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Abstract

This report describes a modeling and simulation approach 
for disturbance patterns representative of the environment 
experienced by a digital system in an electromagnetic 
reverberation chamber.  The disturbance is modeled by a multi-
variate statistical distribution based on empirical observations.  
Extended versions of the Rejection Samping and Inverse 
Transform Sampling techniques are developed to generate multi-
variate random samples of the disturbance.  The results show 
that Inverse Transform Sampling returns samples with higher 
fidelity relative to the empirical distribution.  This work is part of 
an ongoing effort to develop a resilience assessment 
methodology for complex safety-critical distributed systems.
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1.   Introduction

A research effort is underway to develop practical validation and verification (V&V) methods that can 
enable rigorous safety assurance for the next generation of aviation systems.  T hese systems are 
characterized by highly complex, large-scale, network-based distributed architectures with software-
implemented functionality and a dvanced computation and communication capabilities.  To meet the 
safety goals, these systems must be dem onstrably robust w ith respect to system design and 
implementation errors, component degradations and failures, and partial system failures.  The V&V 
challenge is compounded by strong coupling of system components in the software and the hardware, as 
well as the need to consider unexpected and possibly malicious component behavior [1].  

To support this research effort, verification approaches are being developed for robust distributed 
algorithms that support system resource management in a fault space with a wide range of severity.  A 
system architecture for safety-critical real-time applications must have the ability to mitigate the effects of 
internal component faults of varying severity [2].  A safety-critical system must have sufficient tolerance 
to accommodate more frequent uncorrelated random faults without disruption of the system services.  A 
robust system must also mitigate infrequent but more severe correlated faults that can exceed the system 
design assumptions, disrupt internal coordinated operation among the system components and propagate 
effects outward to the external service interfaces.  Analysis techniques will be developed for system 
designs intended to en sure continued safe operation in the p resence of c omponent misbehavior while 
simultaneously minimizing their adverse effects.  These techniques should enable designs with strongly 
assured safety properties under the weakest possible (i.e., least restrictive) assumptions in terms of the  
number and types of faults a system can handle. 

In this context, we are developing analysis and simulation tools to assess and gain insight into the error 
propagation dynamics of fault-tolerant distributed architectures.  In [3] we proposed an approach to assess 
system resilience, which we defined as the ability to contain and recover from fault effects.  The threats
to the delivery of proper system service are internal system conditions or external environmental 
conditions (e.g., HIRF, lightning, high-energy particle radiation, power system transients, etc.) that may 
cause faults in the system.  There is special interest in examining the response to functional upsets, which 
are error modes that involve no pe rmanent component damage, can s imultaneously occur in multiple 
channels of a redundant distributed system and can cause unrecoverable state error conditions [4, 5, 6].

Under the proposed assessment approach, the system is viewed from a stimulus-response (i.e., cause 
and effect) perspective (see Figure 1 and Figure 2).  The threat conditions specify the stimulus space,
which is a subset of all possible system threat patterns.  A disturbance is an external system stimulus that 
may cause a perturbation, defined here as an internal fault condition in the form  of outages on the 
services provided by the components.  Alternatively, the specification of the disturbance can be bypassed 
and the stimulus can be specified as a perturbation.  The e ffects of a perturbation (i.e., errors) may 
propagate throughout the system and reach the external functional interface, thus causing an outage of the 
external system service, which we refer to as a disruption.  The response space is the set of system 
disruptions resulting from the app lication of the stimulus space.  A s Figure 2 suggests, for a g iven 
perturbation, the severity of the disruption is determined by the error propagation characteristics of the 
system.
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For a quantitative system resilience analysis, the disturbance, perturbation and disruption spaces may 
be described in terms of probability distributions (PDs) of random variables whose values correspond to 
the severity of occurrences (i.e., events or instances) in these spaces.  Figure 3 illustrates the use of PDs to 
describe the spaces in the stimulus-response chain.  To enable the use of such distributions in analyses, 
we need severity metrics for the occurrences in each space. A simple occurrence severity model for a 
HIRF disturbance was described in [7].  Fo r perturbations and disruptions, we use the concept of 
corruption, which is defined as the amount of error in a service outage.  Our proposed corruption metrics 
for perturbations and disruptions are presented in [3].  Given the probability distribution for a stimulus, 
we can perform an injection experiment (e.g., a Monte Carlo experiment) to generate a response set for 
which we can then compute the probability distribution.  The design goal for a resilient system is to 
mitigate the fault space by creating an inv erse relation between the probability of occur rence and the
severity of effects.

