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CORRELATION OF MAP UNITS
[Units indicated by asterisks are shown only on cross sections. Supergroups from Weems and others (2004)]
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EXPLANATION OF MAP SYMBOLS

Contact—Approximately located

SUBSURFACE FAULTS
(All faults are approximately located beneath the coastal plain; 

see Weems and Lewis, 2002)

High-angle fault—U, upthrown side; D, downthrown side

Strike-slip fault—Arrows show relative movement

OTHER FEATURES

Auger hole and well locations—Shown with elevation relative to the base 
of the Quaternary rock in feet.  See list of references for sources

DESCRIPTION OF MAP UNITS

   [In many areas, a veneer of colluvium 3 to 6 feet (ft) thick blankets slopes 
and obscures the underlying sediments.  These thin deposits are not 
mapped.  Color designations are from Goddard and others (1948) and 
are based on naturally moist samples.  Ages of deposits are given in years 
as ka (thousands of years) or Ma (millions of years).]

Artificial fill—Various sandy, silty, and gravelly materials, mainly of local 
origin, filled and compacted for construction of roads, bridges, and earth-
filled dams.  Materials up to 30 ft thick.  Age is less than 300 years (yrs)

Phosphate spoil—Material removed and backfilled during mining for 
phosphate, mostly derived from the Wando Formation.  Ranges from 7 
to 10 ft thick.  Deposits are less than 140 years old

Alluvium (Holocene)—Sand and clayey sand presently prograding along 
drainage courses, commonly veneered by thin organic mud and peat

Beach and barrier-island sands (Holocene)—Quartz sand, very light gray 
(N8), fine-grained, well-sorted, shelly; dark, very fine grained heavy minerals 
abundant.  Age is less than 10 ka; surface deposits are probably less than 1 
ka.  Deposits are 0 to 35 ft thick

Freshwater swamp deposits (Holocene and late Pleistocene)—Thin, 
soft, medium-brown (5YR 3/4) to black (N1) organic muds and peats 
accumulating along impounded stream courses and in ovoid-shaped 
depressions (pocosins) and “Carolina bays.” Deposits located mainly 
from aerial photographs and topographic base map.  Ages range from 
Wisconsinan (modern to at least 34 ka) to present

Tidal-marsh deposits (Holocene)—Clayey sand and clay, medium-gray (N5) 
to black (N1), soft, organic rich.  Dominant clay mineral is kaolinite, with 
significantly less illite-smectite and illite.  Deposits are 0 to 10 ft thick and 
support marsh grass.  Carbon-14 dating indicates unit is less than 5 ka in 
age

Freshwater marsh deposits (Holocene)—Silty, very fine sand to clayey 
very fine sandy silt, medium-gray (N5) to dark-grayish-brown (10YR 3/2), 
soft, organic rich, commonly woody.  Dominant clay mineral is kaolinite, 
with significantly less illite-smectite and illite.  Deposits are 0 to 10 ft thick. 
Carbon-14 dating indicates unit is less than 5 ka in age  

Fossiliferous shelf-sand facies (Holocene)—Quartz sand, olive-gray (5Y 
3/2) to medium-greenish-gray (5G 5/1), fine- to medium-grained, phos-
phatic, bioturbated.  Clay minerals are kaolinite, illite-smectite, and illite, 
in order of decreasing abundance.  Commonly contains diverse molluscan 
fauna.  Basal contact commonly marked by a layer (1 to 2 inches (in.)) 
of coarse-grained, granular sand; black phosphate pebbles; and sparse 
worn and rounded bones and teeth.  Present only in subsurface (see cross 
section B–B').  Unit is up to 25 ft thick. Known ages are less than 5 ka 

Silver Bluff beds (late Pleistocene, between 33 and 85 ka)

Fluvial sand facies—Quartz sand, grayish-brown (10YR 3/2) to yellow 
(10YR 7/6) or medium-gray (N5), fine-grained, silty and clayey, feldspathic.  
Dominant clay mineral is kaolinite.  Occurs only at elevations below 10 ft.  
Unit is as much as 15 ft thick

