
Groundwater Resources Program

Prepared in cooperation with George Mason University

GRIDGEN Version 1.0: A Computer Program for Generating
Unstructured Finite-Volume Grids

Open-File Report 2014–1109

U.S. Department of the Interior
U.S. Geological Survey

Groundwater Resources Program
Prepared in cooperation with George Mason University

GRIDGEN Version 1.0: A Computer Program for Generating
Unstructured Finite-Volume Grids

By Jyh-Ming Lien, Guilin Liu, and Christian D. Langevin

Open-File Report 2014–1109

U.S. Department of the Interior
U.S. Geological Survey

U.S. Department of the Interior
SALLY JEWELL, Secretary

U.S. Geological Survey
Suzette M. Kimball, Acting Director

U.S. Geological Survey, Reston, Virginia: 2015

For more information on the USGS—the Federal source for science about the Earth,
its natural and living resources, natural hazards, and the environment—visit
http://www.usgs.gov or call 1–888–ASK–USGS (1–888–275–8747)

For an overview of USGS information products, including maps, imagery, and publications,
visit http://www.usgs.gov/pubprod

To order this and other USGS information products, visit http://store.usgs.gov

Any use of trade, firm, or product names is for descriptive purposes only and does not imply
endorsement by the U.S. Government.

Although this information product, for the most part, is in the public domain, it also may
contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items
must be secured from the copyright owner.

Suggested Citation
Lien, Jyh-Ming, Liu, Guilin, and Langevin, C.D., 2015, GRIDGEN version 1.0—A computer program for
generating unstructured finite-volume grids: U.S. Geological Survey Open-File Report 2014–1109, 26 p.,
http://dx.doi.org10.3133/ofr20141109.

ISSN 2331-1258 (online)

ii

http://www.usgs.gov/
http://www.usgs.gov/pubprod
http://store.usgs.gov/
http://dx.doi.org10.3133/ofr20141109

Acknowledgments

Development of the GRIDGEN computer program was supported by the U.S. Geological Survey (USGS)
Groundwater Resources Program. The authors are grateful to USGS employees Scott Paulinski and Brian Clark for
thoughtful and constructive reviews of the GRIDGEN software and this report. The authors are also grateful to Andy
Leaf and Daniel Feinstein for testing earlier versions of the program.

iii

 iv

Contents
Abstract .. 1
Introduction ... 1
Overview of the GRIDGEN Program .. 2

Spatial Information .. 2
Definition Files and Information Blocks ... 2

GRIDGEN Definition Blocks ... 4
MODFLOW_GRID .. 4
QUADTREE .. 5
QUADTREE_BUILDER... 9
REFINEMENT_FEATURES .. 12
ACTIVE_DOMAIN ... 13
GRID_TO_SHAPEFILE .. 14
GRID_TO_USGDATA ... 16
GRID_TO_VTKFILE ... 18
GRID_INTERSECTION .. 19

Point-Grid Intersection ... 19
Line-Grid Intersection .. 20
Polygon-Grid Intersection .. 20

Example .. 21
Generating the Layered Quadtree Grid ... 21
Writing Grid Information .. 23
Creating Shapefiles of the Grid ... 24
Intersecting the Grid .. 24

Summary and Conclusions ... 26
References Cited .. 26

Figures

Figure 1. Diagram showing example of a quadtree grid. ... 6
Figure 2. Diagram showing features and base grid (MODFLOW_GRID) used with the QUADTREE_BUILDER

block in GRIDGEN to create the layered quadtree grid. .. 22

Tables

Table 1. Block types available in GRIDGEN Version 1.0. .. 4
Table 2. List of the records that compose a MODFLOW_GRID block. .. 5
Table 3. List of the records that compose the QUADTREE block. ... 8
Table 4. List of records that compose the QUADTREE_BUILDER block. ... 11
Table 5. List of records that compose the REFINEMENT_FEATURES block. .. 12
Table 6. List of records that compose the ACTIVE_DOMAIN block. ... 13
Table 7. List of records that compose the GRID_TO_SHAPEFILE block. ... 14
Table 8. List of records that compose the GRID_TO_USGDATA block. ... 16
Table 9. Files created by the GRID_TO_USGDATA block. ... 17
Table 10. List of records that compose the GRID_TO_VTKFILE block. .. 18
Table 11. List of records that compose the GRID_INTERSECTION block. ... 19

 v

 vi

GRIDGEN Version 1.0: A Computer Program for
Generating Unstructured Finite-Volume Grids

By Jyh-Ming Lien,1 Guilin Liu,1 and Christian D. Langevin2

Abstract
GRIDGEN is a computer program for creating layered quadtree grids for use with numerical

models, such as the MODFLOW–USG program for simulation of groundwater flow. The program
begins by reading a three-dimensional base grid, which can have variable row and column widths and
spatially variable cell top and bottom elevations. From this base grid, GRIDGEN will continuously
divide into four any cell intersecting user-provided refinement features (points, lines, and polygons)
until the desired level of refinement is reached. GRIDGEN will then smooth, or balance, the grid so that
no two adjacent cells, including overlying and underlying cells, differ by more than a user-specified
level tolerance. Once these gridding processes are completed, GRIDGEN saves a tree structure file so
that the layered quadtree grid can be quickly reconstructed as needed. Once a tree structure file has been
created, GRIDGEN can then be used to (1) export the layered quadtree grid as a shapefile, (2) export
grid connectivity and cell information as ASCII text files for use with MODFLOW–USG or other
numerical models, and (3) intersect the grid with shapefiles of points, lines, or polygons, and save
intersection output as ASCII text files and shapefiles. The GRIDGEN program is demonstrated by
creating a layered quadtree grid for the Biscayne aquifer in Miami-Dade County, Florida, using
hydrologic features to control where refinement is added.

Introduction
An unstructured grid version of MODFLOW, called MODFLOW–USG (Panday and others,

2013) simulates groundwater flow using a generic finite-volume approach. This flexibility allows grids,
other than the structured finite-difference grid required by previous MODFLOW versions, to be used to
discretize the model domain. Use of an unstructured model grid offers many advantages, including the
capability to refine areas of interest with additional levels of grid resolution. Design and manipulation of
unstructured model grids, however, is more complicated than working with structured finite-difference
grids. Most of the added complexity stems from the requirement that information about how cells are
connected to one another must be provided by the user. With a structured finite-difference grid, cell
connections are an intrinsic grid property in that each cell is connected to the six adjacent cells, and
identification of the six connected cells can be easily determined.

This report describes a new computer program called GRIDGEN, which can be used to generate
an unstructured finite-volume model grid. This first GRIDGEN version (Version 1.0) is designed to

1George Mason University.
2U.S. Geological Survey.

 1

support the design and manipulation of a three-dimensional, layered quadtree grid. A layered quadtree
grid is an enhancement to the traditional MODFLOW grid, in that any cell can be divided into four
equal-sized cells. It is called a “layered” quadtree grid because it has the same number of layers as the
base MODFLOW grid from which it was derived. The primary advantage of a layered quadtree grid is
that additional levels of resolution can be added anywhere within the model domain to better represent
groundwater flow, for example, near wells and streams. Layered quadtree grids also share important
similarities with traditional MODFLOW grids, such as rectangular cells and three principal (and
orthogonal) grid directions.

GRIDGEN is a grid generation tool designed primarily for MODFLOW–USG models; however,
it may be useful for generating grids for other numerical models. GRIDGEN is a command-line
executable program that reads and writes ESRI (1998) shapefiles. It is not a graphical user interface, and
it has no post-processing capabilities. GRIDGEN creates most of the discretization information required
by MODFLOW–USG, including the cell connectivity information and other cell connection properties,
but it does not create the unstructured discretization input file for MODFLOW–USG. Users will need to
create this file manually or through other methods.

