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Abstract

A micromechanical method is employed for the prediction of unidirectional composites in which the
fiber orientation can possess various statistical misalignment distributions. The method relies on the
probability-weighted averaging of the appropriate concentration tensor, which is established by the
micromechanical procedure. This approach provides access to the local field quantities throughout the
constituents, from which initiation of damage in the composite can be predicted. In contrast, a typical
macromechanical procedure can determine the effective composite elastic properties in the presence of
statistical fiber misalignment, but cannot provide the local fields. Fully random fiber distribution is
presented as a special case using the proposed micromechanical method. Results are given that illustrate
the effects of various amounts of fiber misalignment in terms of the standard deviations of in-plane and
out-of-plane misalignment angles, where normal distributions have been employed. Damage initiation
envelopes, local fields, effective moduli, and strengths are predicted for polymer and ceramic matrix
composites with given normal distributions of misalignment angles, as well as fully random fiber
orientation.

1.0 Introduction

It is well-known that a micromechanical analysis can provide the effective properties of composite
materials from the knowledge of the constituent properties, their geometric arrangement, and their
detailed interactions. However, the impact of fiber misalignment on the composite response, which often
can occur in modern composites (Barwick and Papathanasiou, 2003), is typically not accounted for in
design and analysis. A notable exception is the effect of longitudinal fiber misalignment on the
compressive failure response of composites, which has been studied extensively in the literature (c.f.,
Budiansky, 1983; Wisnom (1990); Budianksy and Fleck, 1993; Schultheisz and Waas, 1996; Waas and
Schultheisz, 1996; Liu et al., 2004; Basu et al., 2006; Numayr and Al Rjoub, 2013; Zhou et al., 2013;
Ataabadia et al, 2014). Such misalignment can occur due to manufacturing deficiency and defects, curved
surfaces, and fiber waviness, which was investigated by Kugler and Moon (2001). A standard approach to
incorporating the effect of fiber misalignment in a unidirectional composite is to consider the anisotropic
ply properties and perform a standard transformation to a desired fiber orientation (for instance, an in-
plane rotation, c.f. Jones (1975), Herakovich (1998)). While such a macromechanical approach will
provide the effective properties of the ply, the associated local field distributions within the constituent
materials are not available (as is always the case with the macromechanical approach). It is precisely
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these local fields that dictate and drive the damage initiation and progression, yielding, failure, and other
nonlinearities, which impact the macroscopic composite response and the performance of structures
composed of composite materials. Alternatively, if one utilizes an appropriate micromechanical analysis,
the local field variations within the composite constituents can be predicted based on the knowledge of
the strain (or stress) concentration tensors, which are naturally given by the micromechanics theory.
Consequently, the effect of fiber misalignment on the local fields in the composite can be captured
through the use of these concentration tensors.

In the present investigation, the micromechanical analysis known as the High-Fidelity Generalized
Method of Cells (HFGMC) (Aboudi et al., 2013) is enhanced to capture the effects of possible fiber
misalignment in unidirectional composites. In the latter reference, HFGMC has been shown to provide a
reliable and robust micromechanical method for predicting the properties and nonlinear response of a
wide array of composites. Further, it was shown that the strain (or stress) concentration tensors are
fundamental to predicting both the local and global composite response and thus they are used herein to
predict the effect of fiber misalignment on the composite behavior. In particular, the concentration tensors
are employed in an averaging procedure to determine the effect of a known distribution of misalignment
angles (i.e., orientation distribution function), or completely randomly fiber orientation, on the local fields
in the composite. Consequently, the initial yield and damage surfaces, field distributions in the
constituents, as well as the standard effective properties, can be predicted for the composite.

Averaging based on orientation has been employed extensively within the microsphere model (Miehe
et al., 2004), which was originally developed for analyzing rubber (Miehe and Goktepe, 2005; Goktepe
and Miehe, 2005). Since then, the microsphere model has been used extensively in the analysis of
biological materials. Menzel and Waffenschmidt (2009) used the model, with an evolving orientation
distribution function, to simulate remodeling in soft tissues. Murtada et al. (2010) used the microsphere
approach to analyze smooth muscles, wherein a specialized distribution of the muscle contractile fiber
orientation, as a function of stretch, was employed. Alstrué et al. (2009) first used a m-periodic von Mises
orientation distribution function, and then a Bingham orientation distribution function (Alstrué et al.,
2010) in applying the microsphere model to blood vessels. Waffenschmidt et al. (2012) used the
microsphere approach, with evolving orientation density functions, to model bone remodeling. Li et al.
(2013) have recently applied the microsphere approach to structural composite materials, wherein a von
Mises fiber orientation distribution has been employed. Orientational averaging was also recently
employed by Modniks and Andersons (2013) to model the nonlinear mechanical response of short-flax-
fiber-reinforced composites using an analytical approach. While the approach and equations were general
in terms of fiber misalignment distribution, results focused on a uniform distribution.

