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ABSTRACT 
 
Kuosheng Nuclear Power Plant (NPP) is the second NPP in Taiwan which is the BWR/6 plant. 
This research focuses on the development of the Kuosheng NPP TRACE/SNAP model. In order 
to check the system response of the Kuosheng NPP TRACE/SNAP model, this study uses the 
analysis results of Final Safety Analysis Report (FSAR) and startup tests data to assess the 
Kuosheng NPP TRACE/SNAP model. The load rejection and a feedwater pump trip transients 
were selected to validate the Kuosheng NPP TRACE/SNAP model. The trends of TRACE 
analysis results were consistent with the FSAR and startup tests data. It indicates that there is a 
respectable accuracy in the Kuosheng NPP TRACE/SNAP model. Besides, this research also 
focuses on the application of the Kuosheng NPP TRACE/SNAP model in the core shroud 
leakage. The core shroud leakage is one of issues of concern by the U.S. NRC and NPPs. This 
research is using the Kuosheng NPP TRACE/SNAP model to perform the core shroud leakage 
transients for Kuosheng NPP safety analysis. The TRACE analysis results show that the pure 
core shroud leakage transient wasn’t influence the Kuosheng NPP safety. However, the core 
shroud leakage + station blackout (SBO) / steamline break (loss of coolant accident, LOCA) 
transient caused the cladding temperature larger than 1088 K and affected the Kuosheng NPP 
safety. 
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FOREWORD 
 
The US NRC (United States Nuclear Regulatory Commission) is developing an advanced 
thermal hydraulic code named TRACE for nuclear power plant safety analysis. The development 
of TRACE is based on TRAC, integrating RELAP5 and other programs. NRC has determined 
that in the future, TRACE will be the main code used in thermal hydraulic safety analysis, and no 
further development of other thermal hydraulic codes such as RELAP5 and TRAC will be 
continued. A graphic user interface program, SNAP (Symbolic Nuclear Analysis Program) which 
processes inputs and outputs for TRACE is also under development. One of the features of 
TRACE is its capacity to model the reactor vessel with 3-D geometry. It can support a more 
accurate and detailed safety analysis of nuclear power plants. TRACE has a greater simulation 
capability than the other old codes, especially for events like LOCA.  
 
Taiwan and the United States have signed an agreement on CAMP (Code Applications and 
Maintenance Program) which includes the development and maintenance of TRACE. INER 
(Institute of Nuclear Energy Research, Atomic Energy Council, R.O.C.) is the organization in 
Taiwan responsible for the application of TRACE in thermal hydraulic safety analysis, for 
recording user’s experiences of it, and providing suggestions for its development. To meet this 
responsibility, the TRACE/SNAP model of Kuosheng NPP has been built. In this report, this 
study uses FSAR and startup tests data to assess the Kuosheng NPP TRACE/SNAP model.  
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EXECUTIVE SUMMARY 
 
An agreement in 2004 which includes the development and maintenance of TRACE has been 
signed between Taiwan and USA on CAMP. INER is the organization in Taiwan responsible for 
applying TRACE to thermal hydraulic safety analysis in order to provide users’ experiences and 
development suggestions. To fulfill this responsibility, the TRACE/SNAP model of Kuosheng 
NPP is developed by INER.  
 
According to the user manual, TRACE is the product of a long term effort to combine the 
capabilities of the NRC’s four main systems codes (TRAC-P, TRAC-B, RELAP5 and RAMONA) 
into one modernized computational tool. NRC has ensured that TRACE will be the main code 
used in thermal hydraulic safety analysis in the future without further development of other 
thermal hydraulic codes, such as RELAP5 and TRAC. Besides, the 3-D geometry model of 
reactor vessel, which is one of the representative features of TRACE, can support a more 
accurate and detailed safety analysis of NPPs. TRACE also can provide greater simulation 
capability than the previous codes, especially for events like LOCA.  
 
