
Bryan Palaszewski
Glenn Research Center, Cleveland, Ohio

Solar System Exploration Augmented by 
Lunar and Outer Planet Resource Utilization: 
Historical Perspectives and Future Possibilities

NASA/TM—2014-218136

September 2014

AIAA–2014–0498



NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the 
advancement of aeronautics and space science. The 
NASA Scientific and Technical Information (STI) 
program plays a key part in helping NASA maintain 
this important role.

The NASA STI Program operates under the auspices 
of the Agency Chief Information Officer. It collects, 
organizes, provides for archiving, and disseminates 
NASA’s STI. The NASA STI program provides access 
to the NASA Aeronautics and Space Database and 
its public interface, the NASA Technical Reports 
Server, thus providing one of the largest collections 
of aeronautical and space science STI in the world. 
Results are published in both non-NASA channels 
and by NASA in the NASA STI Report Series, which 
includes the following report types:
	
•	 TECHNICAL PUBLICATION. Reports of 

completed research or a major significant phase  
of research that present the results of NASA 
programs and include extensive data or theoretical 
analysis. Includes compilations of significant 
scientific and technical data and information 
deemed to be of continuing reference value. 
NASA counterpart of peer-reviewed formal 
professional papers but has less stringent 
limitations on manuscript length and extent of 
graphic presentations.

	
•	 TECHNICAL MEMORANDUM. Scientific  

and technical findings that are preliminary or  
of specialized interest, e.g., quick release  
reports, working papers, and bibliographies that 
contain minimal annotation. Does not contain 
extensive analysis.

	
•	 CONTRACTOR REPORT. Scientific and 

technical findings by NASA-sponsored  
contractors and grantees.

•	 CONFERENCE PUBLICATION. Collected 
papers from scientific and technical 
conferences, symposia, seminars, or other 
meetings sponsored or cosponsored by NASA.

	
•	 SPECIAL PUBLICATION. Scientific, 

technical, or historical information from  
NASA programs, projects, and missions, often 
concerned with subjects having substantial 
public interest.

	
•	 TECHNICAL TRANSLATION. English-

language translations of foreign scientific and 
technical material pertinent to NASA’s mission.

Specialized services also include creating custom 
thesauri, building customized databases, organizing 
and publishing research results.

For more information about the NASA STI 
program, see the following:

•	 Access the NASA STI program home page at 
http://www.sti.nasa.gov

	
•	 E-mail your question to help@sti.nasa.gov
	
•	 Fax your question to the NASA STI 

Information Desk at 443–757–5803
	
•	 Phone the NASA STI Information Desk at
	 443–757–5802
	
•	 Write to:

           STI Information Desk
           NASA Center for AeroSpace Information
           7115 Standard Drive
           Hanover, MD 21076–1320



Bryan Palaszewski
Glenn Research Center, Cleveland, Ohio

Solar System Exploration Augmented by 
Lunar and Outer Planet Resource Utilization: 
Historical Perspectives and Future Possibilities

NASA/TM—2014-218136

September 2014

AIAA–2014–0498

National Aeronautics and
Space Administration

Glenn Research Center 
Cleveland, Ohio 44135

Prepared for 
SciTech 2014
sponsored by the American Institute of Aeronautics and Astronautics
National Harbor, Maryland, January 13–17, 2014



Available from

NASA Center for Aerospace Information
7115 Standard Drive
Hanover, MD 21076–1320

National Technical Information Service
5301 Shawnee Road

Alexandria, VA 22312

Available electronically at http://www.sti.nasa.gov

Level of Review: This material has been technically reviewed by technical management. 



NASA/TM—2014-218136 1 

Solar System Exploration Augmented by  
Lunar and Outer Planet Resource Utilization:  
Historical Perspectives and Future Possibilities 

 
Bryan Palaszewski 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

Abstract 
Establishing a lunar presence and creating an industrial capability on the Moon may lead to important 

new discoveries for all of human kind. Historical studies of lunar exploration, in-situ resource utilization 
(ISRU) and industrialization all point to the vast resources on the Moon and its links to future human and 
robotic exploration. In the historical work, a broad range of technological innovations are described and 
analyzed. These studies depict program planning for future human missions throughout the solar system, 
lunar launched nuclear rockets, and future human settlements on the Moon, respectively. Updated 
analyses based on the visions presented are presented. While advanced propulsion systems were proposed 
in these historical studies, further investigation of nuclear options using high power nuclear thermal 
propulsion, nuclear surface power, as well as advanced chemical propulsion can significantly enhance 
these scenarios.  

