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ABSTRACT

Kuosheng Nuclear Power Plant (NPP) is the second NPP in Taiwan which is the BWR/6 plant.
This research focuses on the development of the Kuosheng NPP TRACE/SNAP model. In order
to check the system response of the Kuosheng NPP TRACE/SNAP model, this study uses the
analysis results of Final Safety Analysis Report (FSAR) and startup tests data to assess the
Kuosheng NPP TRACE/SNAP model. The load rejection and a feedwater pump trip transients
were selected to validate the Kuosheng NPP TRACE/SNAP model. The trends of TRACE
analysis results were consistent with the FSAR and startup tests data. It indicates that there is a
respectable accuracy in the Kuosheng NPP TRACE/SNAP model. Besides, this research also
focuses on the application of the Kuosheng NPP TRACE/SNAP model in the core shroud
leakage. The core shroud leakage is one of issues of concern by the U.S. NRC and NPPs. This
research is using the Kuosheng NPP TRACE/SNAP model to perform the core shroud leakage
transients for Kuosheng NPP safety analysis. The TRACE analysis results show that the pure
core shroud leakage transient wasn'’t influence the Kuosheng NPP safety. However, the core
shroud leakage + station blackout (SBO) / steamline break (loss of coolant accident, LOCA)
transient caused the cladding temperature larger than 1088 K and affected the Kuosheng NPP
safety.






FOREWORD

The US NRC (United States Nuclear Regulatory Commission) is developing an advanced
thermal hydraulic code named TRACE for nuclear power plant safety analysis. The development
of TRACE is based on TRAC, integrating RELAP5 and other programs. NRC has determined
that in the future, TRACE will be the main code used in thermal hydraulic safety analysis, and no
further development of other thermal hydraulic codes such as RELAP5 and TRAC will be
continued. A graphic user interface program, SNAP (Symbolic Nuclear Analysis Program) which
processes inputs and outputs for TRACE is also under development. One of the features of
TRACE is its capacity to model the reactor vessel with 3-D geometry. It can support a more
accurate and detailed safety analysis of nuclear power plants. TRACE has a greater simulation
capability than the other old codes, especially for events like LOCA.

Taiwan and the United States have signed an agreement on CAMP (Code Applications and
Maintenance Program) which includes the development and maintenance of TRACE. INER
(Institute of Nuclear Energy Research, Atomic Energy Council, R.O.C.) is the organization in
Taiwan responsible for the application of TRACE in thermal hydraulic safety analysis, for
recording user’s experiences of it, and providing suggestions for its development. To meet this
responsibility, the TRACE/SNAP model of Kuosheng NPP has been built. In this report, this
study uses FSAR and startup tests data to assess the Kuosheng NPP TRACE/SNAP model.






CONTENTS

Page

AB S T R A C T ...ttt e oottt e e e e et e e e e e e e e e e er e e e e e e e e e nnaeeees ii
FOREWORD ... ..ottt oottt e e e e e e ettt e e e e e e e e e e e e e e e e aaaaes v
1070 U I = S PP UTPPPE vii
FIGURES ... ettt e e e e e e e e et e e e e e e e r e e e e e e e e eaaas iX
TABLES ... .o e e e e e bt et e e e e e e e e e e e e e e e e e e e e nnnaeeees Xi
EXECUTIVE SUMMARY ... .ottt ettt e e e e e e e e ettt e e e e e e e e e e nnnanneeeeaaeeeas Xiii
ABBREVIATIONS ...ttt oottt et e e e e e e s ettt e e e e e e e e s e nntnneeeeeaeeeeaaannes XV
1. INTRODUCTION. ... ..ottt e et e e e e e e e st e e e e e e e e e e e aaaes 1-1
2. MODEL OF KUOSHENG (BWR/6) NPP..........ooooiiiiiiiiieieeee e 2-1
BT =] U I I RSP 3-1
3.1 Startup Test : Generator Load Rejection with Bypass Valves ............................. 3-2

3.2 Startup Test : One Feedwater Pump Trip.........cccoooooiiiiiiiiiiiice e, 3-10

3.3 FSAR Case : Generator Load Rejection with Bypass Valves...................cc......... 3-16
3.4 Core Shroud Leakage ANAlYSisS ...............oouiiiiiiiiiiiiiiiiiiiiiiieieeieeeeeeeeeeneeennnnnnnnnnnnnnes 3-22

4. CONCLUSIONS. . ... .o ettt e e e e e e e et et e e e e e e e e e nnnnnaeeeeeas 4-1
5. REFERENGES.......... et e e e e e e e e e e s 5-1

