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1. Introduction 

Heterogeneous materials, such as layered or dispersed particulate composites, are widely used in 
military armor applications for protection from ballistic impacts or for defeating enemy 
structures and vehicles.  For effective use of these materials in short duration impact 
applications, one should be able to quantify the local- or microlevel structural response of the 
constituent phases, understand the different failure modes at the microstructural level, and 
translate this information into the effective constitutive material properties at the global level.  

Spanning a heterogeneous material from its component microphases to its global structural level 
with finite elements to obtain micro- and global structural responses leads to large finite-element 
meshes and computations that are both expensive and intractable.  Multiscale analyses are used 
to alleviate this problem and are even being extended to include nanoscale analyses to aid  
nanomaterial development.  

At a basic level, these analyses use one or more microstructural models for describing  
microlevel material features, such as fibers, particles, lamina, voids, etc., and express the  
microlevel response as a local perturbation of global response.  Each element, or a selected few 
of the global elements, calls the microstructural model to sample the microlevel structural 
response and build the element level stresses.  

While many theories are available for linking the microstructural response to the global response, 
the theory selected here is capable of modeling elastic/plastic large deformation seen in the 
armor impact applications.  It is based on the mathematically rigorous asymptotic expansion 
homogenization (AEH) method.  While a historical context to it is presented in the next section, 
its most recent proponents are Chung et al. (1999), who extended its range of application to 
include short transient loading and applied it for predicting the elastic/plastic large deformation 
of composite materials. 

In the AEH approach, the microlevel response is expressed in terms of the global response in a 
strict, mathematically seamless approach.  An updated Lagrangian scheme for small strains and 
small rotations is employed to account for large displacements, strains, and rotations over many 
time steps.  At each time step, the equilibrium solution from the previous time step is used to 
update the local microstructure.   

Since explicit time integrations take quite a large number of time steps and microlevel 
computations are to be performed at each and every time step and for the selected global finite 
elements, the attendant micro computations can take much longer times for solution.  Scalable 
computational approaches are needed to use these computationally intensive methods.  With the 
aid of domain decomposition and message-passing interface (MPI), the basic equations of 



 

 2

Chung et al. (1999) were recast for parallel computation and were shown to be scalable for a 
Taylor impact of a laminate with several hard and soft layers by Valisetty (2000).  

While the previous two references used the microstructural AEH as a stand-alone code, the 
current work couples it as a material level response provider to PARADYN, a general purpose 
explicit dynamics code.  The objective was to extend the applicability of AEH to large-scale  
multi-material impact analyses.  PARADYN is a parallel version of the Lawrence Livermore 
National Laboratory’s serial DYNA3D code.  It is a natural choice for the present purpose 
because of its large number of material models, contact algorithms, element types, etc. 

Coupling two stand-alone structural codes, such as the microstructural AEH and PARADYN, is 
best accomplished when the interface computer code is written in a form that is as simple as 
possible.  While an independent stand-alone interface is desirable, it has to accomplish two 
objectives:  (1) the data exchange between the two codes must be transparent to users, and (2) the 
coupling to the driver code, i.e., PARADYN, must be done in such a way that it does not disturb 
any of the driver code’s special features, such as scalable parallel operations, time integration, 
contact algorithms, etc.  

Since PARADYN is a scalable parallel code, it already has its computational logic and data 
structures set for tackling parallel computations.  Even though the code has facilities to add  
user-defined materials and elements, the present microstructural AEH is neither a new material 
nor an element.  Since potentially large microstructural element models can be considered with 
the microstructural AEH, requiring large amounts of microelement specific material properties, 
stresses and strains data to be stored and made available for conducting time integration, using 
PARADYN’s data arrays for storing and retrieving such microelement data becomes intractable 
and potentially conflicting to its scalability operations.  To alleviate this situation, external 
processor specific files are used for writing a global element’s data and microstructural elements’ 
data.  This enables the AEH model coupling without disturbing the PARADYN code’s MPI and 
domain decomposition-based scalability operations.  

To enable access to the microstructure AEH model, a reference is provided to it as a “Material 
Type 3” sub-option in PARADYN.  This reference is completely arbitrary and could be placed 
even without getting into any material level subroutines.  Global elements tabbed with this 
material option then write the current time step and strain increment data to external files and 
read back the effective mechanical properties and effective stresses.  With the aid of a  
user-specified microelement finite-element model and after reading global elements’ data, the 
AEH model conducts microlevel analyses and writes the effective properties and stress data to 
files.  The data exchange between the PARADYN and AEH codes occurs through external 
processor specific files.  Thus, with this interface, a dual level finite-element modeling capability 
is added to the PARADYN code.  

With regards to writing the computer code of the interface, while many environments are 
available, the one that was considered is the “interdisciplinary computing environment (ICE).”  
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As described by Clarke and Namburu (2002), this environment uses an “extensible data model 
and format (XDMF)” for describing the nature of data being exchanged between the codes and a 
visual environment for the user to monitor the exchanging data while the codes run 
independently in the background.  The xdmf uses extensible markup language (XML), 
hierarchical data format version 5 (HDF5), and network distributed global memory (NDGM).  
The XML language uses PYTHON language script to enable users to describe the types of data 
being exchanged between the independently running codes.  The HDF5 data format in which the 
codes exchange data via external files is an effective format not only for doing read/writes but 
also for grouping the data for fast scientific visualization.  The NDGM provides data access to 
codes running on processor grids in a scalable manner.  

