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Abstract 
A multiscale modeling methodology was developed for continuous fiber composites that incorporates 

a statistical distribution of fiber strengths into coupled multiscale micromechanics/finite element (FE) 
analyses. A modified two-parameter Weibull cumulative distribution function, which accounts for the 
effect of fiber length on the probability of failure, was used to characterize the statistical distribution of 
fiber strengths. A parametric study using the NASA Micromechanics Analysis Code with the Generalized 
Method of Cells (MAC/GMC) was performed to assess the effect of variable fiber strengths on local 
composite failure within a repeating unit cell (RUC) and subsequent global failure. The NASA code 
FEAMAC and the ABAQUS finite element solver were used to analyze the progressive failure of a 
unidirectional SCS-6/TIMETAL 21S metal matrix composite tensile dogbone specimen at 650 °C. 
Multiscale progressive failure analyses were performed to quantify the effect of spatially varying fiber 
strengths on the RUC-averaged and global stress-strain responses and failure. The ultimate composite 
strengths and distribution of failure locations (predominately within the gage section) reasonably matched 
the experimentally observed failure behavior. The predicted composite failure behavior suggests that use 
of macroscale models that exploit global geometric symmetries are inappropriate for cases where the 
actual distribution of local fiber strengths displays no such symmetries. This issue has not received much 
attention in the literature. Moreover, the model discretization at a specific length scale can have a 
profound effect on the computational costs associated with multiscale simulations. 

1.0 Introduction 
As a result of recent increases in computational capabilities, numerous models have been developed 

to simulate material behavior across multiple length scales (Sullivan and Arnold (2011)). While most 
material models are deterministic in character, real materials exhibit statistical variations in properties and 
features over a range of different length scales. When performing multiscale analyses, a number of 
challenges arise when accounting for statistically varying material characteristics (Graham-Brady, 
Arwade, Corr, Gutierrez, Breysse, Grigoriu, and Zabaras (2006); Sriramula and Chryssanthopoulos 
(2009)). For instance, how does statistical variability at one length scale affect the predicted material 
response over a hierarchy of scales including the macroscale (Graham-Brady, Arwade, Corr, Gutierrez, 
Breysse, Grigoriu, and Zabaras (2006))? To answer this question, multiscale modeling strategies have 
been developed to account for variations in properties and morphologies at different scales (cf., 
(Sriramula and Chryssanthopoulos (2009)) for a summary of different multiscale methods for fiber-
reinforced polymer matrix composites).  
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Many researchers have recognized the need to include a distribution of fiber segment strengths in 
analytical/numerical models rather than using a single deterministic value in order to better estimate the 
composite strength and characterize the failure behavior. Early models of unidirectional composites 
developed by Rosen (1964) and Zweben (1968) first considered a distribution of flaws along the fiber 
length. The Equal (or Global) Load Sharing model of Rosen (1964) assumes that upon the failure of an 
individual fiber, the load is equally distributed to intact fibers. In contrast, the Local Load Sharing model 
developed by Zweben (1968) assumes that a greater fraction of the load is redistributed to intact fibers 
near the fiber break. Various other models have since been developed to predict the strength of 
unidirectional composites based upon a distribution of fiber strengths (Harlow and Phoenix (1978); Oh 
(1979); Curtin (1991), (1993); Foster, Ibnabdeljalil, and Curtin (1998); Curtin (2000); Landis, Beyerlein, 
and McMeeking (2000); Bednarcyk and Arnold (2001); Okabe, Takeda, Kamoshida, Shimizu, and Curtin 
(2001); Okabe and Takeda (2002); Lekou and Philippidis (2008)). For example, Bednarcyk and Arnold 
(2001) developed the Evolving Compliant Interface model. This model was incorporated into the 
Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) (Bednarcyk and Arnold 
(2002)) where the interface between fiber subcells in adjacent mating triply periodic repeating unit cells 
(RUCs) was given a fiber tensile strength consistent with fiber vendor data. This method was used to 
simulate the longitudinal failure of a unidirectional metal matrix composite at the microscale (i.e., RUC 
behavior) and compared with the Curtin fiber breakage model (Curtin (1991), (1993)) that combined a 
statistical probability of fiber failure based upon a shear lag approach. However, these models have not 
been generally applied within a multiscale analysis framework.  

Various techniques have been proposed in order to characterize the effects of microscale material 
uncertainty on the macroscale response. The Multiscale Stochastic Finite Element Method (MSFEM) was 
developed to simulate random heterogeneous materials from the micro- to meso- to macroscales (Xu, 
Chen, and Shen (2009); Shen and Xu (2010)). Uncertainties can be introduced in the form of random 
coefficients in partial differential equations (e.g., moduli) or boundary conditions (e.g., load, 
displacement). A homogenization technique can be implemented at the microscale to account for different 
material phases (Shen and Xu (2010)). This method has yet to be extended to simulate the multiscale 
progressive failure of composite materials. A multilevel finite element (FE) method (i.e., FE2) (Feyel and 
Chaboche (2000); Feyel (2003)) was also developed in which a combination of localization and 
homogenization techniques is employed between two or more length scales through a series of FE 
calculations. For example, macroscale integration point strains from a global FE model (e.g., a coupon 
specimen or structure) can be mapped onto a microscale FE model containing representations of 
individual constituents. The ensuing microscale stress field can be used to predict evolution of structure 
within the RUC and homogenized. The RUC-averaged response can then be used to update the 
macroscale integration point stresses. A similar approach was adopted by Blassiau, Thionnet, and Bunsell 
(2006a), (2006b), (2008). Multiple FE models of individual RUCs were developed to characterize the 
interaction of a single broken fiber with varying numbers of unbroken fibers (Blassiau, Thionnet, and 
Bunsell (2006a), (2006b)). Multiscale FE simulations, which accounted for statistical variation in fiber 
strengths, were performed to predict the effect of local fiber breakage, stress redistribution in the vicinity 
of broken fibers, and interfacial debonding around fiber breaks on bulk damage accumulation and failure 
for unidirectional and filament wound carbon fiber composites with elastic or viscoelastic epoxy matrices 
(Blassiau, Thionnet, and Bunsell (2008)).  

