d
] ∩ [

t′ + s′, t′ + s′ + d′
] �= Ø,

x = (p, p′, n, n′)
}]

⇒
interf*(θ) = 1 +

∣∣θ∣∣−1|Q|
interf* returns the value 1 plus an integer representing the in-

stances where interference exists between two active links in

a pair of prototype-event instantiations in the schedule, aver-

aged over all elements (prototype-event instantiations) in the

schedule. This metric will be exactly 1 for a perfect sched-

ule and a greater value otherwise.

Definition 78: endpts : Θ → ℘(N) � θ ∈ Θ ⇒
endpts(θ) =

{
x : r = (r1, . . . , r17) ∈ R0,

k ∈ N, k < len(r3),
(•, μ) ∈Mtype(r),

p ∈ CPRM
0 (k, r, μ), p ∈ θ, (t, a, s, d) ∈ p,[

x = t+ s ∨ x = t+ s+ d
]}

The function endpts(θ) returns the set of all of the endpoints

of all service instantiations in all prototype-event instantia-

tions in schedule θ.

Definition 79: endptsseq : Θ → Ξ∗(N) � ∀θ ∈ Θ,

ξ ∈ endpts(θ)seq ⇔
ξ ∈ Ξ∗(endpts(θ)) and[
i ∈ N, i+ 1 < len(ξ) ⇒ ξ[i] < ξ[i+ 1]

]
The function endptsseq(θ) converts the set endpts(θ) into an

increasing sequence of times on the timeline.

Case κ(a, c, d)
(1) c =“SA” and d = • 2

(2) c =“MA” and d =“FWD” 1

(3) c =“MA” and d =“RTN” 5

Table 1. Space Network Forward and Re-
turn Link constraints from the Space Network
Users’ Guide (SNUG)

Case κ′(a, c, d)
(1) c =“SA” and d = • 4

(2) c =“MA” and d =“FWD” 2

(3) c =“MA” and d =“RTN’ 20

Table 2. Ground Network Forward and Return
Link constraints

Definition 80: resourceusage : Θ× N →
℘
(
N×R0 ×M × N

3 × L0 ×A0

) �[
θ ∈ Θ, i ∈ N,

i+ 1 <
∣∣endpts(θ)

∣∣,
(k, r = (r1, . . . , r17), μ) ∈ N×R0 ×M,

p ∈ CPRM
0 (k, r, μ), p ∈ θ,

n ∈ N, n < len(r3[k]),
r3[k][n] = (λ = (r2, λ2, . . . , λ7), •, •, •, •),
(t, a, s, d) ∈ N×A0 × N

2,

p[n] = (t, a, s, d),

ζ =
[
endptsseq(θ)[i], endptsseq(θ)[i+ 1]

]
,

ζ ∩ [(t+ s), (t+ s+ d)] �= Ø
]
⇒

(k, r, μ, n, ζ−, ζ+, λ, a) ∈ resourceusage(θ, i)

Given a schedule θ and an index i into the list of endpoints of

all the service instantiations in θ, resourceusage(θ, i) returns

a set of 8-tuples containing values representing the resources

used during the interval starting at the time endptsseq[i].

Definition 81: κSN : {“S”,“K”,“K1”,“K2”}×
{“MA”,“SA”} × {“FWD”,“RTN”} → N �
(b, c, d) ∈ {“S”,“K”,“K1”,“K2”} × {“MA”,“SA”}×
{“FWD”,“RTN”} ⇒
κSN(b, c, d) = 0, except as shown in Table 1

κSN returns the constraints on combinations of Space Net-

work resource usage in any schedule.

Table 1 states the station constraints that are provided as

input to the scheduling system. For example, for any TDRS,

there can be only one MAF, only five MAR, only two SSAF,

only two SSAR, only two KSAF, and only two KSAR[19].

28

4.3 Domain-Specific Definitions 4 DEFINITIONS

Definition 82:
κGN : {“S”,“K”,“K1”,“K2”} × {“MA”,“SA”}×
{“FWD”,“RTN”} → N �
(b, c, d) ∈ {“S”,“K”,“K1”,“K2”} × {“MA”,“SA”}×
{“FWD”,“RTN”} ⇒
κGN(b, c, d) = 0, except as shown in Table 2

κGN returns the constraints on combinations of Ground Net-

work resource usage in any schedule.

Table 2 states the ground-terminal constraints that are pro-

vided as input to the scheduling system. For example, for

WSC (White Sands Complex), there can be only two MAF,

only 20 MAR, only four SSAF, only four SSAR, only four

KSAF, and only four KSAR. However, this is a simplification

that would have to be dealt with, both in a more realistic for-

mulation of the SN scheduling problem and in a full specifi-

cation of the problem solution (i.e., as a schedule-generation

algorithm to be implemented in a fielded, production-level

scheduling system). The actual SA constraints are subject to

additional rules that likewise would need to be included in

the specification for a fielded scheduling system. For exam-

ple, in the SNUG, Note 5 in Figure 3-1 “Telecommunications

Services for each SGLT” [19] states the following:

The SN can simultaneously support S-band and

K-band (either Ku or Ka for TDRS spacecraft

F8 through F10) forward and/or return services

through one SA antenna to the same ephemeris.

The present disclosure is based on a formulation of the

NASA data-communications scheduling problem that does

not embody the above distinction (or any other distinction)

between TDRS spacecraft in the Space Network. Special

cases and changes in infrastructure constraints are generally

expected over time and must be reflected in timely updates to

any operational scheduling system. In this sense, the present

disclosure should therefore be considered to represent an ap-

proach and a method that can be adapted to the actual data-

communications scheduling problem.

Definition 83: violationsSN-ENDPTS
B-C-D :

Θ× N× {“S”,“K”,“K1”,“K2”}×
{“MA”,“SA”} × {“FWD”,“RTN”} → N �[

θ ∈ Θ, i ∈ N, i+ 1 <
∣∣endpts(θ)

∣∣,
(b, c, d) ∈ {“S”,“K”,“K1”,“K2”}×

{“MA”,“SA”} × {“FWD”,“RTN”},
Q =

{
x : x = (•, •, •, •, •, •, λ = (λ1, . . . , λ7), •) ∈

resourceusage(θ, i),
λ3 = b, λ4 = c, λ5 = d,

}
,

vSN =
∣∣Q∣∣− κSN(b, c, d)

]
⇒

violationsSN-ENDPTS
B-C-D (θ, i, b, c, d) = max

({0, vSN}
)

The function violationsSN-ENDPTS
B-C-D (θ, i, b, c, d) returns the

count of violations of the constraints on usage of Space Net-

work resource (b, c, d) in the interval i in schedule θ.

Definition 84: violationsGN-ENDPTS
B-C-D :

Θ× N× {“S”,“K”,“K1”,“K2”}×
{“MA”,“SA”} × {“FWD”,“RTN”} → N �[

θ ∈ Θ, i ∈ N, i+ 1 <
∣∣endpts(θ)

∣∣,
(b, c, d) ∈ {“S”,“K”,“K1”,“K2”}×

{“MA”,“SA”} × {“FWD”,“RTN”},
Q =

{
x : x = (•, •, •, •, •, •, λ = (λ1, . . . , λ7), •) ∈

resourceusage(θ, i),
λ3 = b, λ4 = c, λ5 = d,

}
,

vGN =
∣∣Q∣∣− κGN(b, c, d)

]
⇒

violationsGN-ENDPTS
B-C-D (θ, i, b, c, d) = max

({0, vGN}
)

The function violationsGN-ENDPTS
B-C-D (θ, i, b, c, d) returns the

count of violations of the constraints on usage of Ground

Network resource (b, c, d) in the interval i in sched-

ule θ.

Definition 85: violationsSN-ENDPTS : Θ× N → R �[
(θ, i) ∈ Θ× N, h =

∣∣endpts(θ)
∣∣− 1

]
⇒

violationsSN-ENDPTS(θ, i) =
h−1

∑
(b,c,d)∈dom(κSN)

violationsSN-ENDPTS
B-C-D (θ, i, b, c, d)

The function violationsSN-ENDPTS(θ, i) returns the count of

violations of the constraints on usage of all Space Network

resources in the interval i in schedule θ, averaged by the num-

ber of elements in endpts(θ) less 1.

Definition 86: violationsGN-ENDPTS : Θ× N → R �[
(θ, i) ∈ Θ× N, h =

∣∣endpts(θ)
∣∣− 1

]
⇒

violationsGN-ENDPTS(θ, i) =
h−1

∑
(b,c,d)∈dom(κGN)

violationsGN-ENDPTS
B-C-D (θ, i, b, c, d)

violationsGN-ENDPTS(θ, i) returns the count of violations of

the constraints on usage of all Ground Network resources in

the interval i in schedule θ, averaged by the number of ele-

ments in endpts(θ) less 1.

Definition 87: violationsSN : Θ → R �
θ ∈ Θ ⇒ violationsSN(θ) =

1 +
∣∣θ∣∣−1 ∑

i∈N

i+1<|endpts(θ)|

violationsSN-ENDPTS(θ, i)

violationsSN(θ) returns a value equal to 1 plus the count

of violations of the constraints on usage of all Space Net-

work resources in schedule θ, averaged over all elements

(prototype-event instantiations) in the schedule. This metric

29

4.3 Domain-Specific Definitions 4 DEFINITIONS

will be exactly 1 for a perfect schedule and a greater value

otherwise.

Definition 88: violationsGN : Θ → R �
θ ∈ Θ ⇒ violationsGN(θ) =

1 +
∣∣θ∣∣−1 ∑

i∈N

i+1<|endpts(θ)|

violationsGN-ENDPTS(θ, i)

violationsGN(θ) returns a value equal to 1 plus the count of

violations of the constraints on usage of all Ground Net-

work resources in schedule θ, averaged over all elements

(prototype-event instantiations) in the schedule. This metric

will be exactly 1 for a perfect schedule and a greater value

otherwise.

Definition 89:
usageSTATION-SA-ENDPTS : Θ× N× S0 → N �[
(θ, i, s) ∈ Θ× N× S0, i+ 1 <

∣∣endpts(θ)
∣∣,

Q =
{
x : x =

(•, •, •, •, •, •, λ = (λ1, . . . , λ7),

a = (a1, . . . , a4)
) ∈ resourceusage(θ, i),

a1 = s, λ4 = a4 = “SA”
}]

⇒
usageSTATION-SA-ENDPTS(θ, i, s) =

∣∣Q∣∣
Given a schedule θ, given an index i into the se-

quence of endpoints in endptsseq(θ), and given a sta-

tion s, usageSTATION-SA-ENDPTS(θ, i, s) returns the demand

for SA antenna support on s.

Definition 90:
violationsSTATION-SA-ENDPTS : Θ× N× S0 → N �[
(θ, i, s) ∈ Θ× N× S0,

vSA = usageSTATION-SA-ENDPTS(θ, i, s)− SSA
0 (s)

]
⇒

violationsSTATION-SA-ENDPTS(θ, i, s) = max
({0, vSA}

)
violationsSTATION-SA-ENDPTS(θ, i, s) returns the count of vio-

lations of the constraints on usage of SA antennas on station

s in the ith interval in schedule θ.

Definition 91: violationsSA-ENDPTS : Θ× N → R �[
(θ, i) ∈ Θ× N, h =

∣∣endpts(θ)
∣∣− 1

]
⇒

violationsSA-ENDPTS(θ, i) =

h−1
∑
s∈S0

violationsSTATION-SA-ENDPTS(θ, i, s)

violationsSA-ENDPTS(θ, i) returns the count of violations of

the constraints on usage of SA antennas in the ith interval

in schedule θ, averaged by the total number of elements in

endpts(θ) less 1.

Definition 92: violationsSA : Θ → R �
θ ∈ Θ ⇒ violationsSA(θ) =

1 +
∣∣θ∣∣−1 ∑

i∈N

i+1<|endpts(θ)|

violationsSA-ENDPTS(θ, i)

violationsSA(θ) returns a value equal to 1 plus the count

of violations of the constraints on usage of SA antennas in

schedule θ, averaged over all elements (prototype-event in-

stantiations) in the schedule. This metric will be exactly 1 for

a perfect schedule and a greater value otherwise.

Definition 93: stnswPEI : Θ× N×R0 ×M → Z
+ �

∀(θ, k, r = (r1, . . . , r17), μ
) ∈ Θ× N×R0 ×M,

if p ∈ CPRM
0 (k, r, μ),

if p ∈ θ, and

Q =
{
x : ∃i, j ∈ N, ∃λ ∈ L0 �

i, j < len(r3[k]), i �= j,
r3[k][i] = (λ, •, •, •, •),
r3[k][j] = (λ, •, •, •, •),
p[i] = (t, a = (a1, . . . , a4), s, d),
p[j] = (t, a′ = (a′1, . . . , a

′
4), s

′, d′),
s+ d ≤ s′,
a1 �= a′1,[
m ∈ N,m < len(r3[k]),
m �= i,m �= j,
p[m] = (t, a* = (a*

1, . . . , a
*
4), s

, d),
r3[k][m] = (λ, •, •, •, •)] ⇒ s′ ≤ s*, and

x = (i, j, λ)
}

, then

stnswPEI(θ, k, r, μ) =
∣∣Q∣∣

stnswPEI(θ, k, r, μ) returns the number of station switches

that occur in the prototype-event instantiation p identified by

(k, r, μ) in schedule θ.

In this disclosure, for the metric stnswPEI, a station switch

is said to occur if, for a prototype-event instantiation p iden-

tified by (k, r = (r1, . . . , r17), μ), there are two services

r3[k][i] = (λ, •, •, •, •) and r3[k][j] = (λ, •, •, •, •), i, j ∈
N, i, j < len(r3[k]), i �= j such that if p[i] = (t, a =
(a1, . . . , a4), s, d) and p[j] = (t, a′ = (a′1, . . . , a

′
4), s

′, d′),
and s + d ≤ s′, then a1 �= a′1 (i.e., the station providing

the link service changes from the earlier service instantiation

to the later), and if m ∈ N,m < len(r3[k]),m �= i,m �=
j, p[m] = (t, a* = (a*

1, . . . , a
*
4), s

, d), and r3[k][m] =
(λ, •, •, •, •), then s′ ≤ s*. Other possible definitions of “sta-

tion switch” may be substituted for the one given above or

may be included as additional metrics.

Definition 94: violationsSTNSW : Θ → R �
θ ∈ Θ ⇒ violationsSTNSW(θ) =

1 +
∣∣θ∣∣−1 ∑

r=(r1,...,r17)∈R0
k∈N�k<len(r3)
(•,μ)∈Mtype(r)

stnswPEI(θ, k, r, μ)

violationsSTNSW(θ) returns a value equal to 1 plus the num-

ber of station switches that occur totaled for all prototype-

30

4.3 Domain-Specific Definitions 4 DEFINITIONS

event instantiations in schedule θ, averaged over all elements

(prototype-event instantiations) in the schedule. This metric

will be exactly 1 for a perfect schedule and a greater value

otherwise.

Definition 95: rtndatarateCOMBINED : Θ× N → N �[
(θ, i) ∈ Θ× N, i+ 1 <

∣∣endpts(θ)
∣∣] ⇒

rtndatarateCOMBINED(θ, i) =∑
(•,•,•,•,•,•,λ=(λ1,...,λ7),•)∈resourceusage(θ,i)

λ5=“RTN”

λ7

rtndatarateCOMBINED(θ, i) returns, for the interval indexed

by i in schedule θ, the combined data rate in all the active

“RTN” links.

Definition 96: violationRTNRATE : Θ× N → N �[
(θ, i) ∈ Θ× N, i+ 1 <

∣∣endpts(θ)
∣∣,

x = rtndatarateCOMBINED(θ, i),[
x > MAXALLOWEDRTNRATE ⇒ v = 1

]
,[

x ≤ MAXALLOWEDRTNRATE ⇒ v = 0
]] ⇒

violationRTNRATE(θ, i) = v

Given a schedule θ and an index i into the sequence of

endpoints in endptsseq(θ), violationRTNRATE(θ, i) returns the

value 1 if the total of the data-rate values in all of the active

“RTN” links during the interval in schedule θ whose left end-

point is indexed by i exceeds the value of the fixed parameter

MAXALLOWEDRTNRATE, and returns 0 otherwise.

Definition 97: violationsRTNRATE : Θ → R �
θ ∈ Θ, h =

∣∣endpts(θ)
∣∣− 1 ⇒

violationsRTNRATE(θ) =
1 + h−1

∑
i∈N

i+1<|endpts(θ)|

violationRTNRATE(θ, i)

violationsRTNRATE(θ) returns a value equal to 1 plus the

number of intervals in schedule θ in which a data-rate vio-

lation exists, averaged over the total number of intervals in

schedule θ. This metric will be exactly 1 for a perfect sched-

ule and a greater value otherwise.

Definition 98: satisfiedPEI : Θ× N×R0 ×M → R �[(
θ, k, r = (r1, . . . , r17), μ

) ∈ Θ× N×R0 ×M,

p ∈ CPRM
0 (k, r, μ), p ∈ θ, x ∈ R,

Q =
{
(d, e) ∈ N

2 : n ∈ N,

n < len(r3[k], (•, •, •, d) = p[n],
(λ = (λ1, . . . , λ7), •, •, •, •) = r3[k][n],

λ5 = “RTN”, e = λ7

}
,

x =
∑

(d,e)∈Q
ed > 0

]
⇒

satisfiedPEI(θ, k, r, μ) = 1− ∣∣1− x/r10
∣∣

satisfiedPEI(θ, k, r, μ) returns the total data bits returned to

the POCC during the prototype-event instantiation identified

by (k, r, μ) in schedule θ, divided by the desired volume r10
of data returned in the instantiation of any prototype event

scheduled to satisfy r. This metric will be exactly 1 when the

total number of returned data bits equals the desired quan-

tity, and will be a nonnegative number less than 1 otherwise.

Definition 99: satisfiedR : Θ×R0 → R �[(
θ, r = (r1, . . . , r17)

) ∈ Θ×R0,

Q =
{
p : ∃(k, μ) ∈ N×M �
p ∈ CPRM

0 (k, r, μ), p ∈ θ
}

h = max({1, ∣∣Q∣∣})] ⇒
satisfiedR(θ, r) =
h−1

∑
k∈N,k<len(r3)

(•,μ)∈Mtype(r)

satisfiedPEI(θ, k, r, μ)

satisfiedR(θ, r) returns, for requirement r, the ratio repre-

senting the satisfaction of the requirement r10 for total data

bits returned by all the prototype-event instantiations for re-

quirement r in schedule θ, averaged over all such prototype-

event instantiations. The value returned is a nonnegative

number not exceeding 1. The metric will have the value 1
if the schedule is perfect.

Definition 100: satisfied* : Θ → R � θ ∈ Θ ⇒
satisfied*(θ) = 2− ∏

r∈R0

Φ(U(r))satisfiedR(θ, r)

satisfied*(θ) returns, for all requirements r, a value equal to

2 minus the product of all of the user-priority-weighted ratios

representing the satisfaction of the data-return requirements

r10 for total data bits returned to Earth by all the prototype-

event instantiations for requirement r in schedule θ. This

metric corresponds to the overall degree to which the sched-

ule satisfies all data-return requirements. The value returned

will be exactly 1 for a perfect schedule and a greater value

otherwise.

Definition 101: ∀j ∈ {0, . . . , 11}, Jj : Θ → R � θ ∈ Θ ⇒
J0(θ) = violationsSTNSW(θ),
J1(θ) = violationsSKIP*(θ),
J2(θ) = violationsSKIPFILL*(θ),
J3(θ) = violationsMINSEP*(θ),
J4(θ) = violationsMAXSEP*(θ),
J5(θ) = violationsSN(θ),
J6(θ) = violationsGN(θ),
J7(θ) = violationsSA(θ),
J8(θ) = violationsSTNSW(θ),
J9(θ) = violationsRTNRATE(θ),
J10(θ) = interf*(θ), and

J11(θ) = satisfied*(θ)

31

4.3 Domain-Specific Definitions 4 DEFINITIONS

Definition 102: fitness : Θ → R � θ ∈ Θ ⇒
fitness(θ) =

∏
j∈{0,...,11}

Jj(θ)

This is the “fitness function”, which returns 1 for a perfect

schedule and larger values for schedules that are not so good.

Note the perhaps unexpected numerical aspect of the fit-

ness function defined above, by which a better schedule has

a lower numerical value than a worse schedule. The value of

the metric is unity for a perfect schedule, or a larger value for

a less-than-perfect schedule.

We now define a series of functions that provide the

genetic mutation and crossover transformations needed to

evolve the working population during the operation of the

schedule-generation algorithm (see Section 5 (page 35)).

Definition 103: rndpei : Θ → N×R0 ×M �[
θ ∈ Θ, r = rndmember(R0),

j = rndint(0, len(Mtype(r))− 1), μ =Mtype(r)[j],
k = rndint(0, len(r3)− 1),

p ∈ CPRM
0 (k, r, μ), p ∈ θ

]
⇒

rndpei(θ) = (k, r, μ)

Given a schedule θ, rndpei(θ) returns a parameter tuple

(k, r, μ) that corresponds randomly to a prototype-event in-

stantiation belonging to θ. This is a pseudo-function.

Definition 104: rndsvc : Θ → N×R0 ×M × N �[
θ ∈ Θ, (k, r, μ) = rndpei(θ),

n = rndint(0, len(r3[k])− 1)
]
⇒

rndsvc(θ) = (k, r, μ, n)

Given a schedule θ, rndsvc(θ) returns a parameter tu-

ple (k, r, μ, n) that corresponds randomly to a service in

a prototype-event instantiation belonging to θ. This is a

pseudo-function.

Definition 105:
modsvc : Θ× N×R0 ×M × N

2 ×A0 × N
2 → Θ �[

(θ, k, r, μ, n, t, a, s, d) ∈
Θ× N×R0 ×M × N

2 ×A0 × N
2,

θ′ ∈ Θ,
p ∈ CPRM

0 (k, r, μ), p ∈ θ,
p′ ∈ CPRM

0 (k, r, μ), p′ ∈ θ′,
θ\{p} = θ′\{p′},
[j ∈ N, j < len(p), j �= n] ⇒ p[j] = p′[j], and

p′[n] = (t, a, s, d)
]
⇒

modsvc(θ, k, r, μ, n, t, a, s, d) = θ′

Given the tuple (θ, k, r, μ, n, t, a, s, d), the function modsvc
returns a schedule identical to θ except with the service in-

stantiation indexed by n in a prototype-event instantiation be-

longing to θ (and identified by the tuple (k, r, μ)) replaced

with a service instantiation (t, a, s, d).

Definition 106: slipsvc : Θ → Θ �[
(θ, k, r, μ, n, t, a, snew, d) ∈

Θ× N×R0 ×M × N
2 ×A0 × N

2,
(k, r, μ, n) = rndsvc(θ),
p ∈ CPRM

0 (k, r, μ), p ∈ θ, p[n] = (t, a, s, d),
μV = (μV

1 , . . . , μ
V
5) ∈M,

μV ∈ V (a1, r2),
(s*, d*) ∈ N

2,
(t, a, s*, d*) = Y I

max(r, k, n, μ, μ
V), and

snew = rndint(s*, (s* + d* − d))
]
⇒

slipsvc(θ) = modsvc(θ, k, r, μ, n, t, a, snew, d)

Given a schedule θ, slipsvc(θ) returns a schedule identical to

θ except with a randomly selected service instantiation in a

prototype-event instantiation belonging to θ replaced with a

service instantiation resulting from slipping the original ser-

vice instantiation to the left or right by an allowed random

amount. This is a pseudo-function.

Definition 107: chngsvcdur : Θ → Θ �[
(θ, k, r, μ) ∈ Θ× N×R0 ×M,

(k, r, μ, n) = rndsvc(θ),
p ∈ CPRM

0 (k, r, μ), p ∈ θ, p[n] = (t, a, s, d),
μV = (μV

1 , . . . , μ
V
5) ∈M,

μV ∈ V (a1, r2),
(s*, d*) ∈ N

2,
(t, a, s*, d*) = Y I

max(r, k, n, μ, μ
V),

(λ, •, •, d−, d+) ∈ L0 × N
4,

r3[k][n] = (λ, •, •, d−, d+),
dmax = min({d*, d+}), and

dnew = rndint(d−, dmax)
]
⇒

chngsvcdur(θ) = modsvc(θ, k, r, μ, n, t, a, s, dnew)

Given a schedule θ, chngsvcdur(θ) returns a schedule iden-

tical to θ except with a randomly selected service instantia-

tion in a prototype-event instantiation belonging to θ replaced

with a service instantiation resulting from changing the du-

ration of the original service instantiation by an allowed ran-

dom amount. This is a pseudo-function.