While the ICE experience of data markup, visualization, storage, and handling will be discussed 
in a future publication, the usefulness of the AEH-PARADYN coupling is presented in the 
current report.  When coupled with PARADYN, the microstructural AEH can potentially avail 
the various material models for its constituent materials from PARADYN.  Also, in application 
runs, PARADYN’s features (e.g., contact and the ability to remove excessively deformed global 
materials) can also be used.  The microstructural AEH enhancement of PARADYN was 
demonstrated through simulation of plate impact tests for three composite laminates made of 
extremely dissimilar materials. 

The outline of this report is as follows.  Section 2 presents a brief historical context to the AEH 
development.  Section 3 presents the details of the microstructural AEH coupling to PARADYN 
and guidelines for its use.  Section 4 presents verification, scalability, and application of the 
coupled codes.  The micro- and global structural response coupling and equations are presented 
in the appendix. 

2. AEH Development 

While the rule of mixtures represents an earliest concept in composite micromechanics, the idea 
that stress/strain distributions caused by holes and inclusions in an otherwise uniform medium 
can be used to represent the stress/strain distributions around fibers in laminas is the starting 
point for the development of homogenization theories.  Licht Frottement (1987), Lene (1984), 
Moulinec and Suquet (1994), Bensoussan et al. (1978), and Sanchez-Palencia (1980) have 
formalized the mathematics of the homogenization theories for obtaining the effective material 
properties.  The works of Hashin (1962), Hashin and Strickman (1963), Hill (1964), Willis 
(1982), and Suquet (1982) can be seen as the engineering counterparts of these theories. 

For a short transient impact loading condition, a detailed knowledge of the material flow in and 
around material microstructural constituents and material interfaces is necessary.  This flow is 
three-dimensional and elastic/plastic.  Classical rule of mixtures theories based on constant stress
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or strain assumptions lead to an aggregation of the response in the microstructural details and 
thus are of limited use.  

Recent advances in mathematically rigorous AEH methods enable the coupling of micro- and 
global approaches for both linear and nonlinear structural applications (Fish et al., 1997; Terada 
and Kikuchi, 1995; Ghosh and Moorthy, 1995; Lene, 1986; and Guedes and Nikuchi, 1990).  
Most recently, Chung et al. (1999) demonstrated the applicability of the AEH method for 
heterogeneous media subjected to short transient loading by employing explicit dynamics finite-
element formulations in conjunction with elastic/plastic material response.  The investigation of 
Chung et al. (1999) considers the dynamic equation of motion discretized according to a second 
order accurate scheme presented in Namburu (1991). 

Using the AEH approach, the microlevel variables are expressed as direct functions of the global 
variables in a strict, mathematically seamless approach.  This method is especially suitable for 
conducting explicit transient elastic/plastic analysis of heterogeneous materials.  An updated 
Lagrangian scheme for small strains and small rotations is employed to account for large 
displacements, strains, and rotations over many time steps.   

Because an explicit time integration scheme takes quite a large number of time steps and the 
global and microlevel computations are to be performed at each time step and for each global 
finite element, the attendant micro and global computations can take much longer times for 
solution.  Scalable computational approaches are needed to explore these computationally 
intensive methods.  In Chung et al. (1999), the microstructural AEH was made parallel in a 
stand-alone explicit dynamics code with results showing good scalability for the AEH’s coupled 
micro/macro equations.  These equations are presented in the appendix.  They form the basis of 
the microstructural AEH that is now coupled with PARADYN. 

3. Coupling the Microstructural AEH Model in PARADYN 

PARADYN is a general-purpose explicit dynamics code with a capability for defining multiple 
element types and material types.  Each element of the global finite-element model that is tabbed 
for detailed microlevel analysis is made to call the microstructural AEH model to sample the 
local microlevel behavior and build the element global stresses from the constituent 
microstresses.  

3.1 Guidelines for Using the Model 

The microstructural AEH sub-option can be invoked by specifying a “Material Type 3” and a  
non-zero number in the fifth data location on the eighth material card.  The material option 
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describes a nonlinear elastic/plastic response with kinematic and/or isotropic hardening.  The 
added microcode is not limited to microphase materials of this type, however. 

The microstructure is next defined with the usual nodes, elements, and material properties. 
Although any type of format can be used for this purpose, the one that is selected uses the same 
PARADYN input format.  This was done to avail PARADYN’s preprocessors, such as INGRID.  
Although not verified, at present there are no restrictions on the number of microstructural 
elements, nodes, and materials.  

All the information defining the microstructural AEH is to be contained in an input file separate 
from the PARADYN’s global structure-defining input file and is to be made available to the 
PARADYN executable along with a domain decomposition part file.  