Beach to barrier-island sand facies—Quartz sand, grayish-orange (10YR 
7/4); fine-grained with minor but persistent coarse-grained fraction; 
bimodally well sorted; dark, very fine grained heavy minerals abundant; 
prominently crossbedded.  Deposits are up to 10 ft thick

Clayey sand and clay facies—Silty to sandy clay and quartz sand, grayish-
orange (10YR 7/4), medium-gray (N5) or dark-gray (N3), fine-grained, 
clayey. Kaolinite is dominant clay mineral with lesser amounts of 
illite-smectite and illite.  Occurs only at elevations below 10 ft. Unit is as 
much as 10 ft thick.  Locally, overlying thin deposits of clay and organic 
muds of Holocene age may be present

Wando Formation (late Pleistocene, between 70 and 130 ka)

Fluvial sand facies—Quartz sand, medium-gray (N5) to light-brown (5YR 
6/4), medium- to coarse-grained, feldspathic and quartz pebbly, conspicu-
ously crossbedded.  Dominant clay mineral is kaolinite.  Sands derived 
from the Edisto River.  Occurs only at elevations below 25 ft.  Unit is as 
much as 25 ft thick

Barrier-island sand facies—Quartz sand; medium-gray (N5) to light-brown 
(5YR 6/4) where fresh; may be dark yellowish orange (10YR 6/6) to 
grayish orange (10YR 7/4) or humic, dusky yellowish brown (10YR 2/2) 
in upper 7 ft; fine-grained; dark, very fine grained heavy minerals abundant.  
Dominant clay mineral is vermiculite.  Forms Mount Pleasant barrier system 
(Colquhoun, 1974), mostly at elevations from 15 to 27 ft.  Unit is up to 25 
ft thick

Clayey sand and clay facies—Clay, mottled pale-grayish-orange (10YR 
7/4) and medium-light-gray (N6), silty to sandy; clayey quartz sand, 
mottled pale-grayish-orange (10YR 7/4) and medium-light-gray (N6), 
fine- to medium-grained.  Dominant clay mineral is kaolinite with illite 
and illite-smectite in variable proportions.  Soil profile poorly developed 
compared to Ten Mile Hill beds and older terrace units; grayish-yellow 
(5Y 8/4) to dark-yellowish-orange (10YR 6/6) B horizon; base of B hori-
zon typically 6 ft  deep.  Unit covered in places by modern swamp depos-
its less than 3 ft thick.  Underlies the Princess Anne terrace (Colquhoun, 
1974) surface at elevations near 20 ft.  Wood and terrestrial vertebrate 
fossils indicate formation in estuarine to fluvial environments.  Unit is up 
to 35 ft thick

Fossiliferous shelf-sand facies—Quartz sand, medium-gray (N5), fine- to 
medium-grained, phosphatic, bioturbated.  Clay minerals are kaolinite, 
illite-smectite, and illite in order of decreasing abundance.  Commonly 

contains diverse molluscan fauna.  Basal contact commonly marked by 
a layer 1 to 2 in. thick of coarse-grained sand, black phosphate pebbles, 
and worn and rounded bones and teeth.  Present only in subsurface (see 
cross sections A–A' and B–B'). Unit is up to 20 ft thick 

Barrier sand facies—Quartz sand; medium-gray (N5) where fresh; may 
be dark yellowish orange (10YR 6/6) to grayish orange (10YR 7/4) or 
humic, dusky yellowish brown (10YR 2/2) in upper 7 ft; fine-grained; 
dark, very fine grained heavy minerals abundant.  Dominant clay mineral 
is vermiculite.  Forms Awendaw barrier system (Colquhoun, 1974), mostly 
at elevations from 20 to 35 ft.  Unit up to 20 ft thick

Clayey sand and clay facies—Clay, medium-gray (N5), silty to sandy, soft, 
greasy; only locally developed and largely overridden by deposits of barrier 
sand facies (Qwls).  Underlies the Pamlico terrace of Colquhoun (1974) at 
elevations near 25 ft.  Unit is up to 5 ft thick