Definition 108: chngsvcsta : Θ → Θ �[
(θ, k, r, μ) ∈ Θ× N×R0 ×M,

(k, r, μ, n) = rndsvc(θ),
p ∈ CPRM

0 (k, r, μ), p ∈ θ, p[n] = (t, a, s, d),
ξ ∈ Ξ(A0), i = rndint(0,

∣∣A0

∣∣− 1),
j ∈ N, j < len(ξ), ξ[j] = a, i �= j,
a′ = ξ[i], a′1 �= a1, a

′
3 = a3, a

′
4 = a4,

μV = (μV
1 , . . . , μ

V
5) ∈M,

μV ∈ V (a1, r2),

32

4.3 Domain-Specific Definitions 4 DEFINITIONS

(s*, d*) ∈ N
2,

(t, a′, s*, d*) = Y I
max(r, k, n, μ, μ

V), and

[(t+ s), (t+ s+ d)] ⊆ [(t+ s*), (t+ s* + d*)]
]
⇒

chngsvcsta(θ) = modsvc(θ, k, r, μ, n, t, a′, s, d)

Given a schedule θ, chngsvcsta(θ) returns a schedule iden-

tical to θ except with a randomly selected service instantia-

tion in a prototype-event instantiation belonging to θ replaced

with a service instantiation resulting from changing the sup-

port antenna of the original service instantiation to a ran-

domly selected allowed antenna on a different station. This

is a pseudo-function.

Definition 109: chngsvcant : Θ → Θ �[
(θ, k, r, μ) ∈ Θ× N×R0 ×M,

(k, r, μ, n) = rndsvc(θ),
p ∈ CPRM

0 (k, r, μ), p ∈ θ, p[n] = (t, a, s, d),
ξ ∈ Ξ(A0), i = rndint(0,

∣∣A0

∣∣− 1),
j ∈ N, j < len(ξ), ξ[j] = a, i �= j,

a′ = ξ[i], a′1 = a1, a
′
3 = a3, a

′
4 = a4

]
⇒

chngsvcant(θ) = modsvc(θ, k, r, μ, n, t, a′, s, d)

Given a schedule θ, chngsvcant(θ) returns a schedule iden-

tical to θ except with a randomly selected service instanti-

ation in a prototype-event instantiation belonging to θ re-

placed with a service instantiation resulting from changing

the support antenna of the original service instantiation to a

randomly selected allowed antenna on the same station. This

is a pseudo-function.

Definition 110: replacepei : Θ → Θ �[
(θ, θ′, k, k′, r, μ) ∈ Θ2 × N

2 ×R0 ×M,

(k, r, μ) = rndpei(θ),
k′ = rndint(0, len(r3)− 1), k′ �= k,
p ∈ CPRM

0 (k, r, μ), p ∈ θ,
p′ ∈ CPRM

0 (k′, r, μ), p′ ∈ θ′,

θ\{p} = θ′\{p′}
]
⇒

replacepei(θ) = θ′

Given a schedule θ, replacepei(θ) returns a schedule iden-

tical to θ except a randomly selected prototype-event in-

stantiation belonging to θ is replaced with an instantiation

of a randomly selected different prototype event for the

same requirement and for the same mission event relative to

which the original prototype event was instantiated. This is a

pseudo-function.

Definition 111: cutexcesspei : Θ → Θ �[
(θ, θ′, k, k′, r, μ) ∈ Θ2 × N

2 ×R0 ×M,

violationsSKIPFILL*(θ) > 0,

Q =
{
p : (k, i, r, μ) ∈ N

2 ×R0 ×M,

i < len(Mtype(r)),¬i ∈Mskips(r, 0),

μ =Mtype(r)[i], p ∈ CPRM
0 (k, r, μ), p ∈ θ

}]
⇒

cutexcesspei(θ) = θ\Q
Given a schedule θ, cutexcesspei(θ) returns a schedule iden-

tical to θ except all excess prototype-event instantiations be-

longing to θ are excised. Excess prototype-event instantia-

tions are those that cause the function violationsSKIPFILL*

(see Definition 69) to return a value greater than 0.

Definition 112: swappei : Θ2 → Θ2 �[
(θ, θ′, e, e′, k, k′, r, μ) ∈ Θ4 × N

2 ×R0 ×M,

θ �= θ′, (k, r, μ) = rndpei(θ),
k′ = rndint(0, len(r3)− 1), k′ �= k,

p ∈ CPRM
0 (k, r, μ), p ∈ θ,

p′ ∈ CPRM
0 (k′, r, μ), p′ ∈ θ′,

e = θ\{p} ∪ {p′},
e′ = θ′\{p′} ∪ {p}

]
⇒

swappei(θ, θ′) = (e, e′)

Given a pair (θ, θ′) of schedules, swappei(θ, θ′) returns a

pair (e, e′) of schedules identical to (θ, θ′) except a ran-

domly selected prototype-event instantiation belonging to θ
is swapped in θ′ with an instantiation of a randomly selected

different prototype event for the same requirement and for

the same mission event relative to which the original proto-

type event was instantiated. This is a pseudo-function.

Definition 113: swappeionr : Θ2 → Θ2 �[
(θ, θ′, e, e′) ∈ Θ4, θ �= θ′,

r = rndmember(R0),

Q =
{
x : x ∈ θ, (k, r, μ) ∈ N×R0 ×M,

x ∈ CPRM
0 (k, r, μ)

}
�[

(k, r, μ) ∈ N×R0 ×M,x ∈ CPRM
0 (k, r, μ),

y ∈ CPRM
0 (k, r, μ), x ∈ Q, y ∈ Q

]
⇒ x = y,

B =
{
x : x ∈ θ′, (k, r, μ) ∈ N×R0 ×M,

x ∈ CPRM
0 (k, r, μ)

}
�[

(k, r, μ) ∈ N×R0 ×M,x ∈ CPRM
0 (k, r, μ),

y ∈ CPRM
0 (k, r, μ), x ∈ B, y ∈ B

]
⇒ x = y,

e = (θ\Q) ∪B,
e′ = (θ′\B) ∪Q

]
⇒

swappeionr(θ, θ′) = (e, e′)

Given a schedule pair (θ, θ′), swappeionr returns a schedule

pair (e, e′) identical to (θ, θ′) except that for a randomly se-

lected requirement r all prototype-event instantiations for r

33

4.3 Domain-Specific Definitions 4 DEFINITIONS

belonging to θ are swapped with all prototype-event instanti-

ations for r belonging to θ′.

Definition 114: swappeionu : Θ2 → Θ2 �[
(θ, θ′, e, e′) ∈ Θ4, θ �= θ′,

u = rndmember(U0),

Q =
{
x : (k, r = (r1, . . . , r17), μ) ∈ N×R0 ×M,

r2 = u, x ∈ CPRM
0 (k, r, μ), x ∈ θ

}
�[

(k, r, μ) ∈ N×R0 ×M,x ∈ CPRM
0 (k, r, μ),

y ∈ CPRM
0 (k, r, μ), x ∈ Q, y ∈ Q

]
⇒ x = y,

B =
{
x : (k, r = (r1, . . . , r17), μ) ∈ N×R0 ×M,

r2 = u, x ∈ CPRM
0 (k, r, μ), x ∈ θ′

}
�[

(k, r, μ) ∈ N×R0 ×M,x ∈ CPRM
0 (k, r, μ),

y ∈ CPRM
0 (k, r, μ), x ∈ B, y ∈ B

]
⇒ x = y,

e = (θ\Q) ∪B,
e′ = (θ′\B) ∪Q

]
⇒

swappeionu(θ, θ′) = (e, e′)

Given a schedule pair (θ, θ′), swappeionu returns a sched-

ule pair (e, e′) identical to (θ, θ′) except that for a randomly

selected user u all prototype-event instantiations for u be-

longing to θ are swapped with all prototype-event instantia-

tions for u belonging to θ′. (See Revisions and Changes Di-

gest item 17, page 66.)

Definition 115: swapearlypeionr : Θ2 → Θ2 �[
(θ, θ′, e, e′) ∈ Θ4, θ �= θ′,

r = rndmember(R0), len(Mtype(r)) > 1,
j = rndint(0, len(Mtype(r))− 2),

Q =
{
x : x ∈ θ,

(i, k, r = (r1, . . . , r17), μ) ∈ N
2 ×R0 ×M,

i ≤ j, μ =Mtype(r)[i], x ∈ CPRM
0 (k, r, μ)

}
�[

(k, r, μ) ∈ N×R0 ×M,x ∈ CPRM
0 (k, r, μ),

y ∈ CPRM
0 (k, r, μ), x ∈ Q, y ∈ Q

]
⇒ x = y,

B =
{
x : x ∈ θ′

(i, k, r = (r1, . . . , r17), μ) ∈ N
2 ×R0 ×M,

i ≤ j, μ =Mtype(r)[i], x ∈ CPRM
0 (k, r, μ)

}
�[

(k, r, μ) ∈ N×R0 ×M,x ∈ CPRM
0 (k, r, μ),

y ∈ CPRM
0 (k, r, μ), x ∈ B, y ∈ B

]
⇒ x = y,

e = (θ\Q) ∪B,
e′ = (θ′\B) ∪Q

]
⇒

swapearlypeionr(θ, θ′) = (e, e′)

Given a schedule pair (θ, θ′), swapearlypeionr returns a

schedule pair (e, e′) identical to (θ, θ′) except that for a ran-

domly selected requirement r and a randomly selected mis-

sion event instance μ of type r4 all prototype-event instanti-

ations for r not later than μ belonging to θ are swapped with

all prototype-event instantiations for r not later than μ be-

longing to θ′. (See Revisions and Changes Digest item 18,

page 66.)

Definition 116: swapmidpeionr : Θ2 → Θ2 �[
(θ, θ′, e, e′) ∈ Θ4, θ �= θ′,

r = rndmember(R0), len(Mtype(r)) > 2,
i = rndint(0, len(Mtype(r))− 3),
j = rndint(i+ 1, len(Mtype(r))− 2),

Q =
{
x : x ∈ θ,

(n, k, r = (r1, . . . , r17), μ) ∈ N
2 ×R0 ×M,

i ≤ n ≤ j, μ =Mtype(r)[n],

x ∈ CPRM
0 (k, r, μ)

}
�[

(k, r, μ) ∈ N×R0 ×M,x ∈ CPRM
0 (k, r, μ),

y ∈ CPRM
0 (k, r, μ), x ∈ Q, y ∈ Q

]
⇒ x = y,

B =
{
x : x ∈ θ′,

(n, k, r = (r1, . . . , r17), μ) ∈ N
2 ×R0 ×M,

i ≤ n ≤ j, μ =Mtype(r)[n],

x ∈ CPRM
0 (k, r, μ)

}
�[

(k, r, μ) ∈ N×R0 ×M,x ∈ CPRM
0 (k, r, μ),

y ∈ CPRM
0 (k, r, μ), x ∈ B, y ∈ B

]
⇒ x = y,

e = (θ\Q) ∪B,
e′ = (θ′\B) ∪Q

]
⇒

swapmidpeionr(θ, θ′) = (e, e′)

Given a schedule pair (θ, θ′), swapmidpeionr returns a

schedule pair (e, e′) identical to (θ, θ′) except that for a ran-

domly selected requirement r and two randomly selected

mission event instances μ and μ* of type r4 all prototype-

event instantiations for r inclusively between μ and μ*

belonging to θ are swapped with all prototype-event in-

stantiations for r inclusively between μ and μ* belong-

ing to θ′. (See Revisions and Changes Digest item 19,

page 67.)

Definition 117:
rndsvcs : N2 ×R0 ×M → ℘(N×A0 × N

2) �
∀(n, k, r = (r1, . . . , r17), μ = (μ1, . . . , μ5)

) ∈
N

2 ×R0 ×M,
(tp, a, s, d) ∈ rndsvcs(n, k, r, μ) ⇒

34

5.1 Specification of Optimal Schedule-Generation Algorithm 5 OPTIMAL SCHEDULE-GENERATION ALGORITHM

μ1 = r2, μ2 = r4,
k < len(r3), n < len(r3[k]),
tp = tref(r, μ),
(•, s1, s2, d1, d2) = r3[k][n],

Q =
{
(tp, a, s

, d) ∈ N×A0 × Z× N :

∃μV ∈M �
(tp, a, s

, d) ∈ Y I
max(r, k, n, μ, μ

V)
}
,

(tp, a, s
′, d′) = rndmember(Q),

if ζ = [s′, (s′ + d′)] ∩ [s1, (s2 + d2)], then

s = rndint
(
ζ−, (ζ+ − d1)

)
, and

if dmax = min
({d2, (ζ+ − s)}), then

d = rndint(d1, dmax)

Given (n, k, r, μ), rndsvcs(n, k, r, μ) is a set of randomly se-

lected service instantiations for service r3[k][n] relative to

mission event instantiation μ. (See Revisions and Changes

Digest item 20, page 67.)

Definition 118:
rndpeis : N×R0 ×M → ℘(codomain(Y I)) �
∀(k, r = (r1, . . . , r17), μ = (μ1, . . . , μ5)

) ∈
N×R0 ×M,

ξ ∈ rndpeis(r, k, μ) ⇒
μ1 = r2, μ2 = r4, k < len(r3),
ξ is a sequence having len(r3[k]) elements, and[[
n ∈ N, n < len(ξ)

] ⇒ ξ[n] ∈ rndsvcs(n, k, r, μ)
]

Given (k, r, μ), rndpeis(k, r, μ) is a set of randomly selected

prototype-event instantiations for prototype event r3[k] rela-

tive to mission event instantiation μ.

Definition 119:
ΘRND : N

+ → ℘(Θ) �
∀n ∈ N

+, ∃Q ⊆ Θ � ∣∣Q∣∣ = n and

θ ∈ Q⇒ ∀p ∈ θ,

∃(k, r = (r1, . . . , r17), μ = (μ1, . . . , μ5)
) ∈

N×R0 ×M �
μ1 = r2, μ2 = r4,
k = rndint(0, len(r3)− 1), and

∃i ∈ N �
i < len(Mtype(r)) �
μ =Mtype(r)

[
Mskips(r, 0)[i]

]
, and

p ∈ rndpeis(k, r, μ),
and ΘRND(n) = Q

ΘRND(n) returns a set of n randomly generated schedules.

5. Optimal Schedule-Generation
Algorithm

The definitions given in Section 4 permit a precise specifi-

cation of an algorithm for generating optimal solutions for

the NASA space-data communications scheduling problem.

These definitions encompass functions for generating ran-

dom permissible solutions, creating mutations of members

of the working population, creating children of pairs of mem-

bers of the working population using the “genetic crossover”

mechanism, and evaluating the fitness of members of the

working population. There are many, a very great many, dif-

ferent allowable variants on these functions and therefore a

very great many different variants on the algorithm to be

specified below. These functions could be replaced or aug-

mented with other allowable functions that reflect more so-

phisticated genetic mutation and crossover mechanisms in-

cluding, in particular, additional safeguards against possible

premature convergence as discussed in the literature on ge-

netic algorithms. Such refinements are potentially limitless

and are beyond the scope of this disclosure. (See Revisions

and Changes Digest item 21, page 67.)

5.1. Specification of Optimal
Schedule-Generation Algorithm

Algorithm 1 (Optimal-Schedule Generation Algorithm):

1. Assume given:

(a) ν ∈ N
+ is the run time limit in units of seconds.

(b) n0 ∈ N
+ is the nominal working size of the pop-

ulation at the beginning of each iteration of the

algorithm.

(c) Π = ΘRND(n0), the initial, randomly selected

population of schedules.

(d) ψ ∈ N
+, the number of steps in which new mem-

bers of the population are generated in each iter-

ation of the algorithm, i.e., the number of steps

starting with step 4 and ending with step 15.

(e) α ∈ N
ψ , a tuple having ψ elements �

i. ∀j ∈ {1, . . . , ψ}, αj ∈ N is the number of

new candidate members to be added to the

schedule population in step j + 4 in the al-

gorithm.

ii.
∑

j∈{1,...,ψ}
αj = n0.

The sequence α consists of the values of the

internal parameters of the algorithm.

(f) 0 ≤ τ ∈ R, a small value to represent a policy

or judgment as to how close to perfect a sched-

ule must be to be considered “good enough” to

exit the algorithm. τ normally would be set small

enough to ensure that the algorithm always ran

for the maximum allowed run time ν.

35

5.2 Schedule-Generation Algorithm: Internal Parameters 5 OPTIMAL SCHEDULE-GENERATION ALGORITHM

2. Let Π′ = Ø. In each iteration of the algorithm, Π′ will

accumulate members to be added to the present popu-

lation, from which combination the n0 best schedules

will be extracted to compose the next generation.

3. ∀π ∈ Π, let π′ = cutexcesspei(π) and let Π =
(Π\{π}) ∪ {π′}.

4. ∀j ∈ {1, . . . , ψ}, randomly form Πj ⊂ Π � ∣∣Πj∣∣ =
αj .

5. ∀π ∈ Π1, let π′ = slipsvc(π), and let Π′ = Π′ ∪ {π′}.
slipsvc (Definition 106) provides a “mutation”

mechanism, where parts of an “organism’s” “genome”

are modified to produce an offspring, which is then in-

corporated into Π′.

6. ∀π ∈ Π2, let π′ = chngsvcdur(π), and let Π′ = Π′ ∪
{π′}.

chngsvcdur (Definition 107) provides a “mutation”

mechanism, where parts of an “organism’s” “genome”

are modified to produce an offspring, which is then in-

corporated into Π′.

7. ∀π ∈ Π3, let π′ = chngsvcsta(π), and let Π′ = Π′ ∪
{π′}.

chngsvcsta (Definition 108) provides a “mutation”

mechanism, where parts of an “organism’s” “genome”

are modified to produce an offspring, which is then in-

corporated into Π′.

8. ∀π ∈ Π4, let π′ = chngsvcant(π), and let Π′ = Π′ ∪
{π′}.

chngsvcant (Definition 109) provides a “mutation”

mechanism, where parts of an “organism’s” “genome”

are modified to produce an offspring, which is then in-

corporated into Π′.

9. ∀π ∈ Π5, let π′ = replacepei(π), and let Π′ = Π′ ∪
{π′}.

replacepei (Definition 110) provides a “mutation”

mechanism, where parts of an “organism’s” “genome”

are modified to produce an offspring, which is then in-

corporated into Π′.

10. Let Q = RND(12α6,Π
2
6) � (π, θ) ∈ Q ⇒ ¬(θ, π) ∈

Q. ∀(π, θ) ∈ Q, let (π′, θ′) = swappei(π, θ) and let

Π′ = Π′ ∪ {π′, θ′}.
swappei (Definition 112) provides a “crossover”

mechanism, where the “parents” (π, θ) produce “off-

spring” (π′, θ′), parts of whose “genome” are from dif-

ferent parents. Since two new solutions are added for

each member of Q, a total of α6 new solutions will be

added. Similarly for each of the subsequent crossover

steps below.

11. Let Q = RND(12α7,Π
2
7) � (π, θ) ∈ Q ⇒ ¬(θ, π) ∈

Q. ∀(π, θ) ∈ Q, let (π′, θ′) = swappeionr(π, θ), and

let Π′ = Π′ ∪ {π′, θ′}.
swappeionr (Definition 113) provides a “crossover”

mechanism, where the “parents” (π, θ) produce “off-

spring” (π′, θ′), parts of whose “genome” are from dif-

ferent parents.

12. Let Q = RND(12α8,Π
2
8) � (π, θ) ∈ Q ⇒ ¬(θ, π) ∈

Q. ∀(π, θ) ∈ Q, let (π′, θ′) = swappeionu(π, θ), and

let Π′ = Π′ ∪ {π′, θ′}.
swappeionu (Definition 114) provides a “crossover”

mechanism, where the “parents” (π, θ) produce “off-

spring” (π′, θ′), parts of whose “genome” are from dif-

ferent parents.

13. Let Q = RND(12α9,Π
2
9) � (π, θ) ∈ Q ⇒ ¬(θ, π) ∈

Q. ∀(π, θ) ∈ Q, let π′, θ′ = swapearlypeionr(π, θ),
and let Π′ = Π′ ∪ {π′, θ′}.

swapearlypeionr (Definition 115) provides a

“crossover” mechanism, where the “parents” (π, θ)
produce “offspring” (π′, θ′), parts of whose “genome”

are from different parents.

14. Let Q = RND(12α10,Π
2
10) � (π, θ) ∈ Q ⇒ ¬(θ, π) ∈

Q. ∀(π, θ) ∈ Q, let (π′, θ′) = swapmidpeionr(π, θ),
and let Π′ = Π′ ∪ {π′, θ′}.

swapmidpeionr (Definition 116) provides a

“crossover” mechanism, where the “parents” (π, θ)
produce “offspring” (π′, θ′), parts of whose “genome”

are from different parents.

15. Let Π′′ = ΘRND(α11). Let Π′ = Π′ ∪Π′′.
This adds to the population at most α11 new mem-

bers randomly selected from Θ.

16. Find Π† ⊆ Π ∪ Π′ � ∣∣Π†∣∣ = n0 and [π1 ∈ Π†, π2 ∈
(Π ∪ Π′)\Π†] ⇒ fitness(π1) ≤ fitness(π2). Set Π =
Π† and set Π′ = Ø.

17. Find π1 ∈ Π � ζ ∈ Π ⇒ fitness(ζ) ≥ fitness(π1). π1
is the best member of Π. If fitness(π1) < 1 + τ or run

time exceeds the limit ν, go to step 18; otherwise, go to

step 4.

18. Output the best schedule π in Π and exit.

5.2. Schedule-Generation Algorithm: Internal
Parameters

Every successive generation of the population of schedules

retains the best members of the previous generation com-

bined with the new members added in the course of running

the algorithm. The best member of a generation will be at

least as fit as any member of the preceding generation, and

36

6 INTERNAL-PARAMETER OPTIMIZATION: THE S� PROBLEM

consequently the fitness of the best member of each genera-

tion will be a monotonic function of processing time (or the

iteration count) (see Appendix A (page 44)).

The algorithm as specified in the previous subsection does

not stipulate the values of the internal parameters (repre-

sented by the tuple α), and is silent on exactly how they

should be chosen. There is no obvious relationship between

the values selected and the performance that should be ex-

pected of an implementation of the algorithm, although a

method of finding a performance-optimizing set of choices

for those values would be, potentially, highly advantageous.

While any reasonable choices of the values of the above

internal parameters would not prevent an implementation of

the algorithm from reaching an optimal schedule for a given

scheduling scenario, other choices might improve perfor-

mance. In theory, while keeping constant (a) the seeds for

the random-number generator, (b) the run time, and (c) the

computing resources between runs, runs of the algorithm us-

ing different choices of the values of the internal parameters

may not find solutions with the same fitness; that is, some

of the choices may be significantly more effective in find-

ing optimal solutions with better fitness scores. It should be

noted that these internal parameters (as represented by the tu-

ple α) are not the only internal parameters that might be de-

fined. For example, in the mutation steps 5 through 9, the

number of places in the individuals’ genome that are modi-

fied to produce new individuals could be adjusted to reveal

the effect on the algorithm performance.

If, for a given representative scheduling scenario, experi-

mental runs of the implementation using a variety of choices

for the internal-parameter values revealed a significant per-

formance advantage for a particular choice, it would be valid,

absent any further insight or data, to use that choice when

running the implementation for other scheduling scenarios.

The idea would be that a random or uninformed choice of the

values is not likely to be better than a choice that has been

found to be, for some representative scheduling scenario, the

best one of a set of tested alternatives.

Section 6 will specify an algorithm by which, for any

given scheduling scenario, an optimal choice of the values for

the internal parameters may be found, assuming such an op-

timum exists (where “optimum” is again used in the sense in-

dicated in Section 2.4.7 on page 15). The optimal choice, for

any given scheduling scenario, would be one for which the

algorithm’s performance could not be improved by means of

a different choice, and the problem of finding such an opti-

mum will hereinafter be referred to as the S� problem.