An alternative multiscale method has been implemented by Bednarcyk and Arnold (2007) where the 
reformulated generalized method of cells (GMC) (Pindera and Bednarcyk (1999)) was used to perform 
microscale calculations; the homogenized microscale material response was integrated into macroscale 
calculations performed using a hybrid FE approach. The reformulated GMC as implemented within the 
ABAQUS Standard or Explicit FE solver (2013) is referred to herein as FEAMAC (cf., Figure 1). Since 
the RUC-averaged response obtained using the GMC is more computationally efficient than traditional 
FE approaches (Pindera and Bednarcyk (1999)), this multiscale approach is considered to be more 
computationally efficient than FE2. Bednarcyk and Arnold (2007), (2011) demonstrated the feasibility of  
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Figure 1.—Schematic showing the coupling of MAC/GMC 

with ABAQUS via FEAMAC. 

using FEAMAC to simulate the progressive multiscale failure of composite materials. A traditional 
maximum stress failure criterion for fiber failure and the Curtin fiber breakage model were each 
implemented within RUCs at the microscale and used to simulate progressive failure of a metal matrix 
composite (MMC) tensile dogbone specimen at the macroscale using global-to-local-to-global analyses. 
In the current study, MAC/GMC and FEAMAC are used to investigate the effect of statistical variations 
in fiber strengths on failure progression within RUCs at the microscale and subsequent macroscale 
failure. Future work will investigate the effects of statistical variations in constitutive moduli, strengths, 
volume fractions, and orientations on local and global composite failures. 

When performing multiscale analyses involving damage and failure of fibrous composites, the 
stochastic variations in fiber strengths are commonly characterized using a Weibull cumulative 
distribution function (CDF) (Weibull (1951)), although other distribution functions (e.g., sigmoidal 
functions (Baxevanakis, Jeulin, and Valentin (1993))) may also be used. The classic two-parameter 
Weibull CDF, however, does not account for the effect of fiber segment length on the measured strengths 
and, as a consequence, has been shown to yield inaccurate strength predictions (Curtin (2000)). Early 
modifications to the classic two-parameter Weibull CDF to incorporate the effect of fiber segment lengths 
also led to inaccurate predictions in the strength distribution of fiber segment strengths particularly at 
shorter segment lengths (cf., (Hitchon and Phillips (1979))). Accordingly, a modified two-parameter 
Weibull CDF was proposed by Watson and Smith (1985) to better account for the effect of fiber segment 
length on the probability of failure, i.e.,  
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where Pf 	��	����������������������	
�������"�
�������	��������������<������	������������L���������������0) 
������������!���	����	���"��������	������	
�����	�������	���	����������� L0 represents the 
reference fiber length (i.e.����������������*������0 ������were determined) and L represents the 
characteristic fiber length of interest. �����������������	���	��������	����	��������������	������	
�
experimental strength data in which the tested fiber lengths are varied (e.g., 0 � � � 1). For example, 
Beyerlein and Phoenix (1996) determined this value to be equal to 0.6 for an AS4 carbon fiber. ���� = 0, 
then it is easily seen that Equation (1) reduces to the classic two-parameter Weibull CDF. A number of 
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researchers have used the modified two-parameter Weibull CDF (Eq. (1)) to characterize the effect of 
fiber segment length on failure for a wide variety of composites with silicon carbide monofilaments as 
well as carbon, glass, and flax fibers (Padgett, Durham, and Mason (1995); Beyerlein and Phoenix 
(1996); Foster, Ibnabdeljalil, and Curtin (1998); Curtin (2000); Landis, Beyerlein, and McMeeking 
(2000); Andersons, Joffe, Hojo, and Ochiai (2002); Okabe and Takeda (2002); Andersons, Spamins, 
Joffe, and Wallstrom (2005); Naito, Yang, Tanaka, and Kagawa (2012)). As will be shown in this study, 
accounting for the effect of fiber lengths on the probability of failure is of critical importance in 
multiscale progressive failure analyses of continuous fiber-reinforced composites. In order to simulate 
progressive failure within RUCs at the microscale, the modified two-parameter Weibull CDF (Eq. (1)) 
was implemented within the framework of MAC/GMC (Bednarcyk and Arnold (2002)). 

MAC/GMC provides a computationally efficient means of modeling composites based on Aboudi’s 
method of cells micromechanics theories (Aboudi (1991); Paley and Aboudi (1992); Aboudi (1995), 
(1996); Pindera and Bednarcyk (1999); Aboudi (2004); Aboudi, Arnold, and Bednarcyk (2012)). Using 
the method of cells, a doubly or triply periodic RUC is discretized into an arbitrary number of subcells. 
Each subcell is then assigned material properties and a constitutive law to describe the local material 
behavior. Continuity of displacements and tractions are then enforced along the subcell boundaries in an 
average sense, and all field quantities are evaluated at the subcell centroids. An illustration of this scheme 
for a unidirectional composite is shown in Figure 2. Using this model, a doubly-periodic RUC may be 
defined in the x2-x3 plane and is discretized into an arbitrary number of subcells along the x2-direction 
(height) and the x3-direction (width), respectively, while the fibers extend in the x1-direction (length). If a 
triply periodic RUC is selected, the RUC can be discretized along the x1-direction as well.  

 
 
 
 

 
Figure 2.—(a) Representation of a unidirectional composite with fibers aligned in the x1-direction and (b) 

RUC representation of the unidirectional composite. Figure from Aboudi, Arnold, and Bednarcyk (2012). 
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When performing global analyses using FEs, geometric symmetries (e.g., one-half, one-quarter, one-
eighth symmetry) are often exploited to reduce the number of model degrees-of-freedom and decrease the 
computational time. In fact, such symmetry assumptions were employed by Bednarcyk and Arnold 
(2007), (2011) and Blassiau, Thionnet, and Bunsell (2008). However, it will be shown that use of 
geometric symmetries is inappropriate in global (structural) progressive failure analyses when the actual 
spatial distribution of fiber strengths displays no such symmetries. This issue has not received much 
attention in the literature. One central goal of this work is to present a method for systematically assigning 
an experimentally determined spatial distribution of fiber strengths to individual fibers within RUCs. 
These RUCs can then be analyzed separately or implemented within a multiscale framework (e.g., 
FEAMAC).  