Vii






Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34

FIGURES

Page
The flow chart of establishing and verifying the TRACE/SNAP model of
Kuosheng NPP ... 2-2
The TRACE/SNAP model of Kuosheng NPP ..., 2-3
The animation model of Kuosheng NPP...............cccooiiiiiiii e, 2-4
The 3D vessel condition of Kuosheng NPP....................oiiiiii 2-5
The channel condition of Kuosheng NPP ..., 2-6
The recirculation pump condition of Kuosheng NPP .............................ee.l. 2-7
The jetpump condition of Kuosheng NPP ................ccuiiiiis 2-8
The SRV condition of Kuosheng NPP..............ccccoiiiii e 2-9
The turbine condition of Kuosheng NPP ................cccviiis 2-10
The upper pool condition of Kuosheng NPP ..., 2-11
The reactor building condition of Kuosheng NPP ...........................c . 2-12
The wetwell and suppression pool condition of Kuosheng NPP ................ 2-13
The drywell condition of Kuosheng NPP ..., 2-14
The power condition of Kuosheng NPP ..., 2-15
The power data of TRACE and startup test..................cccoooiiiiiiiiie 3-4
The dome pressure data of TRACE and startuptest.................................. 3-5
The steam flow data of TRACE and startup test.....................ccccciiiiii i, 3-6
The feedwater flow data of TRACE and startup test............................ 3-7
The narrow range water level (NRWL) data of TRACE and startup test........ 3-8
The core inlet flow data of TRACE and startup test .................cccccccceoiiien, 3-9
The core inlet flow data of TRACE and startup test ................cc.ccccoooiiies 3-12
The power data of TRACE and startup test........................iiiiin, 3-13
The feedwater flow data of TRACE and startup test...................ccccoooooes 3-14
The NRWL data of TRACE and startup test...............cccccoooiiiiiiiiiiiies 3-15
The power data of TRACEand FSAR ..., 3-18
The dome pressure data of TRACE and FSAR .................ccooooiiiiiiieeenee, 3-19
The steam flow data of TRACE and FSAR..............ccooiii 3-20
The core inlet flow data of TRACE and FSAR .......................ccc . 3-21
The POWEr reSUILS ..o e e e 3-24
The NRWL results ..., 3-25
The vessel water level results...................oooiiiii e, 3-26
The fuel rod temperatureresults ....................ccee 3-27
The dome pressure results ..., 3-28
The animation model of Kuosheng NPP for core shroud leakage
L= 10 £ =T o 3-30






Table 1
Table 2
Table 3
Table 4
Table 5

TABLES

Page
The comparison of initial conditions between FSAR and TRACE data............. 3-1
The comparison of sequences between startup test and TRACE data ............ 3-3
The comparison of sequences between startup test and TRACE................... 3-11
The comparison of sequences between FSAR and TRACE ............................ 3-17
The sequences of case 1~6 for core shroud leakage transient....................... 3-23

Xi






EXECUTIVE SUMMARY

An agreement in 2004 which includes the development and maintenance of TRACE has been
signed between Taiwan and USA on CAMP. INER is the organization in Taiwan responsible for
applying TRACE to thermal hydraulic safety analysis in order to provide users’ experiences and
development suggestions. To fulfill this responsibility, the TRACE/SNAP model of Kuosheng
NPP is developed by INER.

According to the user manual, TRACE is the product of a long term effort to combine the
capabilities of the NRC’s four main systems codes (TRAC-P, TRAC-B, RELAP5 and RAMONA)
into one modernized computational tool. NRC has ensured that TRACE will be the main code
used in thermal hydraulic safety analysis in the future without further development of other
thermal hydraulic codes, such as RELAP5 and TRAC. Besides, the 3-D geometry model of
reactor vessel, which is one of the representative features of TRACE, can support a more
accurate and detailed safety analysis of NPPs. TRACE also can provide greater simulation
capability than the previous codes, especially for events like LOCA.

Kuosheng NPP is located on the northern coast of Taiwan. Its nuclear steam supply system is a
type of BWR/6 designed and built by General Electric on a twin unit concept. Each unit includes
two loops of recirculation piping and four main steam lines, with the thermal rated power of
2894MWH1. After the project of MURPU (Measurement Uncertainty Recovery Power Uprate) for
Kuosheng NPP, the operating power is 101.7% of the original designed rated power, which is
2943 MWt now. Unit 1 will start SPU (Stretch Power Uprate) from Cycle 24 and Unit 2 will start
SPU from Cycle 23. The operating power will be 104.7% of the OLTP (Original Licensed Thermal
Power), which will be 3030 MW1. In order to check the system response of the Kuosheng NPP
TRACE/SNAP model, this study uses the analysis results of FSAR and startup tests data to
assess the Kuosheng NPP TRACE/SNAP model. The load rejection and a feedwater pump trip
transients were selected to validate the Kuosheng NPP TRACE/SNAP model. The trends of
TRACE analysis results were consistent with the FSAR and startup tests data. It indicates that
there is a respectable accuracy in the Kuosheng NPP TRACE/SNAP model. Besides, this
research also focuses on the application of the Kuosheng NPP TRACE/SNAP model in the core
shroud leakage. The core shroud leakage is one of issues of concern by the U.S. NRC and
NPPs. This research is using the Kuosheng NPP TRACE/SNAP model to perform the core
shroud leakage transients for Kuosheng NPP safety analysis. The TRACE analysis results show
that the pure core shroud leakage transient wasn’t influence the Kuosheng NPP safety.
However, the core shroud leakage + SBO/LOCA transient caused the cladding temperature
larger than 1088 K and affected the Kuosheng NPP safety.
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1. INTRODUCTION

Kuosheng NPP is located on the northern coast of Taiwan. Its nuclear steam supply system is a
type of BWR/6 designed and built by General Electric on a twin unit concept. Each unit includes
two loops of recirculation piping and four main steam lines, with the thermal rated power of 2894
MWH1. After the project of MURPU for Kuosheng NPP, the operating power is 101.7% of the
original designed rated power, which is 2943 MWt now. Besides, Unit 1 will start SPU from Cycle
24 and Unit 2 will start SPU from Cycle 23. The operating power will be 104.7% of the OLTP,
which will be 3030 MWt. The safety analysis of the NPP is very important work in the NPP safety.
The importance of NPP safety analysis has been raised and there is more concern for the safety
of the NPPs in the world after the Fukushima NPP event occurred. The advanced thermal
hydraulic code named TRACE has been developed by U.S. NRC for NPP safety analysis.
According to the user manual [1], TRACE is the product of a long term effort to combine the
capabilities of the NRC’s four main systems codes (TRAC-P, TRAC-B, RELAP5 and RAMONA)
into one modernized computational tool. The development of TRACE is based on TRAC,
combining with the capabilities of RELAP5 and other programs. SNAP, a graphic user interface
program that processes the inputs and outputs of TRACE, has also been developing. One of the
features of TRACE is its capacity to model the reactor vessel with 3-D geometry. It could support
a more accurate and detailed safety analysis for nuclear power plants. TRACE offers the greater
simulation capability than other old codes, especially for events such as LOCA.