As part of this effort to d evelop robust resilient systems, two exper iments were condu cted at th e 
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NASA Langley High Intensity Radiated Field Laboratory [8] to investigate the effects of radiated 
electromagnetic fields on digital computer systems.  During the first experiment, a prot otype of an 
onboard data communication system was exposed to a wide range of electromagnetic field conditions to 
measure the effects of the radio frequency (RF) radiation on the performance of the system [9].  Figure 4
shows a typical observed system response.  Every time an RF radiation burst was applied to the system, 
the same or similar response pattern was observed.  This repetitive response led to speculation that the 
radiation in the chamber also had a repetitive pattern1. Figure 5 shows a sample of the peak-normalized 
electromagnetic field strength measured by an antenna inside the chamber.  The field amplitude pattern 
was indeed found to be repetitive and dependent on chamber conditions like frequency, input power and 
others.  Based on this, it was conjectured that the error burst pattern was caused by the pattern of field 
excursions above the susceptibility threshold of the radiated device.  We refer to these excursions of the 
field strength amplitude as overstrokes. Figure 7 shows an overstroke pattern generated by “slicing” a 
field amplitude curve at a level representing the su sceptibility threshold of a d evice2. The overstroke 
amplitude of 0.0 corresponds to the field amplitude at the susceptibility threshold.  We believe that the 
error rate and duration of functional error bursts are strongly correlated with the amplitude and duration of 
field strength excursions above the susceptibility threshold of the radiated device.  This error generation 
mechanism could help explain the relation between field strength and error probability reported by Yates 
et al. [10]. 

A second experiment was conducted to collect field amplitude data suitable for a characterization of 
the electromagnetic environment in a reverberation chamber [7].  The characterization of the 
electromagnetic field was based on statistics of overstroke peak amplitude and duration for a range of 
susceptibility threshold profiles.  Am ong the repor ted analyses, we c onsidered the d istribution of 
overstrokes for the susceptibility threshold profile measured in the first experiment.  Figure 6 shows the 
scatter plot for the corresponding overstrokes.  There are 4340 points in Figure 6. Figure 8 shows the 
histograms of the relative frequency distribution of overstroke peak amplitude and duration when the 
overall peak field strength is 20 V/m above the susceptibility threshold (Eos = 20 V/m).

By combining the results from these two experiments, we could develop a simple fault simulation 
model in which ran domly generated disturbances in the form of fie ld overstrokes are mapped to e rror 
bursts on system models.  This relation between the disturbances and perturbations is a critical element in 
the approach described above for the characterization of sy stem resilience with respect to a pa rticular
disturbance space [3].  

The goal of the work presented in th is report was to dev elop a rand om sample generator for an 
overstroke population described in terms of the peak and dur ation of the overstrokes.  We w ant to 
generate random samples that a re not t aken directly from the g iven population sam ple but hav e 
approximately the sam e statistical properties.  We a lso want t he sample generation technique to be 
generic but easily tunable so it can be applied to any given overstroke population.  To meet this goal, we 
applied a generic, non-parametric statistical model for field overstrokes and a simple simulation solution 
to generate random samples from this model.  

1 This is actually a well-known fact due to the repeated patterns of the stirrers, but we were not aware of it at the 
time of the experiment.
2 Note that the data in Figures 4, 5, and 6 are for illustrative purposes only and they are not directly related.  The data 
in these figures were not taken at the same time or with the same test conditions.
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Normalized Field Strength Trace
Frequency: 121.15 MHz
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Figure 4: Example of system response to RF radiation

Figure 5: Sample trace of the electromagnetic field strength in a reverberation chamber
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Figure 6: Scatter plot of normalized experimental overstroke peak amplitude and duration
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Frequency: 121.15 MHz; Reference Level: 0.65
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Figure 7: Example of overstrokes for a particular susceptibility threshold level
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Figure 8: Histograms of experimental overstroke amplitude and duration
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The next section describes the selected approach.  This is followed by a description of the results.  The 
report ends with brief concluding remarks summarizing what has been accomplished and future work.

2.   Modeling Approach

A primary constraint in this study was that only the existing experimental field data as reported in [7]
was available for modeling and si mulation activities.  It was possible to generate samples of d ifferent 
overstroke populations with the existing data (for example, by changing the susceptibility threshold used 
to determine the overstrokes from the exi sting field amplitude traces), but there was only  one set o f 
overstrokes for any  given population as defined by the param eter configuration used to g enerate the 
overstrokes from field amplitude traces.  This could be an issue if we tried to assess the absolute accuracy 
of the dev eloped model.  Since t his was no t a hy pothesis testing study [11], the assessment of 
representativeness of a g iven experimental overstroke sample was no t within the scope of the study.
Rather, the problem was framed such that we had to determine how well t he distribution of simulated 
overstrokes matched a given experimental sample distribution (i.e., compare experimental vs. simulated 
samples), assuming that the given sample was representative of the disturbance pattern that an actual 
system would experience in a reverberation chamber. Only the overstroke sample shown in Figure 6 was 
considered in this study.