The remainder of this paper is organized as follows. A brief description of the HFGMC methodology
is provided, followed by details on the incorporation of the statistical fiber misalignment distributions.
Results are then given exhibiting the impact of fiber misalignment on the properties, damage initiation
envelopes, and critical values of the local field variables. Two classes of composite materials are
examined: a polymer matrix composite (PMC) system, namely, graphite/epoxy, and a ceramic matrix
composite (CMC) system. While the PMC system exhibits extreme mismatch in properties between the
constituents, the CMC system has low mismatch between the fiber and matrix, but includes a very
compliant fiber interfacial layer.

2.0 High-Fidelity Generalized Method of Cells Micromechanical Model

The HFGMC micromechanical model is employed herein to predict the effective behavior of
unidirectional composites with known fiber misalignment. This theory has been fully described by Aboudi
et al. (2013). The continuously reinforced (i.e., doubly periodic) version of HFGMC is briefly outlined in
the following. The doubly periodic microstructure considered is shown in Figure 1(a) in terms of the global
coordinates (x,¥;3). The repeating unit cell, Figure 1(b), defined with respect to local coordinates (3,,3), of
such a composite is divided into Ny and N, subcells in the y, and y; directions, respectively. Each subcell is
labeled by the indices (By) with B =1,...,Ngand y = 1,...,N,, and may contain a distinct homogeneous
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Figure 1.—(a) A multiphase composite with doubly-periodic microstructures defined with respect to global coordinates
(x2, X3). (b) The repeating unit cell is represented with respect to local coordinates (yz, y3). It is divided into Ny and
N, subcells, in the y2 and y; directions, respectively. (c) A characteristic subcell (3y) with local coordinates

(¥, ¥y whose origin is located at its center.

material. The dimensions of subcell (By) in the y, and y; directions are denoted by /g and /,, respectively. A
local coordinate system ( 5%, 3{")is introduced in each subcell whose origin is located at its center. The
local (subcell) constitutive equation of the elastic, anisotropic material is given by,

( ( (
BY) CUB}/) BY) (1)
where o (B v agcﬁ” and C (By) are the components of the stress, strain, elastic stiffness tensors,

respectlvely.
The basic assumption in HFGMC is that the displacement vector #*") in each subcell is expanded

into quadratic forms in terms of its local coordinates (¥{P,7{"), as follows,

_ _ _ W, _p2 M 1 , [
Wﬂm%W@WMWW%W)“WUW”4W§ @

where ¢, is the applied (external) average strains, and the unknown terms WIE% must be determined

from the fulfillment of the equilibrium conditions, the periodic boundary conditions, and the interfacial
continuity conditions of displacements and tractions between subcells. The periodic boundary conditions
ensure that the displacements and tractions at opposite surfaces of the repeating unit cell are identical. A
principal ingredient in the HFGMC micromechanical analysis is that all these conditions are imposed in
the average (integral) sense.
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As a result of the imposition of these conditions, a linear system of algebraic equations is obtained,
which can be represented in the following form:

KU=f 3)

where the matrix K contains information on the geometry and properties of the materials within the
individual subcells (By), and the displacement vector U contains the unknown displacement coefficients

WE% , which appear on the right-hand side of Equation (2). The vector f contains information on the

1

applied average strains ;. The solution of Equation (3) enables the establishment of the following

localization relation which expresses the average strains a( Br) in the subcell (By) to the externally applied

average strains g; in the form,
51_(]_3“/) A(BY)— (4)

where A,Sﬁ}) is the strain concentration tensor components, of the subcell (By). The final form of the
effective constitutive law of the multi-phase thermo-inelastic composite, which relates the average
stresses G; and strains €, is established as follows:

G;; = Cijuugn )

In this equation Cjj; are components of the effective stiffness tensor, which are given by,

Z Z hgl, Cope) A (6)
B 1 y=l

Next, the components of stress concentration tensor, Béﬁy) , which relate the average stresses in the

subcell, G(BY) to the average (global) stresses, G;;, are determined. By combining Equations (1), and (4),

U b
the subcell stresses are given by,

S = Cl A ™

Then, using Equation (5), one obtains,

5" = Byl 'Sy ®

where,

152}/) - CIEJEZ)A;%QVS rskl (9)
and S}, are components of the effective compliance tensor.