The first part of this study analyzes the effect that a stochastic distribution of fiber strengths has on 
the RUC-averaged stress-strain response and failure using MAC/GMC. While this initial 
micromechanics-based study provides insight into local pointwise material behavior, the true stochastic 
nature of the problem is only revealed when integrated multiscale micromechanical/FE analyses are 
performed. This is demonstrated herein using an MMC dogbone specimen as the representative structure. 

2.0 Material System 
The effect of a statistical variation in fiber strengths on the failure behavior of a 25 percent fiber 

volume fraction SCS-6/ TIMETAL 21S MMC at 650 °C was analyzed in this study. The SCS-6 fiber is a 
high-stiffness, high-strength silicon carbide monofilament with a diameter of approximately 142 μm. In a 
previous work (Bednarcyk and Arnold (2011)), a two-parameter Weibull probability density function 
(PDF) was fit to room temperature fiber strength data (�0 = 4198.9 MPa, � = 10). These Weibull 
parameters were determined based on monofilament tensile tests at a fiber length of L0 = 25.4 mm 
(Bednarcyk and Arnold (2011)). Additionally, the Weibull scale factor (�0) was reduced by 5.3 percent 
for simulations performed at 650 °C to account for the fiber strength dependence on temperature (Mall, 
Fecke, and Foringer (1998); Bednarcyk and Arnold (2007), (2011)). In the current study, the SCS-6 fiber 
was assumed to be linearly elastic and isotropic. TIMETAL 21S is a metastable beta strip titanium alloy 
possessing a high strength and good creep and oxidation resistance. The titanium matrix was considered 
to be viscoplastic and was simulated using the Generalized Viscoplasticity with Potential Structures 
(GVIPS) constitutive model (Arnold and Saleeb (1994); Arnold, Saleeb, and Castelli (1996)). Table I 
contains a summary of the thermoelastic material properties for both the SCS-6 fiber and the TIMETAL 
21S matrix (Bednarcyk and Arnold (2011)). The viscoplastic material properties employed in this study 
can be found in Arnold, Saleeb, and Castelli (1996) and Bednarcyk and Arnold (2011). 

 
 

TABLE I.—MATERIAL PROPERTIES FOR SCS-6 AND TIMETAL 21S 
Material Temperature, 

°C 
Young’s modulus, 

GPa 
Poisson’s 

ratio 
Coefficient of 

thermal expansion, 
10�10–6/°C 

SCS-6 

21 393 0.25 3.56 
316 382 0.25 3.72 
427 378 0.25 3.91 
538 374 0.25 4.07 
860 368 0.25 4.57 

TIMETAL 21S 

23 114.1 0.365 7.717 
300 107.9 0.365 9.209 
500 95.1 0.365 10.7 
650 80.7 0.365 12.13 
704 59.7 0.365 14.09 
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3.0 RUC Analyses 
A parametric study was performed using MAC/GMC to assess the effect of variable fiber strengths on 

microscale composite failure at 650 °C. Such information is crucial for predicting the progressive 
composite failure at the macroscale (structural level). Five different doubly-periodic RUCs were analyzed 
in this study: single-, four-, nine-, 25-, and 49-fiber RUCs. These RUCs are comprised of 2x2, 4x4, 6x6, 
10x10, and 14x14 subcells, respectively, while maintaining a constant fiber volume fraction of 25 percent. 
Figure 3 shows the single-fiber and 25-fiber doubly-periodic RUCs considered in this study. Note that a 
25-fiber RUC can be subdivided into 25 individual single-fiber RUCs. The MMC material system 
considered in this work was specifically fabricated to provide uniform fiber volume fractions throughout 
the composite and a square arrangement of fibers (Bowman (1999)). Hence, these RUC architectures are 
representative of the as-fabricated material. For each individual fiber subcell in the RUC, a fiber tensile 
strength value obtained from an experimentally determined Weibull CDF was assigned. Essentially, a 
random number was generated (i.e., [0-1]) and used to solve Equation (1) �
	���������	���	����������������
strength values were then assigned to the individual fibers contained within the RUCs in the microscale 
analyses. To assess the effect of fiber length on the predicted RUC response, MAC/GMC analyses were 
performed where the fiber length-dependent strength was obtained from Equation (1). For example, for 
the single-fiber RUC, an individual fiber tensile strength was selected using the modified Weibull CDF 
(Eq. (1)) and assigned to the fiber. Similarly, four, nine, 25, and 49 fiber tensile strengths were selected 
using the CDF and assigned to the four-, nine-, 25-, and 49-fiber RUCs, respectively.  

In these MAC/GMC analyses������
�������L���������	����	��� = 1, L = 0.64 mm, and 
L0 = 25.4 mm (L/L0 = 0.025) were chosen. This value of L corresponds to one-half of a key macroscale 
fiber segment length ���*���������������������	���������
���*�	�����
���	�
	���*��	��� = 0 in order to 
bound the effect of fiber length on the fiber strength distribution. Figure 4 contains plots of the associated 
PDFs and CDFs for Equation (1) for the case where 0 � � � 1. Since the fiber segment length is much 
smaller than the reference length (i.e., L/L0 = 0.025), the length-dependent strength distribution is shifted 
to higher stresses �����increases. The modified Weibull CDF (Eq. (1)) is based on “weakest link” theory; 
a distribution of shorter fibers will typically have higher strengths than an analogous distribution of longer 
fibers due to the decreased likelihood of severe flaws. Additionally, for L/L0 � 1, the mean fiber strength 
increases and there is more scatter ���������	����������	�����
�������������	����� (cf., Figure 4). This 
underscores the importance of accounting for fiber lengths in an appropriate manner. 