Kuosheng NPP is located on the northern coast of Taiwan. Its nuclear steam supply system is a 
type of BWR/6 designed and built by General Electric on a twin unit concept. Each unit includes 
two loops of recirculation piping and four main steam lines, with the thermal rated power of 
2894MWt. After the project of MURPU (Measurement Uncertainty Recovery Power Uprate) for 
Kuosheng NPP, the operating power is 101.7% of the original designed rated power, which is 
2943 MWt now. Unit 1 will start SPU (Stretch Power Uprate) from Cycle 24 and Unit 2 will start 
SPU from Cycle 23. The operating power will be 104.7% of the OLTP (Original Licensed Thermal 
Power), which will be 3030 MWt. In order to check the system response of the Kuosheng NPP 
TRACE/SNAP model, this study uses the analysis results of FSAR and startup tests data to 
assess the Kuosheng NPP TRACE/SNAP model. The load rejection and a feedwater pump trip 
transients were selected to validate the Kuosheng NPP TRACE/SNAP model. The trends of 
TRACE analysis results were consistent with the FSAR and startup tests data. It indicates that 
there is a respectable accuracy in the Kuosheng NPP TRACE/SNAP model. Besides, this 
research also focuses on the application of the Kuosheng NPP TRACE/SNAP model in the core 
shroud leakage. The core shroud leakage is one of issues of concern by the U.S. NRC and 
NPPs. This research is using the Kuosheng NPP TRACE/SNAP model to perform the core 
shroud leakage transients for Kuosheng NPP safety analysis. The TRACE analysis results show 
that the pure core shroud leakage transient wasn’t influence the Kuosheng NPP safety. 
However, the core shroud leakage + SBO/LOCA transient caused the cladding temperature 
larger than 1088 K and affected the Kuosheng NPP safety. 
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1.  INTRODUCTION 
 
Kuosheng NPP is located on the northern coast of Taiwan. Its nuclear steam supply system is a 
type of BWR/6 designed and built by General Electric on a twin unit concept. Each unit includes 
two loops of recirculation piping and four main steam lines, with the thermal rated power of 2894 
MWt. After the project of MURPU for Kuosheng NPP, the operating power is 101.7% of the 
original designed rated power, which is 2943 MWt now. Besides, Unit 1 will start SPU from Cycle 
24 and Unit 2 will start SPU from Cycle 23. The operating power will be 104.7% of the OLTP, 
which will be 3030 MWt. The safety analysis of the NPP is very important work in the NPP safety. 
The importance of NPP safety analysis has been raised and there is more concern for the safety 
of the NPPs in the world after the Fukushima NPP event occurred. The advanced thermal 
hydraulic code named TRACE has been developed by U.S. NRC for NPP safety analysis. 
According to the user manual [1], TRACE is the product of a long term effort to combine the 
capabilities of the NRC’s four main systems codes (TRAC-P, TRAC-B, RELAP5 and RAMONA) 
into one modernized computational tool. The development of TRACE is based on TRAC, 
combining with the capabilities of RELAP5 and other programs. SNAP, a graphic user interface 
program that processes the inputs and outputs of TRACE, has also been developing. One of the 
features of TRACE is its capacity to model the reactor vessel with 3-D geometry. It could support 
a more accurate and detailed safety analysis for nuclear power plants. TRACE offers the greater 
simulation capability than other old codes, especially for events such as LOCA. 
 
This research focuses on the development of the Kuosheng NPP TRACE/SNAP model. In our 
previous study [2], the preliminary TRACE/SNAP model of Kuosheng NPP was established. The 
Kuosheng NPP TRACE/SNAP model includes one 3-D vessel, six channels which are used to 
simulate 624 fuel bundles, four steamlines, and 16 SRVs components, etc.. In order to check the 
system response of the Kuosheng NPP TRACE/SNAP model, this study uses the FSAR and 
startup tests data to assess the Kuosheng NPP TRACE/SNAP model. The load rejection and a 
feedwater pump trip transients were selected to validate the Kuosheng NPP TRACE/SNAP 
model. 
 