This research focuses on the development of the Kuosheng NPP TRACE/SNAP model. In our
previous study [2], the preliminary TRACE/SNAP model of Kuosheng NPP was established. The
Kuosheng NPP TRACE/SNAP model includes one 3-D vessel, six channels which are used to
simulate 624 fuel bundles, four steamlines, and 16 SRVs components, etc.. In order to check the
system response of the Kuosheng NPP TRACE/SNAP model, this study uses the FSAR and
startup tests data to assess the Kuosheng NPP TRACE/SNAP model. The load rejection and a
feedwater pump ftrip transients were selected to validate the Kuosheng NPP TRACE/SNAP
model.

Besides, this research also focuses on the application of the Kuosheng NPP TRACE/SNAP
model in the core shroud leakage. Intergranular stress corrosion cracking (IGSCC) of BWR
internal components has been identified as a technical issue of concern by the U.S. NRC and
NPPs. The core shroud is among the list of internals susceptible to IGSCC. So IGSCC may
cause core shroud leakage generated. Therefore, the core shroud leakage safety analysis of
Kuosheng NPP was performed by the Kuosheng NPP TRACE/SNAP model in this study.
Besides, refer to the conditions of Fukushima NPP event, the core shroud leakage + SBO/LOCA
transients were also analyzed by TRACE for Kuosheng NPP.
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2. MODEL OF KUOSHENG (BWR/6) NPP

The code versions adopted in this research are SNAP v 2.2.7 and TRACE v 5.0p3. The process
of Kuosheng NPP TRACE/SNAP model development is as follows (shown in Fig. 1): First, the
system and operating data for the cases of FSAR and startup tests of Kuosheng NPP are
collected [1]-[5]. Second, several important control systems such as recirculation flow control
system, pressure control system and feedwater flow control system etc. are established by
SNAP and TRACE. Next, other necessary components (e.g., RPV (Reactor pressure vessel)
and main steam piping) are added into the TRACE/SNAP model to complete the TRACE/SNAP
model for Kuosheng NPP. Finally, the Kuosheng TRACE/SNAP model is verified with the cases
of FSAR and startup tests. The TRACE/SNAP model of Kuosheng NPP is presented in Fig. 2.
SNAP also can use the TRACE results data to make an animation for transient, such as Fig. 3.

Kuosheng NPP TRACE/SNAP model has been built according to the FSAR, startup tests data,
design documents, and TRACE manuals [1]-[5]. Kuosheng NPP reactor, divided into two
azimuthal sectors, four radial rings, eleven axial levels, altogether eighty-eight cells, are
simulated by the 3-D vessel component (Fig. 4). Six channels, which are one dimensional
component, are used for simulating 624 fuel bundles (Fig. 5). Full length fuel rods, partial length
fuel rods and water rods are also simulated in the channel components. Two recirculation loops
are set outside the reactor, with a recirculation pump in each loop (Fig. 6). 10 groups of jet
pumps are merged into an equal jet pump (Fig. 7). Four steam lines connected with the vessel
and each steam line had one MSIV (main steamline isolation valve), several SRVs (safety relief
valves), one TCV (turbine control valve), and one TSV (turbine stop valve). The bypass valve
(BPV) was also simulated in this mode. We use valve components to simulate the MSIV, SRVs,
TCV, TSV and BPV (Fig. 8). The critical flow models for the MSIVs, SRVs, TCVs, TSVs, and
BPV have been considered in our analysis. The break components were used to simulate the
boundary conditions of turbine and condenser (Fig. 9). The containment of Kuosheng NPP was
also simulated in the TRACE/SNAP model. The containment was composed of drywell, wetwell,
suppression pool, vent annulus, horizontal vent, upper pool, and reactor building which were
shown in Fig. 2 and 10~13. In the Kuosheng NPP TRACE/SNAP model, there are three
simulation control systems included (1) feedwater flow control system, (2) steam bypass and
pressure control system and (3) recirculation flow control system. Besides, in Kuosheng NPP
TRACE/SNAP model, “point kinetic” parameters such as delay neutron fraction, Doppler
reactivity coefficient, and void reactivity coefficient are provided as TRACE input for power
calculations (Fig. 14). The initial conditions of Kuosheng NPP were also presented in Fig. 3.
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Gathering the design data, control system, startup tests and FSAR
data of Kuosheng NPP

v

Building the TRACE/SNAP model with control
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Figure 1 The flow chart of establishing and verifying the TRACE/SNAP model of
Kuosheng NPP
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Figure 2 The TRACE/SNAP model of Kuosheng NPP
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Figure 3 The animation model of Kuosheng NPP
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Initial Conditions [Valid Conditions ] F 'E ?
Friction Fric (0.0, 0.0,0.0 ) BIEE ]
Solute in Coolant Cells: 2 e ][ 91—
Fluid Power Cptions Mot Modeled E v F
Wall Roughness 5.205637E-5| {m}D ™ P
Inlet Fipe 11 Cell 5 outlet F 'E 2
Outlet Valve 2023 Cell 7 outlet F v 7
=
-

- P

Degradation Option

[0] Single Phase Curves

I«

P

1]