3.2 Details of the Data Exchange 

While PARADYN focuses on global computations such as the aggregation of nodal forces, 
solution of the equations of motion, updating global nodal positions, enforcing contact, etc., the 
microstructural AEH code focuses on the microstructural AEH calculations which typically 
involve evaluating the microstructure as a perturbation of global deformation and periodicity.  
For the two codes to perform their respective computations, it is necessary that the relevant data 
be exchanged between them for each time step and for each global element identified for  
microcomputations.  In the present work, the data exchange involves two parts as follows: 

1. From PARADYN, at the beginning of each time step and for the identified global elements, 
the following data is written to external processor-specific data files for read access to the 
microstructural AEH model:  

Current time step,  

current global strain increments,  

global strains from previous time step, 

global stresses from previous time step, and  

effective plastic strain from previous time step. 

2. After reading the PARADYN-written data files, the microstructural AEH code computes 
and writes the following data to external processor-specific data files for read access to 
PARADYN: 

Effective density, 

effective bulk modulus, 

effective shear modulus,
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computed current global stresses for the element, and 

computed current effective plastic strain for the element. 

While PARADYN’s native arrays are used for tracking global stresses, global strains, effective 
properties (density, bulk modulus, and shear strain), and effective plastic strain, no such native 
arrays are used to store the microelement quantities.  Instead, the microelement data are written 
to, and read from, processor-specific files during each time step and updated.  As opposed to the 
global stresses of the global elements, the stored values of these responses reflect the accurate 
stress distribution within the microelements of the microstructure.  During a PARADYN run, or 
after the run is complete, the processor-specific files can be visualized independently to analyze 
the microstructural stress and deformation development for any of the global elements. 

4. Results 

Verification of the coupling algorithm, evaluation of the coupling scalability, and validation of 
the coupled codes were achieved through the following numerical analyses conducted on the 
U.S. Army Research Laboratory’s SGI O2k machines.  

4.1 Verification of the Model Insertion 

For verifying the model coupling, a small cylinder with homogeneous material was considered in 
a Taylor impact, and was analyzed alternatively as a heterogeneous material with DYNA3D and 
as a homogeneous material with alternating layers of two different materials but with same 
identical properties using the microstructural AEH in PARADYN.  The idea was that the AEH 
model should default into a homogeneous material solution, and the data exchange can point to 
any errors in the coupling. 

Enforcing quarter symmetry on sides parallel to the axis of the cylinder, a 90° wedge of the 
cylinder was considered with 108 elements in five rows, as shown in figure 1.  The length and 
radius of the cylinder was 2.592 mm and 3.2 mm, respectively.  The material was considered 
elastic/plastic with isotropic hardening.  The material properties are shown in table 1. 

Table 1.  Material properties. 

Density 
(kg/m3) 

Young’s Modulus 
(GPa) 

Poisson’s Ratio Yield Stress 
(GPa) 

Tangent Modulus 
(GPa) 

8930 117 0.35 0.4 0.1 
 
The velocity of the cylinder was 227 m/s.  To affect the deformation, one end of the cylinder was 
assumed to be free of velocity.  Results for axial velocity, axial stress, and effective plastic strain 
are considered for three nodal locations, near the free end, center, and at the impacted end, as 
shown in figure 1.  They are presented in figures 2–4, respectively, for the heterogeneous 
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Figure 1.  Finite-element mesh of a cylindrical 
wedge under Taylor impact. 

DYNA3D solution and for the homogeneous microstructural AEH-PARADYN solution.  Both 
solutions appear to be in agreement with each other, thus verifying the model coupling for  
microstructures with homogeneous materials. 

4.2 Validation of the Model 

In this example, a cylinder similar to the one in the previous example was considered but with 
two materials alternating in a total of 96 layers normal to the cylinder axis.  The length and 
radius of the cylinder were 31.1 mm and 3.2 mm, respectively.  The material was considered 
elastic/plastic with isotropic hardening.  The material properties are shown in table 2. 

Table 2.  Material properties. 

Layer Density 
(kg/m3) 

Young’s Modulus 
(GPa) 

Poisson’s Ratio Yield Stress 
(GPa) 

Tangent Modulus
(GPa) 

1 8930 117e9 0.35 0.4e9 0.1e9 
2 8930 90e9 0.35 0.4e9 0.1e9 

 

Two solutions were obtained.  The first solution was a heterogeneous DYNA3D solution 
obtained using 10,368 global elements.  To model the repeating 48 sets of the two dissimilar 
materials, eight rows of elements were used for each material layer.  The second solution was the 
homogeneous microstructural AEH-PARADYN solution obtained with a 1296 element global 
model.  The elements are stacked in 96 layers.  In contrast to the first solution, a single layer of 
elements was used for each material.  All layers are assumed to be exhibiting homogeneous 
composite behavior in the global sense, but with microstructural AEH computed using a  
two-layer microstructural model. 
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Figure 2.  DYNA3D and AEH-PARDYN axial velocity solutions for the finite-element 

mesh of figure 1. 
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Figure 3.  DYNA3D and AEH-PARDYN axial stress solutions for the finite-element 

