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A Mode Propagation Database Suitable for Code Validation 
Utilizing the NASA Glenn Advanced Noise Control  

Fan and Artificial Sources  
 

Daniel L. Sutliff 
National Aeronautics and Space Administration 

Glenn Research Center 
Cleveland, Ohio 44135 

Abstract 
The NASA Glenn Research Center’s Advanced Noise Control Fan (ANCF) was developed in the 

early 1990s to provide a convenient test bed to measure and understand fan-generated acoustics, duct 
propagation, and radiation to the farfield. A series of tests were performed primarily for the use of code 
validation and tool validation. Rotating Rake mode measurements were acquired for parametric sets of: 
(i) mode blockage, (ii) liner insertion loss, (iii) short ducts, and (iv) mode reflection. 

1.0 Introduction 
The NASA Glenn Research Center (GRC) has been involved in several programs (Advanced 

Subsonic Technology, Quiet Aircraft Technology, and the Fundamental Aeronautics Subsonic Fixed 
Wing) whose goals were the reduction in transport aircraft noise attributed to the turbofan engine. A 
component of turbofan noise (Ref. 1) is the fan noise caused by rotor-stator, and other interactions, 
coupled to duct propagation that radiates to the farfield. Computational aero-acoustic (CAA) codes and 
unique measurement tools are required to enable the development of noise reduction technologies. In 
order to validate these codes and tools, it is necessary to have an acoustic database.  

Parametric studies were performed for several conceptual representations: (i) mode blockage due to 
stator vanes or rotor blades, (ii) liner insertion loss, (iii) the effects of short ducts on radiation, and 
(iv) mode reflection due to duct terminations. The intent is not to document specific cases as relevant to a 
modern turbofan but to provide a database for code validation. Nor will a significant portion of the data 
be presented, but rather limited samples. The database was acquired on the Advanced Noise Control Fan 
(Refs. 2 and 3) (ANCF) test bed that was built in the early 1990s (Refs. 4 and 5) to evaluate noise 
reduction concepts and to provide databases for CAA code validation. Figure 1 shows the Aero-Acoustic 
Propulsion Laboratory where the ANCF is located and Figure 2 is a photo of the ANCF. 

A Configurable Fan Artificial Noise System (CFANS) was utilized to generate and control 
circumferential modes (m). The system consists of four axially distributed rows, each with 16 
circumferentially distributed sets of electromagnetic drivers flush mounted on the inner wall. There are 
two spool pieces, each having two driver rows (see Figure 3). A LabVIEW (National Instruments 
Corporation) program is used to generate the waveforms sent to each driver independently, in the proper 
phase relationship to generate the desired circumferential mode. The signals to each row can be adjusted 
globally to effect the radial distribution, if desired. The practical limits of the system are |m-order| ≤ 7, 
and frequency ≤ 1500 Hz. Figure 4 shows the typical high quality output from the CFANS for a sample 
case where mode m = 2 was the target mode generated. The upper row of 3-D “tombstone” plots is at  
480 Hz (equivalent to BPF on ANCF) and the lower row is for 960 Hz (equivalent to 2BPF). The two 
columns represent data from two different builds (limited teardown and reassembly, about one month 
apart) for a limited repeatability demonstration. The target mode is at least 20 dB above any other 
individual mode, and mostly 10 dB above the sum of all other extraneous modes. This is shown in the 
small bar graph above and to the right of the 3-D plot. The repeatability (admittedly limited) is within a 
decibel. Table I provides the modes generated and their cut-off ratios for several hub-to-tip ratios 
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(σ) inside the duct, for the studies documented in this paper. The modes were measured by the Rotating 
Rake mode measurement system mounted at the duct radiation plane. The Rotating Rake (Ref. 6) system 
was developed and implemented by GRC in the 1990s to measure turbofan duct acoustic modes. The 
system is a continuously rotating radial microphone rake that is inserted into the duct. It provides a 
complete map of the acoustic duct modes present in a ducted fan. The schematics call out the location of 
the rotating rake measurement location(s), generally at the duct inlet or exit planes. Figure 5 shows the 
propagation angles that are referenced in the relevant sections. 