Besides, this research also focuses on the application of the Kuosheng NPP TRACE/SNAP 
model in the core shroud leakage. Intergranular stress corrosion cracking (IGSCC) of BWR 
internal components has been identified as a technical issue of concern by the U.S. NRC and 
NPPs. The core shroud is among the list of internals susceptible to IGSCC. So IGSCC may 
cause core shroud leakage generated. Therefore, the core shroud leakage safety analysis of 
Kuosheng NPP was performed by the Kuosheng NPP TRACE/SNAP model in this study. 
Besides, refer to the conditions of Fukushima NPP event, the core shroud leakage + SBO/LOCA 
transients were also analyzed by TRACE for Kuosheng NPP. 
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2.  MODEL OF KUOSHENG (BWR/6) NPP  
 
The code versions adopted in this research are SNAP v 2.2.7 and TRACE v 5.0p3. The process 
of Kuosheng NPP TRACE/SNAP model development is as follows (shown in Fig. 1): First, the 
system and operating data for the cases of FSAR and startup tests of Kuosheng NPP are 
collected [1]-[5]. Second, several important control systems such as recirculation flow control 
system, pressure control system and feedwater flow control system etc. are established by 
SNAP and TRACE. Next, other necessary components (e.g., RPV (Reactor pressure vessel) 
and main steam piping) are added into the TRACE/SNAP model to complete the TRACE/SNAP 
model for Kuosheng NPP. Finally, the Kuosheng TRACE/SNAP model is verified with the cases 
of FSAR and startup tests. The TRACE/SNAP model of Kuosheng NPP is presented in Fig. 2. 
SNAP also can use the TRACE results data to make an animation for transient, such as Fig. 3. 
 
Kuosheng NPP TRACE/SNAP model has been built according to the FSAR, startup tests data, 
design documents, and TRACE manuals [1]-[5]. Kuosheng NPP reactor, divided into two 
azimuthal sectors, four radial rings, eleven axial levels, altogether eighty-eight cells, are 
simulated by the 3-D vessel component (Fig. 4). Six channels, which are one dimensional 
component, are used for simulating 624 fuel bundles (Fig. 5). Full length fuel rods, partial length 
fuel rods and water rods are also simulated in the channel components. Two recirculation loops 
are set outside the reactor, with a recirculation pump in each loop (Fig. 6). 10 groups of jet 
pumps are merged into an equal jet pump (Fig. 7). Four steam lines connected with the vessel 
and each steam line had one MSIV (main steamline isolation valve), several SRVs (safety relief 
valves), one TCV (turbine control valve), and one TSV (turbine stop valve). The bypass valve 
(BPV) was also simulated in this mode. We use valve components to simulate the MSIV, SRVs, 
TCV, TSV and BPV (Fig. 8). The critical flow models for the MSIVs, SRVs, TCVs, TSVs, and 
BPV have been considered in our analysis. The break components were used to simulate the 
boundary conditions of turbine and condenser (Fig. 9). The containment of Kuosheng NPP was 
also simulated in the TRACE/SNAP model. The containment was composed of drywell, wetwell, 
suppression pool, vent annulus, horizontal vent, upper pool, and reactor building which were 
shown in Fig. 2 and 10~13. In the Kuosheng NPP TRACE/SNAP model, there are three 
simulation control systems included (1) feedwater flow control system, (2) steam bypass and 
pressure control system and (3) recirculation flow control system. Besides, in Kuosheng NPP 
TRACE/SNAP model, “point kinetic” parameters such as delay neutron fraction, Doppler 
reactivity coefficient, and void reactivity coefficient are provided as TRACE input for power 
calculations (Fig. 14). The initial conditions of Kuosheng NPP were also presented in Fig. 3.  
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Figure 1  The flow chart of establishing and verifying the TRACE/SNAP model of 
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Figure 2  The TRACE/SNAP model of Kuosheng NPP 
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Figure 3  The animation model of Kuosheng NPP 
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Figure 4  The 3D vessel condition of Kuosheng NPP 
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Figure 5  The channel condition of Kuosheng NPP 
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Figure 6  The recirculation pump condition of Kuosheng NPP 
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Figure 7  The jetpump condition of Kuosheng NPP  
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Figure 8  The SRV condition of Kuosheng NPP 
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Figure 9  The turbine condition of Kuosheng NPP 
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Figure 10  The upper pool condition of Kuosheng NPP 
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Figure 11  The reactor building condition of Kuosheng NPP 
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Figure 12  The wetwell and suppression pool condition of Kuosheng NPP 
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Figure 13  The drywell condition of Kuosheng NPP 
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Figure 14  The power condition of Kuosheng NPP 
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3.  RESULTS  
 