 
 

 
Figure 3.—Microstructural representation of a unidirectional SiC/Ti 

composite for a) a single-fiber RUC and b) a 25-fiber RUC. 
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Figure 4.—Modified Weibull (a) PDF and (b) CDF as a function of 

the fiber strength ����������	
 

Similar to the work in Bednarcyk and Arnold (2011), residual stresses in the fiber and matrix were 
accounted for by simulating a 16 hr stress-free cooldown from the heat treatment temperature to room 
temperature, followed by a stress-free temperature rise to 650 °C over 5 min. A uniform axial strain in the 
x1-direction (cf., Figure 2) was then applied at a rate of 1�10-4/s. The maximum stress failure criterion 
was used to dictate axial fiber failures within an RUC where individual fiber strength values were 
obtained for each fiber in the RUC by generating a random number to represent a probability of fiber 
failure, which correlates to a given strength value via Equation (1). While the matrix was permitted to 
yield in accordance with the GVIPS model, ultimate failure (fracture) of the matrix was not considered in 
the analyses. Five hundred microscale simulations (i.e., using MAC/GMC) were performed for each of 
the five RUC architectures to estimate the RUC-averaged mean tensile strengths associated with the 
stochastic distribution of fiber strengths. As p	���
���"�����
������*
��
��������������
�������Equation 
(1) were considered (i.e., 0, 1) in order to bound the effect of fiber segment length on the RUC-averaged 
tensile strength. This resulted in a total of 5000 distinct microscale simulations performed in this study. 
Unbiased estimates for the mean and variance of the RUC-averaged tensile strengths were calculated 
based on a random sampling methodology (McKay and Beckman (1979)). An estimate of the standard 
deviation was obtained by taking the square root of the variance estimate for a given response. Future 
studies will investigate the use of more complex sampling techniques (e.g., Latin Hypercube (Helton and 
Davis (2003))), particularly if additional material parameters (e.g., fiber volume fraction, fiber/matrix 
moduli) are allowed to vary.  
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Figure 5.—Mean RUC-averaged ultimate strength compared against the 

number of fibers (at a constant fiber volume fraction) after 500 simulation runs 
per RUC where the error bars correspond to ± one standard deviation from 
the mean ultimate strength. Equation (1) was used to generate the fiber 
�������������������	 = ������	 = 1 (L/L0 = 0.025). 

Figure 5 shows a plot of the RUC-averaged composite tensile strengths resulting from a statistical 
distribution of individual fiber strengths in RUCs with one, four, nine, 25, and 49 simulated fibers, 
respectively, where two different fiber length-dependent strength distributions were employed in the 
microscale simulations (i.e.��� = J��� = 1, L/L0 = 0.025). As would be expected, the simulations that account 
for the effect of fiber length on composite strength �� = 1) yield a higher mean RUC-averaged strength and 
more variation in the calculated strengths ������������
���*��	��� = 0 (i.e., no fiber length dependence). 
For both cases, when a single-fiber RUC was simulated, a higher mean RUC-averaged strength results. As 
the number of simulated fibers contained in an RUC was increased, however, the composite strength 
decreased. Similarly, the variability in the RUC-averaged strength decreased as the number of fibers within 
the RUC was increased. For the single-fiber RUC, the RUC-averaged strength became highly dependent on 
the selected fiber strength. This resulted in a higher mean strength value and more variation among the 
individual RUC-averaged strengths. As the number of simulated fibers was increased, the RUC-averaged 
strengths became less dependent on the individual fiber strengths. Essentially, the load carried by one fiber 
at failure was redistributed to the remaining fibers. As the number of simulated fibers was increased, the 
likelihood of encountering a weaker fiber increased leading to a decrease in the mean RUC-averaged 
strength. Additionally, if the number of fibers is large, the distributions of fiber strengths within given RUCs 
become more similar, resulting in less variation in predicted ultimate strengths. For fiber strength 
distributions *��	��� = J������ = 1, as the number of simulated fibers exceeded 25, the mean value and 
variation in the RUC-averaged strength asymptotically approached those of the representative volume 
element (RVE) averaged response. While the use of a 25-fiber RUC led to approximately the same RUC-
averaged strength as for a 49-fiber RUC, roughly one-half the computational time was needed. This savings 
in computational time becomes crucial when performing global-to-local-to-global multiscale simulations. In 
order to assess the effect of the number of simulations on the calculated mean RUC-averaged strength, an 
additional 5000 progressive failure simulations were performed for a single-����	�)8$�*����� = 1. The 
estimated mean fiber strength and associated standard deviation differed by less than 1 percent from the 
values obtained using 500 simulations. Hence, a relatively small number of simulations (i.e., 500 per RUC 
architecture) was sufficient in providing a reasonable approximation of the mean and variance for each 
RUC. Of course, if additional material parameters (e.g., fiber volume fraction, fiber/matrix moduli) are 
varied, a larger number of simulations would be needed as well as a more efficient sampling methodology; 
this will be the topic of future studies. 
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Figure 6.—A random sampling of ten stress-strain curves from a batch of 500 simulations for 
(a) single-fiber (b) four-fiber (c) nine-fiber (d) 25-fiber and (e) 49-fiber RUCs using Equation 
(1) ��������	 = 0 case.  

Figure 6(a) to (e) contain ten typical (out of 500) RUC-averaged uniaxial stress-strain curves in the 
x1-(fiber) direction for the single-fiber, four-fiber, nine-fiber, 25-fiber, and 49-fiber RUCs, respectively. 
Similar results were obtained for simulations that accounted for the effect of fiber length on composite 
��	�������� = 1). For all of the RUC architectures, the RUC-averaged stress-strain response increased 
monotonically up until the onset of fiber failure. For RUCs containing only one fiber, once the fiber 
failed, the RUC-averaged axial stress-strain response displayed a discrete sudden load drop and the 
remaining stress was carried by the matrix (cf., Figure 6(a)). The strain at failure, of course, was a strong 
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function of the assumed fiber strength. A comparison of Figure 6(a) to (e) suggests that as the number of 
fibers is increased, a gradual softening behavior is observed. Furthermore, the difference in the global 
strain between the first and last fiber failures for a given analysis increased as the number of simulated 
fibers increased. This makes sense because an increase in the number of fibers raises the probability of 
encountering both weaker and stronger fibers. Additionally, the variation in the RUC-averaged stress-
strain response diminished as the number of fibers increased since the local RUC fiber strength 
distribution better approximated that for the actual Weibull distribution. By adding more simulated fibers, 
a more gradual, continuum-like local stress-strain response was observed as each fiber failure occurred 
over a smaller fraction of the RUC volume. Clearly, understanding the progressive failure behavior 
associated with a statistical fiber strength distribution at the microscale is crucial to establishing and 
accurately capturing length scale effects in a robust, computationally efficient multiscale modeling 
methodology. Because of the computational efficiency of the MAC/GMC code, parametric studies can be 
performed quickly to assess the influence of RUC architecture and variations in material parameters on 
the RUC-averaged response. These results can then be used to guide the implementation of such lower 
length scale calculations within a multiscale analysis framework. 