Consequently, with the present information provided by the HFGMC, the local elastic fields
throughout the composite constituents are known, as are the composite effective (homogenized)
properties.
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3.0 Incorporation of Fiber Misalignment Distribution

3.1 Transformation to Misalignment Angles

Suppose that the fibers of the unidirectional composite are oriented in the x;-direction. In order to

express a rotation of the fiber direction by angle y in the x;-x, plane about the x;-axis (see Figure 2), the
following transformation matrix must be employed,

cosy —siny 0
¥Y=|siny cosy O (10)
0 0 1

Subsequently, a rotation about the new x,-axis, namely x}, by an angle ¢ is performed (see Figure 2)
which can be expressed by the following transformation matrix,

cos¢p 0 sing
o= 0 1 0 (11)
—sing 0 cosd

The full transformation is then given by,

X X
5= | %, (12)
xé X3
where T=Y®.
X3
X,
X4 x1int

Figure 2.—Transformation from the original (un-prime) to rotated (prime)
coordinate system through the rotation angles y and ¢. xi" is an

intermediate x; coordinate direction.
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Consequently, the standard approach for transforming the fourth-order effective stiffness tensor Cj,,

given the misalignment angles y and ¢, is as follows,

=T, T,T,T,C: (13)

g pqrs
Referring to Equation (6), it can be observed that, in the framework of micromechanics analysis,

transforming the effective stiffness tensor Cjy; implies the transformation of,

Ziit = Cipg) Apga (14)

where Z(#) = [Zlg.ﬁp] can be referred to as a mixed concentration tensor, as it relates the subcell stresses

to the global strains, see Equation (7). Because this is a fourth-order tensor, its transformation is also
given in the form of Equation (13).
Equations (13) and (6) provide,

* y /
’]]/‘l - Z Z hﬁl“/ ip Jqul’Y}Szl(ng - Z Z h[}, Z;ﬁ}’) (15)
B 1 Y= 1 B 1 v= 1

In order to determine the local stresses in the subcells in the global coordinates including the effects
of fiber misalignment, through the use of Equation (7), one obtains,

— J—=
Sy =2l e (16)

The global stress-strain relations for the composite, including a fiber misalignment, can be expressed as,
Ey = S;’/él [s7% (17)

where S* =[C*/]-!. Substituting (17) into (16) leads to the final form of the local stresses in the subcells
in the global coordinates, including the effects of fiber misalignment.

— ! Qx/
Gy = Zip) S piOu = Byl 'Su (18)

3.2 Probability-Weighted Averaging

Now consider a known statistical distribution of fiber misalignment, for instance, over a composite
part, coupon, or structure. Herein a normal fiber misalignment distribution has been adopted with
probability density function given by,

plx)=——exp —1[x‘“j2 (19)
SN 2T 20 s

where x is the random variable and p and s are the mean and standard deviation, respectively. Yurgartis
(1987) and Jelf and Fleck (1992) have shown that local fiber misalignment angles in composites can be
reasonably approximated by a normal distribution. Figure 3 shows an example of a normal distribution
probability density function versus x/s for the case where p = 0.
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p(x)

x/s

Figure 3.—Normal distribution probability density function, where the random
variable has been normalized by the standard deviation and with the mean
equal to zero.

In order to account for the known fiber misalignment variability with respect to angles y and ¢, see
Equations (10) and (11), the following operation has been employed,

T T

(200)= [ [ 207 ()l plo)y 0)

-n -7

providing the probability-weighted average of the mixed concentration tensor. It should be noted that, in
Equation (20), the transformed mixed concentration tensor is a function of both transformation angles,
and ¢. Therefore, Equation (20) is valid for any choice of probability density functions for either angle.

Observing Equation (15), it is clear that the probability-weighted average of the effective stiffness
tensor of the composite is given by,

{ l/k1> Zzhﬁ L(Z5) @D
LS

r=

Finally, from Equation (16), the subcell stresses in the presence of probability-weighted averaging,
are given by,

S = < Z(Bv)>8kl (22)

The global stress-strain relations for the composite, including probability-weighted averaging, can be
expressed using Equation (17) as,

g = <Si}k'k1>6kl (23)
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where <S*> = <C*>7l . Substituting Equation (23) into Equation (22) gives the final form of the subcell

stresses, as follows,

SP0 = (Z B NS ) = (BR )5 24)

33 Fully Random Averaging

In the case where the fibers within the composite are fully randomly oriented, the overall behavior of
the composite is isotropic. The transformation of the mixed concentration tensor, Z*”, can be carried out
using the three Eulerian angles, g, ¢, and 6z, Aboudi et al. (2013). A fourth-order tensor transformation
is applied to relate the original and transformed systems. In tensorial notation, this transformation is given
by (Arridge, 1985),

288, = anay apean, 2L3) =

where a,; are given by

ay = cosY g cosOg coshp —siny g sindg

ajn = —Cos\Ysind, —siny g cosO; cosdg

ayy =sinBg cosdy

ay = cosY g cosOpsindp +siny g cosdp

Ayy = —SinY g cosOg sindy +cosy g cosdg (26)
ays3 =sinBgsindg

ay; = —cos\yysinby

ay, =sinygsinBg

azz = COS GE

The mean value of Zl.(,%,g, for random orientation is given by,

(z00.) = v [(ab[(ava napap, 28 sin0do 27)
ik 82 Jo v o o i) Kk 0% ko

Therefore, the effective isotropic stiffness tensor of the composite with fully random fiber orientations is
given by Equation (21), and the subcell stresses are given by Equation (24). Note that Christensen and
Waals (1972) used a fully random averaging approach, along with the concentric cylinder model, to
predict the elastic properties of composites with random oriented fibers. Also, Luo and Daniel (2003)
used a fully random averaging approach in conjunction with the Mori-Tanaka (1973) micromechanical
method to predict the effective properties of nanocomposites.