This report describes GRIDGEN Version 1.0, beginning with an overview of the program,
including the types of files that it reads and writes, followed by a description of the format for the
different types of information blocks that GRIDGEN processes. An example is then provided showing
how GRIDGEN can be used to create a layered quadtree grid, write information about the grid, create
shapefiles of the grid, and then intersect the grid with spatial hydrologic features.

Overview of the GRIDGEN Program
The GRIDGEN program is provided as a command-line executable program; however, the

source code is also contained within the distribution for those who would like to compile the program.
The program is written in standard C++ and has been successfully compiled on Windows, Macintosh,
and Linux operating systems. A C library called shapelib (Warmerdam, 1998) is used by GRIDGEN to
read and write shapefiles and the associated attribute files (with the .shx and .dbf file extensions).
Successful use of the GRIDGEN program will require familiarity with running programs from the
command line.

Spatial Information

The GRIDGEN program reads and writes shapefiles, the format of which is described in detail
by ESRI (1998). For the program to work as intended, the shapefiles must be valid and have all
information in the same geographic units as the model grid (commonly feet or meters). GRIDGEN is
capable of reading and writing several types of spatial features, including points, lines, and polygons.

Definition Files and Information Blocks

In addition to shapefiles, the GRIDGEN program reads and writes definition files, which are
simple ASCII text files. Definition files are normally given the “.dfn” file suffix to differentiate them
from other types of files. Definition files are used to provide instructions and other information required
by GRIDGEN. Definition files are intended to be simple so that they can be manually created and
understood by users. For this reason, definition files cannot store arrays of numbers and other long lists
of information; where arrays of numbers are required, a definition file can point to a file containing the
array.

 2

Definition files contain one or more blocks of information. These blocks consist of keywords,
which are recognized by the program and shown here in capital letters, and other information provided
by the user. A block always starts with the “BEGIN” keyword and terminates with an “END” keyword.
Immediately following the “BEGIN” and “END” keywords is the block type. On the first line of the
block, following the block type, a unique name is required. The block name is a unique identifier that
can be used in other blocks to refer to the named block.

The body of the block contains a list of records, which are in no particular order. For example, a
generic block would have the following form:

BEGIN block_type block_name
 record_name_1 = record_value_1
 record_name_2 = record_value_2
 …
 record_name_n = record_value_n
END block_type

This block structure allows the user to provide named input to GRIDGEN and allows new input options
and keywords to be added in a backward-compatible way as new functionality for the program is
developed.

Record values are generally text strings, integer values, real values, or boolean flags (True or
False). Record values are indicated in the block descriptions in this report using the following syntax:

record_name = <text>
record_name = <integer>
record_name = <real>
record_name = <boolean>

Definition files also support arrays, which are indicated by the array type followed by brackets and the
array shape, as indicated by the following lines:

record_name = <integer[NCOL]>
record_name = <real[NROW,NCOL]>

There are two options for assigning array values, and they are patterned after two of the MODFLOW–
2005 array reading utilities (Harbaugh, 2005). The first option is for assigning a constant value to the
entire array. For this case, the CONSTANT keyword can be used. For example, the following line
would assign a constant value of 50.0 to the DELR array:

DELR = CONSTANT 50.0

For an array with non-constant values, the array values must be listed in an external array file, which is
simply an ASCII text file containing all of the array values. The array values must be listed in row-
major order, as is done for MODFLOW–2005. The syntax for assigning an array using values from an
external file is

DELR = OPEN/CLOSE delr.dat

Within GRIDGEN definition files, there are two general functions of blocks, namely to define
objects and to define actions. An object block might describe a grid or a quadtree refinement feature,
whereas an action block contains instructions that can be executed by the GRIDGEN program. Action
blocks can be executed by a user by running the GRIDGEN program with the name of the action block

 3

and the name of the definition file provided as arguments. For example, the following command-line
statement will execute an action block called “qtgbuilder” in a definition file named “qtg.dfn”:
“gridgen.exe qtgbuilder qtg.dfn”. It is also possible to execute the GRIDGEN program with an object
block. In some cases, the program will perform internal calculations in order to create a representation
of the object, but no output will be generated.

GRIDGEN Definition Blocks
The block types supported in GRIDGEN Version 1.0 are listed in Table 1. Although most of

these blocks would be used in a typical GRIDGEN application, not all of them are required in every
instance. This report section provides the details for each of these blocks.

Table 1. Block types available in GRIDGEN Version 1.0.
Block type Block function Block description

MODFLOW_GRID Define object Contains the information required to characterize a three-dimensional
MODFLOW grid.

QUADTREE Define object Contains the information required to characterize a three-dimensional layered
quadtree grid.

QUADTREE_BUILDER Define action An action block that will create a QUADTREE grid
REFINEMENT_FEATURES Define object Features from a shapefile that are used by QUADTREE_BUILDER
ACTIVE_DOMAIN Define object A polygon feature from a shapefile that will be used by the

QUADTREE_BUILDER block to specify the active domain of the grid.
GRID_TO_SHAPEFILE Define action An action block that will create a shapefile for the specified grid
GRID_TO_USGDATA Define action An action block that will write information about the cell connectivity and

geometry of the specified grid.
GRID_TO_VTKFILE Define action An action block that will create a Visualization Toolkit (VTK) file for the

specified grid.
GRID_INTERSECTION Define action An action block that will write information about the spatial intersection of

features from a shapefile and the specified grid.

MODFLOW_GRID

The term “MODFLOW grid” is used here because it conforms to the grid type that can be used
with the MODFLOW program for simulation of groundwater flow (Harbaugh, 2005). A MODFLOW
grid consists of one or more layers, rows, and columns. The number of layers, rows, and columns are
defined by the NLAY, NROW, and NCOL record identifiers, respectively. Columns and rows can have
variable spacings within the grid and are thus characterized by one-dimensional arrays. Column
spacings are contained within the DELR array (of size NCOL), and row spacings are contained in the
DELC array (of size NROW). In plan view, rows increase in number from top to bottom and columns
increase in number from left to right. Layers increase in number from top to bottom, and thus the top
layer is layer 1. A top elevation is provided for every cell in layer 1. Bottom elevations are provided for
every cell in every layer. With this design, layer thicknesses can vary across the grid in order to
represent subsurface hydrogeologic units. Note that in a MODFLOW_GRID block, top elevations are
only provided for the top layer; for the underlying layers, cell top elevations are equal to the bottom
elevations of the overlying cells.

A MODFLOW grid is described in definition files by the MODFLOW_GRID block type. A
complete description of the MODFLOW_GRID block is shown in table 2. A MODFLOW_GRID can
be used for subsequent processing by other action blocks, but more importantly, it is required as a base

 4

grid for building layered quadtree grids (described in the next section). The following lines demonstrate
the use of the MODFLOW_GRID block to characterize a MODFLOW grid having 3 layers, 30 rows,
and 40 columns, with each layer having a constant top and bottom elevation. The GRIDGEN program
will see the name of this MODFLOW grid as “basegrid.”

#comment – this is a MODFLOW_GRID with the name “basegrid”
BEGIN MODFLOW_GRID basegrid
 ROTATION_ANGLE = 15.
 X_OFFSET = 5000.
 Y_OFFSET = 5200.
 LENGTH_UNIT = undefined
 NLAY = 3
 NROW = 30
 NCOL = 40
 DELR = CONSTANT 100.0
 DELC = CONSTANT 100.0
 TOP = CONSTANT 75.0
 BOTTOM LAYER 1 = CONSTANT -100.0
 BOTTOM LAYER 2 = CONSTANT -110.0
 BOTTOM LAYER 3 = CONSTANT -275.0
END MODFLOW_GRID

Note that for this simple example, the one-dimensional arrays (DELR and DELC) and the two-
dimensional arrays (TOP and BOTTOM) have all been assigned constant values. As previously
described, non-constant arrays can also be used with GRIDGEN by referring to external ASCII text files
that contain the array values.

