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Introduction

(@) Total Uncertainty Simulation
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Irradiance Source Strategies

Long-term PV Performance
1. Financially:
Cash flow
Uncertainty directly related to risk
2. Technically:
Lifetime prediction

Product improvement

Need to determine degradation rates (R,) accurately
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Even a small drift dominates
other uncertainties
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Precision (relative accuracy) more important than
absolute accuracy

Precision pyranometer,
% km distant

Pyranometer mounted
on system

Median of 10 pyra-
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Ry=-0.15 %lyear Ry=-0.30 %lyear

4=-0.28 %lyear Ry=-0.33 %ulyear

every system with may not be necessary

Using Irradiance from nearby system may be adequate

Ishikawa Diagram

(5) Intentionally Drifting Pyranometer

Uncertainty for “Clean” Data Set

Sources of variatic & gies for

rate uncertainty

Continuous Metrics
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CM10 pyranometer (high humidity) drifted about 1%/year

Apparent high “R,” due to drifting pyranometer

Multi-Si 1400kW system at NREL
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Rd=-0.21+/-0.16 (%/year) 0=-0.22+/-0.02 (%/year)

Uncertainties are only statistical uncertainty and do not include instrumentation

With a “clean” data set Rd can be determined to within
0.2%/year after 4 years of field data

Seasonality & Metrics

Drift Occurrence

Conclusion

Seasonality Metrics
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DC/Gpox: DC powerl plane-of-array Irradiance

Seasonality can lead to DC/Gpocorr: temperature-corrected DC/Gpon
PR: Performance ratio

systematic deviations Proorr:  temperature-corrected PR
PVUSA:  PVUSA regression methodology

Temp-corrected metrics: excellent
agreement down to 3 ; years.

Temperature-corrected metrics are preferred over non-
corrected metrics.

Monte Carlo Simulation

1.4 kW multi-Si system

Use temperature-corrected Performance ratio (PR)

Use a drift of 1%/year on average (low: 0.5%/year, high: 1.5%/year, triangle distribution)
Let the drift have different length 1,2,3... years

Let the drift occur at different times of field exposure

1000 realizations, calculate R, for each realization

EX RN
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Start of drift

If drift occurs during middle of field exposure= negligible effect
If drift occurs at end of field exposure = may have large effect

< Seasonality caused by Il gle-of-incide spectral

effects can lead to systematic errors and higher uncertainties

< Temperature-corrected metrics are preferred over non-corrected
metrics.

<+ Changes (drift) of instrumentation during field exposure is more critical
than absolute accuracy

< Drift has significantly more impact at the end of the monitoring period
than in the middle

< Nearby irradiance sensors may be used to determine degradation
rate
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