In Section 7, we will propose an answer to the question

of whether there is any reasonable way of relating schedul-

ing scenarios to each other, where a “small” difference be-

tween two scheduling scenarios would mean a correspond-

ingly small difference in the optimal choice of the values

for the internal parameters. We will seek to identify a solu-

tion space for what we hereinafter call the S�� problem—the

final abstraction of the overall space data-communications

scheduling problem—in which, for the implementation of

the schedule-generation algorithm specified in Section 5.1,

there exists an automated way to preprocess a given schedul-

ing scenario to identify an optimal choice of the internal-

parameter values. The remaining question of whether the per-

formance of the overall system will be sensitive to differences

in the choice of the values of the internal parameters will be

left to future work—likely entailing considerable computa-

tional effort rather than theoretical analysis.

6. Internal-Parameter Optimization:
The S� Problem

We will now take up the problem—which in the previous sec-

tion was designated the S� problem—of finding an optimal

choice of the values of the schedule-generation algorithm’s

internal parameters for a given scheduling scenario, thereby

to optimize the schedule-generation algorithm for solving

that scheduling scenario.

6.1. The S� Problem: Introduction
The internal parameter-optimization algorithm to be speci-

fied in Section 6.3 will employ the same probabilistic search

concepts presented in Section 5 in specifying the schedule-

generation algorithm. As before, a population of solutions of

the optimization problem will be evolved iteratively, and on

each iteration the fitness of each member of the population

will be determined. Not all, but just the fittest members of

each generation, will be allowed to survive into the next gen-

eration.

By definition, each member of the population is not a

schedule (as in the schedule-generation algorithm itself),

but rather a choice, e, of values of the internal parameters

of the schedule-generation algorithm, and choice e will re-

main fixed until the schedule-generation application program

produces the best possible (optimal) schedule for the given

scheduling scenario γ. The fitness of each member of the

evolving population of such choices e would be a numerical

value representing the performance of the system. By defini-

tion, the performance of the system (given the choice e) will

be the fitness score of the best schedule that can be produced

by the schedule-generation algorithm in a prescribed amount

of processing time, with prescribed computing resources.

During the entire iterative process of finding the best so-

lution (i.e., the best choice of the values of the internal pa-

rameters of the schedule-generation algorithm), the schedul-

ing scenario will remain fixed, and at the end of the iterative

37

6.3 Algorithm for Solving the S� Problem 6 INTERNAL-PARAMETER OPTIMIZATION: THE S� PROBLEM

process, the choice of the internal parameter values that re-

sulted in the best performance is considered to be optimal.

This abstracted search problem—the S� problem—will

also have its own internal parameters, one of which is the pre-

scribed amount of processing time allowed for the above it-

erative process to produce a solution. Additional internal pa-

rameters will be described below. While a subsidiary problem

could be defined for the optimization of these parameters, it

will be seen that this subsidiary problem would also have its

own internal parameters to be optimized, leading to a sub-

subsidiary problem of optimizing these internal parameters,

and so on, without end—a kind of infinite regression. In the

case of the NASA scheduling domain, it seems reasonable to

ignore these subsidiary problems of optimizing internal pa-

rameters of optimization problems, and instead, just make ju-

dicious choices for the values of the internal parameters for

the problem at hand (i.e., the S� problem), in the full expec-

tation that the only disadvantage of doing so is that, to reach

a solution that has the same fitness, processing time might be

greater than it would have been with optimization. This posi-

tion is further justifiable on the grounds that a one-time effort

solving the S�� problem, as proposed in Section 7, can obvi-

ate the need to pursue indefinitely a chain of S�-problem op-

timizations using the above iterative process.

6.2. The S� Problem: Definitions
Definition 120 (Set of All Scheduling Scenarios):

Γ =
{
γ : γ =

(
L� ⊆ L0, O

� ⊆ O, I� ⊆ I,

P � ⊆ P,M � ⊆M,R� ⊆ R0

)}
�

γ =
(
L�, O�, I�, P �,M �, R�

)
∈ Γ ⇒

1. (r1, . . . , r17) ∈ R�, k ∈ N, k < len(r3),
i ∈ N, i < len(r3[k]) ⇒
r3[k][i] = (λ, •, •, •, •) ⇒ λ ∈ L�,

2. (λ1, . . . , λ7) ∈ L� ⇒ ∃(r1, . . . , r17) ∈ R� � λ1 = r2,

3. (μ1, . . . , μ5) ∈M � ⇒ ∃(r1, . . . , r17) ∈ R� �
μ1 = r2,

4.
(
(s, s′, λ, λ′), •) ∈ I� ⇔
∃(μ1, . . . , μ5) ∈ V (s, λ1),

∃(μ′
1, . . . , μ

′
5) ∈ V (s′, λ′1),

∃(r1, . . . , r17) ∈ R�, and

∃(r′1, . . . , r′17) ∈ R� �
λ1 = r2, λ

′
1 = r′2,

μ1 = r2, μ
′
1 = r′2

5. (u, •) ∈ P � ⇒ ∃(r1, . . . , r17) ∈ R� � u = r2

Definition 121: fitness� : Γ× N
ψ × N

+ → R �
(γ, e, t) ∈ Γ× N

ψ × N
+ ⇒

1. t is the run time allowed in units of seconds

2. fitness�(γ, e, t) = fitness(σ) is the fitness score of the

best schedule, σ, produced by the schedule-generation

algorithm running on the prescribed computing re-

sources during a run interval of length equal to t sec-

onds, for the scheduling scenario γ and the choice e of

the values of the internal parameters.

See Definition 102 (page 32) for the definition of the func-

tion fitness. ψ, recall, is the number of internal parameters of

the schedule-generation algorithm (see Algorithm 1, steps 1d

and 1e (page 35)). fitness� is the “fitness function” for the

S� problem, which returns 1 for a perfect choice of the val-

ues of the internal parameters of the schedule-generation al-

gorithm and larger values for choices that are not so good.

6.3. Algorithm for Solving the S� Problem

(See Revisions and Changes Digest item 22 on page 67.)

Algorithm 2 (S� Algorithm):

1. Assume given:

(a) γ ∈ Γ, a scheduling scenario.

(b) ν ∈ N
+, representing the allowed run time for the

schedule-generation algorithm whenever it is ex-

ecuted in the following steps.

(c) ν� ∈ N
+, representing the allowed run time for

performing iterations of the following steps in the

search for the optimal choice of the values of the

internal parameters of the schedule-generation al-

gorithm.

(d) ψ ∈ N
+, the number of steps in which new mem-

bers of the population are generated in each iter-

ation of the algorithm, i.e., the number of steps

starting with step 3 and ending with step 7.

(e) α ∈ N
ψ � ∀j ∈ {1, . . . , ψ}, αj is the number of

new candidate members to be added to the popu-

lation in step j + 2 in the algorithm. Let

n0 =
∑

j∈{1,...,ψ}
αj

be the nominal working size of the population on

each iteration of the algorithm.

(f) ADDSLIMIT� ∈ N
+. This is the limit on the

number of new members of the population that

can be added to the population in any algorithm

step.

(g) Π = RND(n0,N
ψ) � θ ∈ Π ⇒

∀j ∈ {1, . . . , ψ}, θ[j] ≤ ADDSLIMIT�.

38

6.4 The S� Problem: Discussion 6 INTERNAL-PARAMETER OPTIMIZATION: THE S� PROBLEM

2. Let Π′ = Ø. In each iteration of the algorithm, Π′ will

accumulate members to be added to the present popula-

tion, from which combination the n0 best members will

be extracted to compose the next generation.

3. ∀j ∈ {1, . . . , ψ}, randomly form

Πj ⊂ Π � ∣∣Πj∣∣ = αj .

4. Let Q ⊆ Π1 � ∣∣Q∣∣ = α1.

∀π ∈ Q,

(a) let π′ = π,

(b) let j = rndint({1, . . . , ψ}),
(c) let π′[j] = rndint({1, . . . ,ADDSLIMIT�}),
(d) let Π′ = Π′ ∪ {π′}.

This is a “mutation” mechanism, where one element of

an “organism’s” “genome” is modified to produce an

offspring, which is then incorporated into Π′.

5. Let Q = RND(12α2,Π
2
2) �

(π, θ) ∈ Q⇒ ¬(θ, π) ∈ Q.

∀(π, θ) ∈ Q,

(a) let n = rndint({1, . . . , ψ}),
(b) let π′ =

(
π[1], . . . , π[n], θ[n+ 1], . . . , θ[ψ]

)
,

(c) let θ′ =
(
θ[1], . . . , θ[n], π[n+ 1], . . . , π[ψ]

)
, and

(d) let Π′ = Π′ ∪ {π′, θ′}.
This is a “crossover” mechanism, where ran-

domly many of the first elements of one “organism’s”

“genome” are swapped with the same elements in an-

other, resulting in two new members, which are then

incorporated into Π′.

6. Let Q = RND(12α3,Π
2
3) �

(π, θ) ∈ Q⇒ ¬(θ, π) ∈ Q.

∀(π, θ) ∈ Q,

(a) let n1, n2 = rndint({1, . . . , ψ}), n1 �= n2,

(b) let π′ =
(
π[1], . . . , π[n1],

θ[n1 + 1], . . . , θ[n2], π[n2 + 1], . . . , π[ψ]
)
,

(c) let θ′ =
(
θ[1], . . . , θ[n1],

π[n1 + 1], . . . , π[n2], θ[n2 + 1], . . . , θ[ψ]
)
,

(d) and let Π′ = Π′ ∪ {π′, θ′}.
This is a “crossover” mechanism, where a random

section of one “organism’s” “genome” is swapped with

the same elements in another, resulting in two new

members, which are then incorporated into Π′.

7. Let Q ⊆ N
ψ � θ ∈ Q⇔

∀j ∈ {1, . . . , ψ}, θ[j] ≤ ADDSLIMIT�.
Let Π′ = Π′ ∪ RND(α4, Q).
This adds α4 new members to the population ran-

domly selected from N
ψ .

8. Find Π† ⊆ Π ∪Π′ �∣∣Π†∣∣ = n0 and
[
π ∈ Π†, θ ∈ (Π ∪Π′)\Π†

]
⇒

fitness�(γ, π, ν) ≤ fitness�(γ, θ, ν).
Let Π = Π† and Π′ = Ø.

9. Find π ∈ Π � ζ ∈ Π ⇒
fitness�(γ, ζ, ν) ≥ fitness�(γ, π, ν).
π is the best member of Π.

10. If run-time exceeds ν�, output the best member π in Π
and exit; otherwise, go to step 3.

6.4. The S� Problem: Discussion
As in the case of the schedule-generation algorithm itself, the

population of solutions in the S� algorithm evolve (through

the iterative steps of evolutionary search) with a monotonic

improvement of the fitness score of the best member of the

population toward some evidently limiting value. After some

elapsed processing time, the run must be terminated and if

the “knee” of the curve that represents the fitness of the

best member of the population at the end of each iteration

of the algorithm has been passed (see analysis Section 10.2

(page 44)), then the best solution produced to that point is

considered to be the optimal solution of the S� problem.

The question might arise whether the evolving population

of solutions might enter a runaway progression of the magni-

tude of the values of the internal parameters in the execution

of the above algorithm. It is quickly seen that this is not a con-

cern: recall that each of the schedule-generation algorithm’s

internal parameters represents the number of new schedules

that will be allowed to be added to the population in some

given step in each iteration of the algorithm. If a choice, e,
of the values of the internal parameters included a very large

value, the fitness of the best schedule produced within the

schedule-generation algorithm’s run-time limit, ν (a given in

the S� algorithm), would be so bad that e likely would not be

a member of the next generation.

While no experimentation has been conducted to test it,

the working hypothesis is that a diminishing return would re-

sult from unbounded increases in the magnitude of any one

of the internal parameters, other factors being constant. Ac-

cording to this hypothesis, the performance achieved by the

schedule-generation algorithm could be graphed as a func-

tion of the value of an arbitrarily chosen one of the schedule-

generation algorithm’s internal parameters, keeping other pa-

rameters constant. This graph would have a point to the right

of which the performance would worsen monotonically. The

left-most such point could be found through applying the

approaches described herein, but it could only be regarded

as pseudo optimal since it would differ from the optimal

solution that would be found when the other internal pa-

rameters were unconstrained as well. Further analysis based

39

7.2 Regression-Analysis Approach 7 A FURTHER ABSTRACTION: THE S�� PROBLEM

on a model of the performance of the schedule-generation

algorithm will be undertaken in Appendix A (Section 10

(page 44)).

7. A Further Abstraction: The S��
Problem

7.1. The S�� Problem: Introduction

To maximize the practicality of the technology disclosed

herein, we now consider the S�� problem (described briefly

at the end of Section 5)—i.e., the problem of estimating an

optimal choice of the values of the schedule-generation al-

gorithm’s internal parameters so that it would not be neces-

sary to perform the whole iterative (and computationally ex-

pensive) process of solving the S� problem for every given

new scheduling scenario. The S�� objective is to specify a

means of easily estimating the best (i.e., optimal) choice of

the schedule-generation algorithm’s internal parameters, us-

ing (abstracted) information about the given scheduling sce-

nario itself.

No reason has been identified to suspect that the S�� so-

lution space is so ill-behaved as to render it impossible to

find a reasonably accurate means of estimating an optimal

choice of the values of the algorithm’s internal parameters

for “points” in the solution space that are “between” other

points for which the optimal choice has actually been calcu-

lated (as a solution of the S� problem). However, the remain-

der of this section (which describes an approach for solving

the S�� problem) may be regarded as somewhat speculative

in the sense that (a) the author has performed only a limited

amount of relevant experimentation (as mentioned earlier in

Section 2.4.6 (page 15)) and (b) the author’s proposed use

of certain function-fitting (regression-analysis) techniques,

while plausible, is not accompanied by a thorough support-

ing analysis. It is assumed that available computing plat-

forms are adequate for solving the S�� problem, and that some

regression-analysis technology must suffice.

To enable a regression-analysis approach, we make use of

a scheduling-scenario characterization function:

Definition 122 (Scheduling Scenario Characterization):
Λ: Γ → N

8 � γ = (L�, O�, I�, P �,M �, R�) ∈ Γ ⇒
∃(x1, . . . , x8) ∈ N

8 � Λ(γ) = (x1, . . . , x8) and

1. Q =
{
r = (r1, . . . , r17) ∈ R� : r4 = “NIL”

}
⇒

x1 =
∣∣Q∣∣

2. Q =
{
r = (r1, . . . , r17) ∈ R� : r4 �= “NIL”

}
⇒

x2 =
∣∣Q∣∣

3. Q =
{
p : ∃r = (r1, . . . , r17) ∈ R�, p is an element of

the sequence r3

}
⇒ x3 =

∣∣Q∣∣
4. Q =

{
μ : ∃r = (r1, . . . , r17) ∈ R�,

μ = (μ1, . . . , μ5) ∈M �, μ2 = r4 �= “NIL”
}
⇒

x4 =
∣∣Q∣∣

5. x5 =
∣∣L�∣∣

6. x6 =
∣∣O�∣∣

7. x7 =
∣∣I�∣∣

8. x8 =
∣∣P �∣∣

The function Λ produces an eight-dimensional “point” in

N
8, and, in relation to the S�� problem, we assume that, for

two scheduling scenarios γ, γ′, the ordinary Euclidean dis-

tance (8∑
i=1

(a′i − ai)
2
) 1

2

between two points

a = Λ(γ) = (a1, . . . , a8) ∈ N
8

a′ = Λ(γ′) = (a′1, . . . , a
′
8) ∈ N

8

representing the characterizations of γ and γ′, respectively,

corresponds to (is commensurate with) the “distance” be-

tween γ and γ′.

7.2. Regression-Analysis Approach
In the following paragraphs relative to solving the S��

problem, we assume the availability of an effective

regression-analysis technique such as artificial neural net-

works, Bayesian networks, or support vector machines.

Regression analysis [18, 27]), a collection of well-studied

methods of modeling multi-dimensional data interrelation-

ships, is assumed to be viable as a means to derive a func-

tion for rapidly estimating, for an arbitrary scheduling sce-

nario, the optimal choice of the values of the internal param-

eters of the schedule-generation algorithm.

Regression analysis (or simply “regression”), in the broad

sense, is analogous to simple least-squares curve fitting with

one independent scalar variable and one dependent scalar

variable. Regression aims to fit a hypersurface to the set of

known data points in the solution space. The best-fitting hy-

persurface can be expressed as a function that returns the de-

pendent value given the independent value. In the S�� prob-

lem, the independent value would be the scheduling scenario

(or, normally, the tuple that characterizes a scheduling sce-

nario (i.e., the value returned by the function Λ (see Defini-

tion 122 (page 40))), and the dependent value would be the

40

7.3 Operational Use of Derived Estimation Function 7 A FURTHER ABSTRACTION: THE S�� PROBLEM

estimate of the optimal choice of the values of the internal pa-

rameters of the schedule-generation algorithm.

The essential, broad steps in applying a regression-

analysis approach to the S�� problem are as follows:

Algorithm 3 (Algorithm for Optimal-Internal-Parame-

ters Estimation):
Given:

• A set Γ′ ⊆ Γ of realistic/actual scheduling scenarios.

The results of running an implementation of the present

algorithm are highly dependent on the number and dis-

tribution of these scenarios. If the accuracy of the es-

timation function generated by this implementation is

not deemed adequate, then Γ′ would need to be re-

vised and used in a fresh rerun. (Over the past three

decades, a great many actual scheduling-problem sce-

narios have been constructed and solved by the NASA

space-data communications scheduling system. These

scenarios would be a rich (and probably the most ap-

propriate and reliable) source of data for building the

set Γ′.)

Perform the following steps:

1. For each γ ∈ Γ′,

(a) solve the S� problem computationally, producing

the optimal choice e of the values of the internal

parameters of the schedule-generation algorithm,

(b) compute the characterization c = Λ(γ).

2. Retain the set Q of known (calculated) points (c, e), as

obtained in step 1.

3. Randomly assign each member of the set Q to either of

two (approximately equally numerous) disjoint sets: a

training set Qtrain and a test set Qtest �∣∣Qtrain
∣∣− ∣∣Qtest

∣∣ ∈ {−1, 0, 1}

4. Perform regression analysis using the training data set

Qtrain, resulting in the determination of the internal-

parameters-estimation function that best fits the mem-

bers of Qtrain.

5. Using the test data set Qtest, test and verify the estima-

tion function derived in step 4.

6. If the derived function passes the test, let f designate

the derived function (which represents the fitted hyper-

surface) and exit indicating success. If the derived func-

tion fails the test, then exit indicating failure, calling

upon the user to alter the given set of actual/realistic

problem scenarios (e.g., by increasing their number

or variety) (noting that this alteration gives an altered

problem) and rerun the algorithm.

The derived function f estimates the optimal choice of

the internal parameters of the schedule-generation algorithm,

given any scheduling scenario. This function can be incor-

porated into a fielded scheduling system to maximize overall

performance, and can be used as specified in Section 7.3.

7.3. Operational Use of Derived Estimation
Function

The resulting tested and verified estimation function (speci-

fied as in Algorithm 3) would then become a tool for oper-

ational use within a fielded data-communications scheduling

system. The routine use of this tool would involve the follow-

ing straightforward steps:

Process 1 (Operational Use of Estimation-Function):

1. Prepare a scheduling scenario γ.

2. Supply the characterization Λ(γ) as input to the estima-

tion function.

3. Capture the estimation-function output e—the estimate

of the optimal choice of the schedule-generation algo-

rithm’s internal parameters for scheduling scenario γ.

4. Use e in configuring the schedule-generation algorithm

for an execution run to produce an optimal schedule for

γ.

7.4. The S�� Problem: Discussion
The regression analysis technology called for in Algorithm 3

is associated with extensive research and application litera-

ture [2, 4, 6, 9, 14, 16, 21, 23, 24, 27, 30]. For the overall al-

gorithm optimization approach specified in Section 7 for the

S�� problem, it may be unjustifiable to assume the ready ap-

plicability of off-the-shelf applications. Effective use of the

relevant techniques and available applications may require

trial-and-error efforts and/or the guidance of experts.

It is explicitly assumed herein that:

• optimizing the internal parameters of the schedule-

generation algorithm (see Section 6) is feasible

• the relationship between the independent variables (the

problem-scenario characterization) and the dependent

variables (the solution found with fixed computing re-

sources) is smooth enough to support approximation by

means of some available regression analysis technique

analogous to a standard curve-fitting technique .

• the optimization would be effective in the follow-

ing sense: a system that implemented the schedule-

generation algorithm would require less computing

resources and have more rapid response in produc-

ing high quality schedules, if it took advantage of the

41

8.2 Implementing the Disclosed Methods and Algorithms 8 IMPLEMENTATION

optimization of the choice of the values of the inter-

nal parameters, than if otherwise.

This set of assumptions has been tested by the author only

preliminarily (relative to the prototype implementation of the

unpublished predecessor of the algorithms in the present dis-

closure) and may, with experience, prove to be unjustified

with respect to the S�� problem. For example, it may be

found that, while the first two assumptions are confirmed to

be valid, the third one is not: the relationship identified in

the second assumption may be found to be essentially flat. It

would seem more likely, however, that the relationship identi-

fied in the second assumption lacks sufficient smoothness to

support any reasonable optimization process using the sug-

gested hypersurface-fitting technologies. A determination on

this question would require involvement of experts in any

such technology chosen for use.

The effort needed to obtain a usable function for esti-

mating the optimal values of the internal parameters (as de-

scribed in the present section) would be nontrivial, but it

would be a one-time effort with a potentially worthwhile in-

crease in operational efficiency of the scheduling system as a

whole. In carrying out the effort, it might be learned that no

significant variation in solution quality resulted from differ-

ent choices for the internal parameters. In that event, the de-

termination could be made that the effort had insufficient re-

turn and could be discontinued.

8. Implementation

8.1. Prototype Implementation of Predecessor
Algorithm

The author implemented the unpublished predecessor of the

foregoing algorithms (see Sections 5 and 6) for a proto-

type automated interference-mitigation scheduler and tested

it with input data for selected scheduling scenarios for three

actual NASA missions. For these limited cases, the proto-

type (some 54,000 lines of C++ code) performed with effi-

ciency at a level adequate for practical use—even when exe-

cuted on the 1995-vintage Unix workstation available at the

time. A limited comparison of results with output from the

Network Planning and Analysis System (NPAS) [31] devel-

oped at NASA Goddard satisfied the author as to the validity

and practicality of the approach.

In implementing the prototype, the author noted the util-

ity of a mathematically precise specification of the algo-

rithms. Such a specification clearly supports implementabil-

ity. It seems reasonable to believe that an implementation at-

tempted without such a specification but with only a typi-

cal set of system requirements (a) would entail considerable

risks of software rework as high level requirements became

better understood and fleshed out in detail and (b) would re-

quire a multiple of the schedule time and funding that would

be sufficient with a specification as precise and complete as

the one provided in this disclosure.

8.2. Implementing the Disclosed Methods and
Algorithms

The present version of the algorithm improves upon—but

maintains the essence of the approach of—its predecessor. In

particular, readability, implementability, and solution-space

coverage are all improved. The present version should also

be more adaptable to accommodate inevitable changes in the

communications infrastructure, e.g., changes required to im-

plement possible new capabilities for supporting future ex-

ploration of the Moon and Mars.

The implementation of the predecessor algorithm sug-

gests no significant question as to the implementability of

the method and algorithm disclosed herein (see Section 5

(page 35)), given that the software-system design process is

carried out by individuals with an adequate background in

NASA’s Space and Ground Networks, mathematics, and ap-

propriate regression analysis techniques (if the implemen-

tation of the S�� algorithm (Algorithm 6.3 (page 38)) were

planned).

Any programming language that is in use in present

software implementation projects in NASA’s data-

communications network infrastructure, such as Java

and C++, possesses characteristics that would assure suc-

cess in implementing the disclosed algorithms. However,

preference should be given to a language that is also sup-

ported on an available supercomputer or grid computing sys-

tem for the purpose of running the scheduling system’s

internal-parameter optimization method described in Sec-

tion 6 and especially the further algorithm for deriving an

estimator function for the optimal values of the internal pa-

rameters as described in Section 7. These algorithms (as

distinguished from the schedule-generation algorithm it-

self) are very compute-intensive and should be carried out on

the most powerful available computing system, not on the or-

dinary computers that would be used for development or

operations.

An operational implementation of the herein disclosed

schedule-generation algorithm (Algorithm 1 (page 35))

might, in terms of size, be comparable to the prototype im-

plementation of the predecessor algorithm. However, under

current NASA system-development guidelines, opera-

tional systems must be implemented with more-stringent

development standards than were used for the earlier pro-

totype implementation, and, further, must accommodate

interfaces with existing operational systems. Conse-

quently, the necessary size of an operational implementation

42

9 CONCLUSION

of a new scheduling system based on the present disclo-

sure is presently undetermined but is likely to greatly exceed

that of the prototype.

