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Abstract 

Six application benchmarks, including four numerical aerodynamic simulation (NAS) codes, 
provided by H. Jin and J. Wu, were previously parallelized using OpenMP and message-passing 
interface (MPI) and run on a 128-processor Silicon Graphics Inc. (SGI) Origin 2000. Detailed 
profile data were collected to understand the factors causing imperfect scalability. The results 
show that load imbalance and cost of remote accesses are the main factors in limited speedup of 
the OpenMP versions, whereas communication costs are the single major factor in the 
performance of the MPI versions. 
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1. Introduction 

Over the last several years, several portable mechanisms for developing parallel programs 

have been standardized. This set includes relatively low-level libraries like the message-passing 

interface (MPI), parallelization directives like OpenMP, and higher level languages including 

high-performance Fortran (HPF). Unlike the use of vendor-specific libraries and compiler 

directives, these libraries and language extensions are supported on a large number of systems. 

At the same time, distributed shared memory (DSM) systems are emerging as an important class 

of parallel machines. This includes both the hardware-DSM systems like the Silicon Graphics 

Inc. (SGI) Origin 2000 and software-DSM systems like Treadmarks. The main advantage of 

such systems is that the programmers have the option of programming them using either a shared 

memory or message-passing paradigm or both. 

In this report, an experimental study is presented to answer the following question: What are 

the main obstacles (among factors like communication costs, false sharing, and synchronization 

costs) in achieving scalable performance through each of the paradigms? Though answers have 

been attempted, the issue remains contentious [ 11. Six benchmark programs are used, including 

four numerical aerodynamics simulation. (NAS) codes and two irregular computational fluid 

dynamics (CFD) codes. The performance of 0penM.P and MPI versions of these programs is 

examined on a 128-processor Origin 2000. Besides comparing the scalability of these versions, 

hardware counter-based performance data are used to understand the difference between the 

performance of different versions and the reasons for imperfect scalability. 

In section 2, the programming environments and benchmarks used for the experimental study 

are explained. The results from the experiments are presented and analyzed in section 3, and the 

conclusions are presented in section 4. 



2. Programming Environment 

2.1 Origin 2000. The Origin 2000 is a DSM architecture. The machine utilized for this 

study is part of the U.S. Army Research Laboratory’s (ARL) Major Shared Resource Center 

(MSRC) supercomputing assets. The largest configuration available is comprised of 128 nodes. 

Each processor has 1 GB of local memory. Each processor is a million instructions per second 

(MIPS) R12000 (R12k) 64-bit central processing unit (CPU) running at 300 MHz with two 

32-kB primary caches and one &MB secondary cache. The older RlOOOO (RlOk) 64-bit chips 

ran at 195 MHz, with two 32-kB primary caches and one 4-MB secondary cache. 

An interesting aspect of the Origin 2000 system is its capability for reporting detailed profile 

information to the application programmers. The MIPS R12k and the older RlOk are two of the 

very few systems in which the hardware counters are made visible to the end-users of the 

machine. A small set of events is monitored by the hardware counters, including cache misses, 

memory coherence operations, floating-point operations, and branch n&predictions. Because 

this monitoring is done in hardware rather than software, it is possible to extract detailed 

information about the state of the system without affecting the behavior of the program being 

monitored. 

In this study, profiling data are collected by running the codes with perfex, a profiling tool 

that reports a count for the 32 countable event types, with no modifications to the targeted 

program and with only a minimal effect on its execution time. Focus was on the subset of event 

counts that are indicative of specific performance inhibitors to scalability. Table 1 shows the 

performance inhibitors that were examined and the corresponding event counts that were used to 

evaluate those potential problems. 

2.2 Parallel Programming Environments. This study concentrated on using GpenMP as 

the mechanism for shared-memory programmin g. The Origin 2000 can also be programmed as a 

message-passing machine using MPI, which, like OpenMP, is portable across a number 
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Table 1. Using Event Counts for Performance Problem Identification 

Performance Problem Event Count 

Load Imbalance Number of floating-point operations issued per process is not 
comparable. 

Excessive Synchronization Number of store conditionals is high. 
False Sharing Number of store exclusives to a shared block is high. 
Cache Unfriendly Ll and L2 cache misses are high. 

of platforms. MipsPro 7.2.1 compiler was used, and the applications were compiled with I77 

using aggressive optimizations (-03 flag). 

2.3 Benchmarks and Problem Sizes. This study of OpenMP is focused on four of the NAS 

Parallel Benchmarks (NPBs), which are most relevant to the Army’s applications, and two 

additional benchmarks, called IRREG and LES. The NPB set was developed by the NAS 

Program at NASA Ames Research Center for the performance evaluation of parallel computing 

systems [2]. NPBs mimic the computation and data movement characteristics of large-scale 

CFD applications. This study focused on three simulated application codes (LU solver [Lu], SP, 

and block tridiagonal [BTJ), and one kernel (conjugate gradient [CG]). 

The assumption is that MPI can give the run with the least amount of computing time 

requirement. The NAS-optimized MPI version of the four kernels tested was then the basis for 

comparison. In this study, MPI implementations of the benchmarks were obtained from the 

NPB 2.3 NAS website [3]. The rationale behind the PBN versions given by the working team is 

to provide the community with an optimized version of NPB 2.3-serial and a sample OpenMP 

implementation. The NPB and PBN versions specify three problem sizes for the benchmarks. 

This report focuses on the Class B problem sizes, as they are the closest in size to realistic 

problem sizes, as defined by the applications commonly run at ARL. Table 2 shows the problem 

sizes for Class A, Class B, and Class C for each benchmark. A comparison in processing times 

between Class B and C is given in Figure 1. 
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Table 2. NPB Problem Sizes (Number of Elements) 

Benchmark Code Class A Class B Class C 

BT 643 1o23 1 623 

LU 643 1o23 1623 
Pentadiagonal Solver 643 1o23 1623 
CG 12.000 75.000 150.000 

.._ ._...... _..._ _...... _ .,e...... i._,.l.._..__.+, ._._ 

.._. _..._._ _ _._.._ _._.,_ I......;..;..l._I 

* WI-ClcaSB ::: 
A WI-assc 

._ ._ 

Figure 1. Timing for MPI Version of CG for Classes B and C, 12k Chip. 

Another benchmark that has been focused on is the large eddy simulation (LES) [4]. LES 

can be used to characterize turbulent flow, where large-length scales signify the domain size and 

small-length scales represent dissipative eddies. Although small scales are modeled due to their 

isotropic nature, high-performance computing (HPC) resources are required to capture the large 

energy-carrying length scales. In this report, a vectorized simulation code is optimized and 

parallelized for Origin 2000 performance. A realistic simulation of flow past a backward-facing 

step with a problem size of 32 x 32 x 32 is used to study scaling behavior. Periodic boundary 

conditions are applied in the stream-wise and span-wise directions. 

The second non-NAS benchmark being examined is IRREG [5]. IRREG is abstracted from a 

CFD application that uses unstructured meshes to model a physical problem. The mesh is 
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represented by nodes, edges that connect two nodes, and faces that connect three or four nodes. 

For the realistic submarine mesh used in these benchmark runs, the number of nodes, edges, and 

faces were 92,564,623,003, and 504,947, respectively. 

3. Experimental Results 

In this section, a comparison of the performance of OpenMP and MPI versions of four NAS 

codes and two irregular CFD codes using OpenMP is presented. 

3.1 Comparing OpenMP and MPI Performance. The performance for OpenMP and MPI 

versions of CG, LU, SP, and BT are shown in Figures 2 and 3. The plots show wall-clock time 

as a function of the number of processors. In general, two observations can be made from these 

four plots. 

Figure 2. Scalability of OpenMP and MPI Versions of CG and LU. 

Reasonably good scalability is achieved when up to 64 processors for all of the 8 programs 

(2 versions for each of 4 benchmarks) are used. The speedup starts leveling off for configurations 

beyond 64 processors, which shows that problem sizes in NAS Class B data sets are not suitable 

for parallelization on a very large number of processors. For three of the four applications, MPI 
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Figure 3. Scalability of OpenMP and MPI Versions of SP and BT. 

achieves better performance than the OpenMP versions. The MPI versions are significantly 

faster for LU and CG, slightly better on large configurations for SP, and slightly slower on BT. 

Of this set of benchmarks, using the RlOk chip, the poorest speedups are achieved for CG. 

On 128 processors, the OpenNIP version achieves a speedup of 14. A slightly higher speedup of 

15 is achieved at the 64processor configuration. The performance of the MPI version of CG is 

significantly better on 16, 32, 64, and 128 processors. On both the 64 and 128-processor 

configurations, the MPI version achieves a speedup of 43. For LU, OpenMP scales reasonably 

well until 64 processors, achieving a speedup of 32. The MPI version has significantly better 

speedup again, achieving a factor of 80 on 128 processors. For BT, OpenMP achieves a speedup 

of nearly 50 on 128 processors. The speedup of the MPI version is only 30. It should be noted 

that the l-processor version of MPI performs much worse as compared to the OpenMP 

sequential version of this code. The results from MPI and OpenMP are the closest in the case of 

SP. Speedup of nearly 50 is achieved on 121 processors for both the versions.* 

How profiling data from perfex can be used to determine the reasons for imperfect scalability 

and the differences in performance of OpenMP and MPI versions of the programs is now 

l This code was executed on 121 processors because it required a square number of processors. 
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discussed. For a shared-memory program run on a DSM architecture, the following factors 

usually contribute to a lower-than-ideal speedup: load imbalance, which implies that the work in 

parallelized loops is not evenly distributed among the processors, and synchronization costs, 

which denote the time spent by the processors in coordinating the progress of the computation 

among themselves. False sharing occurs when two or more processors access different variables 

that happen to be colocated on the same cache block, with at least one of the accesses being a 

write. Once the write occurs, the entire cache line is invalidated to other processors. Remote 

accesses indicate frequent references to off-processor data, which are expensive compared to 

references to local data. 

For the message-passing versions, the two common causes of imperfect speedup are 

communication costs and load imbalance. Since single-program, multiple-data (SPMD) versions 

of programs are run and there is no shared-memory support, false sharing and synchronization 

costs do not occur. For each of the eight programs in which scalability numbers have been 

presented, hardware counter data obtained from perfex were analyzed. For all GpenMP 

programs, the event counts and typical times obtained for synchronization and false sharing were 

extremely low (less than 3 s), even for the highest number of processors used. In general, a good 

level of cache friendliness was seen for all programs except CG. Cache friendliness was 

examined by looking at the average Ll and LZ cache hit rates returned by perfex. L2 cache hit 

rates were consistently higher than 0.9 for each of the eight programs, and Ll cache hit rates 

were also greater than 0.9 for all programs except CG. CG is an irregular code; therefore, poor 

Ll locality is achieved. The load imbalance issue was examined by looking at the number of 

floating-point operations performed over different processors in each run. A load-balanced 

program will have very similar numbers for the number of floating-point operations performed 

across all processors. Figure 4 shows the same data for OpenMP and MPI versions of CG. 

Detailed data from LU and SP are not presented here, but trends are explained later. Figure 5 

shows the minimum, maximum, and average number of cycles spent on floating-point operations 

across all processors on the GpenMP and MPI versions of BT. The increase in range with an 

increasing number of processors suggests a problem with load balancing. 
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Figure 4. Max, Average, and Min MFlops Across All Processors for OpenMP and MPI for 
CG. 

Number ii Prow- 

Figure 5. Max, Average, and Min MFlops Across All Processors for OpenMP and MPI for _ 
BT. 

The difference in the number of floating-point operations between different processors 

explains the limited speedup (50 times on 128 processors) of the OpenMP version of BT. The 

results are very different from the WI version of the same code. For the OpenMP version, the 
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load is evenly balanced between different processors on ail processor configurations. 

Interestingly, the GpenMP version gives overall better performance than the MPI version of BT. 

A possible explanation for poor performance of the MPI version is the high communication 

costs. 

The performance of the OpenMP version can be further improved by better work 

distribution. The program typically has nested loops where the number of iterations across each 

dimension is 102 (for Class B). The loop-level parallelized Openh4P version achieves 

parallelism across only a single dimension, so there is no way of using more than 102 processors. 

Possibly, by using additional directives or by using SPMD-style OpenMP parallelism, the 

performance of the GpenMP version of BT can be enhanced. 

Similar trends are seen from CG. Excellent load balance is demonstrated by the MPI 

version, leading to good performance. Load imbalance can be seen for the OpenMP version, 

though it is not as severe as in the case of BT. Because of the irregular accesses in this code, the 

high cost of frequent nonlocal references is likely to be another important factor behind limited 

speedup. Unfortunately, perfex does not provide a mechanism for accurately measuring the 

number of nonlocal references. Also, remote references can be aggregated in message-passing 

versions, which is not possible in a shared-memory version. 

In the case of SP, the OpenMP version achieves good load balance on 100 processors. The 

number of floating-point operations performed by each processor only ranges from 21.21 x 10% 

to 18.81 x 106/s. However, on 121 processors, some of the processors do not get any work, for 

similar reasons as BT. Good load balance for the GpenMP version explains why the 

performance of the GpenMP and MPI versions is very similar. 

With LU, significant load imbalance is observed with GpenMP. On 64 processors, the 

number of floating-point operations performed by each processor ranges from 29.63 x 10% to 

14.03 x 10%. The load imbalance for the OpenMP version explains the difference in the 

performance of OpenMP and MPI versions. 
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3.2 Communication Cost Issues. The performance of the benchmark BT under MPI lagged 

under OpenMP (see Figure 3). To understand the issues involved, VAMPlR and 

VAMPIRTRACE (parallel processing tools from Pallas GmbH) were run. The tools give a 

breakdown of time spent for different tasks, including MPI, and also identify load imbalances. 

Runs were made with 16, 36, and 64 processors. In the latter, 65% of the total processing time 

was spent on MPI. The MPI runs also showed that load imbalances were present (i.e., only 9 of 

the processors in the 64 processor case were actually 50% occupied by the application, while in 

17 of the processors, this figure was less than 25%). Improving MPI processing is feasible, but 

was not attempted here. 

3.3 OpenMP Implementation of Irregular CFD Codes. Both of the non-NAS 

benchmarks, LES and IRREG, were parallelized using the SPMD style of OpenMP that relies 

heavily on domain decomposition. While domain decomposition can result in a coarse-grain 

program exhibiting good scalability, it does transfer the responsibility of decomposition from the 

compiler to the programmer. Once the problem domain is decomposed, the same sequential 

algorithm is followed but is modified to handle the multiple subdomains. The program is 

replicated on each thread but has different extents for the subdomains. Also, data that are local 

to a subdomain (not shared globally) are specified as private or thread private. Thread private is 

used for subdomain data that need file scope or are used in common blocks. Also, message 

passing is replaced by shared data that can be read by any thread. 

For LES, initialization of the data is parallelized using one parallel region for better data 

locality among active processors. The main computational kernel is embedded in the 

time-advancing loop. The time loop is treated sequentially, and the kernel itself is parallelized 

using another parallel region. In this parallel region, the 32 x 32 x 32 mesh is blocked in the 

z-direction and each block is tasked to a different processor. 

The IRREG code contains a series of loops that iterate over nodes, edges, and faces. The 

loops over edges and faces involve indirect accesses to memory locations, which are difficult to 

analyze and parallelize in a loop-level sense. However, a parallel version of the code can be 

10 
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accomplished by partitioning the nodes among the processors. The edges and faces are assigned 

to the processor that owns a majority of the corresponding nodes. The recursive coordinate 

bisection (RCB) partitioner used in the code does not optimally minimize the number of cut 

edges (communication effort) but does attempt to reduce the amount of communication and load 

balance the computational work. The performance of LES and IRREG is shown in Figure 6. A 

speedup of 5.1 is obtained on eight processors. In LES, the matrix solver, the most expensive 

module, is made cache-friendly by optimizing it for single CPU efficiency. Inherent data 

dependencies contribute to the imperfect scaling observed for eight processors. For IRREG, the 

speedup was measured on up to 32 processors. Again, the parallel version scaled quite well, 

with a factor of 30.0 on 32 processors. The speedup results obtained from initial attempts to 

parallelize IRREG using loop-level parallelization resulted in almost no speedups. Data and 

work distribution using specialized partitioners were extremely important for the parallel 

performance of this code, which could not be achieved through directives for loop-level 

parallelism. 

Figure 6. Performance of OpenMP of LES and IRREG With the RlOk Chip. 
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4. Conclusions 

In this report, experiments have been conducted to study the performance achieved through 

shared-memory (OpenMP implementations) and message-passing (MPI implementations) 

paradigms for six benchmark programs with realistic problem sizes run on a 12%processor 

Origin 2000 with both the older RlOk and the newer R12k chips. Moreover, hardware-profiling 

data were analyzed to understand the reasons for imperfect speedups of these codes. 

These experiments lead to several interesting observations. A somewhat better performance 

was obtained from MPI programs, as compared to the OpenMP. The main factor behind limited 

scalability of the OpenMP versions was load imbalance. Only the outer loops were parallelized, 

and, on large configurations, not all processors could be kept busy. The second most important 

performance obstacle for OpenMP versions was the cost of remote references. False sharing and 

synchronization costs were insignificant for the programs in this benchmark set. 

The MPI versions demonstrated excellent load balance, with parallelism obtained through 

domain decomposition. The main factor in the limited scalability of MPI versions was 

communication costs. The MPI codes’ communication costs are indeed higher as shown by 

VAMPIR TRACE data. This experience in developing parallel versions of two irregular CFD 

codes found that the SPMD style parallelization facility of Openh4P enabled easy and efficient 

parallelization of these applications. 

This study concluded that programmers need to concentrate on achieving good work 

distribution while optimizing the performance of OpenMP versions, and they need to concentrate 

on improving communication performance while optimizing the performance of MPI versions. 

These conclusions are applicable only to the programs that have similar features to the 

benchmark programs studied here. 
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