4.0 Coupled FE/ Micromechanics Analyses 
While the preceding parametric study investigated the effect of RUC architecture and fiber strength 

distributions on the RUC-averaged local failure, the ultimate goal of this work is to use RUC deformation 
and damage evolution at a given integration point within an FE analysis (i.e., FEAMAC/ABAQUS) to 
perform global progressive failure analyses of a 25 percent fiber volume fraction SCS-6/TIMETAL 21S 
dogbone specimen under a monotonic tensile load at 650°C. Figure 7 contains a schematic of the NASA 
GRC dogbone specimen (Worthem (1994)). Such specimens were specifically designed to reduce the 
magnitude of the stress concentration associated with a reduction in cross-sectional area commonly 
observed in dogbone tensile test specimens. Two FE models were constructed using relatively coarse 
(2400 elements) or fine (19,200 elements) meshes comprised of eight-noded linear isoparametric brick 
elements with eight integration points per element. Initial analyses showed that the use of higher-order 
quadratic elements had a negligible impact on the predicted stress-strain response and failure for this 
problem. Since FEAMAC assigns an RUC to each FE, MAC/GMC is called over 150,000 times per time 
step for the fine FE mesh. Hence, the computational efficiency of the GMC (Pindera and Bednarcyk 
(1999)) is a crucial element in the multiscale FE analyses performed here and is essential to the analysis 
of more complex structures. 

Although an RUC can be used to approximate the RVE-averaged response, an RUC alone is not 
necessarily an RVE. An individual RUC with distinct constituent morphologies and properties can be 
regarded as an RVE subvolume (sub-RVE). This notion is similar to that developed by Lacy, McDowell, 
and Talreja (1999), who related the homogenized response over distinct RVE-subvolumes of varying 
sizes to the RVE-averaged (continuum) material behavior. In the current study, the homogenized material 
responses at multiple adjacent FE integration points (i.e., RUCs) can be used to replicate the RVE-
averaged behavior.  

Similar to the previous local RUC analyses using MAC/GMC, thermal residual stresses in the tensile 
dogbone specimen were determined from FEAMAC/ ABAQUS analyses involving a 16 hr assumed 
stress-free cooldown from the heat treatment temperature to room temperature. This was followed by a 
stress-free temperature rise to 650 °C over 5 min. Multiscale progressive failure analyses of the dogbone 
specimen (cf. Figure 7) were then performed with a constant temperature distribution at 650 °C. The 
surface nodes corresponding to the machine grips were fixed at one end of the specimen while the surface 
nodes in the grip region at the opposite end of the specimen were given a longitudinal tensile 
displacement consistent with an initial elastic strain rate of 1�10-4/s in the gage section. 
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Figure 7.—NASA GRC MMC tensile dogbone specimen: (a) Specimen geometry with 
top and side views of the (b) coarse 2400 FE mesh and (c) fine 19,200 FE mesh. 

The coarse (2400 element) FE mesh was initially used to study the effect of RUC architecture and 
fiber strength parameter (�!�
��the global composite stress-strain response and failure behavior. In each 
simulation, RUCs containing single-fiber or four-fiber RUCs were generated (i.e., only one RUC 
geometry per simulation). As an aside, special care should be taken to ensure that the actual material 
volume associated with an RUC does not exceed that of the FEs used in the analysis, i.e., the RUC-
averaged continuum response would occur over a domain larger than the typical element size. Recall in 
the previous local MAC/GMC analyses, large variations in the RUC-averaged composite strength were 
observed for both the single- and four-fiber RUCs. Such variability in local properties will manifest itself 
at the macroscale in multiscale progressive failure analyses. One crucial consideration is to retain a 
sufficient level of model discretization at each simulation scale to provide accurate results without 
excessive computational costs. Ninety-six distinct RUCs, each with a different set of individual fiber 
strength values based upon the modified Weibull CDF (Eq. (1)), were randomly assigned in equal 
numbers to individual FEs throughout the coarse FE mesh. In the absence of experimental data to 
����	����� for this material system, the fiber strength parameter was varied between 0 � � � 1 in 
increments of 0.25. The characteristic length L = 0.64 mm (L/L0 = 0.025) corresponded to one-half of the 
typical FE length in the axial direction for the coarse mesh. Since two FE integration points are present in 
the length direction, the element half-length (L) was chosen as a length scaling parameter in order to 
validate the methodology for different FE meshes. Essentially, the length of the simulated fiber segment 
used to define the continuum-averaged FE properties should not exceed the associated FE dimensions. 
Figure 8 contains an overview schematic of the methodology used in assigning local fiber properties to 
individual RUCs and then distributing RUCs throughout the FE mesh. This process was performed ten 
times for each RUC a total of 100 multiscale FE simulations using the coarse mesh. 