Many organizations (including NASA) require systems

developers to follow a rigid software and systems develop-

ment methodology, and have adopted one of the recognized

“process models” that prescribe methods and practices for

software and systems engineering. For example, Capability

Maturity Model Integration (CMMI) and ISO 9000 have both

been followed by NASA. Nothing in this disclosure is in-

tended to favor or limit or to be incompatible with any choice

of process model. Nevertheless, the approach taken in this

disclosure is in the category of a “formal method”, where

rigorous mathematical language is used in all definitions and

in all specifications of algorithms for solving problems in a

given problem domain. The author views such a formal (that

is, mathematical) approach to be not only inherently advan-

tageous, but also complementary to whatever process model

is followed. (See Revisions and Changes Digest item 23 on

page 67.)

9. Conclusion

The present disclosure describes an evolutionary (i.e., proba-

bilistic) search strategy as the primary approach for attaining

an optimal solution of the scheduling problem in the civil-

ian or military space data-communications network. In terms

of computer processing time for a problem domain of this

kind (whose solution space is so large that no direct algo-

rithmic prescription or brute-force method will suffice (see

solution-space analysis in Subsection 2.2)), a probabilistic

search application of the kind specified herein progresses, af-

ter an initial rapid improvement in quality, monotonically in

an iterative fashion towards (but without any expectation of

actually arriving at) some evident (but nevertheless unspeci-

fiable) limiting result (relative to some prescribed measure

of “goodness” of solutions) that could not be improved upon

through any amount of processing.

At any point during processing, the amount of additional

processing time that would be necessary to achieve an ad-

ditional improvement over already-found solutions becomes

greater and greater as the search proceeds. Even if no pre-

scriptive method exists by which to find an optimum in any

absolute sense, a probabilistic search strategy can approach

arbitrarily close to the limiting result, given unlimited pro-

cessing resources and time. But, as was observed in Sub-

section 2.4.5, it is not known how to determine how close

to the optimum is the best solution attained at any inter-

mediate point in the processing. The existence of a limit-

ing result (an optimum) seems intuitive, but in practice and

in theory, the limiting result cannot assuredly be attained.

Nor can the limiting result actually be specified directly by

any method—otherwise, logically, an optimum solution it-

self would be at hand by the same method.

Nevertheless, it is well known that probabilistic search

techniques and methods of the kind described herein can

be used to reach optimal solutions for scheduling prob-

lems, which leaves an opening for the herein disclosed at-

tack on the space data-communications scheduling problem.

The rigorous specification of a system based on these prob-

abilistic search techniques and methods is presented fully

herein for the NASA space data-communications schedul-

ing problem, with no known previous equivalent. While

evolutionary search techniques have been proposed (e.g.,

see [25, 28, 32, 12]), no other true optimizing scheduler for

this problem domain is known to have been fully specified.

A number of constraints must be considered in design-

ing any system that solves the space data-communications

scheduling problem. The methods and algorithms disclosed

herein incorporate, among others, the RF-interference miti-

gation constraint, with the objective of assuring that the sys-

tem generates high quality schedules that accomplish over-

all goals of the space data-communications infrastructure.

How and to what degree interference predictions should fi-

nally constrain schedules represents an issue in the design of

such a system. While the algorithm as disclosed herein does

satisfy RF-interference mitigation constraints, it does not ex-

plicitly provide for fine-grained control of this factor; how-

ever, a modification to do so could be incorporated without

difficulty. Fine-grain control of this constraint could, for ex-

ample, include a further parameter in the definition of mis-

sion event (see Definition 46 (page 22)) to indicate whether

or not to apply the constraint for a prescribed instance of a

prototype event relative to that mission-event instance.

While the primary context of the present disclosure relates

to NASA, the method and algorithm have broader applicabil-

ity, and, despite domain differences, should readily be adapt-

able for the military context.

Two abstractions related to the overall problem of devis-

ing the most cost-effective possible system for generating op-

timal schedules were developed in Section 6 (page 37) (the S�

problem) and Section 7 (page 40) (the S�� problem). In pre-

senting the former abstraction, Section 6 described a method

and algorithm that increase the efficiency of the search for the

optimal schedule given a scheduling scenario γ, by applying

an iterative process for determining the optimal choice of the

values of the schedule-generation algorithm’s internal param-

eters. For the given scheduling scenario γ, any other choice of

the values of the schedule-generation algorithm’s internal pa-

rameters would mean either decreasing the expected quality

of the generated schedule or increasing the expected search

time for a schedule of a given quality (relative to some pre-

scribed measure of “goodness”). In presenting the latter ab-

43

10.2 Assumed-Model Versus Actual Performance 10 APPENDIX A. ALGORITHM PERFORMANCE

straction (in a somewhat speculative vein unsupported by ex-

perimental results), Section 7 builds upon the method and al-

gorithm in Section 6 and describes a further method and ap-

proach by which to obtain an estimator function that, given

a scheduling scenario (or its characterization via a charac-

terization function), would return an estimate of the optimal

choice of the values of the schedule-generation algorithm’s

internal parameters, thus assuring (in the full embodiment

and application of the technology disclosed herein) the most

cost-effective possible system for operational use in gener-

ating optimal, constraint-satisfying schedules for the civilian

or military space data-communications infrastructure.

Appendix A explores an assumed model of the perfor-

mance of the probabilistic search techniques described in the

main body of the present disclosure. Analysis of the model

imparts understanding and insight into the issue of how the

disclosed evolutionary-search algorithm’s internal parame-

ters might be set to maximize performance of the system in

operational use.

Finally, Appendix B describes a class of problem domains

(the Type-G problem domains), which encompasses a very

broad range of optimization problems including the space

data-communications scheduling problem, among many oth-

ers. A rigorous specification of algorithms and methods for

reaching optimal solutions for problems of Type G is dis-

closed. The disclosed specification affords to developers an

efficient implementation path for developing systems to solve

such problems.

10. Appendix A. Algorithm
Performance

10.1. Best-Solution Fitness (Function of
Algorithm-Iteration Count)

To gain insights into the nature of the optimization at-

tainable by the schedule-generation algorithm (Algo-

rithm 1 (page 35)) and the S� algorithm (Algorithm 2

(page 38)), we will assume and analyze a model for the per-

formance of the schedule-generation algorithm. We will as-

sume that for a given scheduling scenario γ and a given

choice e of the values of the internal parameters of the

schedule-generation algorithm, the solution (schedule) fit-

ness plotted against the iteration count during a run of

the algorithm would be representable by a function hav-

ing the form:

f(p) =
v

(p− u)
z
+ w

+ q (1)

where the independent variable p ∈ N
+ represents the it-

eration count during a run of the algorithm, and the depen-

dent variable f(p) represents the fitness of the best sched-

ule in the schedule population at the end of that iteration.

The values of the parameters v, u, w, q, z ∈ R determine

the precise curve that approximates the performance of the

schedule-generation algorithm (for the given scheduling sce-

nario γ and given choice e of the values of the internal param-

eters). The rationale for choosing a function with the form of

Equation 1 is partly empirical, but is herein unexplored ex-

cept for Subsection 10.2

Figure 4 (page 45) illustrates an instance of the function

f (with particular values for the parameters v, u, w, q, and z)

along with the derivative of f with respect to p:

df(p)

dp
=

−vz (p− u)
z−1

((p− u)z + w)
2 (2)

Note that the value of f(0) is finite (assuming (0− u)z +
w �= 0), corresponding to the fact that the population of ran-

domly formed solutions at the initialization of the run of the

schedule-generation algorithm (Step 1c, page 35) will have a

range of fitness scores, all of which will be finite values. The

intersection of the function f with the vertical axis represents

the best score in the range of scores of the members of the ini-

tial population. Of course, a negative iteration count is mean-

ingless and so the model f for the performance of the algo-

rithm as a function of algorithm-iteration count has no mean-

ing to the left of the vertical axis.

An everywhere differentiable monotonic function (such as

f) has a monotonic derivative, and in the case of the present

model, the derivative is always negative, corresponding to

the fact that the assumed fitness model is a function whose

slope is always negative—corresponding, in other words, to

the fact that the fitness, in general, improves with increas-

ing iterations of the schedule-generation algorithm. Note that

the rate of improvement decreases with increasing iterations

of the schedule-generation algorithm.

10.2. Assumed-Model Versus Actual
Performance

Whether such a function (Equation 1) could be a fair rep-

resentation of the actual performance of the schedule-

generation algorithm makes a reasonable question that is dif-

ficult to answer in the affirmative, but it can be argued that at

least some such function would be a worst-case representa-

tion.

The actual performance of the schedule-generation algo-

rithm, as previously indicated, is, for a given run of the al-

gorithm, a discrete (and monotonic) function of the iteration

count during the run. That is, the quality of the best schedule

in the population at the end of an iteration will be the ordinate

of a discrete point whose abscissa is the iteration count, and,

44

10.2 Assumed-Model Versus Actual Performance 10 APPENDIX A. ALGORITHM PERFORMANCE

0 2.5 5 7.5 10

-2.5

2.5

5

Figure 4. Best-Solution Fitness modeled as a
function of the schedule-generation algorithm
iteration count (upper curve) (Equation 1), with
its derivative (lower curve) (Equation 2). Points
on the graph to the left of the vertical axis are
to be ignored, since they are meaningless in
relation to the actual performance of the al-
gorithm. The model for fitness is assumed to
be a continuous function, whereas the actual
performance is a set of discrete points, one
for each integer representing the schedule-
generation algorithm iteration count.

plotted against iteration count, all such points resulting from

the run will be separate dots on the graph, as illustrated in

Figure 5. Since the performance of the schedule-generation

algorithm has a monotonic relation to the iteration count, if g
is the set of points representing the performance of any given

run of the algorithm, then there exists a model—i.e., an in-

stance fworst of Equation 1 (with some choice of the values

of the parameters v, u, w, q, and z)—such that

1. ∃x ∈ dom(g) � g(x) = fworst(x), and

2. ∀x ∈ dom(g) � g(x) ≤ fworst(x)

0 8 16 24 32 40

2.5

5

7.5

10

12.5

15

Figure 5. Best-Solution Fitness versus it-
eration count. The discrete points in the
lower graph represent a hypothetical run of
the schedule-generation algorithm. The up-
per curve is a graph of Equation 1, the as-
sumed model of fitness as a function of it-
eration count during a run of the algorithm,
with choices for the values of the parameters
v, u, w, q, and z so as to obtain a best-fitting
curve of the form of Equation 1 having the dis-
crete points as a lower bound.

45

10.3 Fitness as a Function of a Single Parameter 10 APPENDIX A. ALGORITHM PERFORMANCE

and we can refer to this instance of Equation 1 (see Figure 5)

as the worst-case model of the actual performance. In the re-

maining subsections of this appendix, the worst-case model

can be considered to be the subject of the discussion.

Two further observations are offered regarding Figure 5.

First, the discrete points in the lower graph are merely repre-

sentative and are not actual data from a run of the algorithm.

However, the lower graph is notionally consistent with ac-

tual execution results of genetic-algorithm applications gen-

erally (for example, see [28]). Second, the Equation 1 model,

even if it is the worst-case model as depicted in the upper

graph in Figure 5, suggests a means of judging a trade-off

between the quality of the results from running the algorithm

and the power of the computing resources (or the processing

time) needed. The model represented by the upper graph has

a kind of “knee” where the slope of the curve changes more

rapidly than for points either to the left or to the right. To

the right of the knee, there is a diminishing-returns situation.

The farther to the right, the less improvement in schedule

quality expected from a run, but the more computing power

(or processing time) required to attain that improvement. To

the left of the knee, there is a larger gain in improvement

for a given increment in additional computing power (or pro-

cessing time). In view of the diminishing returns of applying

more processing resources at the far right end of the graph,

one insight gleaned from considering the model (even the

worst-case model) is that reaching a judgement concerning

a trade-off between computing power (or processing time)

and the quality of the results from running the algorithm can

be expected to be facilitated by actual experience running the

algorithm. Further, such experience would augment under-

standing as to how quickly the “knee” will be reached, as

well as how long it may take to reach the point of negligi-

ble expectation of further improvement6.

10.3. Fitness as a Function of a Single
Parameter

We now consider the behavior of the model when a full run

of the algorithm is repeated with a change in the value of

one of its internal parameters. In the repeated run, no other

change is imposed. For the present discussion, we let the pa-

rameter n represent the change in the value of internal pa-

rameter αj (see definition of α in step 1e of the specification

6 These expectations are perhaps reminiscent of the law of diminishing re-
turns—an interesting relationship between production and effort in the
sense studied in economic theory. It may also remind the reader of an-
other diminishing-returns situation found in Einstein’s Special Theory
of Relativity in which any constant application of energy applied to in-
crease the speed of, for example, a spacecraft eventually produces a van-
ishingly small increase in speed as relativistic effects cause the space-
craft mass to increase without bound.

of Algorithm 1 (page 35)). Thus, in each iteration of the al-

gorithm during the repeated run, at step j + 4 (noting that

step 4 (page 36) is the first step performed in each iteration)

the number of candidate schedules to be generated for inclu-

sion in the population will be changed by the value of n.

0 2500 5000 7500 1 104

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Figure 6. Best-Solution Fitness as a function
of the parameter n (representing the change
in the fixed number of new members gener-
ated at each step) for the assumed model (see
Equation 6).

For the initial run (which is assumed to have reached a

point in the processing where a large additional amount of

processing would not entail a significant expectation of im-

provement in the fitness of the best schedule, thus reaching

an optimum), let p denote the total number of iterations, so

far, of the steps of the schedule-generation algorithm, and let

ms denote the number of schedules (i.e., solutions) gener-

ated and considered during the run. Then

ms = n0 + pn0 (3)

where n0 is as defined in step 1b (page 35).

When the run is repeated, the total run time will be the

same (governed by the run-time limit ν defined in step 1a

(page 35)). The generation and evaluation of the schedules

46

10.3 Fitness as a Function of a Single Parameter 10 APPENDIX A. ALGORITHM PERFORMANCE

created during a given iteration will consume a greater or

lesser total amount of computation time, and will decrease

or increase the number of iterations of the algorithm during

the run, but the total number of schedules that can be gener-

ated and evaluated during the repeated run will be the same,

equal toms, as for the initial run. Thus, withms constant be-

tween the runs, for the repeated run, we have

ms = n0 + p(n0 + n) (4)

and so the iteration count can be considered to be a function

of n ∈ N, the independent variable representing the change

in the number of new schedules that will be added in some

prescribed step of the schedule-generation algorithm:

p(n) =
ms − n0

n0 + n
(5)

0 2500 5000 7500 1 104

1 10-5

2 10-5

3 10-5

4 10-5

5 10-5

6 10-5

7 10-5

8 10-5

9 10-5

Figure 7. Derivative of best-solution fitness as
a function of n (representing the change in the
fixed number of new members generated at
each step) for the assumed model (see Equa-
tion 7).

Equation 1 can now be rewritten to express the fitness

function in terms of n:

f(n) =
v(

ms−n0

n0+n
− u

)z
+ w

+ q (6)

illustrated in Figure 6. Notice that the fitness worsens for ev-

ery positive value of n: the slope of the graph is everywhere

positive. The derivative of f(n), given by Equation 7 and il-

lustrated in Figure 7, is always positive, approaching the hor-

izontal axis asymptotically.

df(n)

dn
=

vz (ms − n0)((
ms−n0

n0+n
− u

)z
+ w

)2

(
ms−n0

n0+n
− u

)z−1

(n0 + n)
2 (7)

From these observations it is seen that a larger value of n
worsens the fitness by a greater amount than does a smaller

one, but the effect diminishes with ever larger values of n.

Thus, when the algorithm’s performance is directly related

to the number of iterations of the steps of the algorithm, as

in the assumed model (Equation 1), the following questions

arise:

First, does the model of fitness as a function of n (the

change in the number of candidate schedules generated in

some prescribed step in each algorithm iteration for inclu-

sion in the population in the repeated run) (see Equation 6

(page 47)) imply that arbitrarily increasing the value of an

internal parameter necessarily brings a decrease in the qual-

ity of the best solution (schedule)—in comparison to the best

schedule that can be produced in the number of iterations per-

formed in the initial run?

Second, does the model imply that decreasing the value of

an internal parameter in the repeated run necessarily brings

an increase in the quality of the best solution (schedule)—in

comparison to the best schedule that can be produced in the

number of iterations performed in the initial run?

In each run of the algorithm (when used as specified

in Algorithm 1), values of the internal parameters are held

constant (i.e., the number of candidate solutions (schedules)

added in each of the algorithm’s steps 4 through 15 (page 36)

remains the same until the end of the run). At the end of the

run (the duration of which will equal the run-time limit ν),

the system will output the best schedule in the population.

In a repeated run with the increase/decrease of n in the num-

ber of candidate schedules generated in each iteration, even if

all other parameters are held the same, at any given iteration

number, say the kth, the algorithm will necessarily have con-

sidered either more schedules or fewer schedules (depending

on whether n is positive or negative), and from the first iter-

ation onward, the population of schedules will increasingly

diverge from the population in the initial run. Therefore, the

model assumed in Equation 1 has limited use in answering

the stated questions, but nevertheless affords a useful insight

into the setting of the algorithm’s internal parameters, as dis-

cussed in the next section.

47

10.4 Fitness as a Function of Elapsed Run Time 10 APPENDIX A. ALGORITHM PERFORMANCE

10.4. Fitness as a Function of Elapsed Run
Time

It will now be insightful to analyze the behavior of the fit-

ness model (Equation 1) as a function of the elapsed run time

of the algorithm, when holding fixed the value of n (i.e., the

variable representing the change in the value of a single inter-

nal parameter as described in the preceding section). In this

analysis, we assume we are given the following:

1. ν, the duration of the algorithm execution run

2. n0, the number of schedules added to the population

during each iteration of the steps of the algorithm

3. n, the change (relative to a previous run) in the value of

a single internal parameter as described in the preced-

ing section

4. ms, the total number of schedules that can be added

and evaluated during a run of duration ν seconds as de-

scribed in the preceding section

With the above given information, we seek to reformulate

Equation 1 to calculate the fitness of the best member of the

evolving population of schedules as a function of time.

Since ms schedules can be created and evaluated by the

algorithm during a run of ν seconds duration with the as-

sumed given computing resources, the time required to cre-

ate and evaluate each schedule (as an overall average) is

ν

ms

When the iteration count is p during a second run of the

algorithm, the cumulative number of schedules added will be

ncum = n0 + (n0 + n)p

It is now possible to calculate how much time has elapsed

when the run reaches iteration p:

t = ncum
ν

ms
=

(
n0 + (n0 + n)p

) ν

ms

We can now express the iteration count p as a function of

t:

p(t) =
mst− n0ν

(n0 + n)ν

Thus, Equation 1 can be rewritten to relate fitness to

elapsed run time t:

f(t) =
v(

mst−n0ν
(n0+n)ν

− u
)z

+ w
+ q (8)

illustrated in Figure 8. In the upper curve, the value of n is

a positive number, and, in the lower curve, n is a negative

number of the same magnitude. The conclusion from these

two curves is that, given any two runs of the algorithm where

the first has a larger, and the second has a smaller, number n
of schedules added in each iteration, and given any particu-

lar elapsed time t during each run, the run that has the smaller

value of n will have a better value of the fitness of the best

member of the population at time t. The two curves illus-

trate the fact that the effect is greatest at the beginning of the

run and necessarily vanishes at the end when the elapsed time

equals ν.

0 50 100 150 200

1

1.25

1.5

1.75

2

Figure 8. Fitness modeled as a function of the
elapsed run time, holding fixed the value n for
the change in the value of a single internal pa-
rameter. Two runs are illustrated. The upper
curve has n set to a positive number, while the
lower curve has n set to a negative number of
the same magnitude.

However, these relationships are subject to a caveat. In the

second run of the algorithm contemplated above, the popu-

lation starting at the second iteration of the steps of the al-

48

11 APPENDIX B. THE GENERALIZED ALGORITHMS AND METHODS

gorithm begins to diverge from that of the first run, since the

number of schedules added in each iteration in the second run

will be either greater than or less than the number added in

each iteration in the first run. The model described by Equa-

tion 1, while arguably representative of the performance of

the system during any given run, has no relevance to the dif-

ferences between two different runs. If Equation 8 or Fig-

ure 8 is at all suggestive of some guidance in setting the val-

ues of the internal parameters, it would be that smaller rather

than “large” values would improve performance.

10.5. Key Insight Afforded by the Assumed
Model

Clearly, the model assumed in Equation 1 does imply that in-

creasing or decreasing the number of iterations in a run in a

manner that does not result in a difference in the number of

candidates generated in any step of the algorithm (by, for ex-

ample, increasing or decreasing the value of ν) will, in gen-

eral, correspondingly affect the quality of the solution pro-

duced by the algorithm.

Significantly, the model of fitness as a function of the pa-

rameter n (see Equation 6 (page 47) and Figure 6 (page 46))

implies that the number of new schedules that will be added

in each step of the algorithm is very important: negative val-

ues of n result in generating fewer candidate schedules in

each iteration, and therefore result in a greater number of it-

erations during the run. This, together with the analysis in

Section 10.4, leads to the hypothesis that experimentation

(or, better, the application of the S� algorithm (Algorithm 2

(page 38))) would show that the optimal choice of the val-
ues of the internal parameters for a given scheduling sce-
nario would entail smaller values rather than larger.

This is perhaps the most useful insight to be drawn

from considering the above model of the performance

of the schedule-generation algorithm—namely, that de-

spite the fact that the specification of the algorithm is

silent on how to choose the values of the internal param-

eters, large values would be contraindicated. This insight

still does not give quantitative guidance on what con-

stitutes “large” values, however, and therefore does not

really substitute for the quantitative guidance that ulti-

mately would be available when a solution to the S�� prob-

lem is implemented as described in Section 7 (page 40).

But the stated insight suggests that even routine experi-

ence running an implementation of the schedule-generation

algorithm would eventually lead to a level of practical under-

standing of at least how not to set the values of the internal

parameters.

11. Appendix B. The Generalized
Algorithms and Methods

11.1. The General Problem

11.1.1. Introduction

In this appendix, we present a generalization of the methods

and algorithms (and of the problem domain itself) that were

described in Section 5 (page 35), Section 6 (page 37), and

Section 7 (page 40). Reaching toward such a generalization

is motivated by the recognition (a) that there are many dif-

ferent problem domains where an evolutionary search strat-

egy can be used profitably, and (b) that application developers

may benefit from having such a generalization when translat-

ing to another domain the methods and algorithms that were

described herein for the NASA space-data-communications

scheduling problem.

The generalization presented in this appendix is intended

to facilitate development of applications for any problem do-

main matching the essential characteristics of the Type-G

problem domain defined below. While the Type-G problem

domain is not all-encompassing, it is general enough to be

broadly useful and has certain characteristics that facilitate

implementation as well as efficient computation. (For ex-

ample, integer values suffice for the vast majority of all of

the calculations that are required for execution of the algo-

rithms.)

This appendix also delineates steps for implementing the

generalized methods and algorithms.

Material to be presented below starts with a description

of Type-G problems and the approaches for reaching opti-

mal solutions to such problems, and progresses then to de-

scriptions of Type-G problem abstractions that, along with

methods to solve them, are designed to support the optimiza-

tion of those approaches themselves, for use in fielded sys-

tems that solve Type-G problems. The abstractions, based on

the idea of Type-G meta problems, are referred to as the G�

and G�� problems.

11.1.2. Basic Definitions

In the case of the earlier treatment of the NASA space-

data communications-scheduling problem, a problem sce-

nario was a set of data structures that, in part, expressed user

requirements for data-communications events by which sci-

ence data (among other kinds of data) could be returned to

earth via antennas in the NASA data-communications sup-

port infrastructure, or by which commands or other types

of data could be received from earth by the user spacecraft,

again via antennas in the NASA data-communications sup-

port infrastructure. A problem scenario also contained addi-

49

11.1 The General Problem 11 APPENDIX B. THE GENERALIZED ALGORITHMS AND METHODS

tional data structures comprising infrastructure constraints,

characteristics of support antennas, etc.

Similarly, in the case of the generalized problem domains

that we are discussing in the present section, a problem sce-

nario is a finite data structure that expresses requirements and

constraints that a problem solution must satisfy.