An overstroke population is characterized in terms of two  continuous random variables, the peak 
amplitude P and the duration D, and a b ivariate probability distribution.  An  overstroke observation 
consists of a pa ir (p, d) c orresponding to th e peak amplitude and duration of the ov erstroke.  For th e 
empirical sample, P and D have ranges [0, pmax] and [0, dmax].

The first modeling approach considered was the use of em pirical marginal cumulative distribution 
functions (CDF) for the variables P and D, and an empirical copula3 to capture the dependence between P
and D in terms of a j oint cumulative distribution function for the marginal CDFs [12]. Although simple 
in concept, this approach was more complex to model and simulate than the alternative approaches.  

The second alternative modeling approach was an empirical bivariate cumulative distribution function 
(eCDF), which is defined as [13]:

FP,D(p, d) = [ I I(pi p, di d)]/n,

for an n-point sample where the i- th point is denoted (pi, di). I(x, y) is the indi cator function, which is 
equal to 1 when x and y are true, and zero otherwise.  This simple modeling approach would work well 
for our sample data.  However, it was rejected because the simulation based on it was more complex than 
for our next alternative.

The selected modeling approach was an em pirical probability distribution function (ePDF).  For the  
bivariate case, this is simply a three-dimensional histogram with rectangular bins on the horizontal plane 
and the vertical dimension equal to the relative frequency of experimental points in each bin. As for the 
basic two-dimensional histogram, this approach works well if the sample size is large.  Given that we had 
4340 points in the experimental sample and most of them were concentrated close to the (0, 0) origin (see 

3 A copula is a multivariable probability distribution in which the marginal distributions are uniform.
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Figure 6), the ePDF was the easiest and most effective alternative modeling approach.  Additionally, as 
described in the next section, there were at least two simple techniques that could be applied to generate 
random samples based on the ePDF. 

To build a bivariate ePDF, we had to specify the number and width of the bins.  Two options were 
considered for the number of bins [14].  The selected option was the square-root rule, where the number 
of bins is given by:

k = n.

With this choice, the growth in the size of the model (i.e., its complexity) is sub-linear relative to the 
number of sample points.  

For the bin width selection to work in combination with the square-root rule for the number of bins, 
we considered two alternatives: constant bin widths and percentile-based bin widths.  For the constant bin 
width option, the bin widths for P and D, denoted hp and hd, are given by:

hp = pmax/k and hd = dmax/k.

The percentile-based bin width option is intended to give the model a higher resolution around the 
intervals with the highest concentration of points. For this bin-width alternative, the upper bound of the 
bin corresponding to the p-th percentile for the P random variable is given by the i-th value of P when 
arranged in increasing order:

i = Round(p(n+ 1)/100).

The bin widths are determined independently for the ranges of the P and D random variables.

The results presented in Section 4 show t hat the empirical probability distribution function using the 
square-root rule and constant bin widths is an adequate model for our experimental sample distribution.

Alternatively, we can use the Freedman-Diaconis rule with constant bin width given by:

h = 2 (IQR/n1/3)

where IQR is the int er-quartile range (i.e., the distance between the 25th and 75th percentiles).  This bin 
width takes into consideration the actual distribution of the sample and is insensitive to outliers.  This rule 
would be app lied independently to the peak  P and distribution D rand om variables to d etermine the 
dimensions of the bins.  The Freedman-Diaconis rule is available for future use, if needed, but it was not 
implemented in the model and simulations presented in this report.

3.   Simulation Approach

Simulation is simply the dynamic generation of samples from the modeled population.  This is realized 
by a mathematical transformation based on the modeled population that takes uniform random variables 
as inputs and g enerates random variables with the desired distribution.  One or m ore pseudo-random 
number generators (PRNGs) are used to produce samples of uniformly distributed variables.  There are a

8



number of techniques that can be used to transform uniform random samples into the desired population, 
including Rejection Sampling, Inverse Transform Sampling, Metropolis-Hasting algorithm, Gibbs 
sampling, Slice sampling, and othe rs [15].  T he main difficulty for our simulation problem is that the 
random variables that characterize the overstroke population, P and D, are not independent, and thus, we 
need a way to accurately capture their correlation.  In addition, we wanted our simulation approach to 
require only a few simple mathematical operations, be easy to implement and be computationally fast.
We considered two sampling techniques: Rejection Sampling and Inverse Transform Sampling.

