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Summary

A wind tunnel investigation was conducted in the Langley Unitary Plan Wind Tunnel (UPWT) to
determine the effectiveness of a technique to measure aircraft sonic boom signatures using a single
conical survey probe while continuously moving the model past the probe. Sonic boom signatures
were obtained using both move-pause and continuous data acquisition methods for comparison.
The test was conducted using an existing generic business jet model at a constant angle of attack
and a single model-to-survey-probe separation distance. The sonic boom signatures were obtained
at a Mach number of 2.0 and a free-stream unit Reynolds number of 2 million per foot. The test
results showed that it is possible to obtain sonic boom signatures while continuously moving the
model, and that the time required to acquire the signature is at least 10 times faster than the
move-pause method.

Introduction

Experimental research to measure sonic boom signatures of aircraft in wind tunnels has been
conducted since the 1950s using a variety of techniques (ref. THI4)). One common technique is to
use slender conical pressure probes to measure the sonic boom pressure signature of the aircraft
model (ref. 2H9). The basic test technique consists of mounting a reference probe and a survey
probe to the tunnel sidewall. The reference probe is mounted so that it remains in the free-stream
flow at all times during the test. The survey probe is located so that as the aircraft model is
moved longitudinally in the tunnel, the pressure field generated by the aircraft passes over the
survey probe. The pressure difference between the reference and survey probe is measured with
a differential pressure transducer that is sized for the small pressure differences to be measured.
A typical run begins with the model located so that the nose shock is downstream of the survey
probe. The model is then moved forward in small increments and paused as each point in the
sonic boom pressure signature is measured. The length of time required to measure the entire sonic
boom signature is dependent on the model size and can be significant if the model is large or the
number of data points acquired is large.

Another technique that has been employed to measure sonic boom pressure signatures is similar
to the slender probe technique described above except that the survey probe is replaced with a flat
plate that has static pressure orifices on the surface of the plate (ref. [l and [2)).

Recently, long rails with multiple static pressure orifices located along the surface have been
used to measure sonic boom signatures (ref. [10-14). With this technique, the entire sonic boom
pressure signature can be obtained in a single data point. Although this technique shows promise,
it is still being developed.

One of the advantages of the slender conical probe technique is that multiple survey probes
can be used concurrently to measure the sonic boom pressure signature directly under the aircraft
model (“on track”) and at locations to the side of the aircraft (“off track”). However, as mentioned
previously, the time required to measure a complete sonic boom pressure signature can be signif-
icant, and, consequently, the testing costs can be considerable. The purpose of this investigation
was to determine the effectiveness of a technique to measure sonic boom signatures using the slen-
der conical probe technique while continuously moving the model past the probe rather than using
a move-pause technique. The continuous data technique was expected to significantly reduce the
time required to acquire an entire sonic boom pressure signature and, consequently, reduce wind
tunnel testing costs.

In the present study, a wind tunnel test was conducted to measure the sonic boom pressure
signature of an existing generic business jet model using a slender conical probe and acquiring



data using move-pause and continuous data acquisition techniques for comparison. The tests were
conducted in the Langley Unitary Plan Wind Tunnel (UPWT) at a Mach number of 2.0 and a
free-stream unit Reynolds number of 2 million per foot. The sonic boom signatures were obtained
with the model at a single angle of attack (=~ 2.3°) and at a model nose to survey probe separation
distance of 13.5 in.

Nomenclature

Abbreviations and Acronyms

AOA angle of attack, deg

1D inside diameter

NF normal force, 1bf

OD outside diameter

PM pitching moment, in-1bf

PRT platinum resistance thermometer

psfa pound-force per square foot absolute (Ibf/ft?)

psfd pound-force per square foot differential (1bf/ft?)

SLSLE straight-line segmented leading edge

UPWT Unitary Plan Wind Tunnel

Symbols

Savg number of continuous data frames averaged, frames

h distance from model nose to survey probe measured perpendicular to tunnel sidewall
(see figure [2b]), in.

M Mach number

P free-stream static pressure, psfa

Do free-stream stagnation pressure, psfa

Dref reference probe pressure, psfa

q free-stream dynamic pressure, psfa

Re free-stream unit Reynolds number x 1076, ft—!

tq duration of a complete sonic boom pressure signature run, min.