mesh of figure 1. 
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Figure 4.  DYNA3D and AEH-PARDYN effective plastic strain solutions for the finite-

element mesh of figure 1. 
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Enforcing quarter symmetry on sides parallel to the axis of the cylinder, a 90° wedge of the 
cylinder was considered.  The velocity imposed on all but one end face of the cylinder is  
227 m/s.  Figures 5 and 6 show the two models both before and after the impact.  Solutions at 
nodes near top, center, and bottom of the cylinder are presented in figures 7–10, for axial 
velocity, axial stress, effective stress, and effective plastic strain.  For all these responses, the 
microstructural AEH was able to track the DYNA3D’s heterogeneous responses well.  
Deviations in the axial velocity and axial stress can be attributed to three factors:  (1) these 
differences are near stress-free edges prone to be affected by the transients; (2) the meshes are 
different in their coarseness which affects the time integration in the two solutions; and (3) the 
values are node averaged but the nodes are at different locations in the two models since the 
meshes are different.  Similarly, the differences in the plastic strain predictions can be attributed 
to the extreme length of the time duration of the analysis, which makes the differences 
accumulate. 

4.3 Scalability of the Results 

During the development of the AEH-PARADYN coupling interface, due consideration was 
given to the fact that PARDYN is a parallel code while coupling the microstructural AEH.  
Because the PARADYN code has a well tested MPI/OPENMP-based computational logic, the 
coupling was done by keeping a global element’s microstructural AEH computations local to the 
processor on which the global element resides.  This means that information such as  
microelement stresses, strains, and mechanical properties needed in microelement computations 
are kept local and not passed into global data structures.  Consequently, a global element’s 
microstress, microstrain, and micromechanical properties are needed to be written to, and read 
from, processor-specific files in between time steps.  To demonstrate the fact that the penalty 
associated with this approach is small, results from a limited scalability study are presented in 
this section. 

The Taylor impact model of section 4.2 is used for this purpose.  Two types of scalability 
studies, one with a fixed mesh for standard scalability, and the other with varying mesh size, but 
with a fixed number of elements per processor, are performed.  The nodes, elements, and wall 
clock times from these studies are presented in table 3.  In these simulations, the increase in 
number of elements was achieved by adding element rows in the cylindrical axis direction only, 
and not in the hoop and radial directions. 

The wall clock times are also plotted in figure 11.  The plot on the left side of this figure shows 
run times for the 122,880 element mesh for the standard scalability study.  A linear speedup can 
be discerned from this plot.  

On the other hand, the plot on the right side of the figure shows the run times for the scaled 
scalability study.  In this study, the mesh size was doubled with each doubling of the processors. 
The run times did not remain constant as were the number of elements per the processor.  The 
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Figure 5.  Finite-element model and deformed mesh used for the AEH-PARDYN solution for the 
verification problem. 

reason could be that the plastic deformation is very concentrated near base and the domain 
decomposition used to distribute the elements over processors is not sensitive to this fact.  
Another factor could be the small processor load (~2000 elements/processor).  The scalability 
might improve with a higher processor load (e.g., 20,000 elements/processor or higher). 
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Figure 6.  Finite-element model and deformed mesh used for the DYNA3D solution for the verification 
problem. 

4.4 An Application of the Model 

In this section, the ability of the microstructural model AEH-PARADYN to predict the 
experimentally observed impact behavior of laminates with widely dissimilar and alternating 
layers of materials is demonstrated.  For this purpose, impacts of three composite laminates from 
the experimental work of Zhuang (2002) are considered.  In all these impacts, the objective was 
to study the effect of composite lay-ups with alternating hard and soft layers on shock wave 
propagation.  Capturing the local mechanical behavior of such lay-ups is very difficult, 
especially in the regime of shock.  
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Figure 7.  DYNA3D and AEH-PARDYN axial velocity solutions for the validation 
problem. 
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Figure 8.  DYNA3D and AEH-PARDYN axial stress solutions for the validation problem. 
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Figure 9.  DYNA3D and AEH-PARDYN effective stress solutions for the validation 

problem.
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Figure 10.  DYNA3D and AEH-PARDYN effective plastic strain solutions for the 

validation problem
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Table 3.  Wall clock times for scalability study. 

Nodes Elements No. of Processors Wall Clock Time 
9787 8064 4 3072 

18758 16128 8 4051 
35321 31240 16 6046 
71217 64512 32 7492 

137538 127050 64 8944 
140727 122880 8 88369 
140727 122880 16 44376 
140727 122880 32 22303 
140727 122880 64 11353 
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Figure 11.  Scalability results for a fixed mesh and for a constant processor load. 

In these laminates, a basic unit consisting of a soft layer and a hard layer is repeated a number of 
times.  Laminates are then bonded to soft buffer layers and mounted on to back plates.  The soft 
layer is a polycarbonate (PC) plastic sheet of 0.74-mm thickness.  Different materials and 
thicknesses are used for the hard layers as follows:  aluminum (0.37-mm thickness), steel  
(0.37-mm thickness), and glass (0.55-mm thickness).  The soft buffer layer has a thickness of 
0.74 mm and is made from PC.  The back plate has a thickness of 12.5 mm and is made from 
polymethyl methacrylate plastic.  As shown in figures 12–14, the laminates are impacted in a 
direction normal to the lay-up using flyer plates made of PC.  The flyer plate has a thickness of 
2.87 mm.  The diameters of the flyer plates, laminates, and the back plates are 34, 38.1, and 
38.1-mm, respectively.  The details of the three laminate constructions are in table 4. 
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Figure 12.  Finite-element mesh for PC74AL37 
laminate and its buffer layer, back plate, 
and flyer. 