Rejection Sampling (also known as A cceptance-Rejection Method) can be easily understood using 
Figure 9. Suppose we had a random variable r with range [0, 1] and PDF g iven by the red l ine.  Let u1 
and u2 denote two uniform and independent (i.e., uncorrelated) random variables, both with range [0, 1].  
If we generate uniformly distributed random samples in the u1 x u2 sp ace and we discard all samples
above the r ed line, the samples that remain are distributed according to the P DF of r.  I n effect, this 
algorithm transforms u1 and u2 into r.  

To apply Rejection Sampling to the overstroke bivariate distribution, we transform three uniform and 
uncorrelated random variables U1, U2, U3 into correlated variables P and D using the empirical PDF as the 
rejection threshold. Specifically, sample point (p, d) is given by:

p = pmax·u1, and

d = dmax·u2.
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Let fP,D(p, d) denote the overstroke PDF a t point (p, d).  I f u3 fP,D(p, d), point (p, d) is rejected; 
otherwise, (p, d) is accepted. Comparison with fP,D(p, d) ensures that P and D are properly correlated.

Application of the Rejection Sampling technique requires the evaluation of fP,D(p, d) at every point in 
the P x D space as sample points (p, d) computed from variables U1 and U2 have continuous, real-valued 
ranges. We used the bilinear interpolation technique to extend our ePDF model from a discrete domain to 
a continuous domain.  We use Figure 10 to illustrate the application of bilinear interpolation to determine 
the value of Q = fP,D(p, d).  In Figure 10, we are operating in a three-dimensional space and we have four 
known reference points defined by our ePDF model: (p1, d1, Q11), (p2, d1, Q21), (p1, d2, Q12), and (p2, d2,
Q22).  We assume that p1 < p < p 2 and d1 < d < d 2. To determine Q, we first interpolate along the 
horizontal dimension in Figure 10 and then along the vertical dimension.  We define four scaling factors:

wp1 = (p – p1)/(p2 – p1)

wp2 = (p2 – p)/(p2 – p1)

wd1 = (d – d1)/(d2 – d1)

wd2 = (d2 – d)/(d2 – d1)

We interpolate along the horizontal dimension to determine R1 and R2:

R1 = wp2Q11 + wp1Q21

R2 = wp2Q12 + wp1Q22

Next, we interpolate along the vertical dimension to determine Q:

Q = wd2R1 + wd1R2 = wp2wd2Q11 + wp1wd2Q21 + wp2wd1Q12 + wp1wd1Q22

The corresponding equations for Q when p = p2 and/or d =  d2 require interpolation along at most one 
dimension and are easily derived.

Q11 Q21

Q22Q12

pp1 p2

Q
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d1

d
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S2S1

Figure 10: Reference points of bilinear interpolation technique
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Our second simulation technique was a form of Inverse Transform Sampling applied to a b ivariate 
distribution.  Inverse Transform Sampling relies on the Probability Integral Transform (PIT) [16].  Let P 
and U denote r andom variables, and F P(P) denote the marginal CDF of P .  If U = FP(P), then U has a  
uniform distribution with range [0, 1].  For the Inverse Transform Sampling technique, we apply the PIT 
transform in the opposite direction: P = FP

-1(U).  This is illustrated in Figure 11 where we use the random 
value u to graphically determine the corresponding value p.  T o expand the inverse transform to the 
bivariate case, we use two uniform random variables U1 and U2.  First, we apply the inverse transform to 
the marginal CDF of P:

p = FP
-1(u1)

Then, we apply the inverse transform to the conditional CDF of d, denoted FD|P(d|p):

d = FD|P
-1(u2|p)

The marginal FP(P) is simply a cumulative histogram of the overstroke sample set considering only the P 
values.  The number of bins was set using the same square-root rule as for the ePDF model.  For the 
conditional CDF of d, F D|P(d|p), we appli ed bilinear interpolations to the ePDF to det ermine the 
conditional PDF of d given p, denoted fD|P(d|p), and then computed the conditional CDF, FD|P(d|p).  
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Figure 11: Illustration of Inverse Transform Sampling
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4.   Results

The results cover the aspects of modeling and simulation, including pseudo-random number 
generation, and comparison of R ejection Sampling and I nverse Transform Sampling. We created C 
language programs to produce the ePDF model and simulate it to generate random samples.

4.1. Empirical Probability Distribution Function

Figure 12 shows the ePDF using the square-root rule and constant bin widths.  The results presented 
below show that this is an adequate model for our experimental sample distribution.