To free-stream stagnation temperature, °F

v model longitudinal speed during continuous sweep runs, in/s

« angle of attack, deg

Ap/pre f)avg average sonic boom pressure signature parameter where Az < 21.25 in.

Ap/pre f)cor corrected sonic boom pressure signature parameter (see equation

Ap/pref)unc uncorrected sonic boom pressure signature parameter

D measured differential pressure between survey probe and reference probe, psfd

x distance from model nose to survey probe orifices measured parallel to tunnel sidewall

(see figure , in.

Apparatus and Experimental Methods

—~~

B >

Wind Tunnel Description

The wind tunnel test was conducted in the Langley Unitary Plan Wind Tunnel, which is a con-
tinuous flow, variable pressure supersonic wind tunnel. The tunnel contains two test sections that



are approximately 4 ft by 4 ft square and 7 ft long. Each test section covers only part of the Mach
number range of the tunnel. The nozzle ahead of each test section consists of an asymmetric sliding
block that allows continuous Mach number variation during tunnel operations from 1.5 to 2.9 in
the low Mach number test section (#1) and 2.3 to 4.6 in the high Mach number test section (#2).
A complete description of the facility along with test section calibration information is contained
in reference [15

The nominal free-stream conditions used during this investigation in test section #1 are shown
in table [I] Test section #2 was not used for this investigation.

Table 1. Nominal free-stream test conditions

M  Re, ft7' pg, psfa Ty, °F ¢, psfa p, psfa
2.00 2.00 1253 125 448.5  160.2

The tunnel air dew point was maintained below —20°F (at atmospheric pressure) to minimize
water vapor condensation effects.

General Test Description

Figure[I]shows a photograph and sketch of the wind tunnel test setup. One of the test section doors,
which normally contains schlieren windows, was replaced with a solid steel door so that some of the
sonic boom measurement hardware (free-stream reference probe, survey probe, and transducer box)
could be attached to the tunnel sidewall. The reference probe was mounted to the tunnel sidewall
above and slightly upstream of the survey probe using a fixed (non-movable) support bracket. The
tip of the reference probe was located 10.00 in. from the tunnel sidewall. The survey probe was
mounted to the sidewall near the tunnel centerline using a support that was part of a mechanism
that could move the probe longitudinally in the test section. However, during this test the survey
probe remained at a fixed longitudinal position for all runs. A transducer box was located above
and downstream of the survey probe location and was used to house pressure transducers that
measured the differential pressure between the reference and survey probes and a transducer that
measured just the reference probe pressure. Figure [2|shows the relative positions of the sonic boom
hardware. Figure [3| shows the overall dimensions of the reference probe mounting bracket, survey
probe mechanism, and the transducer box. The Instrumentation and Measurements section gives
details of the reference and survey probes.

The aircraft model used during this test had previously been tested in UPWT and was identified
as the straight-line segmented leading edge (SLSLE) model. Figureshows a sketch and photograph
of the model. The SLSLE model was chosen for this test because it was available for the test and
because data from a previous test were accessible for comparison. The SLSLE model was tested
without boundary layer transition grit. The SLSLE configuration was designed using the following
criteria:

e Cruise Mach number ...................... 2.00
e Beginning cruise weight ............. 88,000 lbf
e Beginning cruise altitude ............. 53,000 ft
e Sonic boom ground overpressure ....... 0.5 psfd



References [8 and [16] contain additional details about the overall design of the model.

The SLSLE model and sting were pinned together and were designed not to be taken apart.
The sting was attached to the sonic boom angle of attack (AOA) mechanism, which was in turn
attached to the tunnel roll coupling and model support system. The SLSLE model was tested with
positive normal force in the horizontal plane, i.e., wings vertical for all of the sonic boom pressure
signature runs.