Table 2. List of the records that compose a MODFLOW_GRID block.
[NCOL, number of columns; NROW, number of rows; NLAY, number of layers]

Record name Numerical type Default Record description
ROTATION_ANGLE <real> Required Clockwise rotation angle of upper left corner, in degrees
X_OFFSET <real> Required x spatial coordinate of grid lower left corner
Y_OFFSET <real> Required y spatial coordinate of grid lower left corner
LENGTH_UNIT <text> Required Undefined, foot, or meter
NLAY <integer> Required Number of layers
NROW <integer> Required Number of rows
NCOL <integer> Required Number of columns
DELR <real[NCOL]> Required 1D array of column widths along a row
DELC <real[NROW]> Required 1D array of row widths along a column
TOP <real[NROW, NCOL]> Required 2D array of top elevations for model layer 1
BOTTOM LAYER 1 <real[NROW, NCOL]> Required 2D array of bottom elevations for model layer 1
BOTTOM LAYER 2 <real[NROW, NCOL]> Required 2D array of bottom elevations for model layer 2
(Repeat for all layers) <real[NROW, NCOL]> Required Bottom elevations for other model layers (not shown)
BOTTOM LAYER NLAY <real[NROW, NCOL]> Required 2D array of bottom elevations for bottom model layer

QUADTREE

A layered quadtree grid is a rectilinear grid in which any cell can be divided into four equally
sized cells. The term “quadtree” is used because the division of cells into groups of four results in a
hierarchical tree structure. “Leaves” from the tree are then used to construct the grid for groundwater
flow simulation. For the GRIDGEN program, a MODFLOW_GRID object (referred to herein as a base

 5

grid) provides the foundation from which quadtree division takes place; thus, each cell in the
MODFLOW_GRID has its own tree structure. The term “layered” is used to describe this particular
quadtree grid implementation because the quadtree refinement pattern may be different for each layer of
the base grid. The requirement of an underlying three-dimensional base grid is not commonly
encountered in most quadtree implementations and should be recognized when evaluating whether or
not GRIDGEN can be used for other applications.

An example of a simple quadtree grid is shown in figure 1. In this two-dimensional example,
which starts from a 2-row and 2-column base grid, the cell in row 1 and column 2 was refined (divided
into four) as were selected refined cells. Note that figure 1 shows only the leaves of the tree structure
without showing the internal “branches” of the tree. An internal branch represents an intermediate level
cell that has been further divided. Internal branches are important for defining the underlying tree
structure, but they are not explicitly included as unique cells of the quadtree grid used for flow
simulation. Only leaves from the tree are included as unique cells in the grid.

Cell numbering is required for programs like MODFLOW–USG, because cell numbers are used
to describe cell connectivity and other grid properties. In GRIDGEN, cells are numbered recursively
using row-major order. This means that cells contained in the first base grid cell (layer 1, column 1, row
1) are numbered first. Then the cells in the next base grid cell (layer 1, row 1, column 2) are numbered.
This numbering proceeds first along columns, then along rows, and lastly for each layer. Within each
base grid cell, quadrants are also numbered using row-major order, which means cells are numbered in
the order of “northwest,” “northeast,” “southwest,” and “southeast.” This numbering scheme results in
the cell numbers shown in figure 1. As described later, GRIDGEN also has the capability to exclude
cells outside of the active domain from being numbered. Those cells are given a cell number of –1.

Figure 1. Diagram showing example of a quadtree grid.

 6

Information on the structure of a layered quadtree grid is stored in a tree structure file, identified
with the STRUCTURE_FILE keyword. As described later, the QUADTREE_BUILDER block can be
used to create a tree structure file. For the quadtree grid shown in figure 1, the tree structure file contains
the following 17 lines:

16
1, (1,1,1)
2, (1,1,2) 1
3, (1,1,2) 211
4, (1,1,2) 212
5, (1,1,2) 213
6, (1,1,2) 214
7, (1,1,2) 22
8, (1,1,2) 23
9, (1,1,2) 241
10, (1,1,2) 242
11, (1,1,2) 243
12, (1,1,2) 244
13, (1,1,2) 3
14, (1,1,2) 4
15, (1,2,1)
16, (1,2,2)

The first line contains the total number of cells, including those cells that may be assigned a –1 cell
number to indicate they are excluded from the groundwater flow simulation. This total number of cells
is equal to the number of leaves in the tree. For the grid in figure 1, there are 16 cells. The tree structure
file then contains one line for each cell, which contains the cell identifier. The cell identifier is a text
string consisting of the (layer, row, column) identifier of the cell within the base grid, followed by the
quadrant sequence. The quadrant sequence is a list of quadrant numbers. Quadrant numbering follows
the row-major ordering scheme in which 1 denotes the northwest quadrant, 2 denotes the northeast
quadrant, 3 denotes the southwest quadrant, and 4 denotes the southeast quadrant. These quadrant
numbers are given for each level of refinement until the cell position within the base grid cell is exactly
described. Thus, the level of refinement for any cell is equal to the number of digits composing the
quadrant sequence. The absence of a quadrant sequence for a cell indicates that the cell is a base grid
cell having no refinement (a refinement level of zero).

Layered quadtree grids are described within a definition file using the QUADTREE block type.
A QUADTREE block requires that a named MODFLOW_GRID be available. The MODFLOW_GRID
block can be stored within the same definition file as the quadtree grid, or it can be accessed from within
another definition file. An example of the definition file required to describe the simple quadtree grid in
figure 1 is

#comment – this is the basegrid for the quadtree grid
BEGIN MODFLOW_GRID basegrid
 ROTATION_ANGLE = 0.
 X_OFFSET = 0
 Y_OFFSET = 0
 LENGTH_UNIT = undefined
 NLAY = 1
 NROW = 2
 NCOL = 2
 DELR = CONSTANT 1.0
 DELC = CONSTANT 1.0

 7

 TOP = CONSTANT 1.0
 BOTTOM LAYER 1 = CONSTANT 0.0
END MODFLOW_GRID

#comment – this is the block describing the quadtree grid
BEGIN QUADTREE quadtreegrid
 MODFLOW_GRID = basegrid
 STRUCTURE_FILE = OPEN/CLOSE quadtreegrid.tsf
 TOP LAYER 1 = OPEN/CLOSE quadtreegrid.top1.dat
 BOTTOM LAYER 1 = OPEN/CLOSE quadtreegrid.bot1.dat
END QUADTREE

Note that the QUADTREE block itself is relatively short; it contains a MODFLOW_GRID
record that refers to the name of the base MODFLOW grid. The block also references the
STRUCTURE_FILE and top and bottom elevations for each layer. Note that both top and bottom
elevations are required for each layer, which is different from a MODFLOW_GRID, because there may
be a different number of cells within each layer of a quadtree grid.

Table 3 lists the records that compose the QUADTREE grid block.

Table 3. List of the records that compose the QUADTREE block.
Record name Record type Default Record description

MODFLOW_GRID <modflow_grid> Required MODFLOW_GRID block name
STRUCTURE_FILE <text> Required Name of tree structure file
TOP LAYER 1 <real[number of cells in layer 1]> Required 1D array of top elevations for model layer 1
TOP LAYER 2 <real[number of cells in layer 2]> Required 1D array of top elevations for model layer 2
… Required Top elevations for other model layers (not shown)
TOP LAYER NLAY <real[number of cells in layer NLAY]> Required 1D array of top elevations for bottom model layer
BOTTOM LAYER 1 <real[number of cells in layer 1]> Required 1D array of bottom elevations for model layer 1
BOTTOM LAYER 2 <real[number of cells in layer 2]> Required 1D array of bottom elevations for model layer 2
… <real[number of cells in layer]> Required Bottom elevations for other model layers (not shown)
BOTTOM LAYER NLAY <real[number of cells in layer NLAY]> Required 1D array of bottom elevations for bottom model layer

 8

QUADTREE_BUILDER

Unlike a MODFLOW_GRID, in which the information is relatively simple and can be entered
by hand into a definition file, quadtree grids are more complicated and require storing information about
the tree structure. A powerful feature of the GRIDGEN program is the capability to create a quadtree
grid using spatial features to control where refinement is added and where cells are active. Quadtree
grids can be generated by creating and executing the QUADTREE_BUILDER block. Use of the
QUADTREE_BUILDER block will be required as a first step in most instances where a quadtree grid is
needed, unless a tree structure file can be created using an alternative method.