 

 

Figure 13.  Finite-element mesh for PC74SS37 
laminate and its buffer layer, back 
plate, and flyer. 
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Figure 14.  Finite-element mesh for PC74GS55 
laminate and its buffer layer, back 
plate, and flyer. 

Table 4.  Laminate and impact velocity details. 

 
Laminate Types 

No. of Repeating 
Units 

Laminate Thickness 
Including Buffer Layer

(mm) 

 
Flyer Plate Velocity 

(m/s) 
PC74AL37 5 6.62 589 
PC74SS37 8 9.97 561 
PC74GS55 7 9.95 563 

 
As can be seen from the deformed meshes in figures 12–14, different meshes are used for the 
three laminates.  The PC74AL37 laminate, including its buffer layer, back plate, and the flyer 
plate, were all meshed with a total of 69899 nodes and 55095 elements.  The PC74SS37 laminate 
and buffer, back, and flyer plates were meshed with a total of 108326 nodes and 82827 elements. 
Finally, the PC74GS55 laminate’s impact was modeled with a total of 167549 nodes and 141798 
elements.  Because the experiments showed much delamination, and because the interlaminar 
strengths of the laminates are relatively small, i.e., when compared to the impact generated loads, 
laminar interfaces were used and modeled as zero strength slide surfaces.  The effect of these 
slide surfaces can be seen as outflowing layers in the deformed meshes in figures 12–14.  The 
material properties used for the present simulations are in table 5. 



 

 21

Table 5.  Material properties. 

 

Before conducting the dual level macro/micro analyses with AEH-PARADYN, single level 
DYNA3D global analyses were conducted using the aforementioned finite-element models.  
Using DYNA3D’s elastic/plastic material Model 3, for layer materials, the laminate is treated as 
materially heterogeneous.  The results for the axial velocity at the back of the buffer layer are 
compared with the experimental results in figures 15–17.  Even though the overall trends of 
loading and unloading of the shock wave are predicted well, there is much discrepancy in the 
predictions of the initial slope and the peak velocity reached. 
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Figure 15.  Experimental result and DYNA3D 
prediction for axial velocity at the back 
of buffer layer for the PC74AL37 
laminate. 

Material Density 
(g/m3) 

Shear Modulus 
(GPa) 

Yield Stress 
(GPa) 

Plastic Modulus 
(GPa) 

Poisson’s Ratio 

PC 1190 0.94 0 1.60 0.37 
PMMA 1180 1.20 0 1.60 0.34 

6061 AL 2710 30.0 0.32 0.69 0.33 
304 SS 7890 77.0 0.33 1.7 0.29 

D 263 glass 2510 30.1 — — 0.208 
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Figure 16.  Experimental result and DYNA3D 
prediction for axial velocity at the 
back of buffer layer for the 
PC74SS37 laminate.  
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Figure 17.  Experimental result and DYNA3D 
prediction for axial velocity at the 
back of buffer layer for the 
PC74GS55 laminate. 

The AEH-PARADYN analyses were run assuming that the laminates were all homogeneous in 
the global sense, but heterogeneous at microlevel.  Two-layer microstructural AEH models were 
used to bring in the lamination effect of the hard and soft layers.  At the microlevel, the layer 
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constituents are assumed to exhibit elastic/plastic behavior that is similar to the DYNA3D’s 
elastic/plastic Material Type 3.  The predictions from these analyses for the axial velocity at the 
back of the buffer layer are compared with the experimental results in figures 18–20.  For all the 
three laminates, the predictions compared well, especially in following the initial slope, peak 
velocity, and the post peak unloading.  

This example clearly demonstrates the ability of the AEH microstructural model to accurately 
predict the shock wave propagation in highly dissimilar layered materials, and the capability of 
the included AEH microstructural model for conducting multiscale macro/micro analyses with 
AEH-PARADYN. 
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Figure 18.  Experimental result and AEH-
PARDYN prediction for axial 
velocity at the back of buffer 
layer for the PC74AL37 
laminate.  
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Figure 19.  Experimental result and AEH-
PARDYN prediction for axial 
velocity at the back of buffer layer for 
the PC74SS37 laminate.  
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Figure 20.  Experimental result and AEH-
PARDYN prediction for axial 
velocity at the back of buffer 
layer for the PC74GS55 
laminate.
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5. Future Work and Conclusions 

Microstructures are features of the U.S. Army’s advanced structures and armor materials.  
Homogenization theories such as the AEH are being developed to model the effects of these 
microstructures on global material and structural responses.  With the present coupling of the 
AEH-based microstructural model in PARADYN, many in-situ material responses can be 
studied under diverse global structural conditions.  The sample applications presented in this 
report demonstrate this.  Efforts underway include the following extensions to this work: 