Close

Figure 6 The recirculation pump condition of Kuosheng NPP
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" © JetPump 5 (intact loop jetpump) - Properties View ==
[¢ Tt PetPump 5 (intact loop jetpump)] =
w General [ ] Show Disabled |
Component Mame |intact|uopjetpump | ﬁ P
Component Number | 5‘ Rl
Description =Mnone= F E ?
Component Geometry Cells: 3, 2 F ﬂ ?
Initial Conditions [ Valid Conditions ] F ﬁ ?I=
Friction Fric {0.0,0.0,0.0,0.0 0.0 0.0 00) E ﬂ ?
Solute in Coolant Cells: 5 E bl
Fluid Power Options Mot Modelad E E P
Wall Roughness U-Ul (m)[ < | \al 4
Inlet Vessel 1 Cell 4,2 5 Negative Axial F ﬁ ? |
Main Tube Cutlet Vessel 1 Cell 4,2,1 Positive Axial F ﬂ ?
Side Tube Outlet Valve 2023 Cell 1 inlet E kil
Side Tube Junction Index Cell | 1|Z|‘ of 3 ™ P
Side Tube Junction Cosine | 1.U| Hl:‘ -k
Offtake Model Option ‘Dﬁ |v| Calk
Mumber Of Jetpumps | 10| ¥ P [+
Close

Figure 7 The jetpump condition of Kuosheng NPP
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[¢ v¢Valve 2016 =
¥ General gsnowmsabled =
Component Name |unnamed | k| ?
Component Mumber | 201E| vl
Description =none= k| ?
Valve Type |m SRV Banks | - ‘ P
Component Geometry Cells: 1 F ﬁ ‘i’ 5
Initial Conditions [ Valid Conditions ] ? ﬁ ?
Friction Fric (0.0, 15) ? ™ P
Solute in Coolant Cells: 1 ? Nl
Fluid Power Options Mot Modeled ? E 7
Wall Roughness U.Ul(m) .: vl
Inlet Pipe 2154 Cell 2 crossflow 2, inlet . ? ﬁ ?
Outlet Break 2496 Cell 1 inlet E ™ 7
Valve Interface Index Edge IEE of 2 ﬁ ?
Flow Area Adjustment Type |{U] Flow Area Fraction per Second |v‘ E ‘i’
Maximum Valve Rate | 20.0] (115) | <0 || @
Off Adjustment Rate | 0.U| (ﬂs)? ﬁ ?
Minimum Position | o000 ][ 9
Maximum Position | 1.0| (—)? b

Figure 8 The SRV condition of Kuosheng NPP



Component Name |Turbine | ™ 7
Component Number ‘ 2224| ™ P
Break Type |[{.‘r] Mo Tables ‘v | ™ P
Temperature Table Option |[3] Setliquid and gas to Tsat ‘v | E ‘?
Fluid State Option /101 Last Interp State Held Const. | |1#8 9
Description MSLA-BRK B3
Inlet Valve 2184 Cell 1 outlet E ™ 7

Figure 9 The turbine condition of Kuosheng NPP
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Component Mame unnamed e

Companent Number ‘ TU| ™ ?
Description =none= BRIk ?
Component Geometry | Cells: 10 E E ?
Initial Conditions [Valid Conditions | F i ?
Friction Fric(0.0,0.0,00,0.0,00,0.0,00,00,.. E ™ ?
Solute in Coolant Cells: 10 BEe
Fluid Power Options NotModeled F il ?
Wall Roughness U.U|(m:| @ P
Inlet Nane BRIk ?
Outlet Pipe 50 Cell 2 crossflow 2, inlet (faces) E ﬁ %
Cross Flow Connections |[0] Connections F | ?
Pipe Type ‘[{}] MNo Accumulator |v‘ E ‘i‘
Number of Pipes | 18P

Leak Paths [0] Leak Paths

[=]
(]
o)

Figure 10 The upper pool condition of Kuosheng NPP



Component Mame |unnamed

Component Number ‘

Description <none=

Companent Geometry | Cells: 10

Initial Conditions [Valid Conditions ] F vl ?
Friction Fric (0.0, 0.0, 0.0, 0.0, 0.0,0.0,0.0,0.0.... E ﬁ ‘i’
Solute in Coolant Cells: 10 elme
Fluid Power Options Not Modeled F il ?
Wall Roughness 0.U|(rn) E Lk A
Inlet Vessel 140 Cell 4,1,19 Positive Axial F il ?
Outlet None E vl
Cross Flow Connections [[1] Connections E ﬁ ?
Pipe Type [01No Accumulstor =X
Number of Pipes | 139
Leak Paths [0] Leak Paths ﬁ ?

Figure 11 The reactor building condition of Kuosheng NPP
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[¢  Messel 140 =
v General [] Show Disabled
Component Name [unnamed | P
Component Number | 140| Rl
Description =none= F ] 7
Geometry and Connections | Axiall 19] - Radial[51: Azim.[1] Bl 9
Volumetric and Edge Data |Axial 19]: Radial[5]: Azim.[1] F 'ﬂ ?
Channel Connections 0 Channels Connected BIiE 7
Wall Roughness | 0 0| (m) |40 ([T P
Vessel Type |[‘|] Drywell |v| ™ P
Boundary Condtion Option | [0] No Flow Above or Below: Baii=k;
Solute Option |[0]N0 Solute |v| P
Vessel Elevation | 0 0| (m) ™ 7
Use Reflood L ¢ True @ False v P
Vent Valves [0] Vent Valves ™
Use Vent Valve Table ) True i@ False | 7
» Boundary Interfaces
» Trace Species
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Figure 12 The wetwell and suppression pool condition of Kuosheng NPP



| 9 {3 Vessel 120

Component Name |unnamed ‘ )] ?
Component Number | 120‘ ™ P
Description =none= ﬁ ‘i’

Geometry and Connections | Axial[ 20 | : Radial[ 5] Azim.[1]

Volumetric and Edge Data | Axial[ 20 ]: Radial[ 5]: Azim.[1]