The following is an example of a QUADTREE_BUILDER block that can be used to construct a
layered quadtree grid:

BEGIN QUADTREE_BUILDER quadtreebuilder
 MODFLOW_GRID = basegrid
 ACTIVE_DOMAIN LAYER 1 = active_domain_layer_1
 ACTIVE_DOMAIN LAYER 2 = active_domain_layer_2
 ACTIVE_DOMAIN LAYER 3 = active_domain_layer_3
 REFINEMENT_FEATURES LAYER 1 = ad_layer_1 river wells_layer_1
 REFINEMENT_FEATURES LAYER 3 = wells_layer_3
 SMOOTHING = full
 SMOOTHING_LEVEL_HORIZONTAL = 1
 SMOOTHING_LEVEL_VERTICAL = 1
 TOP LAYER 1= REPLICATE basegrid
 TOP LAYER 2= REPLICATE basegrid
 TOP LAYER 3= REPLICATE basegrid
 BOTTOM LAYER 1 = REPLICATE basegrid
 BOTTOM LAYER 2 = REPLICATE basegrid
 BOTTOM LAYER 3 = REPLICATE basegrid
 GRID_DEFINITION_FILE = quadtreegrid.dfn
END QUADTREE_BUILDER

The first record in the block refers to the base MODFLOW_GRID from which the quadtree grid is
created. This example refers to a MODFLOW_GRID block named “basegrid,” which would need to be
included in the file or made available through the LOAD keyword. The next lines in this example
indicate the names of ACTIVE_DOMAIN blocks in which an ACTIVE_DOMAIN is specified for
layers 1, 2, and 3. If an ACTIVE_DOMAIN is not specified for a layer, then the entire layer is active.
REFINEMENT_ FEATURES can optionally be used for as many layers as necessary to refine the grid,
and for each record entry, a list of REFINEMENT_FEATURES block names (separated by spaces) is
included. Thus, multiple blocks of REFINEMENT_FEATURES can be specified for a layer.
REFINEMENT_FEATURES do not have to be specified for every layer. In the
QUADTREE_BUILDER example above, layer 1 is refined by three sets of features (contained in the
ad_layer_1, river, and wells_layer_1 blocks) and layer 3 is refined by only one feature set
(wells_layer_3).

Note that as part of the quadtree grid generation, the user has the option to smooth the
refinement contrasts between adjacent cells. This is done in the program by continuously refining cells
until the desired level of refinement contrast is met. In the example above, the smoothing operation is
applied to the “full” grid (“none” would be the alternative to “full”) with
SMOOTHING_LEVEL_HORIZONTAL = 1 and SMOOTHING_LEVEL_VERTICAL = 1, which
means that the refinement level difference of two horizontally or vertically adjacent cells in the grid

 9

would not exceed one. In figure 1, cells 2 and 14 would each be divided into four cells if
SMOOTHING_LEVEL_HORIZONTAL was set to 1. Note that vertical smoothing can cause cells to
be refined even if no REFINEMENT_FEATURES are specified for that layer. Specification of large
smoothing level contrasts for these options will result in grids that are not smoothed.

Next in the example QUADTREE_BUILDER block are the TOP and BOTTOM assignments.
These record assignments contain the REPLICATE keyword. This REPLICATE option indicates that
the top or bottom elevations will be assigned by replicating base grid cell elevations. No interpolation is
used with this option.

The INTERPOLATE option or the ASCIIGRID option could also have been used in the
assignment of top and bottom elevations. If the INTERPOLATE option were used, then bilinear
interpolation would have been used to calculate a top or bottom elevation for the center of each quadtree
grid cell using top or bottom elevations from the base grid. Use of the ASCIIGRID option would have
allowed an external elevation surface, as stored as an ASCII grid (ESRI, 2014), to be used for
assignment of top and bottom elevations for each quadtree grid cell. With the ASCIIGRID option, an
elevation value for the quadtree grid cell is calculated using an area-weighted average of all ASCII grid
cells within the quadtree grid cell. Although GRIDGEN allows a model grid to be rotated in the x-y
plane, there is no way to rotate an ASCII grid.

With the interpolation options for assigning top and bottom elevations to quadtree grid cells, the
bottom of an overlying cell might not align with the top of an underlying cell, particularly if the level of
refinement is different for the two cells. GRIDGEN contains an AUTOALIGNMENT option, whereby
the bottom elevation of an overlying larger cell is automatically used as the top elevation of an
underlying smaller cell. Likewise, the top elevation of an underlying larger cell is automatically
assigned as the bottom elevation of an overlying smaller cell.

Interpolation and elevation errors in the base grid may create a situation in which some cells
have a negative cell thickness. Although GRIDGEN does not fix this problem, it will indicate that
negative cell thicknesses have been encountered. Users may wish to correct these errors or replace the
top and bottom elevations for the layered quadtree grid with values calculated using some other form of
interpolation. Replacement of cell top and bottom arrays (by simply replacing the array files) should be
done prior to writing the cell connectivity (GRID_TO_USGDATA) and grid information so that the
updated elevations are used to calculate connection properties.

Lastly, the QUADTREE_BUILDER block contains a record for GRID_DEFINITION_FILE.
This record indicates the name of the definition file that will be created when the
QUADTREE_BUILDER block is executed. For the example here, GRIDGEN will create a new
definition file called quadtreegrid.dfn. This definition file will contain a new QUADTREE block, which
references the new tree structure file. These files will be created when the following command is issued:
“gridgen.exe quadtreebuilder quadtreebuilder.dfn”.

Descriptions of the records that compose the QUADTREE_BUILDER block are shown in
table 4.

 10

Table 4. List of records that compose the QUADTREE_BUILDER block.

Record name Record type Default Record description
MODFLOW_GRID <modflow_grid> Required MODFLOW_GRID block name
GRID_DEFINITION_FILE <text> Required Name of the GRID_DEFINITION_FILE to create.
(As needed for any layer)

REFINEMENT_FEATURES LAYER layer
List of <refinement_features> Optional List of REFINEMENT_FEATURES blocks to refine a layer.

(As needed for any layer)
ACTIVE_DOMAIN LAYER layer

<active_domain> Optional ACTIVE_DOMAIN block to specify which cells in a layer are active.

SMOOTHING <text> None Smoothing options are “none” or ”full”
HORIZONTAL_SMOOTHING_LEVEL <positive integer> 1 Maximum level difference between two horizontally adjacent cells

(normally 1).
VERTICAL_SMOOTHING_LEVEL <positive integer > 1 Maximum level difference between two vertically adjacent cells

(normally 1).
 (For each layer) TOP LAYER layer REPLICATE <modflow_grid>

INTERPOLATE <modflow_grid>
ASCIIGRID asciigridfile

Required Apply one of three methods for assigning cell top elevations.

(For each layer) BOTTOM LAYER layer REPLICATE <modflow_grid>
INTERPOLATE <modflow_grid>
ASCIIGRID asciigridfile

Required Apply one of three methods for assigning cell bottom elevations.

AUTOALIGNMENT <boolean> False If true, then align top and bottom elevations. If a larger cell overlies
multiple smaller cells, then assign the larger cell bottom elevation to
the tops of all underlying smaller cells. Likewise, if a larger cell
underlies multiple smaller cells, then assign the top elevation of the
larger cell to the bottom elevations of the smaller cells.