4.0 Practical Application

The equations presented above are useful for assessing the impact of fiber misalign on, not only the
effective properties, but also the local fields within composite materials. Given the local stress and strain
fields, initiation of damage or other detrimental nonlinear mechanisms can be predicted for use as
estimates of the composite allowables. This section provides a brief step-by-step example of how the
presented methodology can be applied, prior to the results, which are presented in the next section.
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Given a composite material with known fiber volume fraction and constituent material properties, the
first step in applying the presented methodology is to discretize the composite repeating unit cell into a
number of subcells. For example, consider a unidirectional graphite/epoxy composite with a fiber volume
fraction of 0.6. The transversely isotropic graphite fiber properties are as follows: axial Young's modulus
=276 GPa, transverse Young's modulus = 15 GPa, axial shear modulus = 15 GPa, axial Poisson's
ratio = 0.2, and transverse Poisson's ratio = 0.2. The isotropic epoxy matrix properties are: Young's
modulus = 3.42 GPa and Poisson's ratio = 0.34. A 40 by 40 subcell discretization of the repeating unit
cell can be considered, as shown in Figure 4.

Next, the fiber misalignment present in the composite must be specified. Fully random fiber
alignment is a special case, as described in Section 3.3. Otherwise, the methodology presented above
considers a normal distribution of fiber misalignment, see Equation (19). The mean, p, and standard
deviation, s, of the in plane (y) and out-of-plane (¢) fiber angles within the composite fully characterizes
the fiber misalignment. For example, with the mean fiber angles representing perfectly aligned fibers,
wy = My = 0, the standard deviations might be s,, = 3° and s, = 2°. Then, based on Equation (21), the
effective elastic properties of the this misaligned composite can be predicted, as can the effective stresses
throughout the composite, based on Equation (24), given specified global composite level stresses. The
results for the specified example are that the predicted effective axial Young's modulus of the composite
is reduced from 164.7 GPa (in the perfectly aligned case) to 163.2 GPa (reduction of 0.9 percent),
whereas, in response to a global uniaxial applied stress of 1 MPa in the 0° fiber direction, the maximum
von Mises stress in the matrix increases from 21.3 to 23.3 Pa (increase of 9.4 percent). Hence, a slight
reduction in axial modulus and a moderate reduction in the axial stress allowable might be warranted for
use in design of such a composite with this fiber misalignment distribution.

Figure 4.—Graphite/epoxy repeating unit cell
divided into 40 by 40 subcells. The fiber
volume fraction shown is 0.6.
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5.0 Results and Discussion

Results are shown for a polymer matrix composite (PMC) and a ceramic matrix composite (CMC)
that exhibit the effects of fiber misalignment on the composite effective properties, local field
distributions within the constituents, and the initial damage surfaces (envelopes). Both probability-
weighted averaging of the misalignment and the fully random fiber orientation case are presented.

In order to generate the initial damage surfaces, two criteria were used, given the externally applied

G;;, or strains, €;;, on the composite. The first is the traditional von Mises criteria, given by,

stresses, G,
— 3 B A
(SE,SY) =, /—2 GI(JPY)GEJPY) =Y (28)

where 6,(-]»[”) = 615»[37) —E,E,EY)S,-]» / 3 are the subcell deviatoric stresses, 3, is the Kronecker delta, and Y is the

ij»

yield stress in simple tension. The second damage initiation criterion, suggested by Lemaitre and
Chaboche (1990), is used to express the critical strain energy release rate associated with loss of stiffness

in brittle materials, which are typically highly dependent on the state of triaxial stress, o, =o, / 3. The
average triaxiality function (Lemaitre, 2001) in subcell (By) is given by,

—(Br)\?

7 (Br) _ 2 _ Sk
R _E(1+V(BY))+3(1 2v(By) ggg—ﬁ (29)

where v is the Poisson's ratio of the isotropic subcell and G{*" is the subcell average hydrostatic
pressure. The damage initiation criterion is then given by,

1
6£EY)RV(BY)2 ~o,, (30)
where o, is a material parameter that specifies the stress at which damage initiates for a uniaxial state
test. Thus, if the triaxiality function is 1 and o, = Y, this damage initiation criterion is equivalent to the
von Mises criterion, Equation (28).