Fossiliferous shelf-sand facies—Quartz sand, medium-gray (N5), fine- 
to medium-grained, phosphatic, bioturbated.  Dominant clay minerals 
are kaolinite, illite-smectite, and illite in order of decreasing abundance.  
Commonly contains a diverse molluscan fauna.  Basal contact commonly 
marked by a layer 1 to 2 in. thick of coarse-grained sand, black phosphate 
pebbles, and worn and rounded bones and teeth. Unit is up to 15 ft thick

Ten Mile Hill Formation (middle Pleistocene, between 200 and 240 ka)

Fluvial sand facies—Quartz sand, medium-gray (N5) to light-brown (5YR 
6/4), medium- to coarse-grained, feldspathic, quartz pebbly, conspicuously 
crossbedded.  Dominant clay mineral is kaolinite.  Sands derived from the 
Edisto River.  Occurs only at elevations between 25 and 40 ft 

Barrier-island sand facies—Quartz sand, dark-yellowish-orange (10YR 
6/6), fine- to medium-grained; abundant very fine grained, dark, heavy 
minerals present below soil profile; conspicuously crossbedded.  Dominant 
clay minerals are kaolinite and vermiculite.  Forms the Cainhoy barrier 
system, mostly at elevations between 35 and 50 ft.  Unit is up to 50 ft 
thick

Clayey sand and clay facies—Clayey quartz sand, typically dark yellowish 
orange (10YR 6/6) and (or) medium light gray (N6), less commonly 
medium bluish gray (5B 5/1) or greenish gray (5G 6/1), black (N1) or 
medium reddish brown (10R 4/6), fine- to medium-grained, poorly sorted; 
and silty to sandy clay with same color distribution as sand, but locally 
medium red (5R 4/6) where deeply weathered.  Dominant clay minerals 
are kaolinite, illite-smectite, and illite in variable proportions.  Soil profile 
moderately well developed compared to older (Ladson, Penholoway) 
terrace units; B horizon is typically dark yellowish orange (10YR 6/6) to 
reddish orange (10R 6/6) and 6 to 10 ft deep.  Underlies lower Talbot 
terrace (Colquhoun, 1974) at elevations between 25 and 40 ft.  Wood 
and terrestrial vertebrate fossils indicate deposition in fluvial to estuarine 
environments.  Unit is up to 65 ft thick

Fossiliferous shelf-sand facies—Quartz sand, medium-gray (N5), fine- to 
medium-grained, silty, micaceous; very fine grained heavy minerals sparsely 
present; shells moderately to abundantly present (mostly Mulinia and some 
oyster).  Unit is up to 33 ft thick

Ladson Formation (middle Pleistocene, between 240 and 730 ka) 

Pebbly, coarse sand facies—Feldspathic pebbly quartz sand, medium-gray 
(N5), very poorly sorted, subrounded to subangular.  Probably represents a 
prehistoric channel of the Santee River (Weems and Lemon, 1989).  Unit 
is up to 40 ft thick

Barrier-island sand facies—Quartz sand, dark-yellowish-orange (10YR 
6/6), coarse-grained, poorly sorted; abundant fine-grained, dark, heavy 
minerals below soil profile; conspicuously crossbedded.  Dominant clay 
minerals are kaolinite and vermiculite, with detrital gibbsite clasts at base.  
Occurs mostly at elevations between 50 and 65 ft.  Probably deposited 
as part of a coastal barrier island.  Unit is as much as 15 ft thick

Clayey sand and clay facies—Clayey quartz sand, medium-reddish-brown 
(10YR 4/6), medium-red (5R 4/6), and (or) medium-light-gray (N6), 
medium-grained, poorly sorted, and silty to sandy clay.  Dominant clay 
minerals are kaolinite, illite-smectite, and illite in variable proportions.  
Soil profile is well developed; B horizon is medium reddish brown (10R 
4/6) to dark reddish brown (10R 3/4) and 12 to 16 ft deep.  Underlies 
the upper Talbot terrace (Colquhoun, 1974) at elevations between 35 and 
55 ft.  Terrestrial vertebrate fossils locally present.  Probably accumulated 
in fluvial, estuarine, and lagoonal environments.  Unit is as much as 33 ft 
thick