 11

REFINEMENT_FEATURES

The REFINEMENT_FEATURES block is a mechanism for providing points, lines, and polygon
features to the QUADTREE_BUILDER block, which then uses these features to refine the grid.
Information about the refinement level for each feature set is also included in this block. The following
are examples of REFINEMENT_FEATURES blocks that might be used with the
QUADTREE_BUILDER block shown in the previous section:

BEGIN REFINEMENT_FEATURES ad_layer_1
 SHAPEFILE = shapefiles/active_domain_layer_1
 FEATURE_TYPE = polygon
 REFINEMENT_LEVEL = 1
END REFINEMENT_FEATURES

BEGIN REFINEMENT_FEATURES river
 SHAPEFILE = shapefiles/river
 FEATURE_TYPE = line
 REFINEMENT_LEVEL = 2
END REFINEMENT_FEATURES

BEGIN REFINEMENT_FEATURES wells_layer_1
 SHAPEFILE = shapefiles/wells_layer_1
 FEATURE_TYPE = point
 REFINEMENT_LEVEL = 2
END REFINEMENT_FEATURES

BEGIN REFINEMENT_FEATURES wells_layer_3
 SHAPEFILE = shapefiles/wells_layer_3
 FEATURE_TYPE = point
 REFINEMENT_LEVEL = 3
END REFINEMENT_FEATURES

Cells in the layered quadtree grid that contain the point, touch the line, or are within or touch the

polygon will be refined to the specified REFINEMENT_LEVEL value. A description of the
REFINEMENT_FEATURES block is shown in table 5.

Table 5. List of records that compose the REFINEMENT_FEATURES block.
Record name Record type Default Record description

SHAPEFILE <text> Required Name of shapefile
FEATURE_TYPE <text> Required “point,” “line,” or “polygon”
REFINEMENT_LEVEL <integer> Required Level of refinement to use
REFINE_LEVEL_BY_ATTRIBUTE <text> Optional Attribute name in shapefile that contains the refinement level. The

attribute must contain integer refinement values for each feature. If
specified, this will override the REFINEMENT_LEVEL value.

 12

ACTIVE_DOMAIN

When used with the QUADTREE_BUILDER block, the ACTIVE_DOMAIN block is used to
determine which cells are active; these active cells are assigned a positive integer cell number. An active
domain can be assigned for each layer. If no active domain is specified for a layer, then all cells in that
layer are active by default. If an active domain is specified, then only the cells that intersect the
ACTIVE_DOMAIN feature are active.

The following is an example of an ACTIVE_DOMAIN block:

BEGIN ACTIVE_DOMAIN active_domain_layer_1
 SHAPEFILE = shapefiles/active_domain_layer_1
 FEATURE_TYPE = polygon
 INCLUDE_BOUNDARY = True
END ACTIVE_DOMAIN

BEGIN ACTIVE_DOMAIN active_domain_layer_3
 SHAPEFILE = shapefiles/active_domain_layer_3
 FEATURE_TYPE = polygon
 INCLUDE_BOUNDARY = True
END ACTIVE_DOMAIN

The list of records that compose the ACTIVE_DOMAIN block is described in table 6.

Table 6. List of records that compose the ACTIVE_DOMAIN block.
Record name Record type Default Record description

SHAPEFILE <text> Required Name of shapefile
FEATURE_TYPE <text> Required “point,” “line,” or “polygon”
INCLUDE_BOUNDARY <boolean> True True or False. Determines whether cells partially intersected by a polygon

boundary are included in the active domain.

 13

GRID_TO_SHAPEFILE

The GRID_TO_SHAPEFILE block is an action block and can be used to create shapefiles for
grids described with the MODFLOW_GRID and QUADTREE blocks. Note that all cells are written to
the shapefile, even for multilayer models, which can result in polygons that overlap in map view. When
loaded into a shapefile viewer, it may be necessary to select cell subsets by layer in order to make
meaningful maps and plots.

The following example shows a GRID_TO_SHAPEFILE block for a MODFLOW_GRID with
the name “basegrid.” In this case, “basegrid” is imported from the basegrid.dfn definition file. The block
specifies that the cells of the grid should be saved as polygons to the file named
output_shapefiles/mfgrid:

LOAD basegrid.dfn

BEGIN GRID_TO_SHAPEFILE mfg-to-shapefile
 GRID = basegrid
 SHAPEFILE = output_shapefiles/mfg
 FEATURE_TYPE = polygon
END GRID_TO_SHAPEFILE

The following block shows another example that saves a layered quadtree grid to a set of points,
each of which is located at the center of a grid cell:

LOAD quadtreegrid.dfn

BEGIN GRID_TO_SHAPEFILE quadtree2shapefile
 GRID = quadtreegrid
 SHAPEFILE = output_shapefiles/quadtreegrid
 FEATURE_TYPE = point
END GRID_TO_SHAPEFILE

The definitions for the list of records that compose the GRID_TO_SHAPEFILE block are listed

in table 7.

Table 7. List of records that compose the GRID_TO_SHAPEFILE block.
Record name Record

value Default Record description

GRID <text> Required Name of MODFLOW_GRID or QUADTREE block
SHAPEFILE <text> Required Name of shapefile to create
FEATURE_TYPE <text> Required Type of feature to write to the shapefile: “point,” “line,” or “polygon”

In the shapefiles created by this block, each feature (polygon, line, or point) contains several

attributes, which are also written to the shapefile. For a MODFLOW_GRID, the attributes are
1. nodenumber: number of the cell;
2. layer: layer number of the cell;
3. row: row number of the cell;
4. col: column number of the cell;
5. child_location: this attribute is empty. It is included here to maintain consistency with shapefiles

of QUADTREE grids;

 14

6. top: top elevation of the cell;
7. bottom: bottom elevation of the cell;
8. delr: width of the cell in the x direction; and
9. delc: width of the cell in the y direction.

The attributes written for a QUADTREE grid are similar to those written for a
MODFLOW_GRID. Only the leaves of the layered quadtree grid are stored in the shapefile. The main
difference is that the created shapefile contains a child_location attribute, which is the list of quadrant
sequence numbers. This string specifies the unique position of the quadtree cell within the base grid cell.
It is also important to note that the values for the row and column refer to the row and column of the
base grid cell. The attributes for a shapefile created from a QUADTREE grid are

1. nodenumber: number of the cell;
2. layer: layer number of the cell;
3. row: row number of the base grid cell;
4. col: column number of the base grid cell;
5. child_location: a string consisting of numbers from 1 to 4 defining the quadrants to locate the

leaf node within the base grid cell;
6. top: top elevation of the cell;
7. bottom: bottom elevation of the cell;
8. delr: width of the cell in x-direction; and
9. delc: width of the cell in y-direction.

 15

GRID_TO_USGDATA

The GRID_TO_USGDATA block is included specifically to create many of the discretization
input arrays required by the MODFLOW–USG groundwater flow program (Panday and others, 2013).
This block is an action block that writes ASCII text files containing information about the geometrical
properties of cells and cell connections. An example of a GRID_TO_USGDATA block is shown below:

BEGIN GRID_TO_USGDATA qtree2usgdata
 GRID = quadtreegrid
 USG_DATA_PREFIX = output/usginput
 VERTICAL_PASS_THROUGH = true
END GRID_TO_USGDATA

Note that there are several records for the GRID_TO_USGDATA block (table 8). The GRID record is
the name of the QUADTREE grid; the USG_DATA_PREFIX is the prefix name to use for the files that
are created. The files created by GRIDGEN, when run with this block, are listed in table 9. Readers are
referred to the MODFLOW–USG manual (Panday and others, 2013) for detailed descriptions of the
arrays written to these files.

Table 8. List of records that compose the GRID_TO_USGDATA block.
Record name Record

value Default Record description

GRID <text> Required Name of QUADTREE block
USG_DATA_PREFIX <text> Required Filename prefix for files to create
VERTICAL_PASS_THROUGH <boolean> False Option for connecting layers where intermediate layers are

inactive.