• using PARADYN’s diverse material library to model different microphase materials, 

• modifying the AEH model used in this work to include an equation of state, and 

• extending the application range to include complex microstructures and diverse global 
applications.
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Appendix.  Microstructural Equations 

A.1 Governing Equations 

These equations are presented in several references, most recently in Chung et al.1  Assume a 
three-dimensional body Ω is an assembly of periodic structures containing different materials, as 
shown in figure A-1.  Typically, the unit cell is very small and of order ε (where ε is a small 
positive number) compared to the dimensions of the problem domain.  Structural response 
quantities such as displacements, velocities, stresses, and strains are assumed to have slow 
variations (macroscopic) from point to point as well as fast (microscopic) variations within a 
small neighborhood ε of a given point x.  Let Y be a (periodic) representative part of Ω.  

Composite 

Neighborhood x’ 

 

Figure A-1.  Macro/microanalyses neighborhoods. 

Here we distinguish two scales:  the macroscopic scale (x ∈Ω) and microscopic scale 
(y∈Ω).  Lagrangian representations of conservation of mass and momentum equations are used.  
The conservation of mass is used to calculate the current density from the initial density.  The 
momentum equation, the kinematic relations, and the constitutive model are represented by 

 ,i ji j iv fε ε ερ σ− = , (A-1) 

 
.

, ,
1 ( )
2ij i j j ie v vε ε ε= + , (A-2) 

and 

                                                 
1Chung, P. W.; Namburu, R. R.; Tamma, K. K.  Three-Dimensional Elasto-Plastic Heterogeneous Media Subjected to Short 

Transient Loads.  AIAA paper-99-1239 1999. 
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 ( , )ijij ijS e E
ε

εσ
⋅

= , (A-3) 

where ρ is the density, if  is the body force vector, E is the internal energy, the superscript ε 
denote micro/macro continuum solutions, vi is the velocity vector, ijσ  is the stress tensor, and ije  

is the strain tensor.  The initial conditions in the domain εΩ and boundary conditions on the 
surface of the domain )( 21 Γ∂∪Γ∂=Γ  are given by 

 εε
ioi utu == )0( , (A-4) 

 ( 0)
ii ov t vε ε= = , (A-5) 

 1on  o
i iu uε ε= ∂Γ , (A-6) 

and 
 2on  ji i in Tεσ = ∂Γ , (A-7) 

 
where ui is the displacement vector and ni is a surface normal. 

A.2 Time Integration  

A second-order accurate Lax-Wendroff-based explicit time integration procedure Tamma and 
Namburu2 is employed for the conservation equation or equation of motion.  In this approach, 
the dependent variable velocity is first discretized in time using a second order Taylor series 
expansion. 
 

2/11 ++

∆+=
nnn

iii vtvv εεε . (A-8) 

Taking appropriate time derivatives of equation 1 and substituting for the velocity and 
acceleration gives 

 ( ) tfvv n
ijjiii

nnn
∆+=− +++ 2/1

,
2/11

ρσρρ εεε . (A-9) 

The stress increment is related to a strain increment through an appropriate constitutive equation.  
The elasto-plastic constitutive equation at midpoint time increment is defined by 

 )( 2/12/12/12/1 +∆+=
−−+ n

mnklmnijijklij tCM
nnn εεε εσσ , (A-10) 

where ijklM  and ijklC  are radial return in plasticity tensor and elasticity tensor. 

Stresses and strain rates at midpoint time can be evaluated using the predicted displacements as 
shown by
                                                 

2Tamma, K. K.; Namburu, R. R.  A Robust Self Starting Explicit Computational Methodology for Structural Dynamic 
Applications:  Architecture and Representations.  International Journal for Numerical Methods in Engineering 1990, 29, 1441–
1454. 
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2/12/1

2
++ ∆

+=
nnn

iii vtuu εεε . (A-11) 

A.3 Asymptotic Expansion and Elasto/plastic Constitutive Equations  

The homogenization method is based on the asymptotic expansion of the primary variables 
together with a unit cell approach for a heterogeneous structure.  Assume a 3-D body Ω is an 
assembly of periodic structures.   Typically, the unit cell is very small, of order ε (ε is a small 
positive number) compared to the dimensions of the problem domain.  Typically, two-scale 
asymptotic expansion can be employed to approximate the displacement, velocity, strain, or 
stress fields.   

 2
1 2( , ) ( , ) ( , ) ( , ) ,

i i ii ou x y u x y u x y u x yε ε ε= + + +  (A-12) 

 2
1 2( , ) ( , ) ( , ) ( , )

i i ii ov x y v x y v x y v x yε ε ε= + + + , (A-13) 

 2
1 2( , ) ( , ) ( , ) ( , )

i i ii oe x y e x y e x y e x yε ε ε= + + + , (A-14) 

and 
 2

1 2( , ) ( , ) ( , ) ( , ) ,
i i ii ox y x y x y x yεσ σ εσ ε σ= + + +  (A-15) 

where ( , )iu x yε , ( , )iv x yε , ( , )ie x yε , and ( , )i x yεσ are Y-periodic functions. 