Robotic and human outer planet exploration options are described in many detailed and extensive 
studies. Nuclear propulsion options for fast trips to the outer planets are discussed. To refuel such 
vehicles, atmospheric mining in the outer solar system has also been investigated as a means of fuel 
production for high energy propulsion and power. Fusion fuels such as helium 3 (3He) and hydrogen (H2) 
can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ 
for energy production. Helium 3 and H2 (deuterium, etc.) were the primary gases of interest with 
hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based 
atmospheric flight. A series of analyses have investigated resource capturing aspects of atmospheric 
mining in the outer solar system. These analyses included the gas capturing rate, storage options, and 
different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen 
and 4He are produced. With these two additional gases, the potential for fueling small and large fleets of 
additional exploration and exploitation vehicles exists.  

Nomenclature 
3He    helium 3 
4He    helium (or helium 4) 
AMOSS  atmospheric mining in the outer solar system 
CC   closed cycle 
CH4   methane 
∆V    change in velocity (km/s)  
GCNR   gas core nuclear rocket 
GCR   Galactic Cosmic Rays 
GTOW    Gross Takeoff Weight 
H2    hydrogen 
He    helium 4 
ISRU    in situ resource utilization 
Isp    specific impulse (s) 
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K    Kelvin 
kT   kilotons of explosive power 
kWe    kilowatts of electric power 
LEO    low Earth orbit 
M dry, stage   stage dry mass (kg)  
M, dry coefficient stage dry mass coefficient, B 
M p    propellant mass (kg) 
MT    metric tons 
MWe    megawatt electric (power level) 
NEP    Nuclear Electric Propulsion 
NPP   Nuclear Pulse Propulsion 
NTP    Nuclear Thermal Propulsion 
NTR    Nuclear Thermal Rocket 
OC   open cycle 
O2    oxygen 
PPB    parts per billion 
UAV    Uninhabited Aerial Vehicle 

1.0 Introduction 
Human and robotic missions have been planned for targets throughout the solar system. Both types of 

missions can benefit greatly from the resources available from the planets and/or their moons. These 
benefits include water on many of the outer planet moons and large asteroids. With this water, O2/H2 
rocket propulsion systems can be fueled, breathing O2 can be extracted, and other life support functions 
(cooling fluids, etc.) can be facilitated. In addition, the atmospheres of many planets have ready reserves 
of gases for propellant production. Carbon dioxide on Mars can be separated into O2 and carbon 
monoxide or CH4. The outer planets offer enormous amounts of energetic gases such as H2, 3He, CH4, 
and ammonia. By using these in-situ resources, robotic precursor missions can double or triple their 
payloads to the surface and return double or triple the samples from the solar system targets. Without in-
situ resource utilization (ISRU), solar system exploration will be exceedingly limited. For future large 
scale human missions, the possibilities of ISRU for of human exploration and finally settlement offer the 
best opportunities for sustainability and success.  

2.0 Human Exploration Options 
In the 1950s, 1960s, 1970s, and 1980s, ambitious robotic and human mission were planned, spanning 

from Mercury to the outermost reaches of the solar system (Refs. 1 to 10). While investments in robotic 
missions have continued, human exploration of the solar system has awaited new invigorating steps. 
While lunar and Mars missions are in the early step-wise planning stages, many cost barriers have 
prevented their implementation. Future human missions to other destinations such as Mercury and Saturn 
will also require long-term investments. Currently, Mercury and Saturn have robotic missions returning 
invaluable data on those planets and their environs (Refs. 11 and 12). These data have provided insights 
that will ensure the success of future missions. With its proximity to the Sun, Mercury has extremely high 
temperatures and requires special high heat flux considerations for long-term human visits or bases. In 
contrast, temperatures at Saturn and its moons require designs for cryogenic environments. The 
possibilities for ISRU may allow more effective robotic missions and human visits to these planetary 
targets.  
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2.1 Mercury 