In order to assess the effect of macroscale FE model symmetry on the global composite stress-strain 
response and failure behavior, a 300 element one-eighth symmetry FE mesh was generated that maintains 
the same mesh density as the 2400 FE coarse mesh. Twelve distinct four-fiber RUCs (i.e., the same FE to 
RUC ratio as the coarse FE mesh) were distributed throughout this model in the same manner as 
�	���
���"�����	��������������	���	��������	����	�����*��������	�"����
*����
���	"����*����J�����O����
increments of 0.25, and ten simulations w�	����	�
	����
	������������
����	���������������
����
��GJ�
additional simulations. The individual strength predictions from each group of ten analyses were averaged 
together to obtain the macroscale composite strength. 
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Figure 8.—Fiber strength distribution scheme for multiscale analyses. First, 
the input parameters for the strength distribution and the number/ 
architecture of the RUC are determined. Then the fiber strengths are 
generated by using a random number generator and solving Equation (1) 
�����������������
�����������������������������������������������������
subcells within an RUC, and the process is repeated until all RUCs have 
been defined. Finally, the RUCs are randomly assigned in equal numbers 
to FEs within the ABAQUS model. 

Figure 9 shows the average macroscale composite ultimate strength as a function of the fiber strength 
parameter for multiscale analyses performed using single-fiber and four-fiber RUCs within the coarse FE 
mesh and four-fiber RUCs within the one-��������"��	"�?3�����������*������	�������the predicted 
ultimate strength increased proportionally (cf., Figure 9). This was due to the increasingly pronounced 
�������
������	��������
����	�����������O��cf., Figure 4(a)). In contrast to the local MAC/GMC 
calculations (cf., Figure 5), the use of a four-fiber RUC within the coarse global FE mesh led to higher 
ultimate strengths than for a single-����	�)8$��
	������������
���������������������������	������"����
without global symmetry, as the far-field global strain was increased, local fiber failures initiated in a 
distributed fashion throughout the specimen in lower length scale RUCs surrounding FE integration 
points. This process led to failure localization within individual RUCs as well as throughout the global FE 
mesh, culminating in ultimate specimen failure. If single-fiber RUCs are employed in multiscale analyses, 
some load shedding within an element and between elements is possible once initial fiber failure occurs. 
However, after the single fiber fails, the load is rapidly shed to neighboring elements, increasing the 
likelihood of global damage localization which leads to a reduction in the predicted composite ultimate 
strength. While the calculated variation in strength values was less than 5 percent 	���	������
���������
variation in the composite strengths was less for multiscale calculations performed using a four-fiber 
RUC than those for the single-fiber RUC. The experimental ultimate strength for this specimen is 
973 MPa (Bowman (1999)); this suggests that the actual fiber strength parameter is likely less than unity 
�� < 1). Of course, further testing is required to fully establish an appropriate �������� 
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Figure 9.—Average macroscale composite ultimate strength as a 

function of fiber strength parameter (0 � 	 � 1) over ten ABAQUS/ 
FEAMAC simulations using single-fiber and four-fiber RUCs with the 
coarse FE mesh and four-fiber RUCs with a one-eighth symmetry 
coarse mesh. The error bars denote ± one standard deviation from 
the mean. Note that the experimental ultimate strength was 973 MPa 
(Bowman (1999)). 

When performing multiscale progressive failure analyses, the use of global symmetry boundary 
conditions can profoundly impact the calculated global composite stress-strain response and failure 
behavior. The use of such boundary conditions is questionable when the distribution of constituent 
morphologies and properties display no such symmetries. To illustrate this point, the use of a one-eighth 
symmetry coarse FE model led to higher calculated mean ultimate strengths than those obtained using the 
same FE mesh density where the entire dogbone specimen was simulated (cf., Figure 9). This increase in 
mean strength was also somewhat independent of the number of fibers in the RUC. Simulations 
performed using one-eighth symmetry boundary conditions led to fiber failures that occurred in a 
symmetric fashion across all symmetry planes. Hence, local bending due to an asymmetric distribution of 
fiber failures was not permitted. Such eccentric deformation can lead to an elevated local stress state. This 
serves to lower the ultimate composite strength, which explains why the one-eighth symmetry model 
yields higher ultimate strengths than the model that does not employ geometric symmetries. Additionally, 
more variability in the calculated ultimate strengths was observed for the one-eighth symmetry model. 
Hence, global FE symmetry models can lead to erroneous strength predictions in multiscale progressive 
failure analyses and should only be used with much caution. For these reasons, use of symmetry boundary 
conditions in combination with stochastic variations in material properties is not recommended. In the 
following discussion, only results obtained from full geometry models are presented. 

The variability in predicted macroscale composite strength can also be seen in the global FE stress-
strain responses. For example, Figure 10(a) and (b) contain plots of the predicted gage section stress-
strain ��	�����
	�� = 0.5 from multiscale analyses of the full dogbone specimen performed using both 
single-fiber and four-fiber RUCs, respectively. Here, the macroscale (continuum-averaged) response was 
determined from the family of elements comprising the gage section of the specimen. The measured 
response from Bowman (1999) is also included in the figure. Both sets of calculations reasonably 
matched the observed specimen behavior, but the variability in predicted strengths was lower for 
simulations performed using a four-fiber RUC (cf., Figure 10(b)) than for a single-fiber RUC (cf., Figure 
10(a)). As the total number of simulated fibers within a RUC increased, the homogenized composite 
strength was less dependent on the strengths of individual fibers. The variability in predicted strengths, 
therefore, decreased with increasing numbers of fibers within the RUC (cf., Figure 9 and Figure 10). 
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Figure 10.—Gage section stress-strain response of a longitudinally reinforced 

SCS-6/ TIMETAL 21S MMC for simulations using (a) single-fiber RUC and 
(b) four-fiber RUC. The coarse FE mesh was used and RUC fiber subcell 
���������������������������	 = 0.5. Results are compared against gage 
section experimental data obtained from Bowman (1999). 