Definition 123: γ is a problem scenario of Type G ⇒ ∃k ∈
N

+ � γ is a sequence of exactly k finite data structures that

expresses requirements/constraints that are internally consis-

tent and that every allowable solution for γ must satisfy.

Definition 124:
Γ = {γ : γ is a problem scenario of Type G}.

Γ is the set of all possible problem scenarios of Type G.

Definition 125: Γdim : N+ → ℘(Γ) �
∀(k, γ) ∈ N

+ × Γ, γ ∈ Γdim(k) ⇔ len(γ) = k.

Γdim(k) is the set of all problem scenarios of length k (i.e.,

of dimension k).

Relative to the optimization issues addressed in this dis-

closure, we will refer to problem domains of Type G defined

as follows.

Definition 126: Δ =
{
δ : ∃k ∈ N

+ � δ ⊆ Γdim(k)
}

.

Definition 127:
δ is said to be a problem domain of Type G if and only if

δ ∈ Δ.

A problem domain of Type G is a set of Type-G problem sce-

narios all having the same dimension.

Note that the term “Type-G problem”, as distinct from the

term “Type-G problem domain”, will have a more specific

definition (see Definition 136 (page 53)).

Definition 128: Δdim : Δ → N
+ � ∀(δ, k) ∈ Δ× N

+,
Δdim(δ) = k ⇔ [∀γ ∈ δ, len(γ) = k

]
Δdim(δ) is the dimension of δ, i.e., Δdim(δ) is a positive in-

teger representing the length of every problem scenario in δ.

We now identify the set of all permissible solutions for

Type-G problem domains.

Definition 129 (Set of All Permissible Solutions):
Θ =

{
θ : ∃δ ∈ Δ, ∃γ ∈ δ �

θ is a permissible solution for problem scenario γ
}

.

Θ is the set of all permissible solutions for all problem sce-

narios γ ∈ δ ∈ Δ, with no omissions or exceptions. The

problem-domain dependent notion of “permissible” is left

undefined.

Definition 130 (Set of All Permissible Solutions for a Given

Problem Scenario):

Θscenario : Δ× Γ → ℘(Θ) �
∀(δ, γ) ∈ Δ× Γ � γ ∈ δ, θ ∈ Θscenario(δ, γ) ⇔
θ is a permissible solution for problem scenario γ.

Definition 131: D0 = {x : ∃n ∈ N
+ � x ∈ Z

n}
D0 is the set of all tuples whose elements are integers. (See

Revisions and Changes Digest item 24 on page 67.)

11.1.3. Associating Generalized Problem Domains with
Real Problem Domains

It will be taken for granted herein that the context for discus-

sion relates to a certain class of real-world problems for each

of which the following hold:

• it can be stated in some proper manner and given an ap-

propriate working association with some member of Δ,

• it has a definable solution that can be expressed as a fi-

nite data structure, and

• its implementation following the generalized methods

and algorithms disclosed herein would flow from the

actual problem statement and its associated member of

Δ.

The way in which a problem domain in this class might

be given an association with a member of Δ, and the specifi-

cation of the implementation of the actual problem statement

in the context of the generalized methods and algorithms, are

each beyond the scope of this disclosure.

The foregoing definitions lead to the following observa-

tions concerning a problem domain of Type G:

1. There exists a fitness function that assigns to each per-

missible solution for any given problem scenario a

quantitative “goodness” or “fitness” score.

2. Every problem scenario has an optimal solution with

reference to a given fitness function.

Type-G problem domains are numerous and varied, and

include not only the schedule-optimization problem ad-

dressed earlier by means of evolutionary search (genetic

algorithms) (Section 5 (page 35)), but also the meta prob-

lem designated as the S� problem that likewise was addressed

by means of evolutionary search (genetic algorithms) (Sec-

tion 6 (page 37)).

11.1.4. A Note on Applicability

While in theory the disclosed generalized methods and algo-

rithms could be used to reach a solution to many problems

for which standard numerical or closed-form methods exist,

such usage would be inefficient and would produce less ac-

curate solutions. Nothing in this disclosure is to be construed

50

11.1 The General Problem 11 APPENDIX B. THE GENERALIZED ALGORITHMS AND METHODS

so as to obviate common sense in the use of the methods de-

scribed herein. Only appropriate applications are to be con-

templated.

There are numerous appropriate applications of the meth-

ods and algorithms specified in this appendix for reach-

ing optimal solutions of problem scenarios of Type G. The

design-optimization applications in the realm of space mis-

sions mentioned in Section 1.6 (page 9) are representative of

a wide variety of design-optimization problems, from archi-

tecture to automobiles to industrial plants to rail systems to

product packaging—to mention only a few that

• can be found in the literature concerning applications of

evolutionary search,

• can be classified as problems of Type G, and

• therefore can be solved by a system following the meth-

ods and algorithms specified herein.

Scheduling and planning generally can be cast as prob-

lem domains of Type G. But the range of Type-G problems

is greater yet, and is not likely soon to be fully traversed.

11.1.5. The Essential Evolutionary Search Functions

Genetic algorithms, and evolutionary programming, are ap-

plicable to a broad range of problems (see discussion in Sec-

tion 2.3 (page 13) and Section 2.4 (page 13)), and form the

central technical approach for solving Type-G problems as

presented herein. The essential mechanisms of evolutionary

search (beyond the basic notion of evolving a population of

candidate solutions through an iterative process) are—

• fitness

• random selection

• genetic mutation

• genetic crossover

These mechanisms will be embodied in functions defined

below.

11.1.5.1. Fitness Functions A crucial part of an evolu-

tionary search algorithm as described herein is the fitness

function that will be used to evaluate candidate solutions in

the solution space. A valid fitness function for a given prob-

lem scenario γ maps each member of the set of all per-

missible solutions for γ to a real number greater than or

equal to 1, where unity is the fitness of a perfect solution.

While other choices for the definition of “perfect” fitness are

worth considering, the chosen value, 1, affords certain de-

sirable numerical advantages for constructing an actual fit-

ness function. For example, the fitness function defined in

Definition 102 (page 32) for the space-data communications

scheduling problem had as constituents a number of inde-

pendent sub-functions, each defined with fitness in the semi-

closed real-number interval [1,∞), where the final fitness

was computed as the product of the values returned by the

constituent functions, thus ensuring that the final fitness value

always remained in [1,∞) and, further, that the final fitness

value strongly reflected the degrading effect of any one of the

constituent values that exceeded 1.

More exactly,

Definition 132 (Set of All Fitness Functions):
Ffitness : Δ× Γ → ℘

(
[1,∞)Θ

) �
∀(δ, γ) ∈ Δ× Γ, f ∈ Ffitness(δ, γ) ⇔

1. dom(f) = Θscenario(δ, γ)

2. ∀θ, θ′ ∈ Θscenario(δ, γ),

f(θ) < f(θ′) ⇒ θ is more fit than θ′.

Ffitness(δ, γ) is the set of all possible fitness functions for

problem scenario γ in the target problem domain δ. (See Def-

inition 13 (page 19) for the meaning of the notation of the

form XY , where each of X and Y is a set. In the present def-

inition, [1,∞)Θ designates the set of all functions that map

Θ to the semi-closed interval [1,∞) on the real-number line.)

11.1.5.2. Random Selection The search strategy also em-

ploys, for given problem scenario γ for given target problem

domain δ, a means to create a set of new candidate mem-

bers of the working population by either (a) randomly gen-

erating permissible solutions for γ or (b) randomly selecting

members of Θscenario(δ, γ).

Definition 133 (Selection of a Random Set of Solutions):
Frandomselection : Δ× Γ → ℘

((
℘(Θ)

)N+)
�

∀(δ, γ) ∈ Δ× Γ, f ∈ Frandomselection(δ, γ) ⇔
1. codomain(f) ⊆ Θscenario(δ, γ),

2. ∀n ∈ N
+, f(n) = RND

(
n,Θscenario(δ, γ)

)
.

Note that a function belonging to Frandomselection is a “pseudo

function” (see remark below Definition 17 (page 20)).

The question may arise as to whether it would be advan-

tageous to “jump-start” the evolutionary search process by

somehow including at least one known solution in the ini-

tial working population of solutions. Such a known solution

might be obtained by employing some special preprocess-

ing step or some more sophisticated method that could match

the results achievable, for example, by a human expert. Such

an alternate approach, then, differs from the approach pre-

scribed in the above definition of Frandomselection, where only

a true random selection of (permissible) solutions composes

the initial generation. It might be supposed that the alternate

approach would increase the expected cost-effectiveness of

51

11.1 The General Problem 11 APPENDIX B. THE GENERALIZED ALGORITHMS AND METHODS

the search process (i.e., a better average quality of the best so-

lution produced for a given fixed run time). Even with exten-

sive experimentation and testing, conclusions on this ques-

tion would be subject to doubt, for no theoretical framework

or guidance is in evidence to support the interpretation, anal-

ysis, validation, and integration of testing data. For example,

an early question would concern whether the known solu-

tion produced in the alternate approach had been reached us-

ing the same goodness metrics in the same manner as given

in the prescribed approach. If not, then how would the differ-

ence in the goodness metrics and the manner in which they

were applied be characterized and accounted for in the fi-

nal result of any comparison test? Another source of doubt

would be the very means or agent that produced the solution

to be used in the alternate approach: in particular, can two

human experts always be counted upon to produce the exact

same solution for every given problem scenario, and if not,

then what is the support for any particular conclusion con-

cerning the value of the alternate approach? The accurate res-

olution of doubts regarding the validity and cost effectiveness

of the alternate approach is difficult to forecast, and the entire

problem is beyond the scope of the present disclosure. Suf-

fice it to say that the effort and argumentation required to re-

solve the doubts would be considerable if not daunting, and

ultimately of questionable value even if focused on a partic-

ular problem domain. In summary, as part of an operational

system, the alternate approach (even if otherwise it is appro-

priate as a target of research) is difficult to justify on the basis

of current theory or knowledge in the general field of evolu-

tionary search, and a more supportable course would be to

adhere to the approach given in this disclosure. (See item 25,

page 67, in Revisions and Changes Digest section.)

11.1.5.3. Mutation Functions Evolutionary search algo-

rithms also involve functions that generate new candidate

members of the working population of solutions using mu-

tation and crossover concepts (see the discussion of genetic

algorithms in Section 2.4 (page 13)). To generate a mutation

of a member θ of the working population during a search, a

new data structure is created representing the new member

of the population, i.e., the mutated version of the given mem-

ber θ. The new data structure (a finite data structure by defi-

nition) will be the same as that of the given member θ, except

for some deliberate (yet random), problem-scenario-specific

alterations made by the mutation function. Once created, the

new member is incorporated into the working population on

an equal footing with all other members until the member-

evaluation phase of the search algorithm is reached during

an iteration through the steps of the algorithm. If by chance

the mutation produces a child that is identical with its parent,

then it will be ignored. It may be noted that the mechanism

for making mutations legitimately may not select purely ran-

dom parts of the data structure representing a member of the

population, as such a mutation mechanism would likely pro-

duce offspring containing uninterpretable/impossible data,

rendering them impermissible as solutions of the given prob-

lem scenario. Therefore, it may be taken for granted that the

mutation mechanism must not lead to nonsensical or other-

wise impermissible offspring.

Definition 134: Fmutation : Δ× Γ → ℘
(
ΘΘ

) �
∀(δ, γ) ∈ Δ× Γ, f ∈ Fmutation(δ, γ) ⇔

1. dom(f) = Θscenario(δ, γ)

2. codomain(f) ⊆ Θscenario(δ, γ)

3. θ ∈ rndmember
(
Θscenario(δ, γ)

) ⇒
f(θ) is a random mutation of θ.

Fmutation(δ, γ) is the set of all possible mutation functions for

problem scenario γ in the target problem domain δ. Note that

this function is a “pseudo function” (again see remark below

Definition 17 (page 20)).

11.1.5.4. Crossover Functions The crossover mechanism

is defined similarly. A crossover function accepts two ran-

domly selected members of the current working population

and produces, in some random yet problem-scenario-specific

manner, two new members whose characteristics and fitness

will be determined partly by each of their “parents”—the two

given members. Each crossover function operates by identi-

fying two random crossover points. The crossover points de-

fine segments of the data structure of each of the parents.

Once the segments are determined, the two “children” of the

parents will be assembled from their parents’ corresponding

segments in such a way that the children differ from each

other and from each parent—preserving, in that way, the con-

cept of swapping some, but not all, of the chromosomal ma-

terial between the parents as a means to produce the chil-

dren. If by chance the children and their parents do not all

differ from each other—a result that is not allowed—then it

will be necessary to repeat the step for randomly selecting

the parents and the segments to be swapped. It may be noted,

again, that the crossover points legitimately may not define

purely random parts of the data structure representing a par-

ent, as swapping portions defined in that manner would of-

ten (perhaps nearly always) produce offspring containing un-

interpretable/impossible data, rendering them impermissible.

Therefore, it may be taken for granted that the mechanism

for selecting crossover points must not lead to nonsensical or

otherwise impermissible offspring.

Definition 135: Fcrossover : Δ× Γ → ℘
(
(Θ2)Θ

2) �
∀(δ, γ) ∈ Δ× Γ, f ∈ Fcrossover(δ, γ) ⇔

1. dom(f) = Θscenario(δ, γ)
2 ,

52

11.3 Type-G Problems: The G-Algorithm 11 APPENDIX B. THE GENERALIZED ALGORITHMS AND METHODS

2. codomain(f) ⊆ Θscenario(δ, γ)
2,

3. (θ, θ′) ∈ rndmember
(
Θscenario(δ, γ)

2
)
, θ �= θ′ ⇒

f(θ, θ′) is a pair (θc, θ
′
c) of children generated as

crossovers between parents θ and θ′.

Fcrossover(δ, γ) is the set of all possible crossover functions

for problem scenario γ in the target problem domain δ. Note

that every member of Fcrossover(δ, γ) is a “pseudo function”.

We now seek to formulate the Type-G problem, generally

applicable to any problem domain of Type G.

11.2. The Type-G Problem
A Type-G problem is a member of the set G:

Definition 136 (Set of All Type-G Problems):
G ⊆ Δ×Γ×N

+× [0,∞)×D0×(℘(Θ))N
+ × [1,∞)Θ×

ΘΘ × (Θ2)Θ
2 ×Θ �

g = (δ, γ ⊆ δ, ν, τ, α, fr, ftest, fm, fc, π) ∈ G⇒
1. ν represents, in units of seconds, an adequate run time

for the search,

2. τ represents a small real value (not necessarily posi-

tive) that reflects the user’s judgment or policy as to

how close to perfect a solution for the given problem

scenario must be to be considered “good enough”,

3. α is a vector (i.e., a tuple (α1, α2, . . .)) consisting of

values of the internal parameters of g, with len(α) =
Δdim(δ),

4. fr ∈ Frandomselection(δ, γ),

5. ftest ∈ Ffitness(δ, γ),

6. fm ∈ Fmutation(δ, γ),

7. fc ∈ Fcrossover(δ, γ), and

8. π ∈ Θscenario(δ, γ).

g is said to be a Type-G problem if and only if g ∈ G. (See

Revisions and Changes Digest item 26, page 67.)

It will be useful to identify the Type-G problems for a

given Type-G problem scenario γ, as follows:

Definition 137 (Set of All Type-G Problems for a Given

Problem Scenario):
Gscenario : Δ× Γ → ℘(G) � ∀(δ, γ) ∈ Δ× Γ,

Gscenario(δ, γ) =
{
(δ, γ, •, •, •, •, •, •, •, •) ∈ G

}
.

11.3. Type-G Problems: The G-Algorithm
In moving on toward defining an algorithm for solving a

Type-G problem, it will be helpful to define a function that

embodies certain steps that must be performed by the algo-

rithm relative to a given set of candidate solutions of a given

Type-G problem:

Definition 138 (Internal Steps of a G-Algorithm):
Wsteps : ℘(Θ)×G→ ℘(Θ) �
∀(Π, g = (δ, γ, ν, τ, α, fr, ftest, fm, fc, π)

) ∈ ℘(Θ)×G
if

1. Π ⊆ Θscenario(δ, γ),

2. npopulation =
∑

j∈{1,...,len(α)}
αj ,

3.
∣∣Π∣∣ ≥ npopulation,

4. Π1 = RND
(
α1,Π),

5. Π2 = RND
(
1
2α2,Π

2) � (θ, θ′) ∈ Π2 ⇒
¬(θ′, θ) ∈ Π2,

6. Π3 =

(⋃
θ∈Π1

{
fm(θ)

})⋃
(⋃

(θ1,θ2)∈Π2

{
fc(θ1, θ2)

})⋃
fr(α3), and

7. Π4 ⊂ Π3 �
(a)

∣∣Π4

∣∣ = npopulation and

(b)
[
θ1 ∈ Π4, θ2 ∈ Π3\Π4

] ⇒ ftest(θ1) ≤ ftest(θ2),

then Wsteps(Π, g) = Π4.

The G-algorithm for solving a Type-G problem is an

evolutionary-search algorithm specified as follows:

Algorithm 4 (G-Algorithm Specification):
Given:

• g = (δ, γ, ν, τ, α, fr, ftest, fm, fc, π) ∈ G

Perform the following steps:

1. Let Π = fr

(∑
j∈{1,...,len(α)}

αj

)
.

2. (a) Let Π′ =Wsteps(Π, g).

(b) Find π′ ∈ Π′ � ζ ∈ Π′ ⇒ ftest(ζ) ≥ ftest(π
′).

(c) Set π = π′.

(d) Set Π = Π′.

(e) If ft(π) < 1 + τ or runtime exceeds ν, then exit,

returning the value π; otherwise, go to step 2a.

When the G-algorithm is executed to solve a Type-G prob-

lem g = (δ, γ, ν, τ, α, fr, ftest, fm, fc, π) ∈ G, the result is

that π has been set equal to the optimal solution for the prob-

lem scenario γ ∈ δ. This optimal solution is calculated given

α, the vector of the values of the Type-G problem’s internal

parameters (where a different choice of their values would

generally result in a different solution for the problem sce-

nario γ).

53

11.4 The G� Problem 11 APPENDIX B. THE GENERALIZED ALGORITHMS AND METHODS

11.3.1. Execution of a G-algorithm

Executing the G-algorithm (Algorithm 4) for a given Type-G

problem

g = (δ, γ, ν, τ, α, fr, ftest, fm, fc, π) ∈ G

consists of performing the prescribed steps given in the speci-

fication of Algorithm 4 and capturing the final value returned.

Definition 139 (Function to Execute the G-algorithm (Algo-

rithm 4)):
fg-execute : G→ Θ �

∀g = (δ, γ, ν, τ, α, fr, ftest, fm, fc, π) ∈ G,

if π is the optimal solution for problem scenario γ as re-

turned from a run of the G-algorithm (Algorithm 4 (page 53))

against the Type-G problem g,

then fg-execute(g) = π.

Note the implicit dependency on the computing resources:

the quality (that is, the fitness) of the output result π will,

in general, be improved through the use of a more power-

ful computing platform.

11.4. The G� Problem
Having described the general problem domain of Type G and

an algorithm by which to find optimal solutions for Type-G

problems, we proceed along the line of deliberation indicated

in the introduction (Subsection 11.1.1 (page 49)). That is, we

proceed to describe methods, algorithms, and processes by

which

1. a Type-G problem may be optimized (thus assuring the

maximum performance of the G-algorithm itself), and

by which the Type-G problem of doing this can be opti-

mized, and, again, by which the Type-G problem of do-

ing that can be optimized, etc., indefinitely (which is

referred to as the G� problem), and

2. a mechanism (the G�� algorithm) can be derived by

which all of the problem scenarios in a given Type-

G problem domain may be solved with maximum ef-

ficiency.

These additional optimization methods depend on the

concept of a Type-G meta problem.

11.4.1. Regarding Type-G Meta Problems

Importantly for our purposes, the G-algorithm specification

(Algorithm 4 (page 53)) applies not only to finding an opti-

mal solution for a given target problem of Type G, but also to

optimizing the Type-G problem itself. Suppose that, by Def-

inition 136 (page 53),

g = (δ, γ, ν, τ, α, fr, ftest, fm, fc, π) ∈ G

is a Type-G problem of finding an optimal solution for a

given problem scenario γ in target problem domain δ. Then

there is a “meta” problem domain δ′ and a “meta” problem

scenario γ′ ∈ δ′ for finding the optimal choice of the values

of the internal parameters of g, and this problem is solved as

another Type-G problem

g′ = (δ′, γ′, ν′, τ ′, α′, f ′r, f
′
test, f

′
m, f

′
c, π

′) ∈ G

The remaining elements of the tuple g′ are to be consistent

with Definition 136 and must satisfy certain additional con-

ditions that will be described below.

11.4.2. Meta-Problem Scenarios Compounded
Indefinitely

Consider (as suggested above) an infinite sequence of Type-

G problems whose first element is g, a Type-G problem of

deriving the optimal solution of some Type-G problem sce-

nario γ, where each element after the first element of the se-

quence is formed as the Type-G problem of optimizing the

choice of the values of the internal parameters of the preced-

ing Type-G problem in the sequence. This idea, designated as

the G� problem, will, as in the S� problem, entail evolution-

ary search technology (genetic algorithms) by which to reach

solutions.

Given a Type-G problem g in the infinite sequence men-

tioned above, the successor Type-G problem, g′, represents

the task of solving the Type-G meta problem of optimizing

the choice of the values of its predecessor’s internal param-

eters. The problem scenario for g′ would be a data structure

that stipulates the requirements and constraints applicable to

the solution of the Type-G meta problem (and this data struc-

ture would be in one-to-one correspondence with the data

structure that represents the internal parameters of g). One

possible such requirement/constraint would be that the value

of a, some given internal parameter of g, should fall in some

particular range (a > 10, for example). Meta-problem sce-

narios and internal parameters is the subject of the next sub-

section.

We might contemplate a method by which to address the

entire composite problem that consists of (a) optimizing the

solution of the initial Type-G problem and (b) optimizing the

solution of the meta problems in the infinite sequence men-

tioned above. In pursuing this, we would naturally confront

the question of whether it makes sense to try to apply such

a search algorithm or method indefinitely to an infinite se-

quence of problems of Type G as describe above.

11.4.3. Approaching the G� Problem

This is moot, however, since in fact we seek not a theoreti-

cal solution for this entire indefinitely compounded problem,

54

11.4 The G� Problem 11 APPENDIX B. THE GENERALIZED ALGORITHMS AND METHODS

but rather a feasible means of attacking a useful part of it.

We alluded to a similar issue in the last paragraph of Sec-

tion 6.1 (page 37), and indicated that, in avoiding a kind of

infinite regression, a justifiable and workable approach—

1. would first generate a set of data cases for

the problem represented by the first element

g = (δ, γ, ν, τ, α, fr, ftest, fm, fc, π) ∈ G of the

sequence. Each of the data cases would consist of

(a) an actual or realistic problem scenario γ′ ∈ δ and

(b) the calculated optimal choice of the values of

the internal parameters of the Type-G problem

for solving the problem scenario γ′, where the

optimal choice is discovered via an appropriate

probabilistic search strategy (i.e., an evolutionary

search strategy), and

2. would then use a hypersurface-fitting method to fit to

the generated data cases an estimation function that,

given an arbitrary problem scenario γ′ belonging to the

Type-G problem domain δ, would return an estimate of

the optimal choice of the values of the internal parame-

ters of g′ = (δ, γ′, ν, τ, α, fr, ftest, fm, fc, π) ∈ G.

The first part of the above approach is satisfied through

the application of appropriately defined instances of a search

algorithm—which will be specified below as an evolution-

ary search algorithm. The second part of the above approach

is satisfied through a generalized version (the G�� algorithm

(see Subsection 11.5 (page 58))) of the methods and algo-

rithms described in Section 7 (page 40). (See Revisions and

Changes Digest item 27, page 67.)

11.4.3.1. Internal Parameters of Type-G Problems
Each internal parameter

αi, i ∈ {1, . . . , len(α)}
of Type-G problem (δ, γ, ν, τ, α, fr, ftest, fm, fc, π) has an in-

teger value that represents the number of new candidate so-

lutions that will be added to the working population in each

step respectively in each iteration of the steps listed in the

definition of a G-algorithm (Algorithm 4 (page 53)). Since a

problem scenario γ′ for meta problem δ′ is a vector of con-

straints on the solutions of the meta problem (that is, con-

straints on the values of the internal parameters of the given

Type-G problem), it may, without loss of generality, be as-

sumed that all problem scenarios for all meta problems are

identical, and further that every such constraint is simply that

the value of the internal parameter must be nonnegative. In

fact, this assumption will align with the proposition stated

elsewhere that the constraints represented by a problem sce-

nario should be as loose as possible so as to ensure the most

thorough possible exploration of the solution space by the

evolutionary search algorithm.

