Combining Wind Plant Control With Systems Engineering

2015 Wind Energy Systems Engineering Workshop, Boulder, Colorado

Paul Fleming, Andrew Ning, Pieter Gebraad, Katherine Dykes

National Renewable Energy Laboratory

January 14, 2015

PR-5000-63584
Overview

• Wind plant controls research
• Combining optimization
• Case study: Princess Amalia Wind Park
• Conclusions.
Wind Plant Control

- Recent research has focused on improving wind plant performance by coordinating the control of individual turbines.

Photo from Uni-Fly A/s
One promising approach uses intentional yaw misalignment to redirect wakes away from downstream turbines.
Model Development

- Work has used high-fidelity simulation to study the control systems (Simulator for On/Offshore Wind Farm Applications, or SOWFA)

- Additionally, control-oriented engineering models have been developed for control design (FLOw Redirection and Induction in Steady-state, or FLORIS).

Model-Based Control

- Using engineering-level model:
 - Optimize yaw angles within this model.
- Test selected values in SOWFA.
Model-Based Control

Combined Optimization

• The previous work assumes a fixed plant layout, turbine design, and so on
• Perhaps the benefit of wind plant control could be amplified if accounted for during the early phase of design
• In this work, a proof-of-concept study was performed in which wind plant controls and layout were optimized.
Case Study: Princess Amalia Wind Park

- Given baseline layout of real wind plant, compare:
 - **Baseline**: fixed (original) positions, turbines all yawed in mean wind direction
 - **Optimized yaw**: fixed (original) positions, turbines optimally yawed for each wind direction
 - **Optimized location**: position optimized, turbines all yawed in mean wind direction
 - **Combined optimization**: simultaneously optimized position and yaw for each wind direction.

- Use as a proxy metric of COE the power density of the wind farm (W/m²)
- Note 1: Full paper (under review in Wind Energy) considered cable length and boundary limitations as well
- Note 2: NREL’s 5-megawatt (MW) turbines were used in place of ~2-MW turbines, making baseline spacings closer
- Note 3: All following figures from upcoming full paper.
Baseline

Power Output

- Mean power (MW): 78.86
- Area (km²): 14.53
- Power density (W/m²): 5.43

Layout
Optimized yaw angles for the 180° case
Yaw Control

Power Output

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>YawOpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean power (MW)</td>
<td>78.86</td>
<td>84.91</td>
</tr>
<tr>
<td>Area (km²)</td>
<td>14.53</td>
<td>14.53</td>
</tr>
<tr>
<td>Power density (W/m²)</td>
<td>5.43</td>
<td>5.84</td>
</tr>
</tbody>
</table>
Layout Optimization

Power Output

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>YawOpt</th>
<th>PosOpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean power (MW)</td>
<td>78.86</td>
<td>84.91</td>
<td>78.86</td>
</tr>
<tr>
<td>Area (km²)</td>
<td>14.53</td>
<td>14.53</td>
<td>12.45</td>
</tr>
<tr>
<td>Power density (W/m²)</td>
<td>5.43</td>
<td>5.84</td>
<td>6.33</td>
</tr>
</tbody>
</table>
Combined Optimization

Power Output

- Mean power (MW): Baseline 78.86, YawOpt 84.91, PosOpt 78.86, Combined 78.84
- Power density (W/m²): Baseline 5.43, YawOpt 5.84, PosOpt 6.33, Combined 8.80

Layout
Results

• Coupling yaw control and position density provided a 40% increase in power density over layout optimization alone and 50% more than yaw control alone.

• Proof-of-concept study demonstrated that the potential of wind plant control can be greatly expanded if included in the design phase.

• Full paper includes optimizations for cable length and given a fixed wind plant boundary.
Future Work

• Current and future work considers:
 o Impact on loading and inclusion of loading effects in optimization
 o More realistic cost-of-energy optimization function
 o More detailed and realistic constraints
 o Improved optimization for faster convergence.
Thanks for Your Attention!

Photo by Dennis Schroeder, NREL 25915

Paul Fleming | paul.fleming@nrel.gov