 16

Table 9. Files created by the GRID_TO_USGDATA block.
[NCELLS, number of active cells for the grid; CSR, compress sparse row; NCON, total number of connections between cells]

File Array type
(number of entries) Array description

prefix.ia.dat <int[NCELLS+1]> CSR row pointer array
prefix.ja.dat <int[NCON]> CSR column index pointer array
prefix.iac.dat <int[NCELLS]> Number of entries for each row
prefix.area.dat <real[NCELLS]> Cell surface area in plan view
prefix.c1.dat <real[NCON]> Distance from cell center to shared face of connected cell
prefix.c2.dat <real[NCON]> Distance from center of connected cell to shared face
prefix.fahl.dat <real[NCON]> Cross sectional area of the connection. For horizontal connections, this is calculated based

on the average thickness of the connected cells.
prefix.fldr.dat <int[NCON]> Direction indicator for each connection. 0 is diagonal, 1, 2, and 3 are for the positive x, y,

and z directions. –1, –2, and –3 are for the negative x, y, and z directions.
prefix.gnc.dat List of ghost-node correction information. Note that the ghost-node correction information

is only calculated for horizontal connections. Ghost-node correction information is not
calculated for vertical cell connections. QUADTREE grids should be smoothed to a
level difference of one in the horizontal direction for the information in this file to be
useful.

prefix.nodesperlay.dat <int[NLAY]> Number of cells for each layer
prefix.nod The first line in this file is the number of active cells and the number of connections. This

file then contains one line for each active cell. Data for each line include: (1) cell
number, (2) layer number, (3) centroid x, (4) centroid y, (5) centroid z, (6) delta x
spacing, (7) delta y spacing, and (8) delta z spacing.

The VERTICAL_PASS_THROUGH record indicates how vertical connections will be handled

for cells that are outside of the active domain. In some cases, the flexibility to specify the active domain
for each model layer introduces complexity in determining vertical cell connections. For example, there
may be a situation in which model layers 1 and 3 represent aquifers and both layers are active
everywhere in the base grid. Model layer 2, however, represents a discontinuous confining unit that is
only present in some areas. If the VERTICAL_PASS_THROUGH option is set to “true,” then
GRIDGEN will automatically connect model layers 1 and 3 within the inactive area of model layer 2. If
the VERTICAL_PASS_THROUGH option is set to “false,” then there will be no direct connections
between model layers 1 and 3.

 17

GRID_TO_VTKFILE

The GRID_TO_VTKFILE block is an action block that can be used to create a Visualization
Toolkit (VTK) file for the specified grid. An example of a GRID_TO_VTK block is shown below:

BEGIN GRID_TO_VTKFILE grid02qtg-to-vtkfile
 GRID = grid02qtg
 VTKFILE = output_vtkfiles/grid02qtg
 SHARE_VERTEX = false
END GRID_TO_VTKFILE

The GRID_TO_VTKFILE block contains two records. Descriptions for these records are shown in
table 10. This block can be used with a MODFLOW_GRID or a QUADTREE grid as input. The
output file created by this action block can be used as input for visualization software.

Table 10. List of records that compose the GRID_TO_VTKFILE block.
Record name Record

value Default Record description

GRID <text> Required Name of MODFLOW_GRID or QUADTREE block
VTKFILE <text> Required Filename prefix for VTK file to create
SHARE_VERTEX <boolean> False If true, then the elevation for each cell vertex will be interpolated

and vertices will be shared among neighboring cells. This
results in a smooth surface and a smaller VTK file. If not, each
cell in the VTK file will be given 8 vertices resulting in a stair-
stepped cell representation.

 18

GRID_INTERSECTION

A common task in the development of groundwater models is determining the intersection
properties of hydrologic features with the model grid. To accomplish this task with GRIDGEN, features
within shapefiles can be intersected with a grid by specifying a GRID_INTERSECTION block. All of
the intersection routines are two dimensional; there is no use of elevations within the routines to
determine intersection properties. Instead, a layer number must be provided for each intersection. The
GRID_INTERSECTION block is an action block and can therefore be executed by the GRIDGEN
program. Three types of features can be intersected with a grid: points, lines, and polygons. Results
from the intersection are written to a shapefile and to an ASCII text file. Table 11 lists the records of the
GRID_INTERSECTION block. The remainder of this section presents details of the three different
types of intersections: point-grid, line-grid, and polygon-grid.

Table 11. List of records that compose the GRID_INTERSECTION block.
Record name Record

value Default Record description

GRID <text> Required Name of grid block
LAYER <integer> Required Layer of the grid to intersect with the features
SHAPEFILE <text> Required Name of grid shapefile containing the features to intersect with the grid
FEATURE_TYPE <text> Required Type features to intersect with the grid: “point,” “line,” or “polygon”
OUTPUT_FILE <text> Required Name of the ASCII output file to create
OUTPUT_SHAPEFILE <text> Optional Name of the shapefile to create
ATTRIBUTES <text> “All” List of attribute names from the input shapefile to include in the output shapefile created

by the intersection. Note that attribute names are case sensitive and that the terms
“all” or “none” can also be entered here.

Point-Grid Intersection

When point features are intersected with a grid, the intersection routine determines the cell
number that contains each point. The results from the intersection are then written to an ASCII text file
and to a new shapefile. An example of a point-grid intersection block is provided below. In this
example, the first layer of the quadtree grid is intersected with a shapefile containing a list of points.

BEGIN GRID_INTERSECTION well1_intersect
 GRID = quadtreegrid
 LAYER = 1
 SHAPEFILE = shapefiles/wells_layer_1
 FEATURE_TYPE = point
 OUTPUT_FILE = output_intersection/well1_intersect.ifo
 OUTPUT_SHAPEFILE = output_intersection/well1_intersect
END GRID_INTERSECTION

The resulting ASCII file will contain at least two columns of information, the cell number and the point
identifier. Other attribute information from the original point shapefile would also be included if
requested. In this case, a point shapefile would also be created and would have the same attributes as
those listed in the ASCII text file.

There are special cases for a point-grid intersection that involve the point coinciding with a cell
edge or corner. For these special cases in which a point falls on the shared border of two cells,
GRIDGEN returns the cell with the smaller cell number.

 19

Line-Grid Intersection

Intersection of lines with a grid provides information about the cells that touch the lines, and
information about the line lengths within each cell is also calculated and provided by GRIDGEN. An
example of a line-grid intersection block is provided below. In this example, the first layer of the
quadtree grid is intersected with a shapefile containing a set of lines from the shapefile contained in
shapefiles/river. As for the point-grid intersection, the output is saved to both an ASCII file and a
shapefile, except that the shapefile will contain lines instead of points. Both file formats are discussed
below.

BEGIN GRID_INTERSECTION river_intersect
 GRID = quadtreegrid
 LAYER = 1
 SHAPEFILE = shapefiles/river
 FEATURE_TYPE = line
 OUTPUT_FILE = output_intersection/river_intersect.ifo
 OUTPUT_SHAPEFILE = output_intersection/river_intersect.shp
END GRID_INTERSECTION

The resulting ASCII text file from this intersection will contain multiple columns of information,
including the cell number, line identifier, length of the line in the cell, starting and ending distance along
the line, and other requested attributes from the line shapefile. Note that a single line feature may
intersect a cell multiple times. If this is the case, then each intersection feature will be reported as a
record. These records will share the same cell number and line identifier but will differ in their starting
and ending distances. The shapefile created from the line-grid intersection contains the same
information as the ASCII output.

There are several special cases for the line-grid intersection. The location of a line within the
grid is determined by the locations of vertices composing the line. When a line segment coincides with
the shared border of two cells, then this line segment will be assigned to the cell having the smaller cell
number. If a line has two parts, with one part inside the cell and the other part on the edge of that cell,
then GRIDGEN will either (1) split the line into two lines if the adjacent cell has a smaller cell number,
or (2) leave the line undivided if the adjacent cell does not have a smaller cell number.