Before the transient calculation of Kuosheng TRACE/SNAP model begins, it is necessary to 
carry out the steady state calculation and make sure that the system parameters (such as the 
feedwater flow, steam flow, dome pressure, and core flow, etc.) are in agreement with FSAR 
data under the steady state condition. The results of analysis of TRACE are clearly consistent 
with FSAR data under the steady state condition (See Table 1). 
 
 
 
 
 

Table 1  The comparison of initial conditions between FSAR and TRACE data 

Parameter 
FSAR TRACE 

 Point kinetics Difference (%) 
Power 
(MWt) 2894 2894 0 

Dome Pressure 
(MPa) 7.3 7.3 0 

Feedwater Flow 
(kg/sec) 1647 1652 -0.3 

Steam Flow 
(kg/sec) 1647 1652 -0.3 

Core inlet flow 
(kg/sec) 10647 10521 1.2 
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3.1 Startup Test : Generator Load Rejection with Bypass Valves 
 
This test was performed in November 11, 1981 and the initial power was 2894 MWt. The 
purpose of the test was to confirm the functions of TCVs, BPV, SRVs and the response of 
system. Table 2 compares the generator load rejection with bypass valves transient’s sequences 
of startup test data with TRACE. Their sequences are very similar. In this transient, when load 
rejection occurred, the TCV closed quickly. Then the BPV opened and reactor scrammed. When 
the water level reached level 3, the recirculation pumps were tripped. Finally, the BPV was reset 
at 6.48 MPa. 
 
Fig.15~20 shows the results of startup test and TRACE. Fig. 15 depicts the power curves of 
startup test data and TRACE. The trends of their curves are similar. The TCV fast closure tripped 
the reactor scram. Therefore, the power dropped after 0.3 sec. Fig. 16 compares the steam 
dome pressures of startup test and TRACE. The trends of the curves are approximately in 
agreement. The TCV closing caused the dome pressure to rise. Then, BPV and SRVs opened 
and led to the decline of dome pressure. Fig. 17 shows the steam flow data of startup test and 
TRACE. The TRACE result was consistent with the startup test data. The TCV closing caused 
the steam flow to drop sharply after 0.4 sec. Besides, the feedwater flow and water level 
decreased after TCV closure (shown in Fig. 18 and 19). Due to the dome pressure increase, it 
resulted in the core inlet flow rising during 0.5~2 sec (see Fig. 20). Then, recirculation pumps trip 
caused the decrease of core inlet flow. In summary, the trends of TRACE prediction were 
consistent with startup test data but there were a few differences in the values of the prediction. 
Because we cannot find the detailed startup test data, we don’t know what the reasons cause the 
differences of TRACE results and startup test data.  
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Table 2  The comparison of sequences between startup test and TRACE data    

Event(sec) Startup test TRACE 

Transient started 0 0 

TCV started to close 0.2 0.2 

BPV started to open 0.21 0.21 

Reactor scrammed 0.236 0.236 

 BPV fully opened 0.329 0.329 

TCV fully closed 0.394 0.394 

Water level reached level 3 2.2 3.1 

Steam dome pressure peak  3.9 (7.43 MPa) 2.5 (7.36 MPa) 