Fossiliferous shelf-sand facies—Quartz sand, medium-reddish-brown (10YR 
4/6) to medium-light-gray (N6), fine- to medium-grained, well-sorted, phos-
phatic, bioturbated.  Dominant clay minerals are kaolinite, illite-smectite, 
and illite in order of decreasing abundance.  Calcareous fossils leached out.  
Unit is as much as 15 ft thick

Daniel Island beds (informal) (early Pleistocene, between 730 and 
1,600 ka)

Clayey sand and clay facies—Clayey sand, silty to sandy clay, and clay, 
dark-bluish-gray (5B 3/1) to dark-gray (N3), fine- to medium-grained, 
dense; clay-rich beds sticky; interbeds of dark-brownish-gray (5YR 3/1) 
peat.  Probably deposited in estuarine to lagoonal environments.  Present 
only in subsurface channels (see cross sections A–A' and B–B').  Unit is 
up to 60 ft thick

Penholoway Formation (early Pleistocene, between 730 and 970 ka)

Barrier-island sand facies—Quartz sand, medium-reddish-brown (10R 4/6) 
to dark-yellowish-orange (10YR 6/6), fine- to medium-grained; abundant 
very fine grained, dark, heavy minerals below soil profile; conspicuously 
crossbedded.  Probably deposited as coastal barrier islands.  Dominant 
clay minerals are kaolinite and vermiculite, with reworked gibbsite forming 
detrital clayballs at base.  Unit is as much as 12 ft thick

Clayey sand and clay facies—Clayey to silty sand, sandy to clayey silt, and 
silty to sandy clay, medium-gray (N5) to medium-bluish-gray (5B 5/1); 
weathers to very light gray (N8); commonly well laminated.  Dominant 
clay minerals are kaolinite, illite-smectite, and illite, in variable proportions.  
Probably accumulated in an open lagoonal environment.  Soil profile well 
developed; B horizon ranges from medium reddish brown (10R 4/6) to 
mottled dark reddish brown (10R 3/4) and light gray (N7) and is 10 to 15 
ft deep. Underlies the Penholoway terrace (Colquhoun, 1974) at elevations 
between 70 and 75 ft.  Phosphate- and quartz-pebble lag beds are present 
locally at base of unit.  Unit is as much as 45 ft thick

Fossiliferous shelf-sand facies—Quartz sand, medium-gray (N5) to 
medium-bluish-gray (5B 5/1) or greenish-gray (5G 6/1), fine- to medium-
grained, phosphatic, bioturbated.  Dominant clay minerals are kaolinite, 
illite-smectite, and illite in decreasing order of abundance.  Unweathered 
beds contain a moderately diverse molluscan fossil fauna, so this unit 
probably formed as a shallow-marine-shelf deposit.  Basal contact typically 
marked by a 1- to 3-in. thick layer of coarse-grained sand, quartz pebbles, 
black phosphate pebbles, and worn and rounded bones and teeth.  Unit is 
as much as 22 ft thick

Waccamaw(?) Formation (early Pleistocene, about 1.2 Ma)

Pebbly, coarse sand facies—Gravel to feldspathic pebbly quartz sand, 
coarse-grained, medium-gray (N5), very poorly sorted, subrounded to 
subangular.  Present only near Four Hole Swamp and beneath the swamp 
deposits veneering the bottom of Four Hole Swamp.  Probably represents 
the relict bed load of a prehistoric channel of the Santee River (Weems 
and Others, 1997).  Unit is as much as 25 ft thick

Barrier-island sand facies—Quartz sand, medium-reddish-brown (10R 4/6) 
to dark-yellowish-orange (10R 6/6), fine- to coarse-grained; abundant very 
fine grained heavy minerals below soil profile; conspicuously crossbedded.  
Probably deposited as coastal barrier islands.  Dominant clay minerals are 
kaolinite, vermiculite, and gibbsite.  Unit is as much as 30 ft thick