The tunnel angle of attack mechanism was not used to set the model angle of attack and re-
mained at a fixed position during this test. Instead, the sonic boom AOA mechanism was used
to set the model angle of attack to approximately 2.3°. The model angle of attack consisted of
both the pitch angle set by the sonic boom AOA mechanism and deflection caused by aerodynamic
loads. During this test, the AOA mechanism pitch angle was set to approximately 1.7° to match
one of the settings used during the previous test of the SLSLE model in UPWT. Because data from
a previous test that used the sonic boom AOA mechanism showed that the mechanism contained
approximately 0.2° of play (movement of the pitch mechanism that was not indicated by a linear
potentiometer located inside the mechanism), a jam nut was fabricated and installed in the mecha-
nism to lock it at the required pitch angle. Figure |5 shows the jam nut installed in the sonic boom
AOA mechanism.

The tunnel model support system was used to position the SLSLE model laterally and longi-
tudinally in the test section relative to the survey probe. During this test, the model nose was
positioned at h ~ 13.5 in. (see fig. , then the tunnel model support system was disabled in
the lateral direction to prevent h from varying during the test. The tunnel model support system
longitudinal movement capability was used to move the SLSLE model past the survey probe so
that the sonic boom signature could be measured. During each pressure signature run, the model
was moved longitudinally approximately 16.5 in.

During a typical run, the SLSLE model was initially positioned so that the nose shock was
located downstream of the survey probe. For the move-pause runs, the model was moved forward
in 0.125 in. increments while the model sonic boom pressure signature data were acquired. For
the continuous sweep runs, the model was again positioned so that the nose shock was located
downstream of the survey probe. The data acquisition system was started, and approximately 10 s
of data were acquired before the model movement began. After the model was moved forward the
required distance, the model movement was stopped and data were acquired for an additional 10 s.

Instrumentation and Measurements

Shown in figure [6] are sketches of the survey and reference probes. The probes were identical 4°
included angle cones with two orifices drilled through the probe and into a central chamber. For
these tests, the reference probe orifices were oriented such that one orifice was on top of the probe
and the other on the bottom of the probe when viewing the probe from the side, i.e., looking into
the sidewall. The survey probe orifices should have been oriented the same as the reference probe;
however, because of an installation mistake, they were oriented such that one orifice was facing the
tunnel sidewall used to mount the probes, and the other was facing toward the model. Because
all of the sonic boom pressure signature data were acquired with the survey probe in the same
orientation, the installation mistake had no effect on the conclusions of this test. The lengths of
stainless steel tubing used to connect the reference and survey probes to the pressure transducers
located in the transducer box are noted in figure [(] The final pressure connections inside the
transducer box used flexible tubing (7/32 in. outside diameter, OD, by 3/32 in. inside diameter,
ID).

Figure [7] shows a schematic of the reference and survey probe connections to the pressure



transducers. A solenoid activated valve that could be remotely operated was used to equalize the
pressures across the differential pressure transducer to minimize the risk of over pressurizing the
transducer during tunnel start and stops. The differential pressure between the reference and survey
probes was measured with a £13.006 psfd (42.5 in. water column) pressure transducer, which had
a quoted accuracy of £0.018 psfd in the manufacturer’s product literature. An in-situ calibration
of the differential pressure transducer was performed, and the uncertainty in the difference between
the applied and measured pressures, otherwise know as the regression uncertainty, was £0.016 psfd
at a 95 % confidence level. In addition, the reference probe pressure was measured directly with
a 720 psfa absolute pressure transducer, which had a manufacturer’s quoted accuracy of +0.72
psfa. An in-situ calibration of the absolute pressure transducer was performed, and the regression
uncertainty was £0.172 psfa at a 95 % confidence level.

The transducer box was located on the tunnel sidewall above and downstream of the reference
and survey probes. The purpose of the transducer box was to house the differential and absolute
pressure transducers as close to the reference and survey probes as possible to minimize pressure
lag effects. The transducer box was sealed, and the inside was maintained at near atmospheric
conditions so that there would be no significant temperature or pressure effects on the pressure
transducers. The solenoid activated valve was also located inside the transducer box. Figure
shows the inside of the transducer box with the two pressure transducers and solenoid valve. The
transducer box was sized to house three differential pressure transducers so that in the future three
survey probes could measure on-track and off-track pressure signatures concurrently.