11.4.3.2. Constructing Type-G Meta Problems We now

define a function that, given a problem scenario γ in Type-

G problem domain δ, returns the Type-G meta-problem sce-

nario γ′ in Type-G meta-problem domain δ′, i.e., the problem

of finding an optimal choice of the values of the internal pa-

rameters of g (the Type-G problem of finding an optimal so-

lution for the given problem scenario γ).

Definition 140:
Fnew-g : Θ×G→ G �
∀(θ ∈ N

len(α), g = (δ, γ, ν, τ, α, fr, ftest, fm, fc, π)
) ∈

Θ×G,

Fnew-g(θ, g) = (δ, γ, ν, τ, θ, fr, ftest, fm, fc, π).

Fnew-g, given a Type-G problem g and a vector θ representing

a choice of the values of the internal parameters of g, returns

a new Type-G problem identical to g except that g’s internal

parameters are replaced with θ. Note that Θ, the set of all per-

missible solutions for problems of Type G, includes permis-

sible solutions for Type-G meta problems, and thus, a vector

θ ∈ N
len(α) representing a choice of the values of the inter-

nal parameters of g, and representing, therefore, a permissi-

ble solution of the Type-G meta problem, belongs to Θ.

Definition 141:
FMETA ⊆ GG � f ∈ FMETA ⇒
∀g = (δ, γ, ν, τ, α, fr, ftest, fm, fc, π) ∈ G,
g′ = (δ′, γ′, ν′, τ ′, α′, f ′r, f

′
test, f

′
m, f

′
c, π

′) = f(g) ⇔
1. δ′ is the meta problem of optimizing the Type-G prob-

lems for solving problem scenarios in δ,

2. γ′ ∈ δ′ is the meta-problem scenario of optimizing g,

3. τ ′ = τ ,

4. f ′r ∈ Frandomselection(δ
′, γ′),

5. f ′test = ftest ◦ fg-execute ◦ Fnew-g,

6. f ′m ∈ Fmutation(δ
′, γ′),

7. f ′c ∈ Fcrossover(δ
′, γ′).

A function f that belongs to the set FMETA will accept as in-

put a Type-G problem g and return as output another Type-G

problem for solving the meta problem of finding an optimal

choice of the values of the internal parameters of g.

A number of observations apply to the above definition

in relation to its complexity, particularly as to its use in opti-

mizing a G� problem as described below (Subsection 11.4.5).

The complexity arises mainly from the definition of the fit-

ness function f ′test, which is the composition7 of three other

functions. In the Type-G meta problem g′, the fitness func-

tion f ′test is defined as g’s fitness function, ftest, applied to the

7 In mathematics, “function composition” (indicated by the symbol ◦)
refers to the use of the output of one function as the input for another.
See Definition 14 (page 19).

55

11.4 The G� Problem 11 APPENDIX B. THE GENERALIZED ALGORITHMS AND METHODS

optimal solution obtained by executing Algorithm 4 against

the modified version of g, i.e., the version of g obtained by

replacing the existing choice of the values of g’s internal pa-

rameters, α, with θ, the given candidate choice of the val-

ues of the internal parameters of g. Thus, since the execution

of Algorithm 4 against the modified version of g takes place

during the process of running the fitness function of the Type-

G meta problem, this fitness function does the heavy lifting

in executing Algorithm 4 against a Type-G meta problem, as

will be explained in Subsection 11.4.5.

While the insight gained in Section 10.5 (page 49) into the

effect of changing the value of any given internal parameter

may be relevant to Type-G problems, we do not pursue the

confirmation of the relevance by modeling the performance

of the G-algorithm (Algorithm 4). Instead, it can be noted

that a direct approach would consist of the immediate appli-

cation of some f ∈ FMETA, where, ∀g ∈ G, the optimal

choice of the values of the internal parameters of g is sim-

ply

fg-execute(f(g))

An extension of this approach will be described in Subsec-

tion 11.4.5 relative to a chain of Type-G meta problems.

11.4.4. The G� Problem: A Chain of Type-G Meta
Problems

We proceed to consider the generalization of the concepts

addressed in the main body of this paper, namely, the prob-

lem of (1) how to choose the values of the internal param-

eters of the Type-G problem to maximize the performance

of the G-algorithm in a fielded system, (2) how to optimize

the internal parameters of the Type-G problem of optimizing

that Type-G problem, (3) how to optimize the Type-G prob-

lem that does this, etc., indefinitely. We refer to this problem

as the G� problem. Note that its rather abstract underlying

idea will not preclude a treatment of the G� problem support-

ing practicality and feasibility.

Definition 142 (G� Problem):
G* ⊆ Ξ*(G) � ξ ∈ G* ⇒

1. ∃g ∈ G � g = ξ0,

2. ∃f ∈ FMETA �
∀j ∈ {1, . . . , len(ξ)− 1}, ξj = f(ξj−1)

G* is the set of all possible G� problems. Each element ex-

cept the first element of the sequence ξ ∈ G* is a Type-G

meta problem of optimizing its predecessor. ξ0, the first el-

ement of ξ, is a Type-G problem representing the base case
for the recursive process that takes place when one of its suc-

cessors in ξ is solved. By Definition 136, ξ0 represents some

Type-G problem g = (δ, γ, ν, τ, α, fr, ftest, fm, fc, π) ∈ G
for finding an optimum solution for problem scenario γ ∈ δ.

11.4.5. Optimized G� Problem

Definition 143 (Optimized G� Problem):
A G� problem ξ ∈ G* is said to be optimized if and only

if Algorithm 4 has been run against the Type-G meta prob-

lem ξlen(ξ)−1, resulting, recursively, in the replacement, in

Type-G problems ξj , j ∈ {0, . . . , len(ξ) − 2}, of the val-

ues of their internal parameters with the optimal values com-

puted by recursively executing Algorithm 4 against each ele-

ment of ξ starting with its last element (ξlen(ξ)−1).

11.4.5.1. Explanation of Recursive Optimization in the
G� Problem Algorithm 4 is recursive by virtue of the defi-

nition of the fitness function of a Type-G meta problem (see

remarks under Definition 141). This fact enables the opti-

mization of the G� problem, where the entire chain (i.e.,

sequence) of Type-G meta problems described in Defini-

tion 142 will be optimized by application of the algorithm

to the last element of the chain.

By way of further explanation, note that some prescribed

function f ∈ FMETA, given some element ξi in the chain (se-

quence) ξ as input, will have produced the Type-G meta prob-

lem

ξi+1 = (δ′, γ′, ν′, τ ′, α′, f ′r, f
′
test, f

′
m, f

′
c, π

′)

for optimizing ξi. By Definition 141, γ′ ∈ δ′ is the meta-

problem scenario of optimizing target Type-G problem ξi.
Applying Algorithm 4 to ξi+1 will take the following course:

1. Step 1 executes the random-selection function f ′r and

returns Π, a set of candidate solutions of problem sce-

nario γ′, the problem of optimizing the choice of the in-

ternal parameters of Type-G problem ξi. Thus, Π is a set

of vectors representing possible such choices, i.e., solu-

tions of problem scenario γ′.

2. Step 2a executes the function Wsteps with the ordered

pair (Π, ξi+1) as input and then sets Π′ to the value re-

turned. As Wsteps executes, the composite function f ′test
will be used to test the candidate solutions individu-

ally. Since by Definition 141, f ′test executes the func-

tion fg-execute with the Type-G problem ξi as the input,

then, by Definition 139, Algorithm 4 will itself be in-

voked again part-way through the steps of the self-same

algorithm, thus resulting in recursion.

Step 2 of Algorithm 4 progresses through successive gen-

erations of candidate solutions, ultimately ending with either

the expiration of the allowed run time ν′ or the discovery of

a “good enough” solution according to the parameter τ ′, and

the best solution found during this iterative search process is

returned at the termination of step 2.

It may be helpful to elaborate somewhat on the use, in the

definition of the G� problem (Definition 142), of the function

56

11.4 The G� Problem 11 APPENDIX B. THE GENERALIZED ALGORITHMS AND METHODS

f ∈ FMETA, which, in constructing ξ, produces, for each el-

ement ξi, the Type-G meta problem ξi+1 that will be solved

via Algorithm 4. The key part of the definition of f ∈ FMETA
is the composite function f ′test. When invoked during the ex-

ecution of the function Wsteps against the set Π of candidate

solutions, f ′test first applies the function Fnew-g to the candi-

date Type-G problem given as input along with the candidate

solution (a choice, π (see step 2b of Algorithm 4), of the val-

ues of the Type-G problem’s internal parameters), producing

as output a modified version of the target Type-G problem,

with π in place of the original vector α of internal parame-

ters. This output from Fnew-g (i.e., the modified version of the

target Type-G problem) is used next (according to the defini-

tion of f ′test as the composite function ftest ◦fg-execute ◦Fnew-g)

as input to the function fg-execute, whose output (the optimal

solution returned from running Algorithm 4 against the mod-

ified version of the target Type-G problem) is used as input to

the fitness function ftest, which is the fitness function of the

target Type-G problem itself.

But the recursive nature of Algorithm 4, when used on a

member of a chain of Type-G meta problems, means that the

above sequence of operations continues until the base case
is reached in the chain (i.e., the first element of the chain),

where the target Type-G problem, by the definition of a G�

problem (Definition 142), is not a Type-G meta problem (i.e.,

the problem scenario is not to optimize a predecessor in ξ)

and, in completing the recursive process, the fitness of the so-

lution returned from applying Algorithm 4 against it is used

in following in reverse order the progression of operations

that took place in the recursive chain ending at the base case.

11.4.5.2. Limits on Run Time Optimizing a G� problem

ξ ∈ G*, involving recursion during the execution of Algo-

rithm 4, in which each new recursive step involves the full

evolutionary search process that itself is a repetitive process

of evolving a population of solutions through perhaps many

generations, is easily seen to be very demanding computa-

tionally—the more so the longer the sequence ξ.

From an implementer’s point of view, an early question

would concern how much run time to allow for the optimiza-

tion of ξ (see Definition 143). That is, suppose i ∈ N
+ is the

index of a Type-G meta problem in ξ, and

ξi = (δ′, γ′, ν′, τ ′, α′, f ′r, f
′
test, f

′
m, f

′
c, π

′)

Then what value should ν′ (i.e., ξi[3]) have?

Experience with an evolutionary-search application for a

given problem domain will eventually teach the practitioner

the empirical fact that runs of the application will process

some typical number kgen of generations before reaching the

optimal solution. For argumentation purposes, we assume

that the idea of the existence of such a typical value applies

in the case of a G�-problem optimization. Thus, if

ξ0 = g = (δ, γ, ν, τ, α, fr, ftest, fm, fc, π) ∈ G

(where ν, the run time of g (or at least its typical value), will

also be learned from experience) then the run time expected

for the execution of the Type-G meta problem ξi will be given

by the relation

ν′ = kigenν (9)

Hence, given the simplifying assumption that each evolu-

tionary search will (with fixed computational resources) pro-

cess kgen generations before reaching the optimal solution,

the conclusion is that the computational burden increases ex-

ponentially with the size of the G� problem ξ ∈ G* (i.e., ex-

ponentially with the length of ξ).

The assumption regarding kgen could be modified to re-

flect that undoubtedly the “typical” number of generations

for the runs of the application program varies as a function

of the index i into the sequence ξ. That is, kgen : N → N. If

we now consider that the allowed run time is a sequence ν
(where νi = ξi[3]) we can restate Equation 9:

νi+1 = kgen(i+ 1)νi (10)

(See Revisions and Changes Digest item 29, page 67.)

Despite the fact that no principles support the a priori
choice of an optimal vector of the values of the internal pa-

rameters of the base case (i.e., for the Type-G problem ξ0),

we must allow for the possibility that Type-G meta problems

may all have the same optimal vector of the values of their in-

ternal parameters. In this circumstance, after computationally

establishing this optimal vector for ξ1, it would render unnec-

essary any further computation to optimize any of the subse-

quent Type-G meta problems in ξ. Therefore, the question

of run-time limits becomes moot in this circumstance, but

whether this circumstance actually prevails in general would

have little chance of resolution short of experimentation, and

so in the meantime it must be categorized as speculative.

Such experimentation could hardly be conducted in the

first place upon any assumption other than the one repre-

sented by Equation 10 (absent any theoretical or a priori
knowledge to the contrary) and thus is established the use-

fulness of the foregoing analysis.

11.4.6. Practical Stopping Point in the G� Algorithm

As indicated previously (Subsection 11.4.3 (page 54)), how-

ever, the purpose of having an optimized G� problem is not

to have some lengthy sequence of Type-G meta problems op-

timized, for which the necessary computational power would

(as shown in the foregoing paragraphs) increase exponen-

tially with the length of the sequence. Indeed, reflecting the

author’s judgment, the requirement for practical operational

57

11.5 Overall Optimization: G�� Problem 11 APPENDIX B. THE GENERALIZED ALGORITHMS AND METHODS

use would be much more modest (see further remarks in

Paragraph 11.5.1.3), and would afford adequate advantage

with the sequence ξ having length 2, with a single Type-G

meta problem ξ1 to optimize the Type-G problem ξ0 for solv-

ing a given target problem scenario. Thus, executing Algo-

rithm 4 against Type-G problem ξ1 would optimize the in-

ternal parameters of the Type-G problem ξ0, supporting the

practical approaches to be described next for the use of the

above G� method and algorithm.

11.5. Overall Optimization: G�� Problem

11.5.1. The Final Issue

The final issue to be addressed relative to the generalization

of the concepts covered in the main body of this paper per-

tains to the practicality of the G� method and algorithm for

operational use.

11.5.1.1. Internal Parameters Estimation Functions
Various relevant considerations were presented in Sec-

tion 7 (page 40) in discussing approaches for obtaining

efficient estimation functions. In the present context, an es-

timation function, given a problem scenario, would return

an estimated optimal choice of the values of the inter-

nal parameters of the Type-G problem for solving the

given problem scenario. (In the earlier discussion, the con-

text was the NASA space-data communications scheduling

problem, whereas here we are in a more abstract discus-

sion of optimization of a Type-G problem.)

11.5.1.2. Concerning the Goal As in Section 7 (page 40),

our goal in the present section is to maximize the practicality

of the overall general optimization methods implemented in

fielded systems. We address the problem, which we will refer

to as the G�� problem, of devising a means for efficiently esti-

mating an optimal choice of the values of a Type-G problem’s

internal parameters for any given new problem scenario so

that it will not be necessary each time to use the G� algorithm

to perform the whole iterative (and computationally expen-

sive) process of solving the internal parameter optimization

problem. Clearly, the overall optimization problem is compu-

tationally very demanding, and consequently the method and

algorithm described above for solving the G� problem would

not be advantageous to use operationally for every new prob-

lem scenario. (To be sure, such a burdensome strategy would

quickly be seen to be counterproductive, since an optimal so-

lution for the given problem scenario would be reached any-

way during the very first iteration of the effort to solve the

G� problem, thus obviating any additional effort in that di-

rection.) However, the G� method and algorithm will support

the goal of solving the G�� problem of deriving an estima-

tion function that, given an arbitrary problem scenario for the

given target problem domain δ ∈ Δ, would, at low cost, re-

turn an estimated optimal choice of the values of the inter-

nal parameters of the Type-G problem for solving that prob-

lem scenario. The objective, then, is to specify an estimation

method/algorithm that uses (abstracted and computationally

inexpensive) information about the given problem scenario

itself.

11.5.1.3. A Judicious Stopping Point Although the

method and algorithm specified above for addressing the G�

problem ξ ∈ G* (see Definition 142) allowed for any ar-

bitrary number of Type-G meta problems listed in the

sequence ξ, the author considers (as indicated in Subsec-

tion 11.4.6) that, for practical operations using the meth-

ods and algorithms disclosed herein, the length of ξ
would be 2, so that Type-G problem ξ1 (i.e., the last ele-

ment of ξ) would be the Type-G meta problem for optimiz-

ing ξ0 for solving the initial problem scenario ξ0[2] (note

that ξ0 is a tuple, whose second element, ξ0[2], is a prob-

lem scenario γ). Indeed, upon practical considerations of

computational feasibility as opposed to purely theoret-

ical considerations, it is unlikely that any value greater

than 1 for the index into ξ could be entertained at all, and

so in this sense the G� algorithm is academic. In the dis-

cussion that follows, it will be included in the process

for implementing the G�� algorithm, with the understand-

ing that, in use, there would be only one level of Type-G

problem optimization (corresponding to a single applica-

tion of Type-G problem optimization) representing a kind of

minimal use (and perhaps the only feasible use, as will be ex-

plained) of the G� algorithm).

The question of the efficiency of the Type-G problem-

optimization process would itself involve the question of how

to set the values of the internal parameters of ξ1, the Type-G

meta problem for solving the meta-problem scenario ξ1[2].
This is an open question, although, since all of the Type-

G meta problems have identical problem scenarios (i.e., all

of the constraints they specify are, by assumption (see Para-

graph 11.4.3.1), the same), it cannot be dismissed that (as dis-

cussed in Paragraph 11.4.5.2) the optimal choice of the val-

ues of the internal parameters of all of the Type-G meta prob-

lems would be the same or at least nearly the same. Whether

a substantial improvement in performance might occur for

small changes in the values of the internal parameters is not

known, but seems unlikely over a wide range of possible

choices; in other words, performance may be insensitive to

the choice. In that case, the effort to optimize the Type-G

meta problems listed in ξ would have a correspondingly low

practical justification. As to what should be the actual (op-

timal) choice of the values of the internal parameters of a

58

11.5 Overall Optimization: G�� Problem 11 APPENDIX B. THE GENERALIZED ALGORITHMS AND METHODS

Type-G meta problem, there would be little a priori guidance

that could be offered to a developer beyond that afforded by

Appendix A (page 44) combined with trial-and-error experi-

ence. (See Revisions and Changes Digest item 28, page 67.)

11.5.1.4. Challenges From the Real World It should be

well noted that real-world problem domains of Type G typ-

ically entail significant complexities that inevitably would

translate into challenges in using the methods presented in

this appendix. An estimation function as described above,

even if derivable in principle, may be difficult to obtain

within realistic limits on computing resources (see also the

remarks in Section 7.4 (page 41) and Subsection 11.4.6

(page 57)).

The approaches to be described for solving the G�� prob-

lem will produce results (i.e., will produce instances of es-

timation functions), but the approaches assume a selection

of real-world input data to which, in effect, a model will

be fitted (see the outline of the approach given in Subsec-

tion 11.4.3 (page 54)). The accuracy of the derived estima-

tion functions will be directly related not only to the shrewd-

ness of the choices that determine the form or architecture

of the model, but also to the selected input data (the train-

ing data) to which the model will be fitted, i.e., the number

of precomputed data points and their distribution across the

solution space. The required accuracy of the derived estima-

tion functions may dictate a significant number of precom-

puted data points, and correspondingly significant comput-

ing resources [24].

Further, since the accuracy metric undoubtedly would ex-

hibit asymptotic behavior in relation to the number and dis-

tribution of precomputed data points, and since the asymp-

tote is not known in advance, even more computation would

be needed to gain the assurance of any prescribed accu-

racy. Thus, the real-world challenges in using the methods

to be described would be considerable. However, the meth-

ods can be expected to achieve the objective mentioned in

Paragraph 11.5.1.2 (page 58) given a reasonably tame rela-

tionship between the independent variable (the problem sce-

nario (or rather its characterization (see Paragraph 11.5.1.5)))

and the dependent variable (the optimal choice of the values

of the internal parameters of the Type-G problem for solv-

ing the problem scenario). The tameness of this relationship

may be expected to be target-problem dependent, but an in-

dependent means of determining the tameness in advance is

unknown—although, reasonably, some probabilistic method

would be strongly indicated (if not unavoidable).

11.5.1.5. Characterization Functions The approaches

described in Section 7 relied upon the concept of a

problem-scenario characterization function—which is a con-

cept also involved in the approaches described in the fol-

lowing paragraphs concerning mechanisms for estimating

optimal choices of the values of the internal parame-

ters of Type-G problems. The characterization function is

intended to be a computationally inexpensive means of dis-

tinguishing between problem scenarios in terms that are

relevant to the efficiency of the evolutionary search meth-

ods that will be used in solving arbitrary problem scenarios

in the given Type-G problem domain. The efficiency of the

search methods that we disclose herein is related to (among

possibly many other things) the sizes of the data struc-

tures that represent the elements of the problem scenario: by

Definition 123 (page 50), a problem scenario is a finite se-

quence each element of which is a finite data structure. In the

case of the problem domain of scheduling space-data com-

munications (see Section 7 (page 40)), each of these data

structures was a set, and the sizes of all of the data struc-

tures listed in a given problem scenario were used as the

elements of the vector returned by the characterization func-

tion (Definition 122 (page 40)). Partly for reasons of

tractability and operational efficiency, we elect to use a simi-

lar scheme here.

We proceed by specifying, in the context of Type-G

problem domains, the concept of a problem scenario-

characterization function, noting from Definition 128

(page 50) that, for a given target problem domain δ of Type

G, there exists a positive integer kp = Δdim(δ) such that

all problem scenarios γ ∈ δ have length kp, and, thus, ev-

ery problem scenario γ ∈ δ has a kp-dimensional characteri-

zation

c ∈ N
kp

For the S�� problem, the characterization was defined so that

∀j ∈ {1, . . . , kp}, cj was the size of the finite data structure

γj (see Definition 122 (page 40)). For the generalized prob-

lem of Type G, the definition of the characterization func-

tions must be somewhat generalized and must accommodate

Type-G meta problems.

Definition 144 (Problem-Scenario-Characterization Func-

tion for Given Problem Domain):
Λ: Δ → ℘

(
DΔ×Γ

0

)
�

∀δ ∈ Δ, λ ∈ Λ(δ) ⇒ ∀γ ∈ δ, λ(δ, γ) ∈ N
Δdim(δ)

Λ(δ) returns a set of characterization functions for the prob-

lem domain δ.

11.5.2. Regression Methods for Solving the G�� Problem

Deriving an estimation function festimation that returns an es-

timate of the optimal choice of the values of the internal pa-

rameters of a Type-G problem may be accomplished through

the application of some form of regression technology [16].

59

11.5 Overall Optimization: G�� Problem 11 APPENDIX B. THE GENERALIZED ALGORITHMS AND METHODS

(Use of the term “regression” herein is intended to encom-

pass the general category of regression-analysis technolo-

gies.) (See Revisions and Changes Digest item 32, page 67.))

The estimation function to be derived is imagined (with

the risk of oversimplification) as a hypersurface whose do-

main (consisting of the values of the independent variable) is

the set of all possible problem scenarios (or, rather, their char-

acterizations) and whose codomain (consisting of the val-

ues of the dependent variable) is the set of estimated optimal

choices of the values of the internal parameters of the Type-G

problems for solving problem scenarios in target problem do-

main δ. An applicable modeling approach as identified above

represents a kind of hypersurface-fitting technique, as men-

tioned in the discussion in Subsection 7.2 (page 40), which

concerned a method for scheduling-algorithm optimization.

It should be reiterated that applying any regression tech-

nology would be subject to cautions similar to the ones stated

earlier (Subsection 7.4 (page 41) and Paragraph 11.5.1.4

(page 59))).

Regardless of which regression technology is employed,

the derived estimation function would have value in an op-

erational system in terms of maximizing the performance

of the G-algorithm. For any given problem scenario to be

solved by the system, the values of the internal parameters of

the Type-G problem would first be adjusted according to the

estimate that would be generated by the derived estimation

function. The process for using the derived estimation func-

tion operationally will be further specified in Subsection 11.7

(page 64).

The objective of applying a regression technology to a G��

problem is to derive an estimation function festimation from a

given known data set Q ⊆ D2
0 , where for each (c, e) ∈ Q, c

is a characterization of a problem scenario and e is a corre-

sponding calculated optimal choice of the values of the inter-

nal parameters of the Type-G problem for solving the prob-

lem scenario.