To generate a damage initiation surface in a given global stress plane, G; — Gy, (e.g., i1 — Gx),

the stress components are expressed as,
G; =Rcosa Gy = Rsina (31)

where R is the radial distance from the origin at a point located on the initial damage surface in the
G;;— Gy, stress plane and a is the corresponding polar angle. For a given a, the local (subcell) stress
components are readily determined (in terms of R) by substituting Equations (31) into Equation (8). These
expression for the local stresses can then be substituted into either initiation criterion, Equation (28) or
Equation (30). This provides the value of R/Y or R/c,, corresponding to damage initiation at the specified
polar angle a.

As stated earlier, normal distributions for the fiber misalignment angles has been presently adopted,
see Equation (19). In order to perform the integration including the normal distribution in Equation (20),
finite limits of integration must be determined. Assuming that the average fiber misalignment angle (for
both y and ¢) is p = 0, Figure 5 shows the probability density functions for various value of the standard
deviation, s. It is clear that it is sufficient to utilize +4s as the limits of the infinite integrations in Equation
(20) since wider limits will have negligible contributions (see Figure 3).

NASA/TM—2014-218313 10
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Figure 5.—Normal probability density functions versus a misalignment angle are

shown for various values of the standard deviation, s, where the mean is taken to
be zero.

5.1 Polymer Matrix Composite

The first application considers the 0.6 unidirectional graphite/epoxy composite described previously
in Section 4.0. The same constituent properties and same 40 by 40 subcell discretization of the repeating
unit cell, as shown in Figure 4, have been considered.

The HFGMC theory has been extensively validated versus experiment data, and extensively verified
versus detailed finite element models, in both the linear and nonlinear regimes for polymer, metal, and
ceramic matrix composites (c.f., Aboudi et al., 2013; Bednarcyk et al., 2004; Pineda et al., 2013;
Matzenmiller and Kurnatowski, 2010). In order to verify the fully random fiber orientation averaging
procedure, described in Section 3.3, comparison has been made to results for the effective Young's
modulus and effective Poisson's ratio based on the equations presented by Christensen and Waals (1972).
These equations are as follows,

[ET) + (4" +8vi, + HKSNET +(4viy” —4vi, +DK55 +6(Gs + G3)]
3[2E1*1 + (8\7;‘22 + 12VT2 + 7)K§3 + 2(G1*2 + G53 )]

E3—D = (32)

* * 2 * * * *
Vip = Efy +(4viy” +16vi, +6)K5; —4(Gf, +G33)
AE} +(16Vh° +24vE, + 14K +4(Gh + i)

(33)

where Efy , Vi, K3, Gi5, and G35 are the effective composite axial Young's modulus, axial Poisson's

ratio, transverse plane strain bulk modulus, axial shear modulus, and transverse shear modulus,
respectively. Note that these equations assume transverse isotropy, with five independent material
constants. Christensen and Waals (1972) used the concentric cylinder assemblage (CCA) model to predict
the effective composite properties for use in Equations (32) and (33). Figure 6 compares the predicted
fully random (isotropic) effective graphite/epoxy composite properties predicted by the present fully
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random averaging approach implemented within HFGMC with the Christensen and Waals (C&W) (1972)
equations (32) and (33), as a function of fiber volume fraction, normalized by the isotropic matrix
properties. In addition to the CCA model, predictions are shown for the Self-Consistent Scheme (Hill,
1965), the Mori-Tanaka (1973) Method, the Method of Cells (MOC) (Aboudi, 1989), and HFGMC,
wherein the C&W averaging equations have been used. Note that, in the case of the CCA model, as done
by Christensen and Waals (1972), the lower bound estimates were used for the composite transverse
properties. As shown, the present averaging approach matches closely with these other predictions. It
should be noted, however, that these other, simpler micromechanics theories cannot provide a reliable
estimate of the local field distributions, and they all lack shear coupling (see Aboudi et al., 2013). Slight
(<1 percent) differences exist between the present fully random averaging approach and the C&W
averaging equations when using HFGMC with the square fiber packing arrangement represented by the
employed repeating unit cell (see Figure 4) because, as is well-known, such a packing arrangement leads
to six rather than five independent material constants associated with transverse isotropy. As mentioned
previously, the C&W averaging equations assume transverse isotropy, whereas the present averaging
approach includes no such assumption. While the present averaging approach, involving concentration
tensors, produces accurate composite effective properties, the strength of the method involves its ability to
predict local fields.

The remainder of the PMC results focus on the 0.6 volume fraction composite shown in Figure 4.
Figure 7 exhibits the predicted initial damage surfaces for the von Mises criterion, Equation (28), and the
damage-based criterion, Equation (30), for various values of the standard deviation of the misalignment
angles, s,, and s, under normal loading in the fiber (x;) and transverse (x,) directions. Also shown in the
figure are the envelopes for the fully random case. In the absence of misalignment (s = 0), the envelopes
exhibit the expected shape in that the strength in the fiber direction (x;) is more than 40 times that in the
transverse (x,) direction. As can be seen in Figure 7(a) and (b), the effect of an in-plane misalignment
angle, y, distribution, rotates the initial damage envelope such that the composite becomes weaker in
the axial direction and stronger in the transverse direction. The fully random envelope, which represents
an isotropic material, is nearly elliptical. The effect of the hydrostatic stress, which is included in the
damage-based criterion through the trixiality function, R,, can be clearly observed by comparing
Figure 7(a) and (b).