B
MERREE
(]
o

Channel Connections 0 Channels Connected Nl 4
Wall Roughness | ™ P
Vessel Type |[1]Drywe|| Ll 2
Boundary Condition Option |[(}] Mo Flow Above or Below. ’E ‘?
Solute Option |[01 No Solute | v | ™ P
Vessel Elevation | 37301424 () 0 || P
Use Reflood O O True @ False Ll 2
VentValves [0] Vent Valves Nl 7
Use Vent Valve Table 2 True (@ False ™ P

> Boundary Inerfaces

b Trace Species

Figure 13 The drywell condition of Kuosheng NPP
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[ # [Power204] =

Component Number | 204| ™7
Description “nones= Rl d ||
Power Option |{41 PK w/ Const React, Ta..|v| P
Powered Components 6 Powered: 2,3,4,7,8,9 ™ P
Include Reactivity Feedback ® True O False ™ P
Target Component Type |{1]CHnN Components |v| ﬁ %
Edit Frequency (in timesteps) | 1000| ﬁ ‘P
Decay Heat Multiplier 1.0 )| 4

Prompt DMH 0.0 (-)

Decay DMH 0.0] (-) _

Bypass DMH 0.0| ()[4
Programmed Reactivity 0.0] [ 4] T
Neutron Lifetime 0.0/ ) 1|

Off Reactivity 0.0/ [ 11]

Max Reactivity Change 1.0E20| {1s) _

Reactiity Scale Factor 106 1]

Initial Power 3.03E9| (W)

External Power 0.0/ (W) 4l

Pellet-dish Radius 0.0| (m)|4

Pitch Ratio 0.0{ (-)

Uncracked Fraction 0.0| ()[4

Power Exponent 20 (—)T A |
Constant Burnable 0.0| (kgim?) :

Linear Burnable 0.0| (kgfm3fK)

Constant Control 0.0 (kgrmlj

Linear Control 0.0 (kgmﬂf

Power Table Rows: 1[0.0-2.0] [e]lfn 2 []

izt

Figure 14 The power condition of Kuosheng NPP






3. RESULTS

Before the transient calculation of Kuosheng TRACE/SNAP model begins, it is necessary to
carry out the steady state calculation and make sure that the system parameters (such as the
feedwater flow, steam flow, dome pressure, and core flow, etc.) are in agreement with FSAR
data under the steady state condition. The results of analysis of TRACE are clearly consistent
with FSAR data under the steady state condition (See Table 1).

Table 1 The comparison of initial conditions between FSAR and TRACE data

FSAR TRACE
Parameter
Point kinetics Difference (%)
Power
(MW1) 2894 2894 0
Dome Pressure
(MPa) 7.3 7.3 0
Feedwater Flow 1647 1652 03
(kg/sec)
Steam Flow 1647 1652 0.3
(kg/sec)
Core inlet flow 10647 10521 12
(kglsec)
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3.1 Startup Test : Generator Load Rejection with Bypass Valves

This test was performed in November 11, 1981 and the initial power was 2894 MWt. The
purpose of the test was to confirm the functions of TCVs, BPV, SRVs and the response of
system. Table 2 compares the generator load rejection with bypass valves transient’s sequences
of startup test data with TRACE. Their sequences are very similar. In this transient, when load
rejection occurred, the TCV closed quickly. Then the BPV opened and reactor scrammed. When
the water level reached level 3, the recirculation pumps were tripped. Finally, the BPV was reset
at 6.48 MPa.

Fig.15~20 shows the results of startup test and TRACE. Fig. 15 depicts the power curves of
startup test data and TRACE. The trends of their curves are similar. The TCV fast closure tripped
the reactor scram. Therefore, the power dropped after 0.3 sec. Fig. 16 compares the steam
dome pressures of startup test and TRACE. The trends of the curves are approximately in
agreement. The TCV closing caused the dome pressure to rise. Then, BPV and SRVs opened
and led to the decline of dome pressure. Fig. 17 shows the steam flow data of startup test and
TRACE. The TRACE result was consistent with the startup test data. The TCV closing caused
the steam flow to drop sharply after 0.4 sec. Besides, the feedwater flow and water level
decreased after TCV closure (shown in Fig. 18 and 19). Due to the dome pressure increase, it
resulted in the core inlet flow rising during 0.5~2 sec (see Fig. 20). Then, recirculation pumps trip
caused the decrease of core inlet flow. In summary, the trends of TRACE prediction were
consistent with startup test data but there were a few differences in the values of the prediction.
Because we cannot find the detailed startup test data, we don’t know what the reasons cause the
differences of TRACE results and startup test data.
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Table 2 The comparison of sequences between startup test and TRACE data

Event(sec) Startup test TRACE
Transient started 0 0

TCV started to close 0.2 0.2
BPV started to open 0.21 0.21

Reactor scrammed 0.236 0.236

BPV fully opened 0.329 0.329

TCV fully closed 0.394 0.394
Water level reached level 3 2.2 3.1

Steam dome pressure peak
BPV reset at 6.48 MPa

End of analysis

3.9 (7.43 MPa)

16.3

2.5 (7.36 MPa)
18.4

20
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Figure 15 The power data of TRACE and startup test
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Dome pressure (MPa)
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Figure 16 The dome pressure data of TRACE and startup test
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Steam flow (kg/sec)
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Figure 17 The steam flow data of TRACE and startup test
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Feedwater flow (kg/sec)
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Figure 18 The feedwater flow data of TRACE and startup test
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Figure 19 The narrow range water level (NRWL) data of TRACE and startup test
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Core inlet flow (kg/sec)
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Figure 20 The core inlet flow data of TRACE and startup test
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3.2 Startup Test : One Feedwater Pump Trip

This test was performed in November 6, 1981 and the initial power was 2778 MW1t. The purpose
of the test was to confirm the function of FCV (flow control valve) when one feedwater pump
tripped. Table 3 compares the one feedwater pump trip transient’s sequences of startup test data
with TRACE. Their sequences are nearly the same. In this transient, after one feedwater pump
tripped, water level decreased. When the water level reached level 4, the FCV runback was
started. Then, the power and core flow decreased.