The asymptotic expansion homogenization (AEH) approach for nonlinear applications is based 
on the instantaneously linearized assumption for the constitutive model.3  The fundamental 
assumption of the AEH approach, therefore, is that the true solution in the ε space is decomposed 
into a macro space x and a micro space y.  The basic assumption here is that multiple scales exist 
only in the spatial variables and that no such scaling exists for the time variable.  Further reading 
in space and time asymptotic expansion approaches can be found in Bensoussan.4  The general 
approach to heterogeneous problems is to separate and draw clear distinction between the micro- 
and macrolevel equilibrium equations regardless, per the earlier linearized assumption, of 
material nonlinearity.  This is accomplished by asymptotically expanding the primary variables 
where the asymptotic scale is approximated to the second order.   

 2
1 2( , ) ( , ) ( , ) ( , )

i i ii ov x y v x y v x y v x yε ε ε= + + + . (A-16) 

Spatial gradients in ε-space are taken with respect to the x-coordinate system.  The 
corresponding gradient for Y-periodic functions (where micro and macro are now 
distinguishable) is given by the chain rule where the scaling is defined by y = x/ε; hence, for any 
Y-periodic function φ, the earlier gradients are replaced by  
                                                 

3Terada, K.; Kikuchi, N. Nonlinear Homogenization Method for Practical Applications, Computational Methods in Micro-
mechanics.  American Society of Mechanical Engineers, Applied Mechanics Division, 1995, 212, 1–16. 

4Bensoussan, A.; Lions, J. L.; Papanicolaou, G.  Asymptotic Analysis for Periodic Structures; New York:  North Holland 
Publishing Co., 1978. 
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 1

i i i

d
dx x y

φ φ φ
ε

∂ ∂
= +

∂ ∂
. (A-17) 

Then, using equation A-1 in equation A-7 while considering equation A-2 gives the rate of strain 
tensor defined by  

 1 1 2[ ( ) ( )] [ ( ) ( )]x y x y
ij ij o ij ij ije v e v e v e vεε ε= + + + + , (A-18) 

where the symmetrized gradient tensors, ex
ij  and ey

ij  are defined by 

 1( ) ( )
2

jx i
ij

j i

e
x x

φφφ
∂∂

= +
∂ ∂

 (A-19) 

and 

 1( ) ( )
2

jy i
ij

j i

e
y y

φφφ
∂∂

= +
∂ ∂

. (A-20) 

The relevant expressions for gradients and velocities are first substituted into the governing 
equations of motion.  Next, the micro and macro equations are identified by selecting the 
appropriate coefficients to the scaling factors ε which must each be identically zero.  Substituting 
the asymptotically-expanded velocities, equation A-1, in the strain rate, equation A-3, and then 
using the constitutive equation, equation A-16, in the equations of motion, equation A-15, yields 
a set of equations dependent on powers of ε.  To satisfy the equations of motion, each term 
associated with each of the powers of ε must approach zero identically.  This leads to a set of 
equations associated with the microscopic and macroscopic equations of motion.  The first 
equation, associated with the powers of 2−ε , is given by 
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where pqklijpqijkl CMC =* .  Equation A-21 states that 1-n
oi

v  is a function only of x.  Hence, 

derivatives of y are zero.  Using this inference, the equation associated with the powers of 1−ε  is 
derived as 
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Equation A-22 relates the perturbative velocity field, v1, to the macroscopic velocity field, v0.  
The equation relating these two quantities will become the important micro/macroequation, 
providing the direct link to relate microscopic to the macroscopic velocities.  It provides the 
corrections which account for the shape of the interface separating various phases and the time-
dependent plastic softening effect due to material nonlinearities.  For a homogeneous material 
problem, where gradients over y of l

n
oijkl xvC

i
∂∂ − /1*  are zero, and in which plastic effects have no y 
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dependence, the solution to equation A-22 1
1

−n
i

v  is identically zero.  In the special case where no 

plastic yielding occurs, the problem degenerates to a transient elastic homogenization problem.   

Finally, the equation associated with the powers of εo is written as 
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Much like equation A-22 provided the basis for the microscale problem, equation A-23 provides 
the basis for the macroscale problem.  By taking the volume average of equation A-23, 
substituting for 1v  using the solution of equation A-22 and noting the periodicity, the final 
governing equation of motion is given by 

 2/12/11 +++ ∆++
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where the “corrector stress,” c
ijσ , is defined by 
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and where quantities in brackets denote 

 1(  ) (  )
Y

dY
V

= ∫ . (A-26) 

It is of interest to note that equation A-24, for heterogeneous conditions, is similar in form to 
equation A-6, the homogeneous equation, making the integration of a micromechanical problem 
into a macroanalysis tractable and straightforward. 