The transducer box was fabricated out of aluminum with a polycarbonate insulating cover,
which can be seen in figure The aluminum box was water cooled using 0.125 in. OD copper
tubing epoxied into grooves machined into the sides, top, and bottom of the box. There were
four separate cooling circuits for the left side, right side, top, and bottom of the transducer box.
Cooling water was supplied to each circuit, and the water flow was controlled with a small brass
needle valve. In addition to the water cooling, atmospheric air was circulated inside the box to
help maintain a constant temperature inside the box. Two 0.5 in. OD nylon tubes were routed to
the box and were used to supply cooling air to the box using a vacuum cleaner to pull atmospheric
air through one of the nylon tubes into the box and then out the second nylon tube. Six type
T (copper/copper-nickel) thermocouples were installed inside the transducer box to monitor the
differential pressure transducer, air, and transducer box wall temperatures.

Force and moment data on the SLSLE model were measured with a 2-component electrical
strain gage balance that was integral to the sting. The strain gages were located near the aft end of
the sting and were covered with auto body filler that was faired to the sting contour. Two platinum
resistance thermometers (PRT) were installed on the sting; one near the forward balance bridge and
the second near the aft balance bridge. The purpose of the PRTs was to monitor the temperature
gradient across the balance bridges and not to compensate for balance sensitivity changes caused
by temperature. Figure [9] shows the locations of the model and balance moment reference centers.
The full scale balance limits are shown in table 21

Table 2. Range of balance components

Balance component Range

normal force +5 lbf
pitching moment +109.2 in-lbf




The tunnel stagnation pressure was measured with a 100 psia bourdon tube pressure transducer
that had a manufacturer’s quoted accuracy of +0.003 psia at a 95 % confidence level. The tunnel
stagnation temperature was measured with a PRT.

The model support system lateral and longitudinal movement were measured by rotary en-
coders. The estimated accuracy of the model support system position based on calibration data
was £0.005 in. for both the longitudinal and lateral positions.

The model support system angle of attack was measured with an accelerometer mounted to the
support system just downstream of the roll coupling. The model support system angle of attack
was adjusted so that the sonic boom angle of attack mechanism was level before the SLSLE model
was rolled to the wings vertical position. The tunnel model support angle of attack mechanism was
not adjusted after leveling the sonic boom angle of attack mechanism.

The sonic boom angle of attack mechanism pitch angle was measured with a linear poten-
tiometer. As discussed earlier, a jam nut was used to lock the mechanism to a single pitch angle.
However, the jam nut could have locked in some unknown pitch error caused by the sonic boom
AOA mechanism play. Based on unpublished checks conducted during a previous test, the mech-
anism play (and, consequently, the unknown pitch error) was as large as 0.2°. Because the sonic
boom AOA reading probably contained some fixed unknown error, the computed SLSLE model
nose separation distance, h, which was a function of the pitch angle, also probably contained some
error. However, since the pitch angle was fixed for the entire test, the small error in h would be
constant for the entire test and, therefore, would not affect the results or conclusions of the test.

Data were acquired in either a move-pause or continuous mode depending on the run. The data
acquisition system scan rate for the move-pause runs was 30 frames/s for two seconds; all of the
data acquired during the two second period were averaged. The data acquisition system scan rate
for the continuous runs varied from 60 frames/s to 480 frames/s. The data acquisition system had
a low pass filter (2-pole Butterworth) that was set to 1 Hz for most runs with a few runs set at
1000 Hz to determine the effect of filter setting on the continuous data acquisition.

Corrections

The data acquired during the test were not corrected for tunnel flow angularity. The model angle
of attack and the position of the model nose relative to the conical survey probe were corrected for
sting deflections caused by aerodynamic loads. Because the sonic boom angle of attack mechanism
was locked at one position, the SLSLE model angle of attack remained at approximately 2.3° for
the entire test.

Because of static pressure variation within the tunnel test section, when the reference and
survey probes were in the free-stream flow, the measured differential pressure between the probes,
Ap, was not equal to zero. Consequently, the uncorrected sonic boom pressure signature parameter,
(Ap/pref)unc, Was also not equal to zero when the model nose shock was located downstream of
the survey probe. Therefore, the sonic boom pressure signatures were adjusted by averaging all
(Ap/pref)unc values with Az < 21.25 in. during a signature run (survey and reference probes in
the free-stream flow) and subtracting the average value from each (Ap/pref)unc value, i.e.,

=)~
Pref / cor Pref / unc Pref avg

Figure shows the corrected and uncorrected sonic boom pressure signatures as a function
of Az for a single run to illustrate the approximate magnitude of the correction. No additional
corrections or adjustments were performed to the sonic boom pressure signature data. Globally,




the variation of (Ap/pref)cor Within a sonic boom pressure signature was significantly less than the
correction (Ap/pref)avg, Which is typical for sonic boom testing in UPWT.