11.5.3. Functions That Model a Given Data Set

It is assumed that a regression-analysis technology will have

been selected for application in solving G�� problems. Solv-

ing a given G�� problem would consist of applying the se-

lected regression analysis technology to an appropriate pre-

computed data set Q to derive a function that models Q. The

derived function may then be used to estimate the value of

the dependent variable for any given value of the indepen-

dent variable. The value of the independent variable for a

given G�� problem would be a tuple representing the char-

acterization of the given problem scenario, and the value of

the dependent variable would be a tuple representing the es-

timated optimal choice of the values of the internal param-

eters of the Type-G problem for solving the given problem

scenario.

Definition 145 (Set of Regression Analysis Technologies):
Ar = {a : a is a regression-analysis technology}.

It will be understood that regression-analysis technology

aregr ∈ Ar has been selected for use in solving G�� prob-

lems.

Definition 146 (Functions That Model a Given Data Set):
A function f ∈ DD0

0 is said to model Q ⊆ D2
0 if and only

if f has been derived through the application of regression-

analysis technology aregr to Q and

(c, e) ∈ Q⇒ f(c) = e

Note that f in the above definition is a subset ofD2
0 . (See Re-

visions and Changes Digest item 30, page 67.)

Definition 147:
Υ: ℘(D2

0) → DD0
0 � ∀Q ⊆ D2

0,Υ(Q) is a model of Q
derived by applying regression-analysis technology aregr to

the data set Q.

Thus, if Υ(Q) models Q, then ∀(c, e) ∈ Q,Υ(Q)(c) = e.

Definition 148 (Training-Data Sets):
D : Δ× ℘(Γ)× codomain(Λ) → ℘

(
℘(D2

0)
) �

∀
(
δ, B ⊆ δ, λ ∈ Λ(δ)

)
∈ Δ× ℘(Γ)× codomain(Λ),

∀Q ∈ D(δ, B, λ), (c, e) ∈ Q⇒
∃γ ∈ B and ∃ optimized G� problem ξ ∈ G* �

1. ξ0 = (δ, γ, •, •, α, •, •, •, •, •) ∈ Gscenario(δ, γ),

2. c = λ(δ, γ), and

3. e = α = ξ0[5]

(See Revisions and Changes Digest item 31 (page 67).)

The functionD returns the set of all possible training-data

sets for G�� problems (to be described in the next section).

Each such data set Q will be assumed to comprise actual

calculated data. Each member of Q, then, is an ordered pair

(c, e), where c is the calculated characterization of some re-

alistic/actual problem scenario drawn from the given set B,

and, for a corresponding G� problem ξ that has been opti-

mized by running Algorithm 4 (page 53) (see Definition 143

(page 56)), e is the optimal choice of the values of the inter-

nal parameters of the Type-G problem ξ0. It is assumed that

each such training-data set Q can be modeled by applying to

Q the selected regression-analysis technology aregr. The de-

rived model is identified as an estimation function that, given

the characterization of an arbitrary problem scenario γ in the

given problem domain δ, will return the estimated optimal

choice of the values of the internal parameters of the Type-G

problem for solving γ.

60

11.6 Implementation Process 11 APPENDIX B. THE GENERALIZED ALGORITHMS AND METHODS

11.5.4. The G�� Problem

Definition 149 (G�� Problem):
A tuple (

δ ∈ Δ, B ⊆ δ, λ ∈ Λ(δ), festimation

)
is said to be a G�� problem if and only if

1. each member of B is an actual/realistic problem sce-

nario,

2. ∃Q ∈ D(δ, B, λ) � festimation = Υ(Q).

11.5.5. The G�� Algorithm Employing
Regression-Analysis Technology

The essential steps in applying a regression-analysis ap-

proach in the G�� problem are as follows:

Algorithm 5 (G�� Algorithm Employing Regression Analy-

sis):
Given:

• δ ∈ Δ,

• B ⊆ δ is a set of actual/realistic problem scenarios se-

lected from the set δ,

• λ ∈ Λ(δ).

(Note: The results of running an implementation of the

present algorithm are highly dependent on the num-

ber and distribution of the scenarios in the training-data

set B. If the accuracy of the estimation function gen-

erated by the implementation is not deemed adequate,

then these scenarios would need to be revised to im-

prove their solution-space coverage and used in a fresh

rerun.)

Perform the following steps:

1. Let Q ∈ D(δ, B, λ).

2. Perform regression analysis using the training-data set

Q, resulting in the determination of a function that best

fits the members of Q. That is, let festimation = Υ(Q).

3. If step 2 (the regression-analysis step) succeeds, then

form the G�� Problem

(δ, B, λ, festimation)

and exit indicating success. If regression analysis fails,

then exit indicating failure, calling upon the user to al-

ter the given set B of actual/realistic problem scenar-

ios (e.g., by increasing their number or variety) (noting

that this alteration gives an altered G�� problem) and re-

run the algorithm.

Step 1 above will, in general, involve significant computation

of a recursive nature using Algorithm 4 (page 53) to derive

the data set Q (see Definition 148 (page 60)).

11.6. Implementation Process

Implementation of the generalized methods and algorithms

described in this Appendix may be straightforward (not to

say trivial) for some problem domains but likely would be

challenging for others. For the sake of completeness of this

disclosure, we now delineate a nominal implementation pro-

cess, which would be applicable to all implementation ef-

forts, but which does not preclude appropriate variations or

adaptations for particular cases.

11.6.1. The Basic Implementation Alternatives

The minimum implementation effort would have the goal of

building a system that implements a Type-G problem

g =
(
δ, γ, ν, τ, α, fr, ftest, fm, fc, π

)
∈ G

configured initially with arbitrary (non-optimized) choices of

the values of the internal parameters α for solving the given

problem scenario γ ∈ δ. A more ambitious possible effort

would have this minimal implementation as one goal, and

would have the further goal of implementing a system for

solving the G�� problem for the same problem domain δ ∈ Δ.

In either case, the implemented system will produce opti-

mal solutions for problem scenarios in the target domain δ.

The system developed in the more ambitious possible effort

mentioned above would be expected to perform more effi-

ciently in the routine operations mode—at the cost of the ef-

fort to solve the G�� problem to derive the estimation function

(see Subsection 11.5) for estimating, for each given problem

scenario γ, the optimal choice of the values of the internal pa-

rameters of g ∈ Gscenario(δ, γ).

The general implementation approach that will be de-

scribed below in detail is first to implement modules sepa-

rately, and then to integrate those modules, together with all

other necessary modules (e.g., interfaces with users and an-

cillary systems), into the overall fielded system, with appro-

priate testing, documentation, etc.

11.6.2. The First Implementation Alternative (Basic
Implementation of the G-Algorithm)

In the first alternative (i.e., the basic implementation of the

G-algorithm), the implementation steps follow the first few

steps enumerated in the G-algorithm specification (Algo-

rithm 4 (page 53)). A subsystem that is capable of creating

and solving a Type-G problem

g = (δ, γ, ν, τ, α, fr, ftest, fm, fc, π) ∈ G

would be constructed by means of the following process:

61

11.6 Implementation Process 11 APPENDIX B. THE GENERALIZED ALGORITHMS AND METHODS

Process 2 (Process for Implementation, First Alterna-
tive (Basic Implementation for Creating and Solving a
Type-G Problem)):

Given:

• δ ∈ Δ

• γ ∈ δ

Perform the following steps:

1. Implementation steps for a subsystem for creating a
Type-G problem for solving γ ∈ δ.

(a) Develop a module that supports the cre-

ation/setting of—

i. ν ∈ N
+, a value that represents the run-time

limit in units of seconds.

ii. τ ∈ R, a small nonnegative value to repre-

sent a policy or judgment as to how close to

perfect a solution must be (i.e., how close a

solution’s fitness must be to unity) to be con-

sidered “good enough” to exit the algorithm.

This value normally would be small enough

(0, say) to ensure that the algorithm always

ran for the maximum allowed run time ν.

iii. α ∈ D0, the vector representing the user’s

initial choice of the values of the internal pa-

rameters of g, with len(α) = Δdim(δ).

(b) Develop a module that embodies a random-

selection function fr ∈ Frandomselection(δ, γ)

(c) Develop a module that embodies a fitness func-

tion ftest ∈ Ffitness(δ, γ).

(d) Develop a module that embodies a genetic-

mutation function fm ∈ Fmutation(δ, γ)).

(e) Develop a module that embodies a genetic-

crossover function fc ∈ Fcrossover(δ, γ)).

(f) Develop a module that supports the creation of a

place-holder data structure π representing an ar-

bitrary member of Θscenario(δ, γ).

(g) Develop a module that supports the creation of

the data structure

g = (δ, γ, ν, τ, α, fr, ftest, fm, fc, π) ∈
Gscenario(δ, γ)

according to Definition 136 (page 53) and Defini-

tion 137 (page 53)

2. Implementation steps for a subsystem embodying
Algorithm 4:

(a) Develop a module that embodies the function

Wsteps according to Definition 138 (page 53), in-

corporating the module developed in step 1g.

(b) Develop a module to capture Π, the output of

function fr when given the input equal to∑
j∈{1,...,len(α)}

αj

.

(c) Develop a module to capture Π′, the out-

put of function Wsteps (the module devel-

oped in step 2a) when given the ordered pair

(Π, g) as input, where Π and g are the out-

puts of the modules developed in steps 2b

(for creating a random-selection function

fr ∈ Frandomselection(δ, γ) (for a given (δ, γ)) and

1g (for for creating a Type-G problem), respec-

tively.

(d) Develop a module to find a member π′ ∈ Π′ �
ζ ∈ Π′ ⇒ ftest(ζ) ≥ ftest(π

′), where Π′ is the

set captured by executing the module developed

in step 2c.

(e) Develop a module that sets π to the output, π′,
from executing the module developed in step 2d.

(f) Develop a module that sets Π to the output, Π′,
from executing the module developed in step 2c.

(g) Develop a module that performs the test ft(π) <
1 + τ and tests whether the elapsed run time ex-

ceeds ν, and if either test is affirmative, then exits,

returning the value π, and, if otherwise, then re-

sumes execution of the sequence of modules de-

veloped in steps 2c through 2g.

3. Develop a module that embodies the function fg-execute,

which in turn will incorporate the module embodying

Algorithm 4 developed in step 2.

4. Develop a module that (a) executes, with g ∈ G as in-

put, the module embodying the function fg-execute devel-

oped in step 3 for a given Type-G problem and (b) re-

turns the optimal solution of g.

5. Perform system integration and testing of the modules

developed as specified above, along with all other nec-

essary modules (e.g., user interfaces).

Once implemented, the fielded system would be used op-

erationally according to the following straightforward pro-

cess:

Process 3 (Process for Operational Use of Implementa-
tion Under First Alternative (Basic Implementation for
Creating and Solving a Type-G Problem)):

Given:

• δ ∈ Δ

• γ ∈ δ

62

11.6 Implementation Process 11 APPENDIX B. THE GENERALIZED ALGORITHMS AND METHODS

Perform the following steps:

1. Prepare all input data required for a run of the system

developed in Process 2 (page 62) (including the target

problem scenario and other inputs as required by the G-

algorithm specification (Algorithm 4 (page 53))).

2. Initiate a run of the system with the stipulated inputs

and capture output upon termination of run. The out-

put is an optimal solution for the given problem sce-

nario γ (see remarks in Section 2.4.7 on page 15 con-

cerning the concept of “optimum”).

11.6.3. The Second Implementation Alternative
(Implementation of the G�� Algorithm)

The second implementation alternative incorporates all of the

steps in the first alternative as described above (Process 2

(page 62)), which produces an implementation of a system

that can create and solve a Type-G problem

(δ, γ, ν, τ, α, fr, ftest, fm, fc, π) ∈ G

The additional steps required in the second implementation

alternative will be described next, and have the objective of

maximizing the performance of the fielded system over the

broad range of possible problem scenarios. This objective

is achieved by implementing the G�� algorithm (see Algo-

rithm 5 (page 61), which incorporates the G� problem opti-

mization (see Definition 143 (page 56)), which, in turn, in-

corporates the G-algorithm (Algorithm 4 (page 53)).

It is necessary, then, to describe implementation steps for

the G� problem optimization, as well as the G�� algorithm).

Process 4 (Process for Implementation, Second Alter-
native (Implementation of G�� Algorithm (Algorithm 5
(page 61))):

Given:

• δ ∈ Δ

Perform the following steps:

1. Implementation Steps for Support-Modules for
Type-G Problem Optimization. Supporting mod-

ules in an implementation of a Type-G problem-

optimization function will be constructed by means of

the following steps:

(a) Develop (see implementation steps specified in

Process 2 (page 62)), or incorporate, a module

that supports the creation and solving of a Type-G

problem

g = (δ, γ, ν, τ, α, fr, ftest, fm, fc, π) ∈ G.

Note that this module incorporates (from step 3

of Process 2) a module that implements the G-

algorithm-execution function fg-execute (see Defi-

nition 139).

(b) Develop a module that embodies the function

Fnew-g (see Definition 140 (page 55))

(c) Develop a module that embodies the definition of

a function in the set FMETA that, given a Type-G

problem

g = (δ, γ, ν, τ, α, fr, ftest, fm, fc, π) ∈ G

returns a Type-G meta problem g′ (see Defini-

tion 141 (page 55) in Paragraph 11.4.3.1).

2. Implementation Steps for a Subsystem that Sup-
ports the Creation of a Module that Embodies the
G� Problem Optimization. A subsystem that supports

the creation and optimization of a G� problem ξ ∈ G*
(Definition 142) (where len(ξ) = 2, in accord with

the position taken in Subsection 11.4.6 (page 57) and

in Paragraph 11.5.1.3 (page 58)) will result from inte-

grating modules constructed by means of the following

steps:

(a) Develop or incorporate a module that implements

the G-algorithm-execution function fg-execute (see

step 3 of Process 2).

(b) Develop a module that creates the G� problem

ξ ∈ G*, with ξ0 = g, in accordance with Defi-

nition 142 (page 56), where

g = (δ, γ, ν, τ, α, fr, ftest, fm, fc, π) ∈ G
is a given Type-G problem. This module incorpo-

rates the module developed in step 1c, which is

an implementation of a function in FMETA, which

in turn incorporates the module developed or in-

corporated in step 2a for the function fg-execute.

(c) Develop a module that incorporates the module

developed in step 2 of Process 2 and supports

the execution of Algorithm 4 against the Type-G

problem ξlen(ξ)−1, which results in the optimized

version of the G� problem ξ ∈ G* (see Defini-

tion 143 (page 56)).

3. Implementation Steps for the G�� Algorithm Via
Regression Analysis. A system incorporating a

regression-analysis approach for solving a G�� prob-

lem (δ, B, λ, festimation) will be constructed by means

of the following steps:

Given:

δ ∈ Δ
Perform the following steps:

(a) Develop a module that embodies a problem-

scenario characterization function λ ∈ Λ(δ) (see

Definition 144 (page 59)).

(b) Develop a module to support the creation of

a training-data set B ⊆ δ consisting of ac-

tual/realistic problem scenarios in δ.

63

11.7 Estimation Function: Operational Use 11 APPENDIX B. THE GENERALIZED ALGORITHMS AND METHODS

(c) Incorporate a module supporting the creation of

Type-G problems for problem scenarios for the

given target problem domain δ (see step 1a above

and Subsection 11.6.2).

(d) Develop or incorporate a module that em-

bodies the function D (see Definition 148

(page 60)), which incorporates the module de-

veloped in step 2c for optimizing a G� prob-

lem.

(e) Develop or incorporate a module that em-

bodies the function Υ (see Definition 147

(page 60)), which implements the regres-

sion analysis technology aregr (see explanation

below Definition 145 (page 60)), and which in-

corporates the modules developed in steps 3a and

1a.

(f) Develop a module that executes the module de-

veloped in step 3e and captures the output (i.e.,

the function festimation = Υ(Q), where Q ∈
D(δ, B, λ)).

(g) Develop a module that

i. executes the module developed in step 3a

and retains the function λ.

ii. executes the module developed in step 3b

and retains the set B.

iii. executes the module developed in step 3d

and retains the set Q ∈ D(δ, B, λ).

iv. executes the module developed in step 3f

and retains the function festimation = Υ(Q).

v. if the regression-analysis step 3(g)iv is suc-

cessful, then constructs the G�� problem

(δ ∈ Δ, B ⊆ δ, λ ∈ Λ(δ), festimation)
and exits indicating success; otherwise, exits

indicating failure and calling upon the user

to start a new run, ensuring that the setB re-

tained from step 3(g)ii is more appropriate

in solution-space coverage.

4. System Integration. Perform system integration and

testing of the modules developed as specified above,

along with all other necessary modules (e.g., user in-

terfaces) for the final fielded system.

The final result of the implementation steps given above

would be a system consisting of (a) a subsystem by which

a Type-G problem can be used to produce optimal solutions

for any given problem scenario and (b) a subsystem by which

the optimal choice of the values of the internal parameters of

a given Type-G problem can be estimated for arbitrary prob-

lem scenarios to enable the most efficient overall possible op-

eration of the system for arbitrary problem scenarios.

For reasons similar to those articulated earlier (Sec-

tion 7.4 (page 41)), the implementation effort described

above—which invokes regression-analysis technologies—is

nontrivial and will necessarily require the involvement of ex-

perts in the selected regression technology, especially in

relation to step 3e of Process 4.

11.7. Estimation Function: Operational Use
The resulting tested and verified estimation-function imple-

mentation would become a tool for operational use within a

fielded system. The routine use of such a tool would involve

the following process:

Process 5 (Operational Use of Estimation-Function
Tool):

Given:

• G�� problem

(δ ∈ Δ, B ⊆ δ, λ ∈ Λ(δ), festimation)

created by running the subsystem that represents

the implementation of the G�� algorithm and solves

the given G�� problem (see implementation Pro-

cess 4, steps 3(g)i through 3(g)v), which results in the

implementation of an estimation function festimation).

• a problem scenario γ ∈ δ.

Perform the following steps:

1. Compute the characterization c = λ(δ, γ).

2. Run the module that creates an implementation of a G-

algorithm (see Process 2 (page 62)), resulting in an im-

plementation of

g = (δ, γ, ν, τ, α, fr, ftest, fm, fc, π) ∈ G.

3. Capture the estimation function output

e = festimation(c)
(the estimate of the optimal choice of the values of the

Type-G problem’s internal parameters for the problem

scenario γ).

4. Configure the Type-G problem g, replacing α with e:
gopt = (δ, γ, ν, τ, e, fr, ftest, fm, fc, π) ∈
Gscenario(δ, γ).

gopt is the optimal Type-G problem for solving problem

scenario γ.

5. Initiate a run of Algorithm 4 (the module developed in

step 2 of Process 2) against the implementation of gopt
and capture output upon termination of run. The output

is an optimal solution for the given problem scenario γ
(see remarks in Section 2.4.7 on page 15 concerning the

concept of “optimum”).

64

12 REVISIONS AND CHANGES DIGEST

11.8. Which Regression Analysis Algorithm?

Interesting (but not necessarily academic) future work

would, for some selected problem domain, consist of deriv-

ing an optimal-parameters-estimation function using differ-

ent regression-analysis technologies and comparing their ex-

ecution performance. The comparison would be more

meaningful and reliable if it were based on the same com-

puting resources and the same training/test data (i.e., the

same precomputed data cases (see definition of the func-

tion D (Definition 148), which specifies the set of all

possible precomputed data sets for a given G�� prob-

lem)).

11.9. Final Remarks

This appendix has described a generalization of the methods

and algorithms that were specified in the main body of this

paper, which targeted a specific problem domain (the space-

data communications scheduling problem). These general-

ized methods and algorithms are applicable to any problem

in the very large class of real-world problems that are rep-

resented by problem domains of Type G (see Definition 127

(page 50) and Subsection 11.1.3). The specifications of the

generalized methods and algorithms are sufficiently rigorous

and complete to support their implementation (as described

in Section 11.6 (page 61)) as a fielded system that efficiently

produces an optimal solution for any problem scenario in any

target problem domain of Type G.

The G� problem ξ ∈ G* (see Definition 142 (page 56)),

i.e., the problem of optimizing the Type-G problems and

Type-G meta problems themselves, was incorporated into the

G�� problem (i.e., the problem of devising an estimation func-

tion by which to obtain, for an arbitrary problem scenario,

an estimate of the optimal choice of the values of the in-

ternal parameters of the Type-G problem g—it being noted

that Algorithm 4 (page 53) applied to the Type-G problem g
solves (i.e., produces an optimal solution for) the given prob-

lem scenario). For reasons explained in Paragraph 11.5.1.3

(page 58), the G�-problem optimization algorithm will be

applied by executing Algorithm 4 against the Type-G meta

problem ξ1, resulting in an optimized version of the Type-

G problem ξ0 = g. The methods and algorithms for solv-

ing a G�� problem (δ ∈ Δ, B ⊆ δ, λ ∈ Λ(δ), festimation)
(see Definition 149 (page 61)) invoked regression-analysis

technologies as a means to fit a model (a hypersurface) to a

set of known data points precomputed using the G� method

and algorithm, and thereby to derive the estimation func-

tion festimation. With adequate computing resources and tal-

ent, these overall optimization approaches, as specified, can

be implemented as a fielded system that performs with maxi-

mum feasible efficiency solving any problem scenario in any

target problem domain of Type G.

12. Revisions and Changes Digest
The following list identifies and recapitulates significant re-

visions that were included in the present document.

1. In Subsection 1.1, page 7, the last three sentences of

the first paragraph replaced the following three origi-

nal sentences:

Present operational scheduling capabilities do not

generate true optimized schedules for reasons that will

be explained below, but can (when the option is in-

voked) generate schedules that are free of radio fre-

quency interference (RFI) effects by blocking out por-

tions of the problem-solution space from consideration

whenever those portions appear with any predicted RFI

effects. Similarly, the current operational scheduling

system prunes away portions of the solution space upon

encountering violations of the various other constraints

that must be satisfied. This approach, which perforce

ignores large portions of the solution space, necessar-

ily means that schedule optimization cannot be an ac-

tual achievable objective of the current scheduling sys-

tem.

In the second paragraph, the first sentence replaced

the following original first sentence:

Present space data-communications schedulers have

the capability of algorithmically generating schedules

using techniques for representing and exploring the

problem-solution space as either a graph or a tree of re-

lated sub-solutions.

The last sentence of the second paragraph replaced

the following original last sentence:

NASA’s present operational scheduling system, us-

ing such standard search methods, is capable of

producing workable schedules, albeit with certain sig-

nificant concessions to the compute-intensive nature

of the search (including certain problem simplifica-

tions that themselves, even ignoring the performance

of the search techniques, preclude the possibil-

ity of true schedule optimization).

2. In Subsection 1.6, page 9, the third sentence of the

last paragraph replaced the following original third sen-

tence:

But numerous other fields (particularly those related

to design optimization, and, more broadly, virtually any

field where solutions cannot be specified directly but

can be evaluated as to “goodness”) are encompassed

under the generalized problem of Type G as defined in

Appendix B.

65

12 REVISIONS AND CHANGES DIGEST

3. In Subsection 2.4.8, page 16, the second sentence of

the first paragraph replaced the following original sec-

ond sentence:

The current NASA scheduling system, based on con-

structive techniques or graph-search techniques, does

not incorporate a strategy for constructing solutions that

will directly optimize these metrics.

4. After the first paragraph of Subsection 4.2 (page 18),

two paragraphs of explanatory remarks were inserted

concerning set-builder notation and the concept of log-

ical negation.

5. On page 19, the revised, equivalent definition of ◦
(“function composition”) (Definition 14) clarified the

meaning of the following original definition of ◦:

∀f ∈ XY , ∀g ∈ ZX , g ◦ f ∈ ZY .

6. On page 19, the definition of ”set of all real numbers“

(Definition 7) was moved so as to precede the definition

of | • | (cardinality of a set) (Definition 10)), thereby to

avoid forward referencing.

7. On page 19, the definition of ”power set“ (Definition 9)

was moved so as to precede the definition of ΩF (the set

of all finite sets (Definition 10)), thereby to avoid for-

ward referencing.

8. On page 19, the definition of Z̄, the “set of all integer in-

tervals” (Definition 16), was positioned before the def-

inition of rndint (Definition 17) and replaced the fol-

lowing original definition of the set of all closed inter-

vals:

Z̄ =
{
i : ∃a, b ∈ Z � a ≤ b and i = [a, b]

}
.

A second sentence was added to the remark below

the definition of Z̄.

9. On page 20, the remark following the definition of “se-

quence” (Definition 21) replaced the following original

remark:

Note that the first element of a sequence has index-

value 0, and that no index value between the first and

the last is skipped.