4.2. Pseudo-Random Number Generator

The simulation of the model requires pseudo-random number generators (PRNGs) whose output are
approximately uniform and uncorrelated between samples and between generators.  Figure 13 shows the 
PDF for a PRNG.  As expected, each of the 10 bins contains approximately one-tenth of the generated 
random numbers.  Fig ure 14 shows that the cumulative distribution function of t he PRNGs g rows 
linearly, as exp ected for a uniform random variable.  Fig ure 15 shows a scatter plot where the point 
coordinates are the outputs of two PRNGs: (PRNG1, PRNG2).  Thi s figure shows that there is n o 
discernible pattern of correlation between the PRNGs.  These results provide confidence that the PRNGs, 
as the foundation for our simulation approach, meet the bas ic requirements of uniformity and 
independence.
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Figure 12: Empirical Probability Density Function
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Figure 13: Cumulative distribution function for sample of pseudo-random number generator

13



4.3. Overstroke Sample Generation

The experimental samples and the samples generated by the R ejection Sampling and Inverse 
Transform Sampling techniques are shown in Figures 16 to 18.  The corresponding marginal CDFs for the 
overstroke peak p and duration d are given in Figures 19 and 20, respectively.  Visual inspection of these 
figures appears to indicate that the Inverse Transform Sampling technique has slightly better fidelity.  The 
following section gives objective measures of goodness-of-fit for both simulation techniques.
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Figure 17: Samples generated by Rejection Sampling technique
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Figure 18: Samples generated by Inverse Transform Sampling technique
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4.4. Goodness-of-Fit Measures

The goodness of fit (GoF) of the simulation samples was evaluated quantitatively using the Chi-
Square test [16, 17] applied to the marginal CDFs for p and d of the generated samples using 10 cells, 
corresponding to 9 degrees of freedom.  The expected observed frequency was based on the experimental 
sample.  The cell (or bin) widths were defined such that each bin covered 10% of the points in the original 
experimental sample.  A s the Chi-Square statistics in Table 1 show, the Inverse Transform Sampling 
technique performed much better for both p and d than the Rejection Sampling technique.  It is not clear 
why Inverse Transform Sampling had better results, though we suspect this may be due t o some sort of 
smoothing effect in the Inverse Probability Integral Transform (IPIT) that minimizes the slight residual 
clustering patterns (i.e., correlation) in the PRNG outputs visible in Figure 15. The Rejection Sampling 
technique simply accepts or re jects generated (p, d) poin ts with no significant mathematical 
transformation between the PRNG outputs and the points.

Table 1: Chi-Square Test results for marginal CDFs (9 degrees of freedom)

Overstroke Parameter Simulation Technique Chi-Square Statistic Significance

Peak p
Rejection Sampling 47.81 2.78e-07
Inverse Transform Sampling 7.36 0.60

Duration d
Rejection Sampling 376.22 1.51e-75
Inverse Transform Sampling 15.56 0.08
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Figure 20: Marginal CDF of overstroke duration d for experimental and simulation samples
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5.   Conclusions

We have described a general modeling and simulation approach for a typical disturbance pattern that a
digital device may experience in an electromagnetic reverberation chamber.  The modeling approach is 
based on a three-dimensional histogram using bilinear interpolation to build a continuous surface for the 
empirical probability distribution function.  We cons idered two simulation approaches extended to the 
case of a bivariate distribution: Rejection Sampling and Inverse Transform Sampling.  The results showed 
that the I nverse Transform Sampling technique can generate samples that most closely match the 
empirical distribution.  

We intend to apply this modeling and simulation approach to generate random disturbance patterns as 
stimulus in a sy stem fault-response simulator.  The purpose of the simulator is to gain a th orough 
understanding of the relation between internal upsets and the propagated effects observable at the external 
system interface.  To achieve this, we needed to develop a technique to map disturbances to internal 
perturbations of the sy stem failure units (see Figure 3).  We a lso need to d evelop error propagation 
models that de termine the system-structure-dependent transformation from internal perturbations to 
external disruptions (see Figure 2). The ultimate goal is to develop a model-based methodology to assess 
system fault response and guide design efforts for enhanced resilience in complex safety-critical 
distributed systems.
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Abbreviations

CDF Cumulative Distribution Function
eCDF Empirical Cumulative Distribution Function
ePDF Empirical Probability Distribution Function
GoF Goodness of Fit
HIRF High Intensity Radiated Field
IPIT Inverse Probability Integral Transform
ms Millisecond
NASA National Aeronautics and Space Administration
PD Probability Distribution
PDF Probability Distribution Function
PIT Probability Integral Transform
PRNG Pseudo-Random Number Generator
V&V Validation and Verification
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