Clayey sand and clay facies—Clayey to silty sand, sandy to clayey silt, 
and sandy to silty clay, medium-gray (N5) to dark-gray (N3).  Dominant 
clay minerals are kaolinite, illite-smectite, illite, and gibbsite, in variable 
proportions.  Probably accumulated in marsh, lagoonal, estuarine, and 
deltaic environments.  Soil profile deep; B horizon ranges from medium 
reddish brown (10R 4/6) to mottled dark reddish brown (10R 3/4) and 
very light gray (N8) and is 15 to 20 ft deep.   Unit is as much as 26 ft  
thick

Fossiliferous shelf-sand facies—Sand, medium-gray (N5) to light-gray 
(N7), fine- to medium-grained, calcareous to very calcareous, phosphatic, 
bioturbated.  Dominant clay minerals are kaolinite, illite-smectite, and 
illite in decreasing order of abundance.  Unweathered beds contain a 
diverse molluscan fossil fauna, so this unit probably formed as a shallow 
marine-shelf deposit.  Basal contact typically marked by a 1- to 3-in. thick 
layer of coarse-grained sand, black phosphate pebbles, and worn and 
rounded bones and teeth.  Unit is as much as 20 ft thick

Okefenokee Formation (early Pleistocene, about 1.6 Ma)—Clayey 
to silty, poorly sorted sand, sandy to clayey silt, and sandy to silty clay, 
medium-gray (N5) to dark-gray (N3).  Dominant clay minerals are kaolin-
ite, illite-smectite, illite, and gibbsite, in variable proportions.  Probably 
accumulated in marsh, lagoonal, estuarine, and deltaic environments.  
Soil profile deep; B horizon ranges from medium reddish brown (10YR 
4/6) to mottled dark reddish brown (10R 3/4) and very light gray (N8) 
and is 15 to 20 ft deep.  Unit is as much as 25 ft thick

 
Raysor Formation (upper Pliocene, about 3.0 Ma)—Sand, quartzose and 

phosphatic, medium-dark-gray (N4), grayish-brown (5YR 3/2), dark-olive-
green (5GY 2/2) or black (N1), fine- to medium-grained, sparsely shelly.  
Basal contact commonly marked by a thin layer, 1 to 2 in. thick, of black, 
rounded phosphate pebbles 1 to 2 in. in diameter.  Unit is as much as 14 
ft thick

Goose Creek Limestone (upper Pliocene, about 3.5 Ma)—Quartzose and 
phosphatic calcarenite, very pale orange (10YR 8/2) (wet) to chalk-white 
(N9) (dry), medium- to coarse-grained, sparsely shelly.  Dominant clay 
minerals are kaolinite and illite-smectite.  Basal contact marked by a layer 
1 to 4 in. thick of black, rounded phosphate pebbles 1 to 2 in. in diameter.  
Unit is up to 50 ft thick

Marks Head Formation (lower Miocene, about 18 Ma)— Quartz-
phosphate sand, grayish-olive (10Y 4/2) or olive-gray (5Y 3/2) to 
medium-olive-brown (5Y 4/4), fine-grained; contains attapulgite.  Basal 
contact with underlying Ashley Formation typically marked by sparse, 
subrounded phosphate pebbles and (or) rounded fragments of thick oyster 
shells 0.5 to 1.0 in. in diameter.  Vertebrate remains locally abundant.  
Present only in subsurface (see cross-sections A–A' and B–B').  Unit is up 
to 50 ft thick  

Parachucla Formation (lower Miocene, about 22 Ma)—Clayey and silty 
fine sand to clayey and fine sandy silt, dark-greenish-gray (5GY 4/1), 
massive, locally phosphatic.  Dominant clay mineral is smectite, with 
lesser amounts of illite and kaolinite.  Unit is as much as 10 ft thick

                                                                                                                   
Edisto Formation (lower Miocene and (or) upper Oligocene, about 

24 Ma)—Calcareous sand to quartzose calcarenite, light-olive-gray 
(5Y 6/1), greenish-gray (5GY 6/1), medium-bluish-green (5BG 4/6) 
or medium-brown (5YR 4/4), mostly fine grained, phosphatic.  Base 
of unit locally contains sparse black phosphate pebbles 1 to 2 in. in diam-
eter.  Foraminifera abundant; Ostrea haitiensis, other pelecypod shell 
fragments, and bryozoan fragments locally abundant.  Unit is as much as 
40 ft thick