10. On page 20, after the definition of len (Definition 23),

the remark was expanded and the unneeded definition

of ”Set of all n-tuples“, formerly in the original text,

was deleted.

11. On page 21, the third line of the definition of the max
function (Definition 31) replaced the following line of

the original definition:

∀ bounded and closed subset Q ∈ R, ∃x ∈ Q �
12. On page 21, the third line of the definition of the min

function (Definition 32) replaced the following line of

the original definition:

∀ bounded and closed subset Q ∈ R, ∃x ∈ Q �

13. On page 23, the last sentence of the definition of C
(Definition 53) replaced the following original last sen-

tence:

p is said to be a prototype event if and only if ∃u ∈
U0 � (•, p) ∈ C(u).

14. On page 24, the definition of Mtype (Definition 58) re-

placed the following original definition:

Mtype : R0 → Ξ*(Ξ*(M)) �
∀r = (r1, . . . , r17) ∈ R0,

Mtype(r) = ξ ∈ Ξ*(Ξ*(M)) ⇔
(a)

[
i ∈ N, i < len(ξ)

] ⇒ ξi[1] = r2 and ξi[2] = r4
and

(b)
[
i, j ∈ N, i < j < len(ξ)

] ⇒[
ξi[4], ξi[5]

]
<

[
ξj [4], ξj [5]

]
15. On page 24, the definition of tref (Definition 60) re-

placed the following original definition:

tref : R0 ×M → Z �[(
r = (r1, . . . , r17), μ = (μ1, . . . , μ5)

) ∈ R0 ×M,

μ1 = r2, μ2 = r4,[
r4 = “NIL” ⇒ tp = r15

]
,[

r4 �= “NIL” ⇒ tp =MT(r8, μ) + r6
]] ⇒

tref(r, μ) = tp

16. On page 26, the definition of skipsatR* (Definition 66)

replaced the following original definition:

skipsatR* : Θ×R0 → R �[(
θ, r = (r1, . . . , r17)

) ∈ Θ×R0,

n = len(Mskips(r, 0)),

Q =
{
p : ∃j, k ∈ N � j < n, k < len(r3),

p ∈ CPRM
0

(
k, r,Mtype(r)

[
Mskips(r, 0)[j]

])
,

p ∈ θ
}
,

h = max
(
{10−3,

∣∣Q∣∣})] ⇒
skipsatR*(θ, r) = nh−1

17. On page 34, the last part of the paragraph under the defi-

nition of swappeionu (Definition 114) replaced the fol-

lowing original wording:

... prototype-event instantiations for r belonging to θ′.

18. The last part of the paragraph under the definition of

swapearlypeionr (Definition 115, page 34) replaced

the following original wording:

... and a randomly selected mission event instance of

type r4 all prototype-event instantiations for r earlier

than m belonging to θ are swapped with all prototype-

event instantiations for r earlier thanm belonging to θ′.

66

REFERENCES REFERENCES

19. The last part of the paragraph under the definition of

swapmidpeionr (Definition 116, page 34) replaced the

following original wording:

... and two randomly selected mission event instances

μ and μ* of type r4 all prototype-event instantiations

for r inclusively between μ and μ* belonging to θ are

swapped with all prototype-event instantiations for r
earlier than m belonging to θ′.

20. On page 34, the definition of rndsvcs (Definition 117)

replaced the following equivalent but less straightfor-

ward original definition:

rndsvcs : N2 ×R0 ×M → ℘(N×A0 × N
2) �

∀(n, k, r = (r1, . . . , r17), μ = (μ1, . . . , μ5)
) ∈

N
2 ×R0 ×M,

(tp, a, s, d) ∈ rndsvcs(n, k, r, μ) ⇒
μ1 = r2, μ2 = r4, k < len(r3), n < len(r3[k]),
tp = tref(r, μ),[[
Q =

{
(tp, a, s

, d) ∈ N×A0 × Z× N :

∃μV ∈M �
(tp, a, s

, d) ∈ Y I
max(r, k, n, μ, μ

V)
}
,

(tp, a, s
′, d′) = rndmember(Q),

(•, s−, s+, •, d+) = r3[k][n],

ζ = [s′, (s′ + d′)] ∩ [s−, (s+ + d+]
]
⇒[

s = rndint(ζ−, (ζ+ − d−)),

dmax = min({d+, (ζ+ − s)}),
d = rndint(d−, dmax)

]]
21. The explanatory paragraph under Section 5 (page 35)

was expanded.

22. In the original specification of Algorithm 2 in Sec-

tion 6.3 on page 38, all occurrences of •* (that is, “*”

used as a superscript) were deleted. This change is ty-

pographical, for the purpose of simplification only, and

does not alter the meaning of the algorithm specifica-

tion.

23. The last paragraph of Subsection 8.2 on page 42 is a re-

mark added to the original text.

24. The definition of D0 (Definition 131) replaced the fol-

lowing original definition of D0:

D0 = {x : ∃n ∈ N � x ∈ N
n}

and was moved to the end of Subsection 11.1.2 on

page 49.

25. On page 51, item 1 in the definition of Frandomselection
(Definition 133) replaced the following original item 1

in the definition:

codomain(f) ⊆ ℘(Θscenario(δ, γ)).

The remarks below the definition replaced the follow-

ing original remark:

Note that this function is a “pseudo function” (see

remark below Definition 17 (page 20)).

26. On page 53, the first line of the definition of G (Defini-

tion 136) replaced the following first line of the original

definition of G:

G ⊆ Δ×Γ×N
+ × [0,∞)× (N+)

3 × (℘(Θ))N
+ ×

[1,∞)Θ×
27. In Subsubsection 11.4.3, page 54, the two enumerated

items were reworded preserving the intended meaning.

28. In Subsubsection 11.5.1.3, page 58, the last two sen-

tences of the original text were revised.

29. In Subsubsubsection 11.4.5.2, page 57, the symbol ν
replaced the symbol 〈νi〉 in the second sentence of the

fourth paragraph.

30. Definition 146 (page 60) replaced the following origi-

nal definition:

A function f ∈ DD0
0 is said to model Q ⊆ D2

0 if

and only if

(c, e) ∈ Q⇒ f(c) = e

31. The first line of Definition 148 (page 60) replaced the

following first line of the original definition:

D : Δ× ℘(Γ)× codomain(Λ) → ℘(D2
0) �

32. In Subsubsubsection 11.5.2, page 59, the first paragraph

is a revised version of the original first paragraph, and

the third paragraph is a revised version of the original

third paragraph.

References
[1] L. Barbulescu, J.-P. Watson, L. D. Whitley, and A. E. Howe.

Scheduling space–ground communications for the Air Force

Satellite Control Network. J. of Scheduling, 7(1):7–34, 2004.

[2] K. Deb. Multi-objective optimization using evolutionary algo-
rithms. John Wiley and Sons, Chichester; New York, 2001.

[3] R. Dechter and J. Pearl. Generalized best-first search strate-

gies and the optimality of A*. J. ACM, 32(3):505–536, 1985.

[4] D. B. Fogel. Evolutionary Computation: Toward a New Phi-
losophy of Machine Intelligence. IEEE Press Series on Com-

putational Intelligence, Wiley-IEEE Press, Hoboken, New Jer-

sey, USA, 2006.

[5] J. Frank, A. Jónsson, R. Morris, and D. E. Smith. Planning and

scheduling for fleets of earth observing satellites. In Proceed-
ings of the Sixth International Symposium on Artificial Intelli-
gence, Robotics, Automation and Space, 2001.

[6] J. H. Friedman. Multivariate adaptive regression splines. Ann.
Statist., 19(1):1–67, 1991.

67

REFERENCES REFERENCES

[7] P. Garza. Ground Network Users’ Guide, Revision 2. Explo-

ration and Space Communications Projects Division, NASA

Goddard Space Flight Center, Greenbelt, Maryland, USA,

May 2007.

[8] R. D. Godfrey. The Communications Link Analysis and Sim-

ulation System (CLASS). In Proc. NASA Johnson Space Cen-
ter Space Shuttle Tech. Conf., Pt. 2, pages 787–797, Houston,

Texas, USA, Jan. 1985.

[9] D. E. Goldberg. Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley Longman Publish-

ing Co., Inc., Boston, MA, USA, 1989.

[10] N. Happell, K. L. Moe, and J. Minnix. Scheduling the

future NASA Space Network: Experiences with a flexible

scheduling prototype. In Proc., Second International Sympo-
sium on Ground Data Systems for Space Mission Operations,
SpaceOps 1992, pages 881–886, Pasadena, California, USA,

March 1993. Jet Propulsion Laboratory.

[11] J. H. Holland. Hidden Order: How Adaptation Builds Com-
plexity. The Ulam Lecture Series. Addison-Wesley Publishing

Company, Reading, Massachusetts, USA, July 1995.

[12] W. hu Zhao, J. Zhao, S. hong Zhao, Y. jun Li, and X. Wang.

Scheduling algorithm for data relay satellite optical commu-

nication based on artificial intelligent optimization. In Proc.
SPIE 8906, International Symposium on Photoelectronic De-
tection and Imaging 2013: Laser Communication Technolo-
gies and Systems. SPIE, August 2013.

[13] I.-J. Jeong, G. Papavassilopoulos, and D. Bayard. Task

scheduling on spacecraft by hybrid genetic algorithms. Proc.
1999 IEEE International Conference on Robotics and Au-
tomation, Detroit, Michigan, USA, 1:441–446, 1999.

[14] K. A. D. Jong. Evolutionary Computation: A Unified Ap-
proach. MIT Press, Cambridge, Massachusetts, USA, 2006.

[15] T. Kaplan, J. Freedman, D. Wampler, A. Musliner, and

C. Ruseau. CLASS Interference Analysis System. Na-
tional Telesystems Conference, NTC-92, pages 12/1–12/7,

May 1992.

[16] V. Kecman. High dimensional function approximation (re-

gression, hypersurface fitting) by an active set least squares

learning algorithm. School of Engineering Report 643, The

University of Auckland, Auckland, NZ, 2006.

[17] C. Lim and E. Sim. Production planning in manufactur-

ing/remanufacturing environment using genetic algorithm. In

GECCO ’05: Proceedings of the 2005 conference on genetic
and evolutionary computation, pages 2217–2218, New York,

NY, USA, 2005. ACM.

[18] R. M. Mickey, O. J. Dunn, and V. A. Clark. Applied Statistics:
Analysis of Variance and Regression. Wiley Series in Proba-

bility and Statistics. Wiley-Interscience, 3rd edition, January

2004.

[19] Mission Services Program Office, Goddard Space Flight Cen-

ter, National Aeronautics and Space Administration, Green-

belt, MD, USA. Space Network Users’ Guide (SNUG) (450-
SNUG (Revision 9)), August 2007.

[20] NASA Goddard Space Flight Center, Greenbelt, Maryland,

USA. CLASS ACRS/TLAS Operator’s Manual and Reference
(NCC 98) (Draft), 1998.

[21] E. Novak and H. Woźniakowski. Tractability of Multivari-
ate Problems: Linear information, volume 1. Tracts in Math-

ematics 6, European Mathematical Society, Zurich, Switzer-

land, 2008.

[22] J. B. Odubiyi and D. R. Zoch. A heuristic approach to in-

cremental and reactive scheduling. In Proc. Goddard Con-
ference on Space Applications of Artificial Intelligence, pages

127–140, Greenbelt, Maryland, USA, 1989. NASA Goddard

Space Flight Center.

[23] K. L. Priddy. Artificial Neural Networks: An Introduction.

SPIE Press, 2005.

[24] H. Rabitz and Ö. F. Alis. General foundations of high-

dimensional model representations. Journal of Mathematical
Chemistry, 25(2–3):197–233, 1999.

[25] J. L. Rash. Heuristic evolutionary search in space communica-

tions scheduling. In G. A. Soffen, editor, Research and Tech-
nology Report, pages 2–4. NASA Goddard Space Flight Cen-

ter, Greenbelt, Maryland, 1995.

[26] J. A. Rumerman. NASA Historical Data Book, volume VI

(NASA Space Applications, Aeronautics and Space Research

and Technology, Tracking and Data Acquisition/Support Op-

erations, Commercial Programs, and Resources, 1979-1988)

of NASA Historical Data Book, NASA SP-2000-4012. Na-

tional Aeronautics and Space Administration, Washington,

DC, USA, 2000.

[27] T. P. Ryan. Modern Regression Methods. Wiley-Interscience

Series. John Wiley and Sons, New York, NY, USA, 2008.

[28] G. Syswerda. Schedule optimization using genetic algorithms.

In L. Davis, editor, Handbook of Genetic Algorithms, chap-

ter 21. Van Nostrand Reinhold, New York, New York, USA,

1991.

[29] G. Syswerda and J. Palmucci. The application of genetic al-

gorithms to resource scheduling. In R. K. Belew and L. B.

Booker, editors, ICGA, pages 502–508. Morgan Kaufmann,

July 1991.

[30] M. D. Vose. The simple genetic algorithm: foundations and
theory. MIT Press, 1999.

[31] L. W. Wajda. Network Planning and Analysis System (NPAS)
User’s Guide (Fundamentals). Vol. 1 (TDAC-NUG-SAS-

001), NASA Goddard Space Flight Center, Mission Opera-

tions and Data Systems Directorate, rev. 1 edition, July 1997.

[32] M. B. Wall. A Genetic Algorithm for Resource-Constrained
Scheduling. PhD thesis, Massachusetts Institute of Technol-

ogy, Boston, MA, USA, June 1996. Supervisors Mark Jakiela

and Woodie C. Flowers.

[33] Y. F. Wong and J. L. Rash. A method for interference mit-

igation in space communications scheduling. In IEEE Mili-
tary Communications Conference (Milcom 91), volume 2 of 3,

pages 431–435, Piscataway, New Jersey, 4–7 November 1991.

IEEE Communications Society, IEEE.

68

Index of Symbols and Selected Terms

<, 20, see interval, ordering relation, see interval, sets of in-

tervals, ordering relation

A*, 21, see antenna

A0, 21, see antenna

Ar, 60, see regression analysis

C, 23, see prototype communications event

CPRM
0 , 26

D, 60, see training data

D0, 50

Fcrossover, 52

Ffitness, 51, see fitness, function

Fmutation, 52

Frandomselection, 51

FMETA, 55

Fnew-g, 55

G, 53, see Type-G, problem

Gscenario, 53

I , 22, see potential interference interval

L, 22, see communications link

L*, 21, see communications link

L0, 22, see communications link

M , 22, see mission event

M *, 21, see mission event type

Mskips, 24, see mission event

Mtype, 24, see mission event type

MT, 24, see mission event

O, 21, see outage interval

P , 21, see POCC operation period, see POCC

Pmax, 25, see POCC operation period

R0, 23, see user requirement

S0, 21, see Ground Network, see Space Network, see station

SSA
0 , 21

U , 24, see user

U0, 21, see user

V , 22, see communications view period

Wsteps, 53

XY , 19, see function

Y , 23, see service

Y V, 24, see communications view period, see service instan-

tiation

Y I, 24, see service instantiation

Y I
max, 25

[•, •], 19, see interval

Δ, 50, see problem domain of Type G, see Type G, problem

domain

Δdim, 50

Γ, 38, 50, see Type-G, problem scenario

Γdim, 50

Λ, 40, 59, see characterization function

Ø, 19, see empty set

Ω, 19, see universe of discourse

ΩF, 19, see set of all finite sets

Φ, 23, see priority

Φ0, 22, see priority

Θ, 26, see schedule, 50, see Type-G, problem scenario

ΘRND, 35

Θscenario, 50

Υ, 60

Ξ, 20, see sequence, of all members of a finite set without re-

peats

Ξ**, 20, see sequence, of some members of a set allowing re-

peats

Ξ*, 20, see sequence, of some members of a set without re-

peats

\, 19, see set, difference

•, 19

◦, 19, see function, composition

κGN, 29

κSN, 28

〈•〉, 20, see sequence, see tuple

N, 19

N
+, 19

R, 19, see real numbers, set of all

Z, 19

Z̄, 19, see interval, set of all integer intervals

ψ, 38

J, 31

MAXALLOWEDRTNRATE, 22

RND, 21, see random, subset of finite set, see set, random

subset

S, 21, see string

chngsvcant, 33

chngsvcdur, 32

chngsvcsta, 32

codomain, 19, see function, codomain

cutexcesspei, 33

dom, 19, see function, domain

endpts, 28

endptsseq, 28

endP, 27

fitness, 32

fitness�, 38

interf*, 28

len, 20

maxsepsatP*, 27

max, 21, see set, maximum value of

minsepsatP*, 27

69

INDEX OF SYMBOLS AND SELECTED TERMS INDEX OF SYMBOLS AND SELECTED TERMS

min, 21, see set, minimum value of

modsvc, 32

replacepei, 33

resourceusage, 28

rndint, 20, see random, integer

rndmember, 20, see set, random member

rndpeis, 35

rndpei, 32

rndsvcs, 34

rndsvc, 32

rtndatarateCOMBINED, 31

satisfied*, 31, see user requirement, satisfaction

satisfiedPEI, 31

satisfiedR, 31

schedolpairs, 27

skipsatR*, 26

skipFILL-R*, 26

slipsvc, 32

startP, 27

stnswPEI, 30

swapearlypeionr, 34

swapmidpeionr, 34

swappeionr, 33

swappeionu, 34

swappei, 33

tref, 24, see mission event

usageSTATION-SA-ENDPTS, 30

violationsGN-ENDPTS, 29

violationsGN, 30

violationsMAXSEP*, 27

violationsMINSEP*, 27

violationsRTNRATE, 31

violationsSA-ENDPTS, 30

violationsSA, 30

violationsSKIP*, 26

violationsSKIPFILL*, 27

violationsSN-ENDPTS, 29

violationsSN, 29

violationsSTATION-SA-ENDPTS, 30

violationsSTNSW, 30

violationsGN-ENDPTS
B-C-D , 29

violationsSN-ENDPTS
B-C-D , 29

violationRTNRATE, 31

| • |, 19, see cardinality

℘, 19, see power set
+, 20, see interval, endpoint
−, 20, see interval, endpoint

aregr, 60

festimation, 59–61, 65

fg-execute, 54

×, see Cartesian product

algorithm, 8, 35, 38, 61

Algorithm 3: Scheduling Problem Optimal-Internal-

Parameters Estimation, 41

Algorithm 2: S� Problem, 38

Algorithm 4: Type-G Problem, 53

Algorithm 5: G�� Problem, 61

Algorithm 1: Optimal-Schedule Generation, 35

antenna, 5, 10–13, 16–18, 21, see A*, see A0

cardinality, 19, see | • |
Cartesian product, 19, 20

characterization function, 59, see Λ
CLASS, 8, see Communications Link Analysis and Simula-

tion System (CLASS), 17, 22

codomain, 19, see function

communications event window, 23, 24

communications link, 21, see L*, 22, see L, see L0

Communications Link Analysis and Simulation System, 8,

17, 22

communications view period, 16, 17, 22, see V , see Y V

computer, 8, 13, 15, 42, 43

quantum, 13

run time, 38, 53, 56, 57, 62

constraints, 5, 7, 8, 11–13, 29, 43

GN Forward and Return, 28, see κGN

SN Forward and Return, 28, see κSN

Space Network resource usage, 28, see κSN

crossover, 13, 32, 52, see Fcrossover

domain, 19, see function

empty set, 19, see Ø
evolutionary algorithms, 13

evolutionary search, 8, see genetic algorithm, see probabilis-

tic search, 9, 13–15, 39, 49–51, 54, 55, 57, 59

fitness, 32, 37, 38

function, 32, 51, see Ffitness
S� problem, 38, see fitness�

Type-G problem, 50

function, 19, 20, see XY

codomain, 19, see codomain
composition, 19, see ◦, 55

domain, 19, see dom

G�, 49, see Type-G, meta problem, 54

G� problem, 56

optimization, 56

G��, 49, see Type-G, meta problem, 54

G�� problem, 61

algorithm, 61

regression, 61

G-algorithm, 53, 56

70

INDEX OF SYMBOLS AND SELECTED TERMS INDEX OF SYMBOLS AND SELECTED TERMS

genetic algorithm, 8, see evolutionary search, 13–15, 37, 50,

54

internal parameters, 15

Ground Network, 5, 8, 21

hypersurface, 15, 40, 42, 60, 65

fitting, 55

index, 20

sequence, 20

tuple, 20

interference, 5, 7, 8, 10, 13, 17, 18, 22, 23, 42, 43, 65

interference instance, 28, see interf*

internal parameters, 9, 15, see genetic algorithm, internal pa-

rameters, 35, 37–43, 46, 49, 54–57, 59, 61, 64, 65

estimation, 40, see S�� Problem, 58, see G�� Problem

estimation function, 9, 40, 41, 44, 55, 58, 59, 65

optimization, 15, see G�, 37, see S�

interval, 19, see [•, •], 20

endpoint
+, 20
−, 20

ordering relation, 20, see <
set of all integer intervals, 19

sets of intervals

ordering relation, 20, see <

law of diminishing returns, 46

mapping, 19, see function

meta problem, 54

meta-problem scenario, 55, see meta, 56, see Type-G, meta

problem, 58

method, 8

mission event, 22, see M , see tref, see Mskips, see MT
mission event type, 21, see M *, 24, see Mtype, 26

model, 9, 40, 47–49, see regression analysis, 59, 60, 65

mutation, 13, 32, 52, see Fmutation

optimal, 8–10, 12–16, 35, 37, 38, 40–44, 46, 49

optimization, 8, 9, 13–15, 37–44

recursive, 56, see recursion, 57, see recursion

optimum, 13, 37, 39, 57

ordered pair, 20, see tuple

outage interval, 18, 21, see O

POCC, 17, 18

POCC operation period, 21, see P , 25, see Pmax
potential interference interval, 18, 22, see I
power set, 19, see ℘
priority, 18, 22, see Φ0, see Φ
probabilistic search, 13–16, 37, see evolutionary search, see

genetic algorithm, 55

problem domain of Type G, 50, see Δ
problem scenario, 50, see Γ

characterization function, 59, see Λ
dimension, 50, see Γdim
meta, 54, 58

Type-G, see Γ, 58

process, 8

process models, 43

prototype event, 23, see C, 66

prototype-event instantiation, 26, see CPRM
0

pseudo function, 20, 51–53

random, 14

integer, 20, see rndint
member of a finite set, 20, see rndmember
number, 14, 16

selection, 51

subset of finite set, 21, see RND
real numbers, set of all, 19, see R

recursion, 56, 57, 61

regression analysis, 9, 13, 40–42, 59, 60, see Ar, 61, 63–65

requirement, 22, see user requirement

run time, 8, see computer, run time, 38, 46, 48

S��, 38, 40

problem, 37

S�, 15, see internal parameters, optimization, 37–39

schedule, 5, 7, 18, 26, see Θ, 65

optimized, 43

scheduler, 7, 8, 13, 18, 42, 43

optimizing, 7–9, 43, 44

scheduling

objective, 26

system, 7, 9, 13, 16, 17, 41–43

sequence, 20, see also tuple

elements of, 20, see 〈•〉
index, 20

length, 20, see len
of all members of a finite set without repeats, 20, see Ξ
of some members of a set allowing repeats, 20, see Ξ**

of some members of a set without repeats, 20, see Ξ*

subsequence, 20

service, 23, see Y
service instantiation, 24, see Y V, see Y I

set, 19

difference, 19, see \
maximum value of, 21, see max
minimum value of, 21, see min
random member, 20, see rndmember
random subset, 21, see RND
specification notation, 19

set of all finite sets, 19, see ΩF

71

INDEX OF SYMBOLS AND SELECTED TERMS INDEX OF SYMBOLS AND SELECTED TERMS

skip factor, 23–26

Space Network, 5, 8, 21

Space Network Users’ Guide, 28

station, 21, see Ground Network, see Space Network

string, 21, see S

test data, 41, see training data, 65

training data, 41, 60, see D, see G��, see regression analysis,

63

tuple, 20, see also sequence, see 〈•〉
Type-G, 50, 53, 64

meta-problem, 49, see G�, see G��, 54–59, 63

chain, 56, 57

problem, 53, see G, 58

problem domain, 50, see Δ, 59

problem scenario, 50, see Γ, 58, 64

universe of discourse, 19, see Ω
user, 5, 7, 8, 10–12, 18, see U0, see U
user requirement, 14, 17, 18, 22, 23, see R0, 24

generic, 22

satisfaction, 16, 31, see satisfied*

specific, 22

72