Polygon-Grid Intersection

Intersection of polygons with a grid provides information about the cells that are within or
touching the polygons, and information about the polygon areas within each cell is also calculated and
provided by GRIDGEN. An example of polygon-grid intersection block is provided below. In this
example, the first layer of the quadtree grid is intersected with a shapefile containing multiple polygons.
Intersection output is saved to both an ASCII file and a polygon shapefile.

BEGIN GRID_INTERSECTION recharge_intersect
 GRID = quadtreegrid
 LAYER = 1
 SHAPEFILE = shapefiles/recharge
 FEATURE_TYPE = polygon
 OUTPUT_FILE = output_intersection/recharge_intersect.ifo
 ATTRIBUTES = rech_zone
 OUTPUT_SHAPEFILE = output_intersection/recharge_intersect.shp
END GRID_INTERSECTION

 20

The resulting ASCII text file from this intersection will contain multiple columns of information,

including the cell number, polygon identifier, area of the polygon within the cell, and requested
attributes. The shapefile representation of the intersection will contain the same information.

There is one special case for the polygon intersection when a polygon touches only the edge of a
cell. In this case, GRIDGEN will not save an entry for that polygon, because the intersection area is
zero.

Example
In this example, a layered quadtree grid is generated using spatial information for the Biscayne

aquifer in southern Florida. The single layer quadtree grid designed here is similar to the grid used for
quadtree groundwater flow simulation described in the MODFLOW–USG documentation (Panday and
others, 2013). The grids are not identical, however, as the intersection and cell numbering routines in
GRIDGEN are different from the ones used to create the quadtree grid described in Panday and others
(2013).

This example consists of four steps, each involving the execution of a GRIDGEN action block.
In the first step, a QUADTREE_BUILDER block is used to create a layered quadtree grid. Next, the
GRID_TO_USGDATA is used to write information about the grid to a set of files. In the third step,
point and polygon shapefiles are created for the layered quadtree grid. Lastly, the layered quadtree grid
is intersected with point, line, and polygon shapefiles.

Generating the Layered Quadtree Grid

The QUADTREE_BUILDER block is used with GRIDGEN to create the layered quadtree grid.
The base MODFLOW_GRID consists of 1 layer, 100 rows, and 58 columns (fig. 2A). Each cell in the
base grid is 800 meters (m) on a side. The spatial features used with the QUADTREE_BUILDER block
include an active domain, lines representing the freshwater canals, lines representing the tidal canals and
the coastline, and polygons surrounding municipal wells (fig. 2A). Points could also have been used as
refinement features for the municipal wells, but use of polygons provides more control over the size of
the refinement area near wells. These features are used with a REFINEMENT_LEVEL of 4 to create
cells in the layered quadtree grid with a minimum width of 50 m (with a base grid cell size of 800 m, a
refinement level of 4 is equal to 50 m). The resulting layered quadtree grid is shown in figure 2B.

 21

Figure 2. Diagram showing A, features and base grid (MODFLOW_GRID) used with the QUADTREE_BUILDER
block in GRIDGEN to create B, the layered quadtree grid. Note that quadtree cells outside of the active domain are
given a cell number of –1. Although these cells are part of the quadtree grid and included in the tree structure file,
they would not be included as part of the flow simulation.

The definition file (named “action01_buildqtg.dfn”) used to create the layered quadtree grid
shown in figure 2B is as follows:

#the "#" symbol indicates the line is a comment

BEGIN MODFLOW_GRID grid01mfg
 ROTATION_ANGLE = 0.
 X_OFFSET = 543750
 Y_OFFSET = 2792250
 LENGTH_UNIT = undefined
 NLAY = 1
 NROW = 100
 NCOL = 58
 DELR = CONSTANT 800.
 DELC = CONSTANT 800.
 TOP = OPEN/CLOSE grid01mfg.top.dat
 BOTTOM LAYER 1 = OPEN/CLOSE grid01mfg.bot.dat
END MODFLOW_GRID

BEGIN QUADTREE_BUILDER buildqtg
 MODFLOW_GRID = grid01mfg
 ACTIVE_DOMAIN LAYER 1 = my_active_domain

 22

 REFINEMENT_FEATURES LAYER 1 = MD_Canals chd_line well_buffer
 SMOOTHING = full
 SMOOTHING_LEVEL_HORIZONTAL = 1
 SMOOTHING_LEVEL_VERTICAL = 1
 GRID_DEFINITION_FILE = grid02qtg.dfn
 TOP LAYER 1= REPLICATE grid01mfg
 BOTTOM LAYER 1 = REPLICATE grid01mfg
END QUADTREE_BUILDER

BEGIN REFINEMENT_FEATURES well_buffer
 SHAPEFILE = shapefiles/wells_1000m_buffer_Multipart
 FEATURE_TYPE = polygon
 REFINEMENT_LEVEL = 4
END REFINEMENT_FEATURES

BEGIN REFINEMENT_FEATURES chd_line
 SHAPEFILE = shapefiles/chd_line
 FEATURE_TYPE = line
 REFINEMENT_LEVEL = 4
END REFINEMENT_FEATURES

BEGIN REFINEMENT_FEATURES MD_Canals
 SHAPEFILE = shapefiles/MD_Canals_50m_v2
 FEATURE_TYPE = line
 REFINEMENT_LEVEL = 4
END REFINEMENT_FEATURES

BEGIN ACTIVE_DOMAIN my_active_domain
 SHAPEFILE = shapefiles/active_domain
 FEATURE_TYPE = polygon
 INCLUDE_BOUNDARY = True
END ACTIVE_DOMAIN

The layered quadtree grid is generated by GRIDGEN with the command: “gridgen.exe buildqtg
action01_buildqtg.dfn”. When this command is executed from a command line, GRIDGEN writes
information to indicate that a layered quadtree grid was created and written to the file “grid02qtg.dfn”.
Supporting information is also written to a tree structure file (“grid02qtg.tsf”), an array file containing
the top elevation for each cell (“grid02qtg.top1.dat”), and an array file containing the bottom elevation
for each active cell (“grid02qtg.bot1.dat”). Note that the top and bottom cell elevations are replicated
(not interpolated) from the top and bottom elevations from the base grid.

Smoothing is an important part of the grid generation process. This is controlled by the
SMOOTHING and SMOOTHING_LEVEL_HORIZONTAL keywords in the QUADTREE_BUILDER
block. A SMOOTHING_LEVEL_VERTICAL record is not needed for this example because the grid
contains only one layer. Smoothing can be deactivated by changing the SMOOTHING value from “full”
to “none,” but for most cases, smoothing levels of 1 should be used.

Writing Grid Information

Cell connectivity and other information about the grid are written to ASCII files using the
GRID_TO_USGDATA block. The definition file (“action02_writeusgdata.dfn”) for this action contains
the following lines:

 23

LOAD grid02qtg.dfn
BEGIN GRID_TO_USGDATA grid02qtg-to-usgdata
 GRID = grid02qtg
 USG_DATA_PREFIX = output_usgdata/grid02qtg
END GRID_TO_USGDATA

The information is written by GRIDGEN when the command “gridgen.exe grid02qtg-to-usgdata
action02_writeusgdata.dfn” is executed. The result of this action block is the creation of 12 files within
the “output_usgdata” folder. The information contained in these files is described in table 9.

Some of the information created by the GRID_TO_USGDATA action block requires cell top
and bottom elevations. In this example, cell tops and bottoms are contained in “grid02qtg.top1.dat” and
“grid02qtg.bot1.dat”. In the present GRIDGEN version, the QUADTREE_BUILDER block replicates
cell top and bottom elevations from the base MODFLOW grid. In many instances, users may prefer to
interpolate cell top and bottom elevations outside of GRIDGEN using alternative methods. If those
interpolated cell top and bottom elevations can be converted into array files, then the top and bottom
array files created by the QUADTREE_BUILDER block (“grid02qtg.top1.dat” and
“grid02qtg.bot1.dat”) should be replaced by user-provided array files with the same name. If this is done
prior to running the GRID_TO_USGDATA block, then cell connectivity and grid properties will be
calculated using the interpolated cell top and bottom elevations.