Results and Discussion

All of the plots in this section will show the corrected sonic boom pressure parameter (Ap/pref)cor
as a function of Az. As mentioned previously, the SLSLE model angle of attack remained approx-
imately 2.3° for the entire test.

Comparison Between Tests

The sonic boom pressure signatures obtained with the move/pause method are first compared to
data obtained in a previous test using the same method. The purpose of this comparison is to show
that the setup used in the current test was satisfactory. Figure shows a comparison between
the sonic boom pressure signature data as a function Az for two sets of three back-to-back repeat
runs obtained during the current test and data acquired during the previous test of this model as
described in reference |8, The two sets of back-to-back repeat runs were obtained on two different
days. In general, the results show reasonable agreement between the six repeat runs of the current
test. Comparison with the previous test data shows a slight positive shift in Az for the previous
data. However, the magnitude and location of the signature peaks compare well between the tests
indicating that nothing significant had changed between the tests, which gave confidence that the
current test setup was satisfactory. The cause of the Ax shift between the two tests is unknown.

One significant difference between the tests is shown near Az = 33 in. The previous test
data show a negative peak as the flow expands aft of the model wing, whereas the data for the
current test flattens and does not peak. The differential pressure transducer that measured Ap
was overscaled in this region, and an internal mechanical stop inside the transducer prevented
over pressurization of the transducer. Although most details of the previous and current test were
identical, the reference and survey probes for the previous test were 2° included angle cones while
the current test used probes with 4° included angles. The larger angles on the reference and survey
probes resulted in a larger measured Ap that caused the differential pressure transducer diaphragm
to hit the mechanical stop, resulting in a constant millivolt output from the transducer. Because
the purpose of this test was to compare move-pause and continuous data acquisition techniques, the
over pressurization of the differential pressure transducer in a small localized region of the pressure
signature did not affect the overall conclusions of this test.

Determining Model Movement Speed for Continuous Sweep Runs

The first step in conducting this wind tunnel test was to determine a reasonable speed to move
the model during the continuous sweep runs; however, optimizing the model movement speed was
not attempted during this test. Figure [12|shows a comparison between the first three back-to-back
repeat runs that were obtained in a move-pause mode of operation and the continuous data at five
longitudinal speeds that covered the range of speeds available. The speeds were set in the tunnel
model control system as a percentage of the maximum speed available, as shown table The
continuous data were acquired in order from the fastest to the slowest speeds. The move-pause and
continuous data shown in figure [12] were acquired on the same day.

Figure shows the results for the fastest longitudinal speed (v = 0.329 in/s). Overall, the
continuous data follows the move-pause data, and the magnitude of the signature peaks match
the move-pause data. However, there is a slight shift in the entire signature in the increasing Ax



Table 3. Model longitudinal speed settings

Percentage v, in/s

100 0.329
50 0.170
25 0.088
12.5 0.048
6.25 0.025

direction that is caused by pressure lag in the tubing between the reference and survey probes and
the differential pressure transducer. The data also show slightly more unsteadiness compared to
the move-pause data, which is expected because each move-pause data point was an average of 60
frames of data while the continuous data were not averaged. Figures show the results as
the longitudinal speed is decreased. As the model longitudinal speed decreases, the shift in the
continuous data in the increasing Az direction is eliminated, and the continuous data essentially
fall on top of the move-pause data. With decreasing model longitudinal speed, the unsteadiness of
the continuous data basically forms a band that covers the move-pause data.

Based on the data in figure it was decided to acquire the remaining continuous sweep data
at a longitudinal speed of 0.088 in/s for comparison with the move-pause data. The decision was
a compromise between how well the continuous data compared to the move-pause data and the
duration of the continuous data sweep (¢4 in the plot key). Optimization of the time required for
a continuous data sweep was not considered during this test.