 

 
Figure 1.—Aero-Acoustic Propulsion Laboratory Figure 2.—Advanced Noise Control Fan 

 
 

 
Figure 3.—Schematic of Configurable Fan Artificial Noise System 
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TOT—Total Power in Harmonic (all modes) 

R/S—Power in Rotor/Stator Interaction Mode 
OTH—Power in other modes (non-R/S modes) 

Figure 4.—Sample Output of Configurable Fan Artificial Noise System 
 
 

TABLE I.—MODES GENERATED FOR PARAMETRIC STUDIES USING CFANS  

 
Cut-off ratios 

(σ, hub-to-tip ratio) 
Frequency 

(Hz) 
Modes Inlet  

(σ = 0.0) 
R/S  

(σ = 0.375) 
Exhaust  
(σ = 0.5) 

480 ±(2,0) 1.77 1.89 2.01 
“ ” ±(4,0) 1.02 1.03 1.04 

  
 

      
580 +(2,0) 2.14     
600 +(2,0)/(2,1) 2.21/1.01     
700 +(2,0)/(2,1) 2.58/1.17     
880 +(2,0)/(2,1)/(2,2) 3.24/1.48/0.99     

  
 

      
960 ±(2,0)/(2,1)/(2,2) 3.54/1.61/1.08 3.79/1.72/1.02 4.03/1.53/- 
“ ” ±(4,0)/(4,1) 2.03/1.16 2.06/1.22 2.09/1.22 
“ ” ±(6,0) 1.44 1.45 1.45 
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Figure 5.—Schematic of ANCF in Blockage Configurations 

 
 

2.0 Mode Blockage 
2.1 Setup 

The objective of this portion of the test was to obtain the effect of geometrical obstructions on mode 
propagation, i.e., blockage (or transmission loss). Blockage effects were measured separately for 
stationary geometry (stator vanes) or for rotating geometry (fan blades). In order to provide a larger 
database, and taking advantage of the flexibility inherent in a no-flow condition, the existing ANCF stator 
vanes were pitched at a range of angles. Geometry of fixed 3-D surfaces prevented pitching the stator 
vanes a full 90°, therefore the tip gap was increased to allow for this rotation. The center-body was 
retained, creating a transition from σ = 0 at the inlet to σ = 0.5 at the exhaust exit plane. These 
configurations are shown schematically in Figure 6 and pictorially in Figure 7. 

The baseline case was a clean duct, with no stator vanes or fan blades. A parametric set of modes 
(Table I) were generated at either the forward or aft driver set, and measured by the opposite rotating 
rake. That is: modes generated by the forward driver set were measured by the exhaust rake; modes 
generated by the aft driver set were measured by the inlet rake. Fourteen or 28 stator vanes were installed 
at various pitch angles (Table II) and the rake mode measurements repeated. Separately, the rotor blades 
were installed at three different pitch angles. The nominal pitch angle for ANCF is 28° and that 
configuration was run at three different fan speeds. The fan pitch angle was changed by ±10° and run at a 
single fan speed for those two angles. 

The assumption is made that the source does not change so that the blockage can be computed by 
subtracting the mode PWL measured with stators installed from the mode PWL measured in the clean 
configuration (either with flow or without flow). The configurations were tested over a period of several 
weeks whereby the ambient temperature varied by 10 °F. The mode frequencies generated were at 
constant frequency, corrected to standard day (59 °F). Note that this is standard for duct propagation, but 
does not take into account any changes in the driver response due to changes in actual driver frequency. 

2.2 Results 

The blockage is defined as the mode amplitude measured by the rotating rake with the duct in the 
clean configuration minus the mode amplitude measured with the desired blockage installed between the 
source and the rake. Thus, a positive number indicates the mode amplitude has been reduced due to 
blockage. 

Figure 8 shows the results for mode blockage at various stator vane configurations for modes at 480 
and 960 Hz. The blockage for the forward propagating direction (generated by the aft drivers, propagation 
through the obstruction, and measured by the inlet rake) is shown in Figure 8(a) (480 Hz) and Figure 8(b) 
(960 Hz).  
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(a) Clean Duct 

Modes generated by driver 
spools are measured at 
opposite rake. 

 
Assumption is source does 
not change with the 
insertion of blockage or the 
addition of flow. 

 

 
(b) Stationary Blockage 

 

 
(c) Rotating Blockage 

 

Figure 6.—Schematic of ANCF in Blockage Configurations 
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TABLE II.—BLOCKAGE CONFIGURATIONS TESTED 
(a) Stator vane configurations 

14 vanes 28 vanes 
-------------------------- α=20° 

α=45° α=45° 
α = 45° ~ δ = 1.63 in. α = 45° ~ δ = 1.63in. 
α = 90° ~ δ = 1.63 in. -------------------------- 

Designation:  Pitch Angle (α) ~ tip gap (δ) 
 

(b) Fan blade configurations 
θ = 18° (1800 Ω) 

θ = 28° (0, 900, 1800 Ω) 
θ = 38° (900 Ω) 

 

    
 (a) Clean Duct Configuration  (b) 28 Vane—45° Pitch Configuration 

Figure 7.—Photos of ANCF in Mode Blockage Configurations 
  

 
Figure 8.—Circumferential Mode Blockage Levels from Stator Vanes 
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Figure 9.—Circumferential Mode Blockage Levels from Rotor Vanes 

 
 
The case labeled clean is actually the difference between two clean cases several weeks apart. As 

such it can provide an estimate of the significance for a measured blockage value. This number is about 
±1 dB. Anything less than that cannot be assumed to be a result relevant to blockage. 

Little blockage is seen at low m-orders in either direction. These modes’ circumferential propagation 
angles are relatively low as a result of their higher cut-off ratio. The higher order circumferential modes 
(four at 480 Hz, six at 960 Hz) are significantly blocked as a result of their higher circumferential 
propagation angles (Ψθ)—see Figure 5(a). The stator vane count is seen to increase the mode blockage 
levels. Thus, it appears as if projected area is the biggest influence on blockage levels under these 
conditions. 

Blockage levels obtained with the rotor (alone) at various rotor RPM (Ω) and pitch angles (α) are 
shown in Figure 9.  

3.0 Liner Evaluation 
3.1 Set-Up 

Figure 10 shows the schematic of the ANCF configuration for the evaluation of insertion loss due to a 
liner. The liner used was a single-degree-of-freedom (SDOF) liner with a screen mesh on a 34 percent-
open-area (POA). The normalized design resistance for the liner is 1.7ρc. The liner core depth is 0.85 in.; 
resonance frequency is 3221 Hz. 

The rotating rake ring was installed in one of two locations: upstream (Figure 10(a)) of the liner to 
measure the modal PWL at the entrance, and downstream (Figure 10(b)) of the liner to measure the modal 
PWL at the liner exit. Comparing the two results in liner insertion loss (positive number indicates 
attenuation). These rake configurations were tested for both the liner exposed and taped over (to provide a 
hard-wall baseline). 

3.2 Results 

Figure 11 shows the mode PWLs measured at the entrance and the exit for the hard-wall and the liner. 
Figure 11(a) shows that at BPF the insertion loss is minor—not surprising as this frequency was not the 
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design frequency. Note that in general the comparison of the mode strength at the entrance to the HW is 
comparable to the mode strength at the entrance of the liner. An exception is that mode 4 HW to SW 
entrance comparison shows a huge variation in PWL. This is thought to be due to being close to cut-off 
and being more susceptible to reflections. Figure 11(b) shows the insertion loss at 960 Hz, near the target 
design of the liner. The attenuation is much greater, and increases as the mode number increases. This is 
expected as the higher mode numbers have lower cut-off ratios—it is generally accepted that liners are 
more effective at cut-off ratios near unity (Ref. 7) since the mode angle is propagating into the liner (see 
Figure 5(b)).  

 
 
 

 
(a) Entrance Measurement Plane 

 

 
(b) Exit Measurement Plane 

Figure 10.—Schematic of Liner Configurations Tested 
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 (a) 480 Hz (b) 960 Hz 

Figure 11.—Liner Configurations Results 

4.0 Short-Duct Effects 
Duct mode propagation theory assumes a long duct as defined by the Length to Diameter ratio  

(L/D > 1) in order for the classic mode structure to develop along the predicted analytical forms. In 
reality, even a cut-off mode can be said to “propagate” from the source, albeit at a significant decay rate. 
Modes that are well below cut-on may decay at a rate of 80 to 100 dB per duct diameter, while a mode 
just below cut-on may decay at a rate of only 2 to 3 dB per diameter (Ref. 8). 

4.1 Set-Up  

To investigate this effect, the ANCF/CFANS was tested in two duct lengths, with the actuated driver 
row 1 diameter from the duct exit, and 1/4–diameter from the duct exit (Figure 12). The modes were 
measured at the inlet entrance plane. The duct exit was filled with absorptive material to prevent 
reflections as well as farfield contamination from duct aft radiation. For this portion of the test, 
corresponding far-field directivity data were acquired. The farfield array was kept at a constant distance 
from duct inlet entrance plane. 

4.2 Results 

Typical in-duct mode results for the two duct lengths are shown in Figure 13. The generated mode 
was m = +2 or m = –2. Figure 13(a) shows the modal decomposition. For the long duct all of the 
“extraneous” modes have decayed to the measurement floor ~ 75 to 80 dB. The modes in the short duct 
configuration have not decayed, nearly equal in strength to the target mode. Figure 13(b) illustrates this 
by comparing the total PWL in all modes, PWL in the generated mode, and the sum of the non-target 
mode. For the long duct the majority of the power is in the target mode, for the short duct the extraneous 
modes carry more energy. 

The effect in the far-field indicates that the modes measured at the inlet plane do in fact propagate to 
the farfield. Figure 14 shows the tonal directivity for m = ±2. The long duct directivity shows the 
characteristic flat lobe associated with a well cut-on mode. Note the symmetry between the positive and 
negative mode. The pattern radiated from the short duct shows significant departure from the classical 
directivity. It also shows an asymmetry between the positive and negative generated mode. These effects 
are due to axisymmetric variation (Ref. 9) resulting from multiple modes. 
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(a) Long Duct, L/D = 1 

 

 
(b) Short Duct, L/D = ¼ 

Figure 12.—Effect of Duct Length on In-Duct Modes 
 
 

 
(a) Individual Modes 

 
(b) Modal Summation 

Figure 13.—Effect of Duct Length on In-Duct Modes 
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Figure 14.—Effect of Duct Length on Far-field Directivity 

5.0 Mode Reflection 
5.1 Setup 

In order to provide a clean, cylindrical duct, for this experiment the ANCF was built up off of the 
stanchion that normally supports the fan and duct sections that make up the nacelle. That is, the spool 
pieces were stacked up in a vertical orientation based on the floor. This removed center-body and support 
pylon from the arrangement, providing a constant area cylindrical duct. Two configurations were tested in 
this setup: (a) with the flow lip attached, and (b) without the flow lip attached, which left a bare flange as 
the exit termination (Figure 15 and Figure 16). The entire stack rested on the floor, and approximately 
6 in. of foam material was placed in the bottom of the stack to minimize reflections from the floor. 

Typically, a single rake, extending from the outer-wall to the duct centerline, has been mounted to 
measure duct modes. It has been known (Refs. 10 and 11) that measuring at a single axial location will 
not be able to account for reflections in the duct, therefore, for this experiment an additional rake was 
mounted on the same rotating ring as the original. This second rake was adjustable in the axial direction 
over the range of 2.5- to 10.5-in., in fixed, 1-in. increments, and was mounted 180° in the circumferential 
direction from the original rake, which remains fixed in the axial direction. Figure 17(a) and Figure 17(b) 
show this arrangement. 

Data were acquired from the dual rakes in order to provide the two-point axial variation needed to 
compute the reflection. Reflections were created using two methods. The first method relies on the natural 
reflections due to an open-ended exit termination. The ring containing the dual rotating rake system was 
mounted at the exit of the ANCF stack-up (Figure 15(a)). The single driver row (C) farthest from the exit 
termination was used to generate the modes in Table I. This configuration was run with the flow lip 
attached—this was assumed to minimize reflections, and with the flow lip removed, creating a sharp 90° 
flanged exit—this was assumed to create reflections. A second configuration was used to generate 
artificial reflections, see Figure 15(b). This was accomplished by locating the dual rake ring in the center 
of the stack-up. Driver row C was used to generate the “primary” wave and driver set B was used to 
generate the “reflected” wave. Each driver row was actuated independently and the modes were measured 
by the dual rakes. Then both sets were activated simultaneously and the resulting superposition was 
measured.  
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(a) Termination Reflection Configuration 

 
(b) Artificial Reflection Configuration 

Figure 15.—ANCF in Mode Reflection Configurations 
 

   
 (a) With flow lip attached (b) With flow lip removed         

Figure 16.—ANCF in Off-Stanchion Configuration 
 
 
The concept is that the measured combination 𝐵 + 𝐶 is the resulting superimposed mode and is equal 

to B+C measured independently and mathematically combined. Thus any technique to separate the 
“primary” from the “reflected” wave will result in B and C that can be compared to the independent 
measurements for code validation (B and C are arbitrary amplitudes generated by driver rows B and C).  
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 (a) Second Rotating Rake with Extensions  (b) Close-up of Rotating Rake Separation 

Figure 17.—Dual Rakes on Same Rotating Ring             
 

This assumes that there are no other reflections, either from the duct exit, the anechoic termination, or the 
rakes themselves. It also assumes that the driver rows generate the same mode PWL (magnitude and 
phase) independently and when combined. It also assumes that the rake response is independent of the 
mode propagation direction. 

5.2 Results 

The dual rake measurements were evaluated to determine if the basic assumptions were correct. Data 
from each rake were acquired when installed separately, in each of the two circumferential locations, in a 
reverse orientation, and with both rakes installed so that the adjustable upstream rake blocked the fixed 
rake. Table III shows these results. In general the results agree to within a decibel.  

Figure 18 shows typical results from the dual rake measurements. The fixed rake mode PWLs are 
compared to the adjustable rake levels as a function of separation distance. Figure 18(a) is data at 480 Hz 
where a single radial mode is cut on; Figure 18(b) shows data at 960 Hz where three radial modes are cut-
on. The flow-lip on and flow-lip off cases are compared. The data show that the mode PWL variation in 
axial distance is greater with the flow-lip removed, indicating a stronger reflection, due to constructive 
and destructive interference, as expected. Note also that the fixed rake measurements are constant as the 
movable rake is adjusted (also as expected). 
 
 

TABLE III.—MODE PWLS FOR A RANGE OF MODES, FREQUENCIES, AND RAKE ORIENTATIONS 
PWL  
in dB   

  
  
  
  
  
  
  
  
  
  
  
  
  
  

Fixed rake 
0° position 

Standard orientation 

Fixed rake 
180° position 

Standard orientation 

Fixed rake 
0° position 

Reverse orientation 

Extended rake 
180° position 

Standard orientation 

Fixed rake blocked 
0° position 

Standard orientation 
1BPF     

 
    

(2,0) 116.5/116.2 116.9/116.8 116.6 116.1 116.1 
(4,0) 99.1/98.1 98.7/98.0 98.1 98.9 98.2 
2BPF           
m = 2 113.7/113.3 113.0/113.3 113.5 112.7 113.3 
(2,0) 106.0/105.6 105.7/105.6 105.2 105.1 105.5 
(2,1) 108.5/107.7 107.3/107.2 108 106.4 107.8 
(2,2) 110.9/110.8 110.4/111.0 111 110.5 110.8 
m = 4 112.9/112.3 112.3/112.3 112.3 111.8 112.4 
(4,0) 109.2/108.4 108.8/108.8 108.3 108 108.5 
(4,1) 110.4/110.0 109.7/109.8 110.1 109.4 110.2 
(6,0) 113.7/112.4 112.9/112.9 113.2 112.3 112.7 
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Figure 18(c) shows a sample of the data from the dual-row configuration. In this sample, m = 2 was 
generated and the rakes were separated axially by 6.5 in. The amplitude of driver row C was held 
constant. The amplitude of driver row B was varied to simulate variation of the strength of the 
“reflection” from 1.0 to 0.25. This is indicated on the plot by “G”; the ratio of the driver row B amplitude 
to driver row C amplitude. The mode PWL from each row actuated alone and together is presented. 
Variations in the sum 𝐵 + 𝐶 are seen as the strength of the artificially generated reflection is modified. 

 
 
 

 
(a) 480 Hz—Termination Reflection 

 

 
(c) 480 Hz—Artificial Reflection 

 
(b) 960 Hz—Termination Reflection 

Figure 18.—Changes in Mode Levels with Axial Distance (m=+2) 
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6.0 Conclusion 
Parametric sets of mode propagation databases were acquired for the purpose of computational aero-

acoustic and acoustic measurement tool validation. Limited samples of the data were presented and 
analysis limited to ensuring the database is valid relative to basic acoustic concepts. The complete data 
and geometry referred to in this paper are available upon request. 
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