BPV reset at 6.48 MPa  16.3 18.4 

End of analysis － 20 
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Figure 15  The power data of TRACE and startup test 
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Figure 16  The dome pressure data of TRACE and startup test 
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Figure 17  The steam flow data of TRACE and startup test 
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Figure 18  The feedwater flow data of TRACE and startup test 
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Figure 19  The narrow range water level (NRWL) data of TRACE and startup test 
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Figure 20  The core inlet flow data of TRACE and startup test 
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3.2 Startup Test : One Feedwater Pump Trip 
 
This test was performed in November 6, 1981 and the initial power was 2778 MWt. The purpose 
of the test was to confirm the function of FCV (flow control valve) when one feedwater pump 
tripped. Table 3 compares the one feedwater pump trip transient’s sequences of startup test data 
with TRACE. Their sequences are nearly the same. In this transient, after one feedwater pump 
tripped, water level decreased. When the water level reached level 4, the FCV runback was 
started. Then, the power and core flow decreased. 
 
Fig.21~24 shows the results of startup test and TRACE. Fig. 21 depicts the core inlet flow curves 
of startup test data and TRACE. The trends of their curves are similar. One feedwater pump trip 
caused the water level decrease. The FCV runback was tripped when the water level reached 
level 4. Therefore, the core inlet flow decreased due to the FCV runback. Fig. 22 compares the 
powers of startup test and TRACE. The trends of the curves are approximately in agreement. 
After FCV runback, the power decreased. Fig. 23 shows the feedwater flow data of startup test 
and TRACE. The TRACE result was consistent with the startup test data. One feedwater pump 
trip caused the feedwater flow to decrease after 4.9 sec. Besides, the NRWL result of TRACE 
was similar to startup test data (shown in Fig. 24). In summary, the results of TRACE prediction 
were similar to startup test data but there were a few differences in the values of parameters.  
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Table 3  The comparison of sequences between startup test and TRACE  

Action (sec) Startup test TRACE 

Transient Started 0 0 

One feedwater pump tripped 4.9 4.9 

Water level dropped to level 4 15.1 15.4 

Minimum power value 18.5 (57%) 18.5 (57%) 

Minimum core flow 19.4 (79.3%) 18.7 (77%) 

End of analysis － 30 
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Figure 21  The core inlet flow data of TRACE and startup test  
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Figure 22  The power data of TRACE and startup test  
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Figure 23  The feedwater flow data of TRACE and startup test 
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Figure 24  The NRWL data of TRACE and startup test  
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3.3  FSAR Case : Generator Load Rejection with Bypass Valves  
 
This transient is similar to the startup test: generator load rejection with bypass valves. The initial 
power was 2894 MWt in this transient. Table 4 compares the generator load rejection with 
bypass valves transient’s sequences of FSAR data with TRACE. Their sequences are very 
similar. In this transient, when load rejection occurred, the TCV closed quickly. Then the 
recirculation pump tripped, reactor scrammed, BPV opened, and loss of feedwater generated.  
 
Fig. 25~28 shows the results of FSAR and TRACE. Fig. 25 depicts the power curves of FSAR 
and TRACE. The trend of TRACE was consistent with FSAR data. The TCV fast closure caused 
the dome pressure increase which made the core void fraction decrease and power increase. 
Then, TCV fast closure tripped the reactor scram. Therefore, the power dropped after 0.7 sec. 
Fig. 26 compares the steam dome pressures of FSAR and TRACE. The trends of their curves 
were similar. The TCV closing caused the dome pressure to rise. Then, BPV and SRVs opened 
and led to the decline of dome pressure. Fig. 27 shows the steam flow data of FSAR and 
TRACE. The TRACE result was consistent with the FSAR data. The TCV closing caused the 
steam flow to drop sharply. The BPV and SRVs opened subsequently which resulted in the 
steam flow increase. Due to the dome pressure increase, it resulted in the core inlet flow rising 
during 0~0.25 sec (see Fig. 28). Then, recirculation pumps trip caused the decrease of core inlet 
flow. In summary, TRACE prediction results were consistent with FSAR data but there were a 
few differences in the values of the prediction. Because we cannot find the detailed FSAR data, 
we don’t know what the reasons cause the differences of TRACE results and FSAR data. 
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Table 4  The comparison of sequences between FSAR and TRACE  