Creating Shapefiles of the Grid

A point and polygon shapefile can be created for the layered quadtree grid using the
GRID_TO_SHAPEFILE block. The definition file (“action03_shapefile.dfn”) for these actions contains
the following lines:

LOAD grid02qtg.dfn

BEGIN GRID_TO_SHAPEFILE grid02qtg-to-pointshapefile
 GRID = grid02qtg
 SHAPEFILE = output_shapefiles/grid02qtg_pts
 FEATURE_TYPE = point
END grid_to_shapefile

BEGIN GRID_TO_SHAPEFILE grid02qtg-to-polyshapefile
 GRID = grid02qtg
 SHAPEFILE = output_shapefiles/grid02qtg
 FEATURE_TYPE = polygon
END grid_to_shapefile

The shapefiles are written by GRIDGEN to the output_shapefiles folder using the following commands:
“gridgen.exe grid02qtg-to-pointshapefile action03_shapefile.dfn” and “gridgen.exe grid02qtg-to-
polyshapefile action03_shapefile.dfn”.

Intersecting the Grid

The last part of this example involves intersection of the layered quadtree grid with spatial
features contained in shapefiles. The definition file for intersecting the grid with several different
shapefiles (“action04_intersect.dfn”) contains the following lines:

 24

LOAD grid02qtg.dfn

BEGIN GRID_INTERSECTION canal_grid02qtg_lay1_intersect
 GRID = grid02qtg
 LAYER = 1
 SHAPEFILE = shapefiles/MD_Canals_50m_v2
 FEATURE_TYPE = line
 OUTPUT_FILE = output_intersection/canal_grid02qtg_lay1_intersect.ifo
 ATTRIBUTES = HYDR_COND BOT_ELEV TOP_WIDTH DB_NAME
 OUTPUT_SHAPEFILE = output_intersection/canal_grid02qtg_lay1_intersect.shp
END GRID_INTERSECTION

BEGIN GRID_INTERSECTION well_grid02qtg_lay1_intersect
 GRID = grid02qtg
 LAYER = 1
 SHAPEFILE = shapefiles/county_wells_NAD_27_filtered
 FEATURE_TYPE = point
 OUTPUT_FILE = output_intersection/well_grid02qtg_lay1_intersect.ifo
 ATTRIBUTES = WellName
 OUTPUT_SHAPEFILE = output_intersection/well_grid02qtg_lay1_intersect.shp
END GRID_INTERSECTION

BEGIN GRID_INTERSECTION poly_grid02qtg_lay1_intersect
 GRID = grid02qtg
 LAYER = 1
 SHAPEFILE = shapefiles/twopolygons
 FEATURE_TYPE = polygon
 OUTPUT_FILE = output_intersection/poly_grid02qtg_lay1_intersect.ifo
 ATTRIBUTES = FID
 OUTPUT_SHAPEFILE = output_intersection/poly_grid02qtg_lay1_intersect.shp
END GRID_INTERSECTION

BEGIN GRID_INTERSECTION chd_grid02qtg_lay1_intersect
 GRID = grid02qtg
 LAYER = 1
 SHAPEFILE = shapefiles/chd_line
 FEATURE_TYPE = line
 OUTPUT_FILE = output_intersection/chd_grid02qtg_lay1_intersect.ifo
 #attributes = FID
 OUTPUT_SHAPEFILE = output_intersection/chd_grid02qtg_lay1_intersect.shp
END GRID_INTERSECTION

BEGIN GRID_INTERSECTION lu2008_grid02qtg_lay1_intersect
 GRID = grid02qtg
 LAYER = 1
 SHAPEFILE = shapefiles/SFWMD_2008_09_LCLU_2004FILLED_MISSING
 FEATURE_TYPE = polygon
 OUTPUT_FILE = output_intersection/lu2008_grid02qtg_lay1_intersect.ifo
 ATTRIBUTES = FID
 OUTPUT_SHAPEFILE = output_intersection/lu2008_grid02qtg_lay1_intersect.shp
END GRID_INTERSECTION

Each one of the GRID_INTERSECTION blocks requires a separate execution of the GRIDGEN
program. To execute the first GRID_INTERSECTION block (called canal_grid02qtg_lay1_intersect),
the following command would be executed: “gridgen.exe canal_grid02qtg_lay1_intersect

 25

action04_intersect.dfn”. The rest of the intersection blocks would be executed following similar
commands using the individual names of the GRID_INTERSECTION blocks.

Summary and Conclusions
This report describes the GRIDGEN computer program, which can be used to construct

unstructured finite-volume model grids. This first GRIDGEN version (Version 1.0) can be used to
construct layered quadtree grids. Once a layered quadtree grid is constructed, GRIDGEN can write cell
connectivity and other discretization information for the grid to ASCII files in a format required by the
MODFLOW–USG groundwater flow simulation program. GRIDGEN can also create shapefiles of the
grid and intersect the grid with other shapefiles that may contain hydrologic features, such as streams,
rivers, or landuse polygons, for example. The GRIDGEN program is intended to serve as one part of a
set of user tools for creating input files for MODFLOW–USG and other simulation programs.

References Cited
Environmental Systems Research Institute, Inc. (ESRI), 1998, ESRI Shapefile technical description:

Accessed December 18, 2013, at http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf.
Environmental Systems Research Institute, Inc. (ESRI), 2014, ESRI ASCII raster format: Accessed

March 25, 2014, at
http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#/ESRI_ASCII_raster_format/009t00000
00z000000/.

Harbaugh, A.W., 2005, MODFLOW–2005, the U.S. Geological Survey modular ground-water model—
The Ground-Water Flow Process: U.S. Geological Survey Techniques and Methods, book 6, chap.
A16, variously paged.

Panday, Sorab, Langevin, C.D., Niswonger, R.G., Ibaraki, Motomu, and Hughes, J.D., 2013,
MODFLOW–USG version 1: An unstructured grid version of MODFLOW for simulating
groundwater flow and tightly coupled processes using a control volume finite-difference formulation:
U.S. Geological Survey Techniques and Methods, book 6, chap. A45, 66 p.

Warmerdam, F., 1998, Shapefile C Library, http://shapelib.maptools.org.

 26

http://shapelib.maptools.org/

Publishing support provided by the U.S. Geological Survey
Science Publishing Network, Raleigh and Reston
Publishing Service Centers

For more information about this report, contact:
Office of Groundwater
U.S. Geological Survey
411 National Center
12201 Sunrise Valley Drive
Reston, VA 20192
(703) 648-5001
http://water.usgs.gov/ogw/contact.html

http://water.usgs.gov/ogw/contact.html

Lien and others—
G

RID
G

EN
 Version 1.0: A

 Com
puter Program

 for G
enerating U

nstructured Finite-Volum
e G

rids—
Open-File Report 2014–1109

ISSN 2331-1258 (online)

http://dx.doi.org/10.3133/ofr20141109

http://dx.doi.org/10.3133/ofr20141109

	OFR 2014-1109
	Front Cover
	Contents
	Figures
	Tables
	Abstract
	Introduction
	Overview of the GRIDGEN Program
	Spatial Information
	Definition Files and Information Blocks

	GRIDGEN Definition Blocks
	MODFLOW_GRID
	QUADTREE
	QUADTREE_BUILDER
	REFINEMENT_FEATURES
	ACTIVE_DOMAIN
	GRID_TO_SHAPEFILE
	GRID_TO_USGDATA
	GRID_TO_VTKFILE
	GRID_INTERSECTION
	Point-Grid Intersection
	Line-Grid Intersection
	Polygon-Grid Intersection

	Example
	Generating the Layered Quadtree Grid
	Writing Grid Information
	Creating Shapefiles of the Grid
	Intersecting the Grid

	Summary and Conclusions
	References Cited
	Colophon
	Back Cover