20 1.00 )
¢ Self-Consistent Scheme (C&W Eq.) -¢Self-Consistent Scheme (C&W Eq.)
18 1 0.95 4B-Mori-Tanaka (C&W E
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16 1 0.90 --MOC (C&W Eq.)
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Figure 6.—Comparison of the present fully random averaging approach within HFGMC with the Christensen and
Waals (C&W) (1972) Equations (32) and (33) using various micromechanics theories for the predicted normalized
fully random isotropic graphite/epoxy composite properties as a function for fiber volume fraction. (a) Effective
Young's modulus, Es.p. (b) Effective Poisson's ratio, vsp.
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Figure 7.—lInitial damage surfaces for the graphite/epoxy composite. (a) von Mises criterion, Equation (28), in the
c11—o22 plane, where an in-plane fiber misalignment angle, v, has been considered. (b) Damage-based criterion,
Equation (30), in the o11—c22 plane, where an in-plane fiber misalignment angle, vy, has been considered. (c) von
Mises criterion, Equation (28), in the c11—o22 plane, where both an in-plane fiber misalignment angle, v, and an out-
of-plane misalignment angle, ¢, have been considered. (d) Damage-based criterion, Equation (30), in the c11—o22
plane, where both an in-plane fiber misalignment angle, y, and an out-of-plane misalignment angle, ¢, have been

considered.

Figure 7(c) and (d) show the initial damage surfaces in the presence of equal in-plane, y, and out-of-
plane, ¢, misalignment angle distributions. It can be seen that the effect of incorporating misalignment out
of the x;-x; plane is to reduce the size of the failure envelopes significantly as the reinforcing influence of
the fiber is lost for both the axial and transverse directions.

Figure 8 shows the initial damage surfaces for the damage based criterion in the 61—, plane for
various values of the standard deviation of the misalignment angles. Also included is the fully random
case. Note that the surfaces based on the von Mises criterion are not shown as they are quite similar to
those shown in Figure 8 since the hydrostatic stress effect is relatively small. In fact, the greatest value of
the triaxiality function, R, (see Equation (29)), throughout the matrix material for all points on all damage
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surfaces shown in Figure 8 is 1.16, whereas, for the damage surfaces shown in Figure 7, this value is 5.15.
It can be observed in Figure 8 that the initial damage envelopes both rotate and reduce size as the fiber
misalignment angle distribution standard deviations are increased. It should be noted that, contrary to the
cases shown in Figure 7, where additional fiber misalignment causes only minor strengthening in the
transverse direction, in Figure 8, it can be observed that significant longitudinal shear strengthening
occurs with additional in-plane misalignment (as one might expect).

It is of interest to examine the variation of various composite properties with respect to the in-plane
misalignment angle y. Figure 9 shows a number of such properties, normalized with respect to their
values in the absence of misalignment. This figure shows that, while the effective axial Young's modulus,
E}, decreases with additional misalignment, the transverse Young's modulus, E3, and the axial shear
modulus, Gy, increase. The axial and transverse Young's moduli are relatively insensitive to small
amounts of misalignment, whereas the axial shear modulus is very sensitive. It is worth mentioning that,
by applying an in-plane transformation, the initially orthotropic composite material becomes monoclinic
and the effective stiffness tensor component Cjy,,, see Equation (13), is greatly influenced by this

transformation. As a result of the employed averaging procedure, see Equation (20), the additional
monoclinic terms in the effective stiffness matrix vanish (assuming the mean misalignment angle, p = 0),
but the strong effect remains on <C1*2,2> , which is the effective axial shear modulus, Gy, . Note, however,

that, as mentioned in the Introduction, the dependence of the effective elastic properties on the
misalignment could also be determined using a macromechanical analysis (provided the presented
probability-weighted averaging procedure were performed). The influence on damage initiation surfaces,
however, could not be determined.

Also shown in Figure 9 are the variations of the areas of the damage initiation envelopes predicted
using the von Mises, 4,,,, and damage-based, Ap, criteria in the 6;1—0,; plane. The decreasing trends in
these values indicate the overall loss of strength of the material in this plane due to fiber misalignment.
However, for very large standard deviations of the misalignment angle, this trend appears to reverse.
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Figure 8.—Initial damage surfaces for the graphite/epoxy composite. (a) Damage-based criterion, Equation (30), in
the c11—o12 plane, where an in-plane fiber misalignment angle, v, has been considered. (b) Damage-based
criterion, Equation (30), in the o11—o12 plane, where both an in-plane fiber misalignment angle, v, and an out-of-
plane misalignment angle, ¢, have been considered.
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Figure 9.—Effect of in-plane fiber misalignment on the graphite/epoxy
composite effective axial shear modulus Gj, , transverse Young's modulus
E;, axial Young's modulus E;, area of the von Mises criterion damage

initiation envelope A,m, area of the damage-based criterion damage
initiation envelope Ap, and strength, all normalized with respect to their
pristine values.