A.4 Constitutive Equation:  Elasto/Plastic 

The stress tensor is split into two parts.  The first part, Sij, is deviatoric stress, which is related to 
material strength, and the second part is pressure, P.  To simplify notation, the superscript ε has 
been omitted.   
 ij ij ijP Sσ δ= − +  (A-27) 

and 
1 –
3 ii Pσ = .      (A-28)
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The first term in equation A-27 accounts for volumetric changes and is typically evaluated from 
equations of state in explicit dynamics.  The second term, the stress deviator, is related to the 
deformation of the material and is defined by a constitutive model, and in particular, the time rate 
of change of the deviator is evaluated from the strain rates. 

 ijijij GS ∆+= ε2 . (A-29) 

This model can be defined with any number of local nodes, elements, and materials, but since 
this model is called repeatedly for each time step, for each element for which microstructural 
response is deemed important, a complex microstructure model can overwhelm the overall 
computations, therefore keeping the model simple is important.  ∆ij is the correction for rigid 
body rotation.  

An isotropic hardening model with a rate-dependent Von-Mises yield condition is employed in 
the present analysis.  A consistency condition ensures that the stress state remains on the yield 
surface at the start and end of a time-step.  Such a condition is given by 

 1 1n n
ij ijR Q S+ += . (A-30) 

The variable R is the rate-dependent radius of the yield surface or the apparent yield stress, ijQ  is 
the vector specifying the normal direction to the yield surface, and ijS  is the deviatoric 
component of the stress.  The stresses are understood to be the co-rotated second-order tensor 
according to the Jaumann definition of the co-rotational derivative.  The Jaumann derivative of 
the Cauchy stress, 

.
σ j

ij, is related to the material time derivative, 
.

σ ij, by 

 kjikkjikij
J
ij σωωσσσ ++= , (A-31) 

where ωij is the rotation tensor, the standard skew-symmetric component of the velocity gradient.  
The radius of the yield surface is defined by 
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where σy
o is the static yield stress of the material, and D and p are the so-called fluidity 

parameters. H' is the hardening parameter, and 
p−

ε is the effective plastic strain.  The effective 
rate of deformation, 

−
ε , is defined by 

 ijij eee
3
2

= , (A-33) 

where eij is the deviatoric component of the total strain, εij.  The normality condition, specified 
by the normal vector Qij, is given by 
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For a homogeneous material (which is applicable in the present derivation since the constitutive 
equations are applied at the microlevel where the material is homogeneous within each phase), 
the incremental relationships for the apparent yield stress and the deviatoric stress are defined as 

 1 2
3

n nR R H λ+ ′= + ∆  (A-35) 

and 

 1 1 2
Tn n

ij ij ijS S G Qλ+ += − ∆ , (A-36) 

where Tn
ijS 1+  is the deviatoric trial stress, λ∆  is a scalar quantity representing the magnitude of 

the radial return correction due to plastic yielding, and G is the elastic shear modulus.  The 
deviatoric trial stress is defined by 

 teCSS n
klijkl

n
ij

n
ij

T

∆+=+1 , (A-37) 

where Cijkl is the tensor containing elastic properties. 

Finally, substituting equation A-37 and A-35 into equation A-30 and solving for the radial return 
correction parameter gives 

 1 13 / 2 3
(3 ') 2

T Tn n
ij ij nS S R

G H
λ + +⎛ ⎞

∆ = −⎜ ⎟+ ⎝ ⎠
. (A-38) 

Using equation A-38 in equation A-36 and employing the standard assumption that a material is 
elastic in its dilatational behavior and plastic only in shear gives the total stress increment in 
equation A-16.   The constitutive equation A-16 can now be employed in the derivation of the 
micro and macro governing equations.   



 
 
NO. OF NO. OF  
COPIES ORGANIZATION COPIES ORGANIZATION 
 

 35

 1 DEFENSE TECHNICAL 
 (PDF INFORMATION CTR 
 ONLY) DTIC OCA 
  8725 JOHN J KINGMAN RD 
  STE 0944 
  FORT BELVOIR VA 22060-6218 
 
 1 US ARMY RSRCH DEV & 
  ENGRG CMD 
  SYSTEMS OF SYSTEMS 
  INTEGRATION 
  AMSRD SS T 
  6000 6TH ST STE 100 
  FORT BELVOIR VA  22060-5608 
 
 1 INST FOR ADVNCD TCHNLGY 
  THE UNIV OF TEXAS  
  AT AUSTIN 
  3925 W BRAKER LN STE 400 
  AUSTIN TX 78759-5316 
 
 1 US MILITARY ACADEMY 
  MATH SCI CTR EXCELLENCE 
  MADN MATH 
  THAYER HALL 
  WEST POINT NY 10996-1786 
 
 1 DIRECTOR 
  US ARMY RESEARCH LAB 
  IMNE ALC IMS 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 
 
 3 DIRECTOR 
  US ARMY RESEARCH LAB 
  AMSRD ARL CI OK TL 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 
 
 3 DIRECTOR 
  US ARMY RESEARCH LAB 
  AMSRD ARL CS IS T 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 

ABERDEEN PROVING GROUND 
 
 1 DIR USARL 
  AMSRD ARL CI OK TP (BLDG 4600) 
 
 
 



 
 

 36

INTENTIONALLY LEFT BLANK. 

 