Mercury is the closest planet to the Sun; ranging from a perihelion of 46 million km to an aphelion of 
nearly 70 million km. The high temperature, high heat flux environment at Mercury and the tenuous 
surface emanations of several major chemical species (sodium, etc.) surrounding it will likely pose 
challenges to long term human visits. Permanently shadowed craters offer a valuable niche for longer 
term human visits and planetary bases. Such craters offer cryogenic temperatures while the sun facing 
surface is at a temperature of 590 to 725 K. The north polar regions of Mercury have been identified as a 
likely location for such permanently shadowed craters (Refs. 11, 12, and 13). Water ice is also likely to be 
in these craters, further aiding and assisting any human explorations. Short exploratory missions can be 
accomplished with hopping ascent-descent vehicles from the base at the shadowed crater.  

Figure 1 shows the locations of the shadowed craters (Ref. 12). Figure 2 depicts the temperatures that 
would exist in and near the craters (Ref. 13). The crater could accommodate a small base or at least an 
initial landing site. The lander’s temperature could stay within the nominal operating temperatures of 
traditional spacecraft. The temperature distribution in the crater would allow construction of the base at 
the warmer side of the crater and then the frozen volatiles would be extracted with cryogenic mining 
machines.  

2.2 Saturn and Its Moons 

Saturn is one of the outer planets. Its orbit has a perihelion 1,352.6 million km and an aphelion 
1,514.50 million km. An extensive series of flybys of the Saturnian moons have been conducted by the 
Cassini spacecraft. During these flybys, cameras and instruments capture and data on the moons’ 
composition, atmosphere and cloud cover (on the moon Titan), volcanos, plumes, rotation, and gravity.  

Titan is the largest moon of Saturn. Its intriguing nature includes a nitrogen and CH4 atmosphere and 
a subsurface ocean (Ref. 14). Recent flybys of the Cassini spacecraft have shown direct visual evidence of 
the northern lakes which are likely composed of CH4. Based on measurements and theories of the 
evolution of Titan, a large ocean of water and ammonia may exist below the icy surface. Large lakes in 
the North Polar regions have been seen on Titan’s surface, and they are likely composed of liquid CH4. 
Figure 3 shows the possible nature of Titan’s interior, surface, and atmosphere. While CH4 can be used as 
an effective rocket propellant, its nitrogen could be used in cold gas propulsion or electric propulsion 
(resistojet, arcjet or magneto-plasma-dynamic (MPD) thrusters).  

2.3 Enceladus 

The moon Enceladus is producing a large plume of water that is escaping into space. Speculation on 
the production of that water varies. The South Polar region has several hot spots (a cryogenic, volcanic 
area), known as the tiger stripes, matching the location of the plume of water exiting Enceladus (Ref. 15).  

In-situ resources from the Titan water ocean can be used for rocket propellants. Access to the ocean 
may only require drilling a short (or km long) distance into the icy crust. At Enceladus, the water plume 
may be captured, or the ocean of reservoir feeding the plume will be tapped. Capturing this water may 
prove difficult, however, and additional research is needed to find the best manner of fluid capturing.  

2.4 Asteroids 

An excellent additional target may be Ceres, the largest asteroid in our solar system. Ceres may 
provide substantial water from its water ice and the potential ocean below the ice (Ref. 16). As with 
Enceladus, drilling through many km of ice may be required and finding sufficiently deep crevasses will 
no doubt be useful in easing the drilling requirements.  
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3.0 Mission Studies 
3.1 Mercury Missions 

A human round trip mission to Mercury was assessed. The mission ∆V values for the round trip 
Mercury missions were derived from References 17 to 20. The highest ∆V case was selected from this 
data: an Earth departure ∆V of 5.2 km/s, a Mercury arrival ∆V of 10.9 km/s and a Mercury departure ∆V 
of 8.7 km/s (Ref. 17). Each ∆V was delivered by a separate single stage; thus a three stage vehicle is used. 
At Earth, a capsule enters the atmosphere to return the crew directly to Earth. The capsule’s mass is 
4,350 kg (Ref. 17). The round trip time is 585 days with a 40 day stay time at Mercury (Ref. 15). In this 
case, the vehicle does not land on Mercury. The LEO masses of both chemical propulsion and nuclear 
thermal propulsion vehicles were estimated. Figure 4 compares the LEO masses for two types of chemical 
propulsion systems and two nuclear thermal propulsion (NTP) systems. The interplanetary chemical 
propulsion systems used tankage dry mass coefficients of 3 and 5 percent of the total propellant mass in 
the tankage. In many cases, these dry masses may be deemed to be optimistically low; however, they 
allow some relative comparison of the chemical propulsion and the nuclear mission cases.  