A final curve plotted in Figure 9 shows the impact of fiber misalignment on the predicted strength
of the composite loaded in axial tension, as dictate by the maximum von Mises stress, 625” , see

Equation (28), in the matrix constituent material. That is, this ‘strength’ corresponds to the global uniaxial
tensile stress for damage initiation in the matrix, predicted based on the maximum local von Mises stress
throughout the matrix. It can be readily observed that the impact of fiber misalignment on this axial
strength, which can only be predicted by a micromechanical analysis, is substantial (for example, at

sy = 4°, 16 percent reduction), and much greater than the impact on the axial Young's modulus, Ef (for

example, at s, = 4°, only 1.2 percent reduction). Initially, as small amounts of misalignment are
introduced, this curve decreases rapidly with increasing s,, due to increased stress (particularly shear) in
the matrix. At greater values of s,,, the normal distribution flattens (see Figure 5), and the strength curve
in Figure 9 levels off, approaching the value for fully random fiber in the x;-x, plane (0.124).

In order to further investigate effect of the fiber misalignment on the composite, Figure 10 shows
surface plots of Ap, 4,,,, the aforementioned von Mises stress based strength, and the effective axial Young's
modulus ( £} ), all normalized by their pristine values as in Figure 9. By adding the effect of out-of-plane

misalignment, ¢, it can be observed that the effect of the latter misalignment is greater than that of in-plane
misalignment on 4y and 4,,, (Figure 10(a) and (b)). As for the strength and effective axial Young's modulus,
it appears that the effects of both in-plane and out-of-plane misalignments are similar. It is also clear that,
across all values of both misalignment angle standard deviations, the effect on the effective axial Young's
modulus, which could be calculated using the macro approach, is significantly less than the other measures
of composite performance. The fall off in the effective Young's modulus is also much less steep.
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Figure 10.—Surface plots as a function of the standard deviations s,, and s,. (a) The area, Ap, of the damage initiation
envelopes predicted using the damage-based criterion in the c11—o22 plane. (b) The area, Ay, of the damage
initiation envelopes predicted using the von Mises criterion in the 611—o22 plane. (c) The strength of the composite

loaded axially, as dictate by the maximum von Mises stress, 5. (d) The effective axial Young's modulus, E;.

Figure 11 shows the normalized von Mises equivalent stress distributions in the composite with no
fiber misalignment (pristine) subjected to global uniaxial stress loading in the fiber and transverse
directions. Also shown is the corresponding distribution for the case where the fibers are fully randomly
oriented, whose response, as mentioned previously, is isotropic, which yields identical equivalent stress
distributions irrespective of the orientation of the applied uniaxial loading. Comparing Figure 11(a) to
Figure 11(c), it is clear that the stresses in the fiber increase and the stresses in the matrix decrease by
introducing random fiber orientations. The opposite result can be observed when comparing Figure 11(b)
to Figure 11(c). Thus the effect of random fiber orientation on the composite behavior is significant.

NASA/TM—2014-218313 16



O'eq / 611 O'eq / 622

Figure 11.—von Mises equivalent stress distributions normalized by the applied global uniaxial stress for the
graphite/epoxy composite. (a) Pristine composite subjected to axial stress G;,. (b) Pristine composite subjected to

transverse stress Gy, . (c) Fully random fiber distribution subjected to either axial or transverse stress.

5.2 Ceramic Matrix Composite

A second application considers a 0.26 fiber volume fraction unidirectional SiC/SiC composite. The
isotropic SiC fiber properties are as follows: Young's modulus = 400 GPa and Poisson's ratio = 0.17. The
isotropic SiC matrix properties are: Young's modulus = 335 GPa and Poisson's ratio = 0.18. In addition,
there is a BN-based compliant interfacial layer whose volume fraction is 0.1. Its isotopic properties are as
follows: Young's modulus = 5 GPa and Poisson's ratio = 0.22. A 28 by 28 subcell discretization of the
repeating unit cell, which now includes an explicit BN interfacial phase, has been considered, as shown in
Figure 12.
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Figure 12.—SiC/SiC CMC repeating unit cell
divided into 28 by 28 subcells. The fiber
volume fraction is 0.26 and the interfacial
layer volume fraction is 0.1.
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Figure 13.—Initial damage surfaces for the SiC/SiC CMC composite. Damage-based criterion, Equation (30),
in the o11—o22 plane, where (a) an in-plane fiber misalignment angle, v, has been considered, and (b) both
an in-plane fiber misalignment angle, y, and an out-of-plane misalignment angle, ¢, have been considered.