Fig.21~24 shows the results of startup test and TRACE. Fig. 21 depicts the core inlet flow curves
of startup test data and TRACE. The trends of their curves are similar. One feedwater pump trip
caused the water level decrease. The FCV runback was tripped when the water level reached
level 4. Therefore, the core inlet flow decreased due to the FCV runback. Fig. 22 compares the
powers of startup test and TRACE. The trends of the curves are approximately in agreement.
After FCV runback, the power decreased. Fig. 23 shows the feedwater flow data of startup test
and TRACE. The TRACE result was consistent with the startup test data. One feedwater pump
trip caused the feedwater flow to decrease after 4.9 sec. Besides, the NRWL result of TRACE
was similar to startup test data (shown in Fig. 24). In summary, the results of TRACE prediction
were similar to startup test data but there were a few differences in the values of parameters.
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Table 3 The comparison of sequences between startup test and TRACE

Action (sec) Startup test TRACE
Transient Started 0 0
One feedwater pump tripped 4.9 4.9
Water level dropped to level 4 15.1 15.4

Minimum power value
Minimum core flow

End of analysis

18.5 (57%)

19.4 (79.3%)

18.5 (57%)
18.7 (77%)

30
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Core inlet flow (%)

120

80 —

40 —

10 20
Time (sec)

Figure 21 The core inlet flow data of TRACE and startup test
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Figure 22 The power data of TRACE and startup test
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Feedwater flow (kg/sec)
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Figure 23 The feedwater flow data of TRACE and startup test
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Figure 24 The NRWL data of TRACE and startup test
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3.3 FSAR Case : Generator Load Rejection with Bypass Valves

This transient is similar to the startup test: generator load rejection with bypass valves. The initial
power was 2894 MWt in this transient. Table 4 compares the generator load rejection with
bypass valves transient’s sequences of FSAR data with TRACE. Their sequences are very
similar. In this transient, when load rejection occurred, the TCV closed quickly. Then the
recirculation pump tripped, reactor scrammed, BPV opened, and loss of feedwater generated.

Fig. 25~28 shows the results of FSAR and TRACE. Fig. 25 depicts the power curves of FSAR
and TRACE. The trend of TRACE was consistent with FSAR data. The TCV fast closure caused
the dome pressure increase which made the core void fraction decrease and power increase.
Then, TCV fast closure tripped the reactor scram. Therefore, the power dropped after 0.7 sec.
Fig. 26 compares the steam dome pressures of FSAR and TRACE. The trends of their curves
were similar. The TCV closing caused the dome pressure to rise. Then, BPV and SRVs opened
and led to the decline of dome pressure. Fig. 27 shows the steam flow data of FSAR and
TRACE. The TRACE result was consistent with the FSAR data. The TCV closing caused the
steam flow to drop sharply. The BPV and SRVs opened subsequently which resulted in the
steam flow increase. Due to the dome pressure increase, it resulted in the core inlet flow rising
during 0~0.25 sec (see Fig. 28). Then, recirculation pumps trip caused the decrease of core inlet
flow. In summary, TRACE prediction results were consistent with FSAR data but there were a
few differences in the values of the prediction. Because we cannot find the detailed FSAR data,
we don’t know what the reasons cause the differences of TRACE results and FSAR data.
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Table 4 The comparison of sequences between FSAR and TRACE

Action (sec) FSAR TRACE
Transient started 0 0
TCV started to close 0 0
Recirculation pump tripped 0.25 0.25
Reactor scrammed 0.6 0.69
Bypass valve opened 1.7 2.1
Loss of feedwater 3.6 3.5
End of analysis 20 20
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Figure 25 The power data of TRACE and FSAR
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Dome pressure (MPa)
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Figure 26 The dome pressure data of TRACE and FSAR
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Steam flow (kg/sec)
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Figure 27 The steam flow data of TRACE and FSAR
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Core inlet flow (kg/sec)
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Figure 28 The core inlet flow data of TRACE and FSAR
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3.4 Core Shroud Leakage Analysis

There are six assumed cases in the Kuosheng NPP TRACE analysis, as follows:

Case 1: the core shroud leakage occurred (only in 1 azimuthal sector of the vessel, a small hole),
the length of break is 0.4 m, the area of break is 0.004 m?.

Case 2: the core shroud leakage occurred (only in 1 azimuthal sector of the vessel, a small hole),
the length of break is 0.4 m, the area of break is 0.014 m?.

Case 3: the core shroud leakage occurred (in 2 azimuthal sectors of the vessel, 360 degree
larger break), the area of break is 10.248 m?.

Case 4: the case 3 condition + SBO + scram failed + RCIC failed.

Case 5: the case 3 condition + SBO + LOCA (one steamline break) + scram failed + RCIC failed.

Case 6: the case 3 condition + SBO + LOCA (one steamline break).

The initial conditions of cases are 100% rated power/100% rated core flow and the sequences of
case 1~6 are shown in Table 5. First, the simulation of steady state is performed during 0~200
sec for all cases. Second, the core shroud leakage started to occur at 200 sec for the cases.
Besides, the SBO transients (ex: recirculation pump, feedwater, turbine tripped and MSIV
closure) were performed for case 4~6 and the LOCA transients (one steamline break) were
performed for case 5~6. Fig. 29~33 show the results of TRACE for all cases.