Accounting for the distribution of constituent morphologies and properties across relevant length 
scales is crucial for predicting progressive damage accumulation and failure behavior of composite 
materials using multiscale analyses. For example, Figure 11 shows the distribution of failed elements after 
damage localization has occurred for a series of multiscale FE simulations with different microscale 
distributions of fiber strengths (including one using one-eighth symmetry boundary conditions). Images 
of three fractured test specimens are also shown in Figure 11(e). A progressive failure analysis was 
performed where a constant fiber strength value was used in each single-fiber RUC throughout the full 
dogbone specimen mesh (Figure 11(a)). For this case, although no a priori geometric symmetries were 
imposed, a symmetric distribution of local failures occurred. These failures emanated from regions with a 
slight stress concentration due to a decrease in specimen cross-section. These results were consistent with 
those obtained by Bednarcyk and Arnold (2007), (2011). Multiscale analyses were also performed using a 
one-eighth symmetry model, where a statistical distribution of microscale fiber strengths was employed 
within four-fiber RUCs. Multiple failures initiated at points of local material weakness that varied from 
simulation to simulation. Damage progression consisted of a series of distributed fiber failures that were 
mirrored about the eight planes of model symmetry; failed elements from three representative analyses 
are shown in Figure 11(b). In contrast, Figure 11(c) and (d) show the distribution of failed elements for 
each of three multiscale analyses of the full dogbone specimen employing single-fiber and four-fiber  
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Figure 11.—�������������������������������������������������������!�������"	�#��
$%�(a) Full dogbone specimen 

employing a single-fiber RUC with a constant fiber strength. (b) One-eighth symmetry dogbone specimens 
employing four-fiber RUCs with a distribution of fiber strengths. (c) Full dogbone specimens employing single-fiber 
RUCs with a distribution of fiber strengths. (d) Full dogbone specimens employing four-fiber RUCs with a 
distribution of fiber strengths; blue represents no failure and red indicates complete fiber subcell failure for a given 
element. (e) Experimentally observed failure behavior. 

RUCs, respectively, where a statistical distribution of fiber strengths was employed. Here, fiber failure 
localization was distributed throughout the gage section (cf., Figure 11(c) and (d)) consistent with the 
experimentally observed fracture behavior (cf., Figure 11(e)). Note that damage/ failure was much more 
widespread for the four-fiber RUC simulations (cf., Figure 11(d)) than for the single-fiber RUC 
simulations (cf., Figure 11(c)). Using a single-fiber RUC, the rapid onset of localized failures also led to 
fewer total fiber failures across the model compared to simulations using four-fiber RUCs. These results 
demonstrate that the use of global symmetry boundary conditions is inappropriate for progressive failure 
analyses when the actual spatial distribution of fiber strengths display no such symmetries. Such global 
symmetry models can lead to higher strength predictions as well as unrealistic failure patterns. How this 
result impacts findings of Blassiau, Thionnet, and Bunsell (2008) is unclear.  

For illustration purposes, ten additional multiscale progressive failure analyses using a coarse FE 
mesh were performed in which a ����	�����
��
������	���	��������� = 0.5) were employed within 25-fiber 
RUCs. This RUC was used since it led to RUC-averaged ultimate strengths that were somewhat 
independent of the number of simulated fibers (cf., Figure 5). Predictions of the macroscale composite 
stress-strain response and ultimate strength from these analyses were compared to a similar analysis 
where the local fiber strength was held constant throughout the mesh (cf., Figure 11(a)). In the constant 
strength analysis, a fiber strength corresponding to the mean value from the Weibull fiber strength 
distribution was used. The predicted macroscale composite strength obtained using a constant local fiber 
strength was markedly different from those from analyses where a spatial distribution of local fiber 
strengths was simulated. Figure 12 contains the predicted uniaxial stress-strain responses obtained using a 
constant local fiber strength and statistically varying local fiber strength models. As can be seen from the 
figure, use of a constant local fiber strength led to a roughly 25.5 percent higher estimate of the 
macroscale composite strength than the mean strength from the locally varying fiber strength simulations. 
Moreover, the constant local fiber strength simulation resulted in a series of element failures emanating   
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Figure 12.—Gage section stress-strain response of a longitudinally reinforced SCS-6/ 

TIMETAL 21S MMC for simulations using 25-fiber RUCs with the coarse FE mesh 
����	 = 0.5. 

from mild stress concentrations in the transition region between the grips and gage section (cf., Figure 
11(a)). These results were inconsistent with experimental observations where the actual specimens tended 
to fail within the gage section (cf., Figure 11(e)). In contrast, the predicted failure locations obtained using 
spatially varying local fiber strengths predominately occurred within the gage section. These results 
underscore the importance of accounting for spatial variations in the distributions of fiber strengths when 
performing multiscale analyses. 

5.0 Local/ Global Discretization Considerations 
The preceding multiscale calculations investigated the effect of variations in the local distribution of 

fiber strengths on global MMC composite failure based upon a fixed level of macroscale discretization, 
i.e., a relatively coarse FE mesh was used to simulate the global response. One key element in the 
development of robust, computationally-efficient multiscale materials models is to assess the appropriate 
level of model discretization at each relevant length scale that leads to tractable yet accurate macroscale 
solutions. To illustrate this point, consider an arbitrary SCS-6/ TIMETAL 21S MMC subvolume 
containing 16 uniformly distributed aligned fibers. The continuum-level material response of this 
subvolume may be determined from multiscale models that employ different levels of discretization at the 
macroscale and microscale, respectively. For example, using eight-noded linear isoparametric elements 
(each with eight integration points), the 16-fiber subvolume could be idealized using one FE to simulate 
the global response and a four-fiber RUC at each integration point to simulate the local axial response 
using MAC/GMC (cf., Figure 13). Alternatively, the material subvolume could be idealized using eight 
FEs at the macroscale and a single-fiber RUC surrounding each FE integration point (cf., Figure 13). Of 
course, the latter multiscale discretization results in an eight-fold increase in the number of FEs, and a 
corresponding increase in model degrees-of-freedom at the macroscale. Both multiscale discretizations 
were used to perform multiscale progressive failure analyses of the NASA SCS-6/ TIMETAL 21S 
dogbone specimen, where relatively coarse (2400 element) and fine (19,200 element) global FE models 
(cf., Figure 7) were used in conjunction with four- and single-fiber RUCs, respectively. The FE to RUC 
ratio was held constant for each of these simulations; 96 RUCs were used for the coarse FE mesh while 
768 RUCs were used for the fine FE mesh. 