The NTP vehicles dry mass was 15 percent of the propellant mass (Table 1). In current NTP designs, 
an Isp of 900 sec is nominally used (Refs. 23 and 24). Somewhat lower Isp values were used for these 
missions: 800 and 850 sec, respectively. These lower Isp values were assumed given the high heat flux 
environment of Mercury and the degraded Isp values would reflect the added propellant used for 
propellant cooling and/or refrigeration. The chemical propulsion systems required between 17,150 and 
27,000 MT to accomplish the mission. The NTP vehicles required approximately an order of magnitude 
less mass in LEO: 1,700 to 2,300 MT.  

 
TABLE 1.—SPACE VEHICLE DRY MASS COEFFICIENT 

AND ROCKET ENGINE SPECIFIC IMPULSE (Isp) 
Technology Isp 

(sec) 
M, dry coefficient 

(kg/kg M,p) 
Chemical-1 450 0.03 
Chemical-2 450 0.05 
Chemical lander 480 0.20 
NTP-1 800 0.15 
NTP-2 850 0.15 

 
Based on Reference 21, the stage and lander mass was estimated with the following mass scaling 

equation:  

 M dry,stage (kg) = M, dry coefficient * M p (kg) 

A Mercury landing vehicle mass was also estimated. The one-way ∆V for the lander was 3.5 km/s 
(Ref. 22). The ascent ∆V was also 3.5 km/s. These ∆V values accommodate approximately 19 percent for 
gravity losses for each maneuver; this gravity loss ∆V is added to the orbital velocity for a 100 km orbit 
which is 2.945 km/s. The lander Isp was 480 sec. The higher Isp was chosen for the lander as the engine 
used a higher engine expansion ratio that the interplanetary transfer vehicle (Ref. 21). The smaller engine 
size would allow a higher expansion ratio, given the typical volume constraints for space vehicles. The 
dry mass coefficient was 20 percent of the total propellant load. While the Mercury missions will likely 
require more aggressive thermal control (propellant shielding, cooling, etc.), that thermal control system 
mass is accommodated in the payload mass of the vehicle. The payload delivered to the surface was 
10 MT. Figure 5 compares the mass in LEO of a one-way lander and a round trip lander. The masses were 
140 MT for the round trip lander and 27 MT for the one way lander. Thus, using ISRU on the surface of 
Mercury to replenish the lander’s propellant would allow a savings of 113 MT on this mission. Additional 
analyses are needed to investigate the mass reductions for the interplanetary transfer vehicle to carry the 
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lander to Mercury. Another option would be to carry five landers to Mercury rather than carry simply one 
lander; many more permanently shadowed craters could then be visited on one mission. The 
interplanetary vehicle carrying the five landers could be sent on a lower energy trajectory than the human 
flights, thus saving additional mass launched into LEO in the overall Mercury architecture.  

Additional summary data on mission design is summarized in Reference 20. Figure 6 provides map of 
the one-way ∆V and trip time for a wide range of planetary targets (Ref. 20). Fast missions to Jupiter and 
Mercury are possible with ∆V values of 80 to 100 km/s. Nuclear propulsion systems may someday allow 
such ambitious missions and if augmented by ISRU, such mission will be within our technological reach 