Action (sec) FSAR TRACE 

Transient started 0 0 

TCV started to close 0 0 

Recirculation pump tripped 0.25 0.25 

Reactor scrammed 0.6 0.69 

Bypass valve opened 1.7 2.1 

Loss of feedwater 3.6 3.5 

End of analysis 20 20 
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Figure 25  The power data of TRACE and FSAR 
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Figure 26  The dome pressure data of TRACE and FSAR 
  



3-20 

 

0 4 8 12 16 20
Time (sec)

-500

0

500

1000

1500

2000
St

ea
m

 fl
ow

 (k
g/

se
c)

TRACE

FSAR

 
 

Figure 27  The steam flow data of TRACE and FSAR 
  



3-21 

 

0 4 8 12 16 20
Time (sec)

0

2000

4000

6000

8000

10000

12000

C
or

e 
in

le
t f

lo
w

 (k
g/

se
c)

TRACE

FSAR

 
 

Figure 28  The core inlet flow data of TRACE and FSAR 
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3.4 Core Shroud Leakage Analysis 
 
There are six assumed cases in the Kuosheng NPP TRACE analysis, as follows: 
 
Case 1: the core shroud leakage occurred (only in 1 azimuthal sector of the vessel, a small hole), 

the length of break is 0.4 m, the area of break is 0.004 m2. 
Case 2: the core shroud leakage occurred (only in 1 azimuthal sector of the vessel, a small hole), 

the length of break is 0.4 m, the area of break is 0.014 m2. 
Case 3: the core shroud leakage occurred (in 2 azimuthal sectors of the vessel, 360 degree 

larger break), the area of break is 10.248 m2. 
Case 4: the case 3 condition + SBO + scram failed + RCIC failed. 
Case 5: the case 3 condition + SBO + LOCA (one steamline break) + scram failed + RCIC failed. 
Case 6: the case 3 condition + SBO + LOCA (one steamline break). 
 
The initial conditions of cases are 100% rated power/100% rated core flow and the sequences of 
case 1~6 are shown in Table 5. First, the simulation of steady state is performed during 0~200 
sec for all cases. Second, the core shroud leakage started to occur at 200 sec for the cases. 
Besides, the SBO transients (ex: recirculation pump, feedwater, turbine tripped and MSIV 
closure) were performed for case 4~6 and the LOCA transients (one steamline break) were 
performed for case 5~6. Fig. 29~33 show the results of TRACE for all cases.  
 
Fig. 29 show the power results of TRACE. In all cases, when core shroud leakage occurred, the 
power increased rapidly. Then the power dropped sharply due to the void fraction increase. After 
core shroud leakage generated fully, the powers of case 1~3 reached the new steady state. 
However, case 4 and 5 had more negative Doppler reactivity due to the fuel temperature raise 
(shown in Fig. 32). So the power of case 4 and case 5 was lower than the power case 1~3 after 
core shroud leakage generated fully. Because the reactor scram occurred, the power of case 6 
dropped sharply. 
 