Fig. 29 show the power results of TRACE. In all cases, when core shroud leakage occurred, the
power increased rapidly. Then the power dropped sharply due to the void fraction increase. After
core shroud leakage generated fully, the powers of case 1~3 reached the new steady state.
However, case 4 and 5 had more negative Doppler reactivity due to the fuel temperature raise
(shown in Fig. 32). So the power of case 4 and case 5 was lower than the power case 1~3 after
core shroud leakage generated fully. Because the reactor scram occurred, the power of case 6
dropped sharply.

Fig. 30 shows the water level results of Kuosheng NPP core shroud leakage cases. In case 2~6,
when core shroud leakage occurred, the water level went up rapidly and was larger than level 8.
It also indicated that the level 8 signal was tripped. Therefore, if the Kuosheng NPP finds the
level 8 signal tripped, it may be the core shroud leakage happened. Besides, the feedwater
tripped and RCIC failed resulted in no water injection to the vessel for case 4 and 5. Due to no
water supply, the water level of the case 4 and case 5 decreased continuously and were lower
than the TAF (see Fig. 31). Due to one steamline break, the larger steam rushed out for case 5
and 6 that also caused the water level lower than the TAF. The above results caused the fuel
temperature increase for the case 4~6 (shown in Fig. 32). The fuel temperature of the case 4 did
not reach 1088K [6] during 0~1000 sec (when the temperature is larger than 1088 K, the
zirconium-water reaction may generate). However, if the time of the transient is enough long, we
think that the fuel temperature of the case 4 may be larger than 1088 K. Besides, because the
fuel temperature of the case 5 was larger than 1088 K, the zirconium-water reaction happened.
The above results indicated that the fuels might be damaged after the zirconium-water reaction
happened. In case 6, the SBO + LOCA also occurred which was like case 5. However, the
reactor scram and RCIC were active in case 6. Therefore, the fuel temperature increase was
delay. The fuel temperature of case 6 went up after 500 sec. It indicated that only RCIC injection
was not enough for case 6. Fig. 33 shows the dome pressures of TRACE for all cases. There
were not variation in case 1~3. In case 4, because SRVs opened, there was an oscillation in this
transient. In case 5~6, because the LOCA occurred, the dome pressure dropped sharply. Finally,
Fig. 34 depicts the animation model of Kuosheng NPP for case 5.

3-22



Table 5 The sequences of case 1~6 for core shroud leakage transient

Action (sec) Case 1 Case 2 Case 3
Transient started 200 200 200
Core shroud leakage 200 200 200
started (leakage area: (leakage area: (leakage area:
0.004m?) 0.14m?) 10.248m?)
NRWL reached level 8 - 208 204
End 1000 1000 1000
Action (sec) Case 4 Case 5 Case 6
(SBO) (SBO+LOCA) (SBO+LOCA)
Transient started 200 200 200
Core shroud leakage started 200 200 200
(leakage area: (leakage area: (leakage area:
10.248m?) 10.248m?) 10.248m?)
Steam line LOCA generated - 200 200
TCV started to close 200.1 200.1 200.1
Feedwater tripped 200.1 200.1 200.1
Reactor scrammed - - 200.1
Recirculation pmup tripped 200.1 200.1 200.1
MSIV started to close 200.1 200.1 200.1
Water level reached level 8 204 204 204
RCIC started - - 234
Water level reached TAF 261 260 2901
Water level reached BAF - 431 -
Cladding temperature - 550 -
reached 1088K
End 1000 1000 1000
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Figure 29 The power results
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Figure 30 The NRWL results
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Figure 31 The vessel water level results
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Figure 32 The fuel rod temperature results
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Figure 33 The dome pressure results
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Figure 34 The animation model of Kuosheng NPP for core shroud leakage transient
(a) 0 sec, (b) 202 sec, (c) 583 sec, (d) 981 sec
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4. CONCLUSIONS

This research focuses on the development of the Kuosheng NPP TRACE/SNAP model. The load
rejection and a feedwater pump trip transients were selected to validate the Kuosheng NPP
TRACE model. The results and sequences of TRACE are similar to the FSAR and startup tests
data. By the above compared results, it indicates that there is a respectable accuracy in the
Kuosheng NPP TRACE/SNAP model and it also shows that the Kuosheng NPP TRACE/SNAP
model is satisfying for the purpose of Kuosheng NPP safety analyses with confidence.

This study also developed the TRACE/SNAP core shroud leakage models of Kuosheng NPP.
There are six assumed cases in this research and the results of TRACE show the accurate
response of system for these cases. Besides, the results of TRACE indicated that the Kuosheng
NPP may find the core shroud leakage happened by the level 8 signal tripped. The TRACE
analysis results also show that the pure core shroud leakage transient (case 1~3) wasn’t
influence the Kuosheng NPP safety. However, the core shroud leakage + station blackout (SBO)
/ one steamline break (LOCA) transient (case 4~6) may cause the cladding temperature larger
than 1088 K and influence the Kuosheng NPP safety.

4-1






N —

5. REFERENCES

U.S. NRC, 2010. TRACE V5.0 User’s Manual.

K. Y. Lin, 2012. Verification of the Kuosheng BWR/6 TRACE Model with Load Rejection
Startup Test, ASME 2012 V&V.

Taiwan Power Company, 2001. Final Safety Analysis Report for Kousheng Nuclear Power
Station Units 1&2 (FSAR).

R.Y. Yuann, H.T. Lin, 2009. Guideline of Generating Parameters for Reload Licensing
Analyses for Kuosheng Units 1 and 2, INER report, INER-6529R.

J. R. Wang et al, 1989. Kuosheng Startup Tests Transient Analyses, INER report,
INER-0965.

Taiwan Power Company, 2014. Ultimate Response Guideline for Kousheng Nuclear Power
Station.

