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Summary 
Hybrid gears have been tested consisting of metallic gear teeth and shafting connected by composite 

web. Both free vibration and dynamic operation tests were completed at the NASA Glenn Spur Gear 
Fatigue Test Facility, comparing these hybrid gears to their steel counterparts. The free vibration tests 
indicated that the natural frequency of the hybrid gear was approximately 800 Hz lower than the steel test 
gear. The dynamic vibration tests were conducted at five different rotational speeds and three levels of 
torque in a four square test configuration. The hybrid gears were tested both as fabricated (machined, 
composite layup, then composite cure) and after regrinding the gear teeth to the required aerospace 
tolerance. The dynamic vibration tests indicated that the level of vibration for either type of gearing was 
sensitive to the level of load and rotational speed. 

Introduction 
Drive systems of the future will be required to have increased power-to-weight ratios in addition to 

reduced maintenance, noise, and cost. These requirements have been under constant evolution, resulting 
in improvements over the last several decades. Materials, manufacturing, processing, lubricants, and 
advanced drive system analysis have led to drive system designers pushing the technology and steadily 
making improvements (Refs. 1 to 5). Typically these technology improvements are implemented when 
drive system upgrades occur and when new vehicles are designed. The implementation is timed in this 
manner to reduce costs, as qualification of a drive system for rotorcraft is an expensive process. 

Power-to-weight ratio is one of the most important drive system attributes. Parametrically the 
resultant gearbox and lubrication system weight, wt, for rotorcraft of all types, sizes, number of engines, 
and number of main rotors is shown in Figure 1 (Ref. 6). Here, the parametric value���� is a function of the 
input and output speeds vin and vout, respectively (both in revolutions per minute), of the drive system and 
the transmitted power P (in horsepower). Once this calculation is made, the anticipated weight of the 
gearbox and lubrication system, wt, can be found. Using advanced technologies, results in drive systems 
that are lighter weight for a given gear ratio and power level such that they fall below the curve shown in 
Figure 1. This improved capability offers the rotorcraft extended range and/or payload. 

Materials play an important role in improving the power-to-weight ratio. Currently rotorcraft drive 
systems utilize lightweight structure materials (aluminum and magnesium) for the housing and minimize 
                                                      
1 NASA Intern working in Lewis Educational and Research Collaborative Internship Project.  
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gear weight via careful analysis and machining. Generally, rotorcraft gears have only enough mass for 
load carrying ability. Minimizing the mass of a gear leads to a lack of heat storage capability. This 
attribute can cause problems during a primary lubrication system failure in which gears would operate 
under starved or dry conditions.  Therefore all operation scenarios need to be carefully considered. 

Composite materials have been considered for some rotorcraft drive system housings, such as the work 
contained in Reference 7. Many issues were worked out to attain project success. However, cost and some 
other technical issues yet to be resolved have been a roadblock to incorporating this technology into 
production. 

In addition to structural components, there have also been recent efforts to incorporate lower density 
composites in dynamic components, such as shafts and gears. This report focuses on the potential application 
of composite material in rotorcraft drive system gears. The web of the test gear was replaced with composite 
material. The material properties of the composite material used in this study are compared with those of a 
typical aerospace gear material in Table I. One property that is of real importance is the density. The density of 
the composite material used in this study is approximately 25 percent of that of typical gear steel. Also, there 
was an anticipated benefit expected that the material change should help with mesh-generated vibration and 
noise that is transmitted from the gears to the shafts and bearings.  

The objective of this study is to describe how composite webbed gears (referred to here as “hybrid” gears) 
were fabricated and the resultant effect on the gear natural frequency, transmitted vibration, and noise. 
 