Move-pause and Continuous Data Repeatability

Figure 13| shows a comparison between two sets of three back-to-back repeat move-pause runs and
three back-to-back continuous sweep runs that were acquired on two separate days. In general,
these data indicate that the continuous data acquisition method does follow the trends and match
the peaks of the move-pause sonic boom signatures while significantly reducing the time required to
acquire a signature. The continuous sweep data does show more unsteadiness than the move-pause
data because the continuous data are not averaged.

The extent of the continuous data unsteadiness is shown in figure which shows three back-
to-back move-pause repeat runs and two sets of continuous data acquired over approximately 30
seconds at Az = 23 in. and 29 in. while the model was stationary (v = 0 in/s). These data
show that the range of the sonic boom pressure signature parameter for the continuous data was
approximately 0.005. Figure|l15|shows histograms for the two continuous runs presented in figure
The histograms provide an overall view of the distribution of continuous data and an indication of
the central tendency and scatter of the data. These two plots indicate that the continuous data
obtained at a single Az location is roughly normally distributed with no significant skewing as
expected. The standard deviation of the data for Ax = 23 in. and Ax = 29 in. is 0.00075 and
0.00098, respectively.



Differential Pressure Transducer Variation

Because of the unsteadiness of the continuous data shown in figure data were acquired to
determine if the differential pressure transducer caused any of the unsteadiness. Figure [16] shows
the variation of the reference and survey probe differential pressure transducer at a typical wind-
on condition and a wind-off condition as a function of elapsed time. These continuous data were
acquired with the model stationary (v = 0 in/s). The shape of the curves for (Ap/pref)unc and Ap
shown in figure is essentially identical and illustrates that the unsteadiness of the sonic boom
pressure parameter obtained during wind-on continuous data acquisition is primarily caused by the
unsteadiness in the measured Ap value. The variation in p,.y has little effect on the on the overall
shape of the (Ap/pref)unc curve. The stepped appearance of p,.y is caused by the least significant
bit fluctuations of the data acquisition system analog to digital converter. Figure shows the
variation of Ap and p,..s for a wind-off condition with the tunnel pressure at approximately 400 psfa.
The steady decrease in p,.y is caused by the inability to perfectly balance the removal of air from
the tunnel using vacuum pumps and the leaks in the tunnel circuit. The standard deviation of Ap
with no flow is more than two orders of magnitude less than a typical wind-on condition as shown in
table 4l These results indicate that the variation seen in (Ap/pref)une for wind-on continuous runs
is primarily caused by the unsteadiness of the measured differential pressure rather than transducer
unsteadiness.

Table 4. Differential pressure transducer standard deviation

Tunnel condition Ap standard deviation

wind-on 0.1305 psfd
wind-off 0.0007 psfd

Smoothing Continuous Data

One method to reduce the unsteadiness of the continuous data is to perform a moving average
on the data. Figure [I7] shows comparisons between continuous data with and without applying a
moving average. The number of data frames used in the moving averages varied from 61 to 481.
The moving average was centered, i.e., for a given Ax value, the moving average with 61 frames
of data was computed by averaging 61 frames of data beginning 30 frames before the given Ax
value to 30 frames after the Ax value. The results show that as the number of frames used in
the moving average increases, the data variation is reduced; however, the peaks in the sonic boom
parameter distribution are also smoothed, thus reducing the magnitude of peaks. Therefore, a
trade-off between smoothing the data and reducing the peaks must be considered. For this test, a
moving average of 181 frames (fig. was chosen because it appeared to be the best compromise
between smoothing the data and not significantly reducing the peaks. All of the moving average
data shown in the remainder of this report use 181 frames of data for the moving average. Figure
compares the continuous data with a moving average applied with the move-pause data for both
sets of three back-to-back repeat runs. Comparison between figure [18 and figure [13| show that the
unsteadiness of the continuous data is significantly reduced by applying a moving average.



Comparison Between Move-pause and Continuous Data

Figure[19|shows the six repeat move-pause runs along with the mean of the six runs with confidence
and prediction intervals at a 95 % confidence level. The appendix shows the equations used to
compute the mean, confidence interval, and prediction interval. Because the Az values measured
in each run were different, the data were interpolated using a straight line fit between Ax values to
obtain (Ap/pref)cor values at consistent Az values from 20 in. to 36 in. in steps of 0.125 in. These
interpolated (Ap/pref)cor values were then used to compute the mean, confidence intervals, and
prediction intervals at each Ax.