3.2 Atmospheric Mining in the Outer Solar System (AMOSS) 

Atmospheric mining in the outer solar system can be a powerful ISRU tool in extracting fuels from 
the outer planets and allow fast human and robotic exploration of the solar system. Preliminary designs of 
aerospacecraft with gas core rocket nuclear engines for mining the outer planets were developed (Refs. 23 
and 24). Helium 3, a nuclear fusion fuel, would be extracted from the atmosphere and stored for final 
delivery to orbital assets. Analyses showed that gas core nuclear rocket (GCNR) engines can reduce the 
mass of such aerospacecraft mining vehicles very significantly: from 72 to 80 percent reduction over 
nuclear thermal propulsion (NTP) solid core powered aerospacecraft mining vehicles. While this mass 
reduction is important in reducing the mass of the overall mining system, the complexity of a fissioning 
plasma gas core rocket is much higher than the more traditional solid core NTP engines. Additional 
analyses were conducted to calculate the capture rates of 3He H2 and 4He during the mining process. 
Very large masses of H2 and 4He are produced every day during the often lengthy process (multi-day) of 
3He capture and gas separation. Figure 7 shows the mass of H2 needed for the gas core rocket and the 
potentially excess H2 captured every day (Ref. 23). Typically, these very large (excess) additional fuel 
masses can dwarf the requirements needed for H2 captured for ascent to orbit. Thus, the potential for 
fueling small and large fleets of additional exploration and exploitation vehicles exists. Aerial vehicle 
designs can take on many configurations. Additional aerospacecraft or other uninhabited aerial vehicles 
(UAVs), or balloons, rockets, etc., could fly through the outer planet atmospheres, for global weather 
observations, localized storm or other disturbance investigations, wind speed measurements, polar 
observations, etc. Deep-diving aircraft (built with the strength to withstand many atmospheres of 
pressure) powered by the excess H2 or 4He may be designed to probe the higher density regions of the gas 
giants.  

Based on these past analyses, there will likely be several possible future avenues for effective use of 
the gases of the outer planets for exciting and scientifically important atmospheric exploration missions. 
The analyses focused on Uranus and Neptune, as these planets offer vast reservoirs of fuels that are more 
readily accessible than those from Jupiter and Saturn (as these latter planets require lower energies needed 
to attain orbit and present less danger from powerful atmospheric lightning) and, with the advent of 
nuclear fusion propulsion, may offer us the best option for fast interplanetary travel and the first practical 
interstellar flight.  

3.3 Nuclear Underground Explosions 

Based on recent measurements and simulations of the lunar radiation environment, it appears that 
long term occupancy of the lunar surface may be detrimental to human beings. In addition to the long 
term exposure to natural radiation sources (galactic cosmic rays, solar flares, etc.), there is additional 
scattered radiation on the lunar surface (Ref. 25). Based on these most recent measurements and the past 
work in lunar bases, it seems reasonable to assess living and working in underground facilities on the 
Moon. Using small of large nuclear devices on the Moon may provide an option for creating a series of 
large habitable underground spaces. Project Plowshare in the 1960s (Refs. 26 to 33) addressed some of 
the issues with using nuclear devices to complete large scale redirection of rivers, building canals, and 
many other massive civil engineering projects.  
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Past Earth based nuclear weapons testing often was done underground due to the Nuclear Test Ban 
Treaty of 1963. The tests often left sizable craters on the surface. When a nuclear device is sufficiently 
deeply buried, the explosive force can be completely contained underground (Ref. 26, Figure 8). The blast 
vaporizes some of the surrounding rocky material which then expands and creates an underground cavity, 
as shown in Figure 8. In most cases the weight of overhead rock soon crumbles the roof of the void 
chamber and a vertical column (or chimney) is created by the successively falling loose rocky layers. The 
material in the chimney undergoes compaction after the roof collapse but the initial amount of void space 
created by the blast just after detonation is distributed in this broken rocky debris. Small robotic mining 
systems could be used to manage the debris. Based on historical data, such a space can also be spherical if 
the blast size is sufficiently small. After the radiation has fallen to acceptable levels, people could 
potentially create comfortable living spaces.  

In Reference 7, this technique was proposed for not only living spaces, but for large scale ISRU. 
Nuclear explosions would be used to melt and vaporize lunar regolith. Figure 9 illustrates four different 
processes using nuclear detonations (Ref. 7). There are two chambers: one for the nuclear explosion, and 
one for the reaction product capturing. This processing would essentially chemically reacting O2, H2, or 
other species. The processes range from creating O2 and metal oxides to producing water and metal 
carbides. From Reference 7: 
 