Chandler Bridge Formation (upper Oligocene, about 27 Ma)— Quartz-
phosphate sand, greenish-gray (5GY 6/1), dark-greenish-gray (5GY 4/1) 
or greenish-black (5GY 2/1); fine-grained; and clay, dark-yellowish-brown 
(10YR 4/2), silty. Dominant clay mineral is illite-smectite, with lesser 
amounts of illite and kaolinite; sepiolite occurs in the basal few inches.  
Basal contact with the underlying Ashley Formation (Pa) is a burrowed, 
gently undulating unconformity.  Vertebrate remains are abundant.  Unit 
is as much as 10 ft thick

Ashley Formation (lower Oligocene, about 29 Ma)—Calcarenite, light-
olive-brown (5Y 5/6), fine-grained, phosphatic, massive.  Dominant clay 
mineral is illite-smectite, with lesser amounts of sepiolite and attapulgite.  
Base of unit contains densely packed phosphate-pebble bed (1 to 4 in. 
thick), with pebbles modally 1 to 2 in. in diameter.  Sparsely macrofossil-
iferous, but sand-size Foraminifera tests are abundant.  Unit is as much 
as 125 ft thick

Harleyville Formation (upper Eocene, about 35 Ma)—Calcarenite, very 
light gray (N9) to light-brown (5YR 6/4), medium-grained, soft, porous; 
dominantly composed of bryozoan fragments.  Dominant clay minerals are 
illite-smectite, illite, and kaolinite in order of decreasing abundance; small 
amounts of clinoptilolite also present. Basal 10 ft of unit commonly very 
fine grained calcarenite, probably mostly reworked from the underlying 
Parkers Ferry Formation.  Base of unit typically marked by 1 to 6 in. layer 
of black phosphate pebbles and quartz-glauconite sand.  Unit is as much as 
35 ft thick

Parkers Ferry Formation (upper Eocene, about 36 Ma)—Calcilutite to 
very fine grained calcarenite, light-bluish-green (5BG 6/6) or grayish-blue-
green (5BG 5/4) to medium-yellowish-green (10GY 6/4), stiff to plastic, 
dense, sticky.  Dominant clay mineral is illite-smectite with lesser amounts 
of clinoptilolite.  Basal 1 to 2 ft of unit commonly black (N1) and composed 
mostly of phosphate and glauconite sand.  Contains numerous short (0.25 
to 0.50 in.) echinoid spines.  Unit is as much as 70 ft thick

Tupelo Bay Formation, Pregnall Member (upper Eocene, about 38 
Ma)—In part misidentified as “Harleyville Formation” in Ward and others 
(1979). Calcarenite, light-greenish-gray (5GY 8/1) to olive-gray (5Y 4/1) 
or brownish-gray (5YR 4/1), very fine grained; interlayered with thin (0.5 
to 2.5 in.) indurated strata.  Dominant clay mineral is illite-smectite with 
lesser amounts of clinoptilolite.  Basal 1 to 2 ft of unit commonly black 
(N1) and composed mostly of phosphate and glauconite sand.  Unit is as 
much as 100 ft thick. 

Tupelo Bay Formation, Cross Member (middle Eocene, about 39 Ma)— 
Calcarenite, yellowish-gray (5Y 8/1) to light-gray (N7), very fine grained, 
friable but tough; some beds firmly cemented.  Macrofossil fragments locally 
abundant.  Small amounts (1 to 5 percent) of glauconite and phosphate 
commonly present.  Known only from subsurface (see cross section A–A'). 
Unit is as much as 100 ft thick

Santee Limestone (middle Eocene, about 42 Ma)—Calcarenite, fine-
grained to coarse-grained calcirudite, peloid packstone, and grainstone, 
lighter than yellowish gray (5Y 8/1).  Macrofossil fragments consist mostly 
of bryozoans and pelecypods; foraminifera and ostracodes abundant in 
finer lithologies.  Unit as much as 70 ft thick.  Present only in subsurface 
(see cross-section A–A').                                                                                                                     
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*Shaded quadrangles depict previously published 7.5-minute geologic maps.  Full citations are listed in references.