 

 
 
 

TABLE I.—COMPOSITE AND AEROSPACE STEEL MATERIAL PROPERTIES 
Property Composite material AISI 9310 gear steel 

Modulus of elasticity, Pa  (psi) Tension: 44�109  (6.4�106) 
Compression: 42�109  (6.1�106) 

200�109  (29�106)

Poisson’s ratio 0.3 0.29 
Density, kg/m3  (lb/ft3) 1800  (112) 7861  (491)
Thermal conductivity, W/m��C (Btu/h�ft��F) T700 fiber-axial: 9.4  (5.43)  55  (32) 
Useful maximum temperature as gear material, �C (�F) 150  (302) 175  (347) 
Coefficient of thermal expansion, 10-6 m/m�K–1  (10-6 in/in��F–1) In plane: 2  (1.1) 13  (7.3) 

Failure strain, percent Tension: 1.9 

Compression: 0.94 
Elongation, percent  15 
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Hybrid Gear Manufacture 
The hybrid gears manufactured in this study followed the process as described in Reference 8. A brief 

description will now be provided. 
The test gear design used for this study has the design shown in Table II. Figure 2 provides a pictorial 

explanation of the hybrid gear assembly process. A hexagonal region was machined out of a steel gear 
leaving two steel gear components: a gear rim with the teeth and a hub region for attachment to the 
facility shafting. The braided prepreg composite material was built up in a fixture around the steel hub 
and rim as shown in steps 3 to 8 of Figure 2. A total of 36 layers of composite material were built up then 
cured in the fixture (step 9) at a final temperature of 177 °C (350 °F). The fixture for fabrication and 
curing used the inner diameter of the hub and the gear measurement over pins in an attempt to keep the 
gear teeth aligned with the axis of rotation. An example of the cured gear is shown in Figure 3. 

 
TABLE II.—GEAR DESIGN FOR THIS STUDY 

Number of teeth ....................................................................... 42 
Module, mm (Diametral pitch 1/in.) ............................... 2.12 (12) 
Circular pitch, mm (in.)......................................... 6.650 (0.2618) 
Whole depth, mm (in.) .............................................. 4.98 (0.196) 
Addendum, mm (in.) ................................................. 2.11 (0.083) 
Chordal tooth thickness, mm (in.) ......................... 3.249 (0.1279) 
Pressure angle, deg ................................................................... 25 
Pitch diameter, mm (in.) ................................................ 88.9 (3.5) 
Outside diameter, mm (in.)...................................... 93.14 (3.667) 
Measurement over pins, mm (in.).......................... 93.87 (3.6956) 
Pin diameter, mm (in.)............................................... 3.66 (0.144) 
Backlash ref., mm (in.) .............................................. 0.15 (0.006) 
Tip relief, mm (in.) ........................ 0.013–0.018 (0.0005–0.0007) 
All-steel gear weight, kg (lbf) ............................. 0.3799 (0.8375) 
Hybrid gear weight, kg (lbf) ................................ 0.3242 (0.7147) 
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A total of four gears (two pairs) were manufactured and used in this study. The first gear pair (A) was 
used for fatigue testing, to be described later, while the second pair (B) was used for both static and 
dynamic vibration tests. Because of material differences (i.e., coefficient of thermal expansion), the initial 
gear geometry was not preserved after the curing process, causing significant pitch variation, and other 
anomalies compared with the original steel aerospace gear. Figure 4 provides example pitch variation 
measurements for two of the four hybrid gears after curing. These pitch variations were greater in gear set 
A than in set B. This resulted in a reduction in backlash, normally around 0.15 mm (0.006 in.), of 0 to 
0.038 mm (0 to 0.0015 in.). Even with the reduced backlash, gear set A withstood fatigue testing without 
damage to the contact surfaces. 