5-1






NRC FORM 335
(12-2010)
NRCMD 3.7

U.S. NUCLEAR REGULATORY COMMISSION

BIBLIOGRAPHIC DATA SHEET

(See instructions on the reverse)

1. REPORT NUMBER
(Assigned by NRC, Add Vol., Supp., Rev.,
and Addendum Numbers, if any.)

NUREG/IA-0450

2. TITLE AND SUBTITLE
The Development and Application of Kuosheng (BWR/6) Nuclear Power Plant TRACE/SNAP
Model

3. DATE REPORT PUBLISHED

MONTH " YEAR

December 2014

4. FIN OR GRANT NUMBER

5. AUTHOR(S)
Chunkuan Shih*,Hao-Tzu Lin, Jong-Rong Wang, Hsiung-Chih Chen*, Show-Chyuan Chiang**,
Chia-Chuan Liu**

6. TYPE OF REPORT
Technical

7. PERIOD COVERED (Inclusive Dates)

contractor, provide name and mailing address.)
Institute of Nuclear Energy Research

Atomic Energy Council, R.O.C.

8. PERFORMING ORGANIZATION - NAME AND ADDRESS (If NRC, provide Division, Office or Region, U. S. Nuclear Regulatory Commission, and mailing address; if

*Institute of Nuclear Engineering and Science **Dept. of Nuclear Safety

1000, Wenhua Rd., Chiaan Village,

National Tsing Hua University
101 Section 2, Kuang Fu Rd.

Taiwan Power Company
242 Sec. 3, Roosevelt Rd, Zhongzheng Dist.

Lungtan, Taoyuan, 325, Taiwan HsinChu, Taiwan Taipei, Taiwan

9. SPONSORING ORGANIZATION - NAME AND ADDRESS (If NRC, type “Same as above", if contractor, provide NRC Division, Office or Region, U. S. Nuclear Regulatory
Commission, and mailing address.) .

Division of Systems Analysis

Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

10. SUPPLEMENTARY NOTES
K. Tien, NRC Project Manager

11. ABSTRACT (200 words or less)

Kuosheng Nuclear Power Plant (NPP) is the second NPP in Taiwan which is the BWR/6 plant. This
research focuses on the development of the Kuosheng NPP TRACE/SNAP model. In order to check the
system response of the Kuosheng NPP TRACE/SNAP model, this study uses the analysis results of Final
Safety Analysis Report (FSAR) and startup tests data to assess the Kuosheng NPP TRACE/SNAP
model. The load rejection and a feedwater pump trip transients were selected to validate the Kuosheng
NPP TRACE/SNAP model. The trends of TRACE analysis results were consistent with the FSAR and
startup tests data. It indicates that there is a respectable accuracy in the Kuosheng NPP TRACE/SNAP
model. Besides, this research also focuses on the application of the Kuosheng NPP TRACE/SNAP model
in the core shroud leakage. The core shroud leakage is one of issues of concern by the U.S. NRC and
NPPs. This research is using the Kuosheng NPP TRACE/SNAP model to perform the core shroud
leakage transients for Kuosheng NPP safety analysis. The TRACE analysis results show that the pure
core shroud leakage transient wasn’t influence the Kuosheng NPP safety. However, the core shroud
leakage + station blackout (SBO) / steamline break (loss of coolant accident, LOCA) transient caused

the cladding temperature larger than 1088 K and affected the Kuosheng NPP safety.

12. KEY WORDS/DESCRIPTORS (List words or phrases that will assist researchers in locating the report.)
Kuosheng NPP ' '

TRACE/SNAP

Measurement Uncertainty Recovery (MUR)

Measurement Uncertainty Recovery Power Uprate (MURPU)

Load Rejection

Feedwater Pump Trip

Core Shroud Leakage

Intergranular Stress Corrosion Cracking (IGSCC)

13. AVAILABILITY STATEMENT
unlimited

14. SECURITY CLASSIFICATION

(This Page)
unclassified

(This Report)
unclassified

15. NUMBER OF PAGES

16. PRICE

NRC FORM 335 (12-2010)







Printed
on recycled
paper

Federal Recycling Program









UNITED STATES

OFFICIAL BUSINESS

) @ (€] @) (o B9 N




NUREG/IA-0450 The Development and Application of Kuosheng (BWR/6) December 2014
Nuclear Power Plant TRACE/SNAP Model



	Figure 19  The narrow range water level (NRWL) data of TRACE and startup test
	Figure 23  The feedwater flow data of TRACE and startup test
	Figure 24  The NRWL data of TRACE and startup test
	Figure 25  The power data of TRACE and FSAR
	Figure 26  The dome pressure data of TRACE and FSAR
	Figure 28  The core inlet flow data of TRACE and FSAR
	(a)  0 sec
	(d)  981 sec
	1. U.S. NRC, 2010. TRACE V5.0 User’s Manual.
	2. K. Y. Lin, 2012. Verification of the Kuosheng BWR/6 TRACE Model with Load Rejection Startup Test, ASME 2012 V&V.
	3. Taiwan Power Company, 2001. Final Safety Analysis Report for Kousheng Nuclear Power Station Units 1&2 (FSAR).
	4. R.Y. Yuann, H.T. Lin, 2009. Guideline of Generating Parameters for Reload Licensing Analyses for Kuosheng Units 1 and 2, INER report, INER-6529R.
	5. J. R. Wang et al, 1989. Kuosheng Startup Tests Transient Analyses, INER report, INER-0965.
	6. Taiwan Power Company, 2014. Ultimate Response Guideline for Kousheng Nuclear Power Station.
	Blank Page
	1smrecyclelogo.pdf
	Page 1

	Blank Page
	Blank Page
	1smrecyclelogo.pdf
	Page 1

	Blank Page
	Blank Page