Figure 13 shows the predicted initial damage surfaces for the CMC for the damage-based criterion,
Equation (30), for various values of the standard deviation of the misalignment angles, s,, and s,, under
normal loading in the fiber (x;) and transverse (x,) directions. Also shown in the figure are the envelopes
for the fully random case. The CMC behaves quite differently than the PMC previously considered. In the
longitudinal (fiber) direction, the CMC exhibits much less mismatch in properties between the fiber and
matrix, and the interfacial compliant layer, which is in parallel with the fiber and matrix, has only a minor
effect. In contrast, in the transverse direction, the interfacial compliant layer (now in series with the fiber
and matrix) introduces a great deal of property mismatch. This is exactly opposite to the PMC, wherein
the longitudinal direction property mismatch it much larger (80:1) compared to the transverse mismatch
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(4:1). As aresult, the effect of relatively small amounts of fiber misalignment on the CMC is considerably
less compared to the PMC. Furthermore, also in contrast to the previously considered PMC, the addition
of out-of-plane fiber misalignment, see Figure 13(b), does not exhibit a significant effect.

Figure 14 shows the variation of various composite properties with respect to the in-plane
misalignment angle y, normalized with respect to their values in the absence of misalignment. Note that
the scale of the ordinate axis in Figure 14 is significantly smaller than that in Figure 9 for the PMC. As
such, it is clear that the effect of misalignment on the various properties for the CMC is considerably less
pronounced. The strength remains the property most affected by the fiber misalignment, but the trend
reversals in the 4,,, and Ap, observed in Figure 9 are now absent.

Finally, the normalized local von Mises equivalent stress distributions in the CMC are shown in
Figure 15. Figure 15(a) and (b) show the stress distributions in the pristine composite loaded in the axial
and transverse directions, respectively. The compliant layer can be clearly observed. The induced stress
concentrations are significantly higher in the transversely loaded case, Figure 15(b), due to the compliant
layer's influence, which isolates the fiber. Figure 15(c) shows the fully random CMC case, which,
compared to the axially loaded pristine case, Figure 15(a), exhibits greater stress in the matrix and lower
stress in the fiber.
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Figure 14.—Effect of in-plane fiber misalignment on the SiC/SiC CMC composite
effective axial shear modulus G;,, transverse Young's modulus E;, axial
Young's modulus E;, area of the von Mises criterion damage initiation envelope

Avm, area of the damage-based criterion damage initiation envelope Ap, and
strength, all normalized with respect to their pristine values.
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Figure 15.—von Mises equivalent stress distributions normalized by the applied global uniaxial stress for the SiC/SiC
CMC. (a) Pristine composite subjected to axial stress G;4. (b) Pristine composite subjected to transverse stress
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Gy, . (c) Fully random fiber distribution subjected to either axial or transverse stress.

6.0 Conclusions

A micromechanical formulation has been presented that is capable of predicting the effects of statistical
distributions of fiber misalignment on the behavior of composite materials. The key unique feature is the
ability of the method to predict not only effective composite properties, but also local fields. This is possible
because this approach is based on the establishment of the composite concentration tensors, which include
the effects of the fiber misalignment. It is thus possible (although not done herein) to predict the complete
nonlinear response of the composite, including interfacial debonding and progressive damage. This
approach was applied to the case of linear elasticity and perfect bonding, excluding progressive damage.
However, in the absence of fiber misalignment, imperfect debonding and progressive damage have been
addressed by Aboudi et al. (2013). In all cases presented, normal distributions of in-plane and out-of-plane
fiber misalignment angles have been considered. It has been shown that the effect of these fiber
misalignments are more significant in PMCs as compared to CMCs due to the fact that PMCs have
significantly greater property mismatch. In the case of the PMC, the substantial variations of the initial
damage surfaces with the standard deviation of the misalignment angles have been illustrated. Fully random
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fiber orientation has also been considered and shown to have a major impact on the initial damage surfaces
and local field distributions when compared to the pristine composite.

It should be noted that the presented approach to capturing the effects of fiber misalignment is
applicable to any micromechanical approach that can accurately predict the strain concentration tensor of
a composite, including the finite element method. Due to the proven ability of the HFGMC model to
analyze various nonlinear effects, the proposed method could also be extended to consider material
nonlinearity such as damage and inelasticity within the constituents and to consider the thermal-
mechanical response of composites. Additional potential applications include analysis of composites with
given fiber paths, short/nano fiber composites with known fiber alignment/waviness (c.f., Yu et. al, 2011)
and multiscale analysis within laminated plate theories and finite element analyses, which could be used
to capture misalignment effects on the response of woven composites. Application to biological materials,
as has been done with the microsphere model, is also possible.
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