To reduce the pitch variations and return the tooth geometry to its original form, the teeth on gear set 
B were reground after performing initial vibration tests. The geometry of one of the reground gears is 
shown in Figure 5. Although the tooth geometry was restored, the regrind process resulted in excess 
backlash of 0.58 to 0.64 mm (0.023 to 0.025 in.), which is nearly 4 times the normal steel gear backlash. 
Some modifications would be needed in adapting this process to production, such as waiting until after 
composite curing to perform the final tooth grind to minimize repeat effort.  
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Free Vibration Modes 
In an effort to understand how adding a composite web to a spur gear effects the vibration and noise 

generated and/or transmitted, first free-free vibration tests were performed in the form of impact tests. 
Impact tests were performed on both the composite hybrid gear and its steel counterpart. The vibration 
response was collected with an accelerometer connected to the gear’s inner bore via a small aluminum 
bracket affixed (glued) to the bore to provide a rigid mount that was easily removed. The gear was 
suspended by an elastic band. Using an instrumented modal hammer, the gear was impacted radially in 
line with the accelerometer. This is slightly different from the setup previously reported, that placed the 
accelerometer in the axial direction adjacent to the bore (Ref. 8). Figure 6 shows the test setup and 
accelerometer bracket. Data acquisition was triggered by the instrumented hammer and was collected at a 
sample rate of 50 kHz. Figure 7 shows representative vibration plots of both a hybrid and a steel gear. 
Although the majority of the vibration has diminished in the composite gear after 5 ms, the steel gear 
vibrates out past 10 ms.  

The accelerance for the steel gear impact tests are shown in Figure 8. The first natural frequency for 
the steel gear is around 7000 Hz. This is consistent with a previous finite element analysis (FEA) that 
provided estimated natural frequencies at 7187 and 7270 Hz (Ref. 8). Similarly, the natural frequencies 
seen at 12.1 and 12.7 kHz are also close to FEA approximations. Those seen at 15.2, 16.5, and 17.2 kHz 
were not seen in previously published axial impact tests. This is likely due to the fact that the mode  
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shapes around 15 and 16 kHz involve only radial motion as was seen in the FEA-estimated mode shapes. 
Since damping for any particular mode is related to the width of the peak in the frequency spectrum, the 
sharp spikes at 12.1, 12.7, 16.5, and 17.2 kHz represent the modes with limited damping, whereas the 
modes at 7 and 15.2 kHz exhibit a higher level of damping.  

Hybrid gear impact tests displayed in Figure 9, show the first natural frequency around 6400 Hz.  
This is consistent with previous testing (Ref. 8). These results also show a strong natural frequency at 
10.7 kHz. It is difficult to separate the other resonant frequencies, as they are highly damped and overlap. 
Neither of these natural frequencies is consistent with those identified by FEA that predicted the first 
frequency to be higher than that of the steel gear at 7780 Hz (Ref. 8). Further modeling efforts are needed 
to obtain useful hybrid gear FEA predictions, focusing on ply arrangement effects and a better model of 
the interface between the steel and composite material.  
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Test Facility 
The dynamic tests reported herein were conducted in the NASA Glenn Spur Gear Fatigue Rig. The 

facility, shown in Figure 10, is a closed-loop test rig that operates at speeds up to 10 000 rpm and 57.9 N�m 
(513 in�lb) torque. Speed and load are independently adjustable. Load is adjusted by varying the supply 
pressure to the rotating torque actuator located in one of the slave gears.  From FEA, the torque mentioned 
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above induces a bending stress of 0.212 GPa (30.8 ksi) and a contact stress of 1.17 GPa (170 ksi). These 
stresses were calculated using the full three-dimensional FEA method described in Reference 9. 

Vibration data were attained using accelerometers with a bandwidth of 10 kHz with ±5 percent 
accuracy (18 kHz at ±10 percent). The accelerometers were mounted as shown in Figure 11 such that one 
was parallel to the line of action (LOA) of the gears and the other perpendicular (off-LOA). Data were 
taken via laboratory analog-to-digital converters and read into a computer at a rate of 50 kHz.  
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Experimental Results 
The experimental results of the three types of tests performed are described in the following sections. 