 



NASA/TM—2014-215990 17 

Figure 13.—Comparison of mesh discretization at different scales where a constant 
simulation volume is maintained. The first case combines a coarse (2400 FE) mesh 
with a four-fiber RUC while the second case combines a fine (19,200 FE) mesh  
(i.e., double the mesh density) with a single-fiber RUC. 

Analyses were performed using each discretization where the local fiber strengths were assigned to 
individual subcells in the same manner as before using the modified Weibull CDF (Eq. (1)) with the fiber 
��	��������	����	�� = 0.5. The characteristic fiber length (L) in Equation (1) corresponded to half of the 
average FE dimension in the axial direction for the coarse (L = 0.64 mm) and fine (L = 0.32 mm) meshes, 
respectively. Note that as the characteristic length (L) was reduced for the fine FE mesh, and the mean 
fiber strength and variation in the associated distribution of fiber strengths increased slightly (cf., Figure 
14). Ten multiscale simulations were performed for each multiscale discretization/local fiber strength 
parameter combination, and the average macroscale ultimate composite strength was determined for each 
case. 

Figure 15 contains plots of the macroscale stress-strain responses from each of ten representative 
multiscale analyses performed using the coarse mesh/ four-fiber RUC and fine mesh/single-fiber RUC 
discretizations. The analyses performed using the fine mesh/ single-fiber RUC yielded an average 
ultimate composite strength of 1059.9 MPa (standard deviation, 5.3 MPa). The coarse mesh/four-fiber 
RUC analyses produced an average ultimate composite strength of 1022.3 MPa (standard deviation, 
8.0 MPa). 
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Figure 14.—Modified Weibull PDFs that illustrate the effect of the length scale 

(L/L0%�������������������������������!�������
�&�����������������	 = 0 case, 
the fiber strength distribution no longer depends on length; but when 
	 = 0.5 and 1, the length scale has a noticeable effect on the strength 
distribution. 

 
Figure 15.—Gage section stress-strain response of a longitudinally reinforced 

SCS-'*��+<!�>?�@HJ�<<K����������������������������"	 = 0.5) using the 
coarse FE mesh with a four-fiber RUC and the fine FE mesh with a single-
fiber RUC. 
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Figure 16.—Distribution of fiber failures within the fine mesh 

after the onset of localization for three single-fiber RUC 
��������������������������������������"	�#��
$%������������
represents no failure and red indicates complete fiber subcell 
failure for a given element. Each illustration denotes the 
outer layer of elements in a separate simulation. 

Figure 16 shows the distribution of FEs with failed fibers from three separate analyses obtained using 
the fine mesh/ single-fiber RUC discretization for � = 0.5. The distribution of failure locations is similar 
to that found using a coarse mesh/ four-fiber RUC discretization (cf., Figure 11(d)). These results suggest 
that both multiscale discretizations lead to similar estimates of the macroscale composite material 
behavior. The solution time for the fine mesh/ single-fiber RUC analyses, however, was roughly nine 
times greater than for the coarse mesh/ four-fiber RUC analyses without a significant difference in 
calculated results.  
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Clearly, the model discretization at a specific length scale can have a profound effect on the 
computational costs associated with multiscale simulations. Since the solution algorithm implemented in 
the GMC is substantially more efficient than that for traditional FE analyses (Pindera and Bednarcyk 
(1999)), use of a more highly refined microscale model in combination with a coarser global FE mesh led 
to more computationally effective solutions for this problem. For similar reasons, coupled MAC/GMC-
FE multiscale analyses may be much more computationally efficient for a given problem than analogous 
multiscale analyses that are purely FE based (i.e., FE2 (Feyel and Chaboche (2000); Feyel (2003))). In 
general, the optimal discretization at each relevant length scale is likely to be problem dependent. For 
instance, problems with a global stress gradient (e.g., open-hole composites or full scale structures), may 
require a different discretization than that used here. These sorts of issues must be addressed in order to 
fully exploit the benefits of multiscale analyses. 

6.0 Summary and Conclusions 
A parametric study investigating the effect of a statistical fiber strength distribution and repeating unit 

cell (RUC) architecture on the predicted composite ultimate strength was performed using the 
computationally efficient code MAC/GMC for a SCS-6/TIMETAL 21S material system. Progressive 
failure at an elevated temperature of 650°C was simulated at the microscale by assigning strengths to 
individual fibers within an RUC based upon a modified Weibull cumulative distribution function (CDF), 
which accounts for the effect of fiber length on the probability of failure. By increasing the number of 
fibers in the RUC, a more gradual, continuum-like stress-strain behavior was observed. 

Global multiscale progressive failure analyses of a 25 percent fiber volume fraction SCS-6/ 
TIMETAL 21S tensile dogbone specimen at 650 °C were performed by implementing a modified Weibull 
CDF of fiber strengths within FEAMAC/ ABAQUS. Fiber strengths were appropriately assigned to 
individual fibers within RUCs corresponding to specific finite elements (FEs) in order to assess the effect 
of a spatial distribution of local fiber strengths on the predicted macroscale composite stress-strain 
response and failure. The composite ultimate strengths and distribution of failure locations 
(predominately within the gage section) reasonably matched the experimentally observed failure 
behavior. Moreover, these analyses suggest that the use of models that exploit global geometric 
symmetries biases the characteristics of failure and are thus inappropriate for cases where the actual 
distribution of local fiber strengths displays no such symmetries. This issue has not received much 
attention in the literature. Additionally, the discretization at a specific length scale can have a profound 
effect on the computational costs associated with multiscale simulations. Multiscale analyses were 
performed using coarse FE mesh/ our-fiber RUC and fine FE mesh/ single-fiber RUC discretizations. 
Both multiscale discretizations led to similar estimates of the macroscale composite material behavior and 
failure. The solution time for the fine mesh/ single-fiber RUC analyses, however, was roughly nine times 
greater than for the coarse mesh/four-fiber RUC analyses. Clearly, the model discretization at a specific 
length scale can have a profound effect on the computational costs associated with multiscale simulations. 
Understanding these issues is crucial to the development of robust multiscale material models that yield 
accurate yet tractable results. 
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