Fig. 30 shows the water level results of Kuosheng NPP core shroud leakage cases. In case 2~6, 
when core shroud leakage occurred, the water level went up rapidly and was larger than level 8. 
It also indicated that the level 8 signal was tripped. Therefore, if the Kuosheng NPP finds the 
level 8 signal tripped, it may be the core shroud leakage happened. Besides, the feedwater 
tripped and RCIC failed resulted in no water injection to the vessel for case 4 and 5. Due to no 
water supply, the water level of the case 4 and case 5 decreased continuously and were lower 
than the TAF (see Fig. 31). Due to one steamline break, the larger steam rushed out for case 5 
and 6 that also caused the water level lower than the TAF. The above results caused the fuel 
temperature increase for the case 4~6 (shown in Fig. 32). The fuel temperature of the case 4 did 
not reach 1088K [6] during 0~1000 sec (when the temperature is larger than 1088 K, the 
zirconium-water reaction may generate). However, if the time of the transient is enough long, we 
think that the fuel temperature of the case 4 may be larger than 1088 K. Besides, because the 
fuel temperature of the case 5 was larger than 1088 K, the zirconium-water reaction happened. 
The above results indicated that the fuels might be damaged after the zirconium-water reaction 
happened. In case 6, the SBO + LOCA also occurred which was like case 5. However, the 
reactor scram and RCIC were active in case 6. Therefore, the fuel temperature increase was 
delay. The fuel temperature of case 6 went up after 500 sec. It indicated that only RCIC injection 
was not enough for case 6. Fig. 33 shows the dome pressures of TRACE for all cases. There 
were not variation in case 1~3. In case 4, because SRVs opened, there was an oscillation in this 
transient. In case 5~6, because the LOCA occurred, the dome pressure dropped sharply. Finally, 
Fig. 34 depicts the animation model of Kuosheng NPP for case 5. 
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Table 5  The sequences of case 1~6 for core shroud leakage transient 

Action (sec) Case 1 Case 2 Case 3 

Transient started 200 200 200 
Core shroud leakage 

started 
200 

(leakage area: 
0.004m²) 

200 
(leakage area: 

0.14m²) 

200 
(leakage area: 

10.248m²) 
NRWL reached level 8 - 208 204 

End 1000 1000 1000 

    
 

Action (sec) Case 4 
(SBO) 

Case 5 
(SBO+LOCA) 

Case 6 
(SBO+LOCA) 

Transient started 200 200 200 
Core shroud leakage started 200 

(leakage area: 
10.248m²) 

200 
(leakage area: 

10.248m²) 

200 
(leakage area: 

10.248m²) 
Steam line LOCA generated - 200 200 

TCV started to close 200.1 200.1 200.1 
Feedwater tripped 200.1 200.1 200.1 
Reactor scrammed - - 200.1 

Recirculation pmup tripped 200.1 200.1 200.1 
MSIV started to close 200.1 200.1 200.1 

Water level reached level 8 204 204 204 
RCIC started - - 234 

Water level reached TAF 261 260 291 
Water level reached BAF - 431 - 

Cladding temperature 
reached 1088K 

- 550 - 

End 1000 1000 1000 
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Figure 29  The power results 
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Figure 30  The NRWL results 
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Figure 31  The vessel water level results 
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Figure 32  The fuel rod temperature results 
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Figure 33  The dome pressure results 
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(a)  0 sec 

 
(b)  202 sec 
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(c)  583 sec 

 
(d)  981 sec 

Figure 34  The animation model of Kuosheng NPP for core shroud leakage transient 
 (a) 0 sec, (b) 202 sec, (c) 583 sec, (d) 981 sec 
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4.  CONCLUSIONS 
 
This research focuses on the development of the Kuosheng NPP TRACE/SNAP model. The load 
rejection and a feedwater pump trip transients were selected to validate the Kuosheng NPP 
TRACE model. The results and sequences of TRACE are similar to the FSAR and startup tests 
data. By the above compared results, it indicates that there is a respectable accuracy in the 
Kuosheng NPP TRACE/SNAP model and it also shows that the Kuosheng NPP TRACE/SNAP 
model is satisfying for the purpose of Kuosheng NPP safety analyses with confidence.  
 
This study also developed the TRACE/SNAP core shroud leakage models of Kuosheng NPP. 
There are six assumed cases in this research and the results of TRACE show the accurate 
response of system for these cases. Besides, the results of TRACE indicated that the Kuosheng 
NPP may find the core shroud leakage happened by the level 8 signal tripped. The TRACE 
analysis results also show that the pure core shroud leakage transient (case 1~3) wasn’t 
influence the Kuosheng NPP safety. However, the core shroud leakage + station blackout (SBO) 
/ one steamline break (LOCA) transient (case 4~6) may cause the cladding temperature larger 
than 1088 K and influence the Kuosheng NPP safety. 
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