Vibration 

Dynamic vibration data was taken with test gears installed in four different configurations: steel 
driving steel, steel driving hybrid, hybrid driving steel, and hybrid driving hybrid. It is important to note 
that the hybrid gears used for the dynamic tests were set B that were reground to aerospace tolerances, as 
discussed previously. The tests were performed at five different shaft speeds and at three levels of torque 
(load pressure). The rotational speeds were 2500, 5000, 7500, 8750, and 10 000 rpm and the torque levels 
were at 20.5, 39.2, and 57.9 N�m (182, 347, and 513 in�lb, respectively). From Figure 11, the driving gear 
is the one on the left and the driven gear is on the right. All vibration data were taken from the right-side 
seal housing that is in direct contact with the shaft support bearing. 

Root-mean-square (RMS) vibration levels for each test are shown in Figure 12 for both the LOA and 
off-LOA accelerometers. Results show that the highest vibration was experienced when the hybrid gear 
was driving the steel gear. When comparing the hybrid driving steel results with the steel driving hybrid  
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results, there is a significant reduction in vibration. With the driving gear mounted on the left and the 
driven gear mounted on the right, adjacent to the accelerometers, this shows that lower vibration levels 
are experienced when the hybrid gear is mounted next to the sensors. The hybrid gear pair shows some 
improvement over the steel pair at the higher rotational speeds and loads for the LOA accelerometer and 
shows a small overall improvement when comparing to off-LOA results.  

The raw data were also averaged over 20 shaft rotations to obtain the time synchronous average. This 
process is performed to remove nonsynchronous noise from the data. The RMS of the average is shown in 
Figure 13 and provides similar results as shown in Figure 12.  

Dynamic tests were performed both before and after gear set B was reground, providing a comparison 
between the two geometries. These vibration results are shown in Figure 14. The regrind process is shown 
to reduce the vibration by as much as half at lower speeds. The results presented could be improved by 
optimizing the composite curing process to minimize the distortion that occurs. The need for regrinding 
after the composite cure process may not be eliminated, but the amount of material removal required to 
bring the geometry back to aerospace quality could be reduced.  
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Noise 

While the vibration data was being taken, a sound pressure level measurement was made. The 
measurement was taken using a single, hand-held acoustic probe that uses the A-weighted scale. The 
probe was held at a distance of 0.4 m (~16 in.) at the height of the centerline of the meshing gears, 
pointed directly at the test gear cover. The RMS-averaged data are shown in Figure 15. The noise data 
produced similar trends as did the vibration data discussed previously. 

Fatigue 

Hybrid gear set A was used for endurance testing as a proof of concept. The gear set used in this test 
was put into the facility after composite curing without any regrinding of the gear tooth profiles. A single 
long-term test was conducted to examine the durability of the composite-steel bond. The test was run for 
one billion cycles at 10 000 rpm and 48.6 N�m (430 in�lb) at 49 °C (120 °F) oil inlet temperature. This 
corresponds to a calculated contact stress of approximately 1.35 GPa (195 ksi) and a bending stress of 
0.20 GPa (29.2 ksi). The gears survived without any visual signs of debonding or degradation of the 
composite material.  
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Conclusions 
Based on the results attained in this study the following conclusions can be made:  

 
1. A hybrid gear mesh has shown promise for operation in a simulated aerospace environment with 

the possibility of reducing component weight. 
2. Hybrid gears need to be further processed to maintain aerospace gear quality.  
3. The hybrid gears were fatigue tested to one billion stress cycles at representative loads and speeds 

with no resulting degradation.  
4. The hybrid gears exhibited a lower natural frequency than the standard steel gears of the same size 

and dimension.  
5. Dynamic vibration results indicated the strong dependence of operational speed on the measured 

results. The hybrid driving hybrid configuration exhibited the lowest vibrations, but only at the higher 
speeds and loads. 

6. Vibration tests performed with the hybrid gear driving the steel gear typically exhibited the highest 
RMS vibration levels, particularly at the higher rotational speeds.  

7. The A-Weighted, RMS sound-level measurements trended similarly to those of the vibration 
results. 
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