“A nuclear charge of one kiloton, detonated underground, fractures approximately 80,000 cubic 
meters or 330,000 tons of lunar rock, containing 130,000 MT of oxygen. At least 1%, or 33,000 
MT, of the rock is fully evaporated. The silicon and metals condense quickly. But, since they are 
in an essentially pure oxygen atmosphere, they also reoxidize vigorously. Estimating, very 
conservatively, that only 20 to 30% of the liberated oxygen can be extracted and stored, this 
means that through the underground detonation of a one-kiloton nuclear charge, of a systems 
mass of a few hundred pounds, 6,000 to 10,000 MT (Earth weight) of oxygen can be provided. ” 

 
Certainly, extensive processing will require maintenance of the nearly spherical cavities and effective 

pumping schemes to introduce the gases into the underground chambers for the planned reactions. 
However the rates of production may be high enough to warrant the use of nuclear detonations.  

3.4 Lunar Slide Lander 

The lunar slide lander uses friction between a descending tubular spacecraft and a prepared runway of 
lunar regolith. The operations of the slide lander are in eight phases (Ref. 8):  
 

1. Elliptical orbit descent.  
2. Perilune maneuver (pre-landing retro-thrust).  
3. Approach to touchdown (cut in supporting (vertical) thrust at the end of Phase 3).  
4. Touchdown with harenodynamic tail brake. A positive angle of attack is maintained by the 

supporting thrust.  
5. Initiation of main drag phase. Touchdown of harenodynamic side brakes.  
6. Main drag slide phase with supporting thrust.  
7. Main drag slide phase without supporting thrust.  
8. Final braking by means of additional braking devices, or brief retro-thrust, for a controlled stop.  

 
The slide lander was an attempt to reduce the total propellant load required for lunar landings. While 

the approach velocity of the lander is over 1,500 m/s, the long slide process may reduce the total ∆V 
required to 200 to 450 m/s. This is in comparison to the 2,000 m/s typically used for lunar landing 
(Ref. 34). Precise landing control is required and the length of the landing strip area is approximately 
80 km. Additional studies have identified that the dust from the initial phase of the slide landing may 
attain an attitude of 1,300 of km (Ref. 8). Thus, while the landing methods saves much precious 
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propellant, the implications of the flying dust on other lunar surface and orbital operations must be 
addressed.  

3.5 Nuclear Pulse Propulsion 

Using nuclear devices for propulsion is another product of the creativity of the 1960s engineering and 
physics community (Refs. 35 to 38). The nuclear pulse propulsion (NPP) systems were seriously 
considered for fast transportation throughout the solar system. Small nuclear devices would be detonated 
behind a large piloted spacecraft, and the detonation would power the vehicle. Many 1000’s of such 
pulses were required for outer planet missions. The predicted specific impulse for these vehicles is 
between 1,800 and 6,000 sec (Ref. 34). The NPP vehicles were considered a logical precursor to the 
pulsed fusion propulsion systems, noted in many of the AMOSS studies (where 3He and deuterium 
nuclear fuels are mined from the gas giant planets).  

Nuclear pulse propulsion freighters were conceived to return 3,000 MT payloads of raw or processed 
materials from many targets in the solar system. Figure 10 shows the mission energies, the transportation 
and propellant costs for such a large nuclear freighter (Ref. 8). These analyses noted NPP Isp values from 
6,000 to 10,000 sec (Ref. 8). To support such operations perhaps nuclear bomblet factories would be 
constructed all through the solar system. While constructing large nuclear facilities on every location of 
human exploration may be optimistic, certainly several locations for extended exploration should be 
chosen for such nuclear sites. Smaller nuclear facilities will be a first step, using smaller reactors.  

4.0 Observations 
While human missions to Mercury and Saturn and all of the other planets will be challenging and 

require long-term investments, the results from these missions and their development will no doubt have 
great influences on our economy and improve our technological prowess.  

Krafft Ehricke envisioned a poly-global civilization, with branches of humanity in many far flung 
places in our solar system (Ref. 1). His vision was uniquely expressed in Reference 36. Here is a short 
excerpt from that work: 

 
“Our helionauts, as these men who fly our large interplanetary vehicles call themselves in this 
era of continuing specialization, have covered the solar system from the sun scorched shores of 
Mercury to the icy cliffs of the Saturn moon, Titan. They have crossed, and some have died doing 
so, the vast asteroid belt between Mars and Jupiter and have passed through the heads of comets. 
Owing to the pioneer spirit, the courage and the knowledge of our helionauts and of those 
engineers, scientists, and technicians behind them, astrophysicists today work in a solar physics 
station on Mercury; biologists experiment on Mars, backed by a well-supplied research and 
supply station on the Mars moon, Phobos; planetologists have landed on Venus; and teams of 
scientists right now study what have turned out to be the two most fascinating of our solar system, 
Jupiter and Saturn, from research stations on Callisto and Titan. ”  

 
These helionaut flights would be the precursors of human outposts and then colonies all through the 

solar system. Multiple systems employing planetary ISRU could enable all of these ideas and concepts. 
Krafft Ehricke envisioned an entire extensive lunar economy, producing power, finished and raw 
materials, and NPP launching bases for extensive exploration of the solar system. The poly-global 
civilization was considered a natural expansion of the human experience, pioneering new frontiers and 
using technology in the best interests of all humanity.  
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5.0 Concluding Remarks 
A wide range of space exploration technologies have been assessed in many studies from the 1960s to 

today. In an optimistic future, lunar exploration will lead to base construction and, with time, lead to 
extensive lunar industrial investments. There are a wide range of potential lunar industries: raw materials 
processing, O2 and other propellant production, nuclear and solar power, etc. These industries may lead to 
small scale devices and large scale products: from microchip production to the creation of completely 
new space vehicles. Many of the suggested industries were related to power production to be transmitted 
to Earth or other attractive locales in the Earth-Moon space.  

The need for safe lunar bases may lead to creating underground structures. If extended visits or 
permanent colonization of the Moon is needed, humans will require protection from long term radiation 
exposure as well as intense solar events such as coronal mass ejection, galactic cosmic rays, and lunar 
surface scattering of radiation. Using explosive forming of underground cavities may lead to an attractive 
lunar base or colony. Additional industrialization options include nuclear explosion based processing of 
raw lunar materials. Large scale mining of lunar raw materials and gas production and capture from 
underground nuclear processing of the in-situ materials has been suggested.  

Missions to several planetary targets in the solar system were considered: Mercury, Saturn, and its 
moons, Titan and Enceladus, as well as the asteroid, Ceres. The LEO masses were estimated for the 
Mercury mission scenarios. Lander (ascent/descent) vehicles for Mercury were also assessed. The mass of 
the lander vehicles for Mercury was 140.1 MT for the round trip lander and 27 MT for a one-way deliver 
lander to the surface. Each carried a 10 MT payload. With ISRU, five landers could be delivered to 
Mercury’s surface rather than one. The LEO masses for the human round trip Mercury missions was 
reduced by an order of magnitude, from 27,000 MT to 2,300 or 1,700 MT, using nuclear thermal 
propulsion over chemical O2/H2 propulsion systems. Using ISRU at Mercury would likely further benefit 
a range of such missions.  

Atmospheric mining in the outer solar system can produce nuclear fusion fuels such as 3He which are 
rare on Earth. In addition, while extracting the small fraction of 3He in the gas giant atmospheres, each 
day enormous amounts of H2 and He are produced. These amounts can far outstrip the needed for 
propellants to return the mining aerospacecraft to orbit. These additional H2 and He gases can augment 
many additional UAVs and probes for extended exploration of those planets’ atmospheres and local 
environs.  

Solar system exploration using in-situ resource utilization can allow higher quality missions with 
much large data return. Larger more effective research and sample return missions are possible. Faster 
missions are possible by using the local planetary resources to return to Earth. By not carrying all of the 
return propellants, larger propellant loads in LEO can enable shorter mission flight times. Truly 
impressive interplanetary missions can be within our reach with focused investments.  
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Figure 1.—Permanently shadowed craters in Mercury’s North Polar region 

(Ref. 12, used with permission).  
 
 
 

 
Figure 2.—Temperature ranges outside and inside permanently shadowed craters (Ref. 13).  
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Figure 3.—Possible present day cross section of Titan (Ref. 14, reprinted with the permission of 

Cambridge University Press.).  
 

Human Mercury Mission, Total Mission ∆V = 24.8 km/s 

 
Figure 4.—LEO masses of human round trip missions to Mercury.   
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Lander Mass, Chemical Propulsion, Payload = 10 MT, 
∆V = 3.5 km/s each, for Descent and Ascent 

 
Figure 5.—LEO masses of lander vehicles for missions to Mercury.  