Figure 20| shows the six repeat continuous data runs (no moving average applied) along with
the mean of the six runs with confidence and prediction intervals at a 95 % significance level. The
continuous data were interpolated with a straight line fit between the data points just as with the
move-pause data to obtain (Ap/pref)cor values at the same Az locations as used with the move-
pause runs. Finally, figure 21| shows the same continuous data results as figure 20| except that the
continuous data has a moving average applied.

In general, the confidence intervals for the move-pause (fig. and continuous data (moving
average applied, fig. are about the same magnitude as would be expected since the variation
between each set of six repeat runs is about the same. These confidence intervals are generally
smaller than the intervals for the continuous data (no moving average applied, fig. . The smaller
confidence intervals are a result of the smaller variation between the repeat runs of both the move-
pause and continuous data (moving average applied) compared to the variation between the repeat
runs for the continuous data (no moving average applied). The results for the prediction intervals
are similar.

Figure 22| shows a comparison between the mean values of the move-pause data and the contin-
uous data with and without a moving average applied. The confidence interval on each set of mean
values at a 95 % significance level are also shown. At the bottom of the figure is the difference
between the means of the move-pause and continuous data along with the confidence interval at a
95 % significance level. The confidence interval on the difference in means was determined using
a pooled variance because an F-distribution test (ref. [I7) showed that the variation from the two
sets of data were statistically equal.

Since the confidence interval on the difference in means in general encompasses 0 across the Ax
range, there is no statistical difference between the move-pause data and the continuous data either
with or without applying a moving average. The confidence interval on the difference in means is
larger for the continuous data with no moving average applied than for the continuous data with a
moving average applied, as would be expected. The confidence intervals for the difference in means
where the nose shock begins (22.0 in. < Az < 22.5 in.) do not encompass 0 for the continuous data
with a moving average applied; however, the difference in means at the peaks of the signatures
shows no statistical difference across the entire signature. The difference in means plots indicate
that the mean value of the sonic boom signature acquired by continuously moving the model is
essentially equivalent to the mean value of a signature acquired with the move-pause technique.
The real benefit to acquiring sonic boom signatures continuously is that the time required to acquire
the signature is significantly less than for the move-pause technique as will be discussed in the next
section.

Data Acquisition Time Savings

The key in figures [I9] and [20] shows the duration required to acquire the entire sonic boom signa-
ture (tg4) for the move-pause and continuous data, respectively. The results show that a typical
move-pause signature required approximately 52 minutes while the continuous data required ap-
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proximately 3.5 minutes. The duration of the move-pause runs was longer than expected based on
other sonic boom tests conducted previously in UPWT. The cause of the longer duration for the
move-pause runs was a delay in the communication between the tunnel data acquisition system,
which had just been replaced and was being used for the first time in a production wind tunnel test,
and the tunnel model support control system. Because the duration of the move-pause runs was
adversely affected by the communication delay, a direct comparison between the duration of the
move-pause runs and the continuous runs was not attempted. Instead, the duration of move-pause
runs for previous sonic boom tests conducted in UPWT was used in the comparison.

Previous sonic boom tests in UPW'T typically acquired data using a move-pause technique with
the distance between data points of 0.125 in., which is the same distance used in the current test.
The time required to acquire sonic boom data points for these previous tests ranged from 14 s/pt
to 24 s/pt. A 10 in. long signature would require 81 points and a duration of 18.9 min. to 32.4 min.
as shown below:

14 (s/pt) (81 pt) = 1134 s = 18.9 min.
and
24 (s/pt) (81 pt) = 1944 s = 32.4 min.

During this test, the majority of continuous data were acquired at v &~ 0.09 in/s, which was
a compromise between how well the continuous data compared to the move-pause data and the
duration of the continuous data sweep. At this speed, a 10 in. long signature would require 1.85
min.

10 in. / (0.09 in/s) = 111.1 s = 1.85 min.

Therefore, the continuous data acquisition technique reduces the time required to acquire a sonic
boom pressