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Billy Barnhart 
Bihrle Applied Research, Inc. 

Hampton, Virginia 23666 
 

Thomas P. Ratvasky1 
National Aeronautics and Space Administration 

Glenn Research Center 
Cleveland, Ohio 44135 

Abstract 

The effect of ice accretion on a 1/12-scale complete aircraft model of S-3B Viking was studied in a 
rotary-balance wind tunnel. Two types of ice accretions were considered: ice protection system failure 
shape and runback shapes that form downstream of the thermal ice protection system. The results showed 
that the ice shapes altered the stall characteristics of the aircraft. The ice shapes also reduced the control 
surface effectiveness, but mostly near the stall angle of attack. There were some discrepancies with the 
data with the flaps deflected that were attributed to the low Reynolds number of the test. Rotational and 
forced-oscillation studies showed that the effects of ice were mostly in the longitudinal forces, and the 
effects on the lateral forces were relatively minor. 

1.0 Introduction 

An S-3B Viking aircraft was considered for possible use at NASA Glenn Research Center for use in 
icing research. This type of aircraft had never been used for icing research, so its flight characteristics in 
an icing environment were unknown. In order to gain insight into the icing effects prior to conducting 
icing research flights, this experimental effort was initiated to determine the aircraft’s iced aerodynamic 
characteristics. 

The effort consisted of 4 parts: 
 

(1) Determine the ice shapes to test. 
(2) Test the ice shapes on a subscale complete aircraft model in a rotary balance wind tunnel. 
(3) Use the wind tunnel data to develop iced aircraft flight simulation models. 
(4) Refine and validate the flight simulation models through flight testing. 

 
This method was successfully performed during research efforts for the DHC-6 Twin Otter (Refs. 1 

to 3) and a Cessna business jet (Refs. 4 to 6). 
It was decided to test two ice accretion shapes. The first was the shape that would form on the aircraft 

when the ice protection system has failed (failure shape). The second was the runback shape that forms 
downstream of the leading edge when the aircraft’s thermal ice protection system becomes overwhelmed. 
The failure shape geometry was obtained using LEWICE simulation (Ref. 7). The runback shape geometry 
was simulated with simple aerodynamically equivalent shapes using lessons learned from previous 
research efforts (Refs. 4 and 5). This paper details the testing of the two ice shapes in a rotary balance wind 
tunnel in order to obtain the aerodynamic data needed for the simulation model development. 

                                                      
1Distinguished Research Associate. 
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Nomenclature 

b aircraft span 

c aircraft chord 

Cl aircraft rolling moment coefficient 

CL aircraft lift coefficient 

CL,max aircraft maximum lift coefficient 

Cm aircraft pitching moment coefficient 

LWC liquid water content 

MVD median volumetric diameter 

OAT outside air temperature 

p aircraft roll rate 

q aircraft pitch rate 

q freestream dynamic pressure 

Re Reynolds number 

V airspeed 

 aircraft angle of attack 

e elevator deflection angle 

f flap deflection angle 

   rotational rate about the velocity vector 

2.0 Experimental Methods 

The test was conducted in the Bihrle Applied Research Large Amplitude Multi-Purpose (LAMP) 
facility in Neuberg a.d. Donau, Germany. It is an open circuit vertical wind tunnel with a 10-ft diameter 
circular test section. It is capable of static, rotational, and forced-oscillation measurements. The forces 
were measured by a six-component strain-gauge balance affixed to the end of a sting and mounted inside 
the aircraft model. The tests were conducted at a dynamic pressure of 2 psf, which corresponded to a 
model Re = 0.10 million. Shown in Figure 1 is the 1/12-scale S-3B model mounted in the test section. The 
model was constructed of fiberglass, balsa, and plywood from a 3D CAD data of the aircraft. The model 
was equipped with moveable control surfaces (aileron, rudder, elevator, flaps, spoilers and speed brakes) 
as well as extended landing gear. A preliminary conceptual model of icing research instrument cluster pod 
was also attached to each wing stores pylon. The ice shapes chosen for testing consisted of the following: 

 
 Ice protection system failure 
 Runback ice shapes that form downstream of thermal anti-ice system 

 
The failure shape geometry was generated using LEWICE 3D using the flight conditions shown in 

Table 1. The condition shown below was chosen to represent a typical severe icing encounter during a 
research flight. LEWICE 3D generates ice shapes in series of 2D slices at various spanwise locations. 
These were then lofted to form three-dimensional geometry. Ice shapes geometries were obtained for 
wing and horizontal and vertical stabilizers. These shape were then geometrically scaled from the full-
scale to 1/12 scale. Previous experimental studies have shown that airfoils with large leading edge ice 
accretions are insensitive to Reynolds number effects, and simply scaling the ice shapes geometrically for 
subscale testing produces satisfactory results (Refs. 8 and 9). The methodology to develop the failure ice  
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(a)  (b)  
Figure 4.—Comparison of airframe manufacturer’s and LAMP lift coefficient data from a previous study. (a) f = 0°. 

(b) f = 20°. 
 
 

 
 (deg) 

(a) 

 
 (deg) 

(b) 

Figure 5.—Effect of ice shape on lift. (a) f = 0°. (b) f = 25°. 
 
 
 = 14°, with a local maximum lift value of 0.86. It may appear from Figure 5(a) that these ice shapes did 
not significantly degrade the aircraft lift curve. However, these test were conducted at Reynolds number 
of approximately 0.10 million, whereas the full scale aircraft typically operates at 20 million. Thus, in 
order to apply the data to full-scale flight simulation model, the clean lift curve would be expanded to 
give a higher maximum lift and stall angle of attack, as shown in Figure 4. Every iced aerodynamics 
studies have shown that large leading edge iced configurations are Reynolds number insensitive. So, 
when applied to a full-scale aircraft, the differences between the clean and failure iced configurations 
would be much greater. 

Figure 5(b) shows the lift curves with the flaps (both leading and trailing edge) deflected at 25°. As 
expected, deploying the flap resulted in higher lift for both clean and iced configurations. On the clean 
model, it increased the CL,max from 0.90 to 1.38 and decreased the stall angle of attack from 12 to 7°. The 
maximum lift coefficient of the failure shape configuration was increased to 1.5, and the stall angle of 
attack was 12°. These were much higher than the clean model, which was not expected. The runback 
shape configuration had a CL,max of 1.30 with a stall angle of attack of 11°. It was not clear why the failure 
configuration had such a high CL,max when the flap was deployed. 
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(a) 
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(b)

Figure 6.—Effect of ice shape on flap effectiveness. (a)  = 0°. (b)  = 12°. 
 
 

The unexpected effect of flap deflection is better illustrated in Figure 6, which shows the effect of ice 
shapes on flap effectiveness. The figure shows the aircraft lift coefficient verses flap deflection angles at 
constant aircraft angles of attack. Figure 6(a) shows the flap effectiveness at  = 0° (which is in the linear 
range of the aircraft lift curve), and Figure 6(b) shows the flap effectiveness at  = 12° (which is at the 
stall angle of attack of the clean aircraft). Figure 6(a) shows that in the linear range of the lift curve, the 
ice shapes had very little effect on the flap effectiveness, with the failure shape configuration showing a 
slightly reduce values, as indicated by its slope. Figure 6(b) shows that at for the clean aircraft, the flap 
effectiveness at stall angle of attack was unchanged from the linear range of the lift curve. However, with 
the failure shape configuration, the flap was three times more effectiveness in increasing lift at  = 12° 
than the clean configuration. For the runback shape configuration, it was 1.5 times more effective. 
 One explanation for this anomaly is that the ice shapes on the wing are helping the boundary layer 
remain attached to the wing when the flaps are deployed. Usually, ice shapes on aircraft wing causes the 
boundary layer to separate from the wing and stall at a lower angle of attack. However, it appears that at 
this low Reynolds number, the opposite may be happening. In the previous research efforts with the Twin 
Otter and the Cessna business jet, this behavior was not observed. However, these aircraft only had 
trailing edge flaps and not leading edge flaps. Because a Reynolds number and geometric scaling studies 
were not performed on the S-3B wing panel (unlike in previous efforts), the exact cause of this behavior 
could not be determined. 

3.2 Pitching Moment 

 Figure 7 shows the effect of the ice shapes on the S-3B Viking model aircraft pitching moment. On the 
clean aircraft, the pitching moment coefficient decreased (i.e., more nose down) linearly with angle attack 
at angles of attack between 0 and 11°. At  = 11°, there was an abrupt nose up pitching moment as the 
aircraft stalled. Both of the ice shape configurations showed more positive pitching moment coefficient 
(when compared to the clean model) at angles of attack between 5° and stall. The sudden nose up pitching 
moment on the failure configuration did not occur until  = 14 and 12° for the failure and runback shapes, 
respectively. These corresponded to breaks in the lift curve slopes on Figure 5(a), indicating the angles of 
attack where the aircraft stalled. The break in the pitching moment coefficient was more gradual with the 
runback configuration than that of the clean aircraft and failure configuration, indicating a softer, more 
gradual stall process. 
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 (deg) 

Figure 7.—Effect of ice shape on pitching moment. 
 
 

 
e (deg) 

(a) 

 
e (deg) 

(b)

Figure 8.—Effect of ice shape on elevator effectiveness. = 5°. (a) f = 0°. (b) f = 25°.
 
 

Figure 8 shows the effect of ice shapes on the elevator effectiveness, or the ability of the elevators to 
change the aircraft pitching moment. Figure 8(a) shows the aircraft pitching moment verses elevator 
deflection angle with the f = 0°, and Figure 8(b) shows the pitching moment verses elevator angle at 
f = 25°. The elevator deflection angles are different in Figures 8(a) and 8(b) because the S-3 has different 
elevator deflection range at different flap settings. Both of the figures are at  = 5°, which was well 
before stall. Figure 8 shows that there was a nearly linear relationship between the aircraft pitching 
moment and the elevator deflection angle. Figure 8(a) shows that ice shapes resulted in a slightly 
decreased elevator effectiveness (indicated by slightly reduced magnitude of Cm–e slope) for f = 0°. At 
f = 25°, all three ice configurations exhibited similar elevator effectiveness. 

Figure 9 shows the effect of ice shapes on the pitch authority. It shows the change in the pitching 
moment the aircraft is able to obtain with full elevator deflection at given lift coefficient. It clearly shows 
that the presence of ice shape shifted the curves to the left, indicating a reduction in the flight envelope. 
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Cm 

Figure 9.—Effect of ice shape on pitch authority. Maximum 
elevator deflection.  

3.3 Rolling Moment 

Figure 10 shows the effect of ice shapes on the S-3B Viking model aircraft rolling moment. On the 
clean aircraft, there was a sudden roll off at  = 11°, as it stalled. With the failure shape configuration, the 
roll off was delayed until  = 14° and was not as severe. With the runback configuration, the roll off 
started at  = 12°, and it was even more severe than the clean configuration. 

Figure 11 shows the effect of ice shapes on the aircraft roll authority. It shows the change in the 
rolling moment the aircraft if able to generate with full aileron deflection at a given lift coefficient. On the 
clean aircraft, there was a reduction in the roll authority occurring at CL = 0.35 but it was gradual until 
CL = 0.82, at which there was a rapid decrease in the roll authority. The initial gradual reduction in the roll 
authority may be due to the flow starting to separate over the aileron. The rapid decrease that occurred at 
higher lift values was likely due to the wing stall. Similar behavior was observed with the two iced 
configurations. With the failure shape, the roll authority was similar to that of the clean aircraft at low lift 
values. However, at CL values between 0.7 and 0.9, it exhibited lower roll authority than the clean aircraft. 
However, at CL > 0.90, both clean and failure configuration wing was stalled and showed similar roll 
authority. When the runback shape configuration was installed, the aircraft exhibited reduced roll 
authority even at low lift values and continued up to stall. It is important to keep in mind that for the 
simulation of a full scale aircraft, the clean values would be shifted as discussed above, thus creating an 
even larger decrease in roll authority with the failure and runback shapes compared to the clean aircraft. 

3.4 Rotational Data 

The effects of the icing on the rotational characteristics were mostly observed in the stall region due 
to the differences in their stall characteristics and their effects on the rotational rolling moment 
coefficient. Below stall, there was little or no influence of the ice condition. Figure 12(a) shows that at 
 = 5° (well before stall), the clean and iced aircraft rotational characteristics were nearly identical. The 
differences were observed near stall angles of attack, as shown in Figure 12(b). The differences were 
small and likely due to different stall characteristics. At angle of attack well past stall (Fig. 12(c)) changes 
in the rotational rates did not affect the rolling moment for both clean and iced configurations. The effect 
of ice conditions on rotational yawing moment were observed in the same angle of attack region as roll, 
but were smaller and of less importance. 
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Figure 10.—Effect of ice shape on rolling moment. 
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Figure 11.—Effect of ice shape on roll authority. 
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Figure 12.—Effect of ice shape on rotational rolling moment. (a) = 5°. (b) = 12°. (c)  = 20°. 
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3.5 Forced Oscillation 

Forced-oscillation tests were performed about all three body axis for the aircraft. The effect of ice 
shapes on the forced-oscillation data was generally small and occurred mostly in the stall region, which 
was similar to what was observed in the rotational data.  

Figure 13 shows the effect of roll oscillation on the rolling moment. Figure 13(a) shows that ice 
shapes had very little effect at  = 5°. The only differences observed were near stall angle of attack, as 
shown in Figure 13(b). Like the rotational data, the effects of ice shapes were small. Figure 14 shows the 
effect of pitch oscillation on the pitching moment. The effects were very small for both pre-stall 
(Fig. 14(a)) and stall (Fig. 14(b)) angles of attack. Analysis of other forced-oscillation data showed 
similar trend of ice shapes having little effect when compared to the clean aircraft.  
 
 
 

(a)   (b)  
Figure 13.—Effect of ice shape on forced-oscillation rolling moment. (a) = 5°. (b). = 12°. 

 
 

(a)  (b)  
Figure 14.—Effect of ice shape on forced-oscillation pitching moment. (a) = 5°. (b). = 12°. 
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4.0 Conclusions 

Wind tunnel measurements of an iced 1/12-scale complete aircraft model of an S-3B Viking were 
made in a rotary-balance wind tunnel to obtain data for iced-aircraft flight simulation models. Two 
types of ice accretions were tested: ice protection system failure shape and runback shape that forms 
downstream of the thermal ice-protection system. 

The iced configuration did not severely degrade the aircraft performance when compared to the 
sub-scale clean configuration. This was expected because of the low Reynolds number of this test. The 
clean aircraft at the test Reynolds number would have substantially lower maximum lift coefficient and 
stall angle of attack than at flight Reynolds number. However, the numerous previous tests have shown 
that airfoils with large leading edge ice shapes are relatively unaffected by Reynolds number variation. 
Thus, the iced performance values obtained in the subscale test would be similar to the full-scale 
Reynolds number values. However, this would need to be validated by a full-scale test (i.e., high 
Reynolds number wind tunnel or flight test).  

The data with the flaps deflected at 25° showed the failure ice shape configuration with a much 
higher CL,max than the clean configuration. This was not expected and was speculated to be an artifact of 
the low Reynolds number of this test. Because a Reynolds number scaling study was not done for this 
aircraft model, the exact reason for this could not be determined. A further study, including Reynolds 
number and geometry scaling effects, is required if the flap-deflected data is to be incorporated into a 
flight simulation model. 

The ice shapes had some measurable effects on control surface effectiveness, but mostly near stall. 
The effects of ice shapes on the rotational characteristics were not significant at pre-stall angles of 
attack. Most significant differences were observed in the stall regions in the rolling moment. The most 
significant effect of ice on the forced oscillation was measured in the rolling-moment coefficient due to 
roll rate near the stall angles of attack. The ice configurations had little effect on pitch and yaw 
damping values. 
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