 

 
Figure 6.—One-way interplanetary mission ∆V versus trip time for various targets (Ref. 20).1   

                                                      
1This figure was originally presented at the American Astronautical Society (AAS) 16th Annual Meeting, Anaheim, 
CA, and was originally published in the AAS publication “Space Shuttles and Interplanetary Flight,” ed. L. Larmore 
and R.L. Gervais, Vol. 28, Advances in Astronautical Sciences, 1970, p. 364 (Copyright © 1970 by American 
Astronautical Society Publications Office, Web Site http://www.univelt.com). 

http://www.univelt.com/
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AMOSS 3He Mining Time and H2 Capturing Requirements, 
3He = 1.9×10-5, Mdry = 1,000,000 kg 

 
Figure 7.—Helium 3 mining time and H2 capture (mass per day) versus atmospheric gas 

capture rate for Neptune AMOSS (Ref. 23).  
 
 

 
Figure 8.—Schematic cross section of a hard rock medium after 

contained nuclear explosion (Ref. 26).  
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Figure 9.—Nuclear detonation processing (Ref. 7).  

 
 

 
Figure 10.—Nuclear pulse propulsion freighter propellant costs for 3.000 MT payload (Ref. 7).  
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Appendix A.—Comparison of Several Trajectory Modes for Manned  
and Unmanned Missions to Mercury 1980 to 2000 (AIAA 67-28) 

 
 

 
D  direct transfer 
S  unpowered Venus swingby transfer 
MPS modified Venus swingby transfer 

Figure A.1.—Comparison of Earth orbit weight requirements; manned 
Mercury stopover mission (Figure 10 in Ref. 17).  
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TABLE A.1.—MINIMUM ∆V REQUIREMENT; MANNED MERCURY STOPOVER MISSION (TABLE 1 IN REF. 17) 

 
 Selected mission design 
 

 
TABLE A.2.—MINIMUM ∆V TRAJECTORY CHARACTERISTICS—MANNED 

MERCURY STOPOVER MISSION (TABLE 2(C) IN REF. 17) 
Launch 

year 
Earth  

departure date 
(Julian) 

∆V,  
Earth 
(km/s) 

Venus 
swingby date 

(J) 

∆V, 
Venus 
(km/s) 

Mercury 
arrival date 

(J) 

Mercury 
arrival ∆V 

(km/s) 

Stay time 
(days) 

Mercury 
departure ∆V 

(km/s) 

Mission 
duration 
(days) 

1980 2444336 4.3 2444412 0.9 2444460 6.4 174 6.2 398 
1981 4716 8.9 ----------- --- 4801 7.6 183 6.5 383 
1982 5000 4.2 5168 --- 5305 8.6 28 7.0 463 
1983 5484 4.8 5569 --- 5628 9.4 56 7.4 350 
1984 5828 8.1 ----------- --- 5958 6.3 76 7.8 371 
1985 6196 7.0 ----------- --- 6306 6.3 180 6.4 365 
1986 6562 6.7 ----------- --- 6657 6.3 177 6.2 362 
1987 6918 6.9 ----------- --- 7003 6.9 181 6.4 371 
1988 7330 5.6 7519 0.9 7630 4.7 18 9.7 383 
1989 7680 6.3 7865 --- 7922 8.3 72 8.7 379 
1990 8022 8.6 ----------- --- 8157 6.4 77 7.6 367 
1991 8356 7.6 ----------- --- 8506 6.3 182 6.8 372 
1992 8752 6.8 ----------- --- 8857 6.1 179 6.3 364 
1993 9116 6.8 ----------- --- 9206 6.4 178 6.2 368 
1991 9650 4.2 9824 --- 9940 7.6 143 7.0 563 
1995 9812 6.7 ----------- --- 9897 8.9 186 7.0 401 
1996 2450180 4.5 2450305 3.0 2450390 6.8 44 7.4 404 
1997 810 4.0 976 --- 1100 7.9 136 6.4 421 
1998 946 7.0 ----------- --- 1056 6.5 180 6.4 365 
1999 1312 6.6 ----------- --- 1407 6.3 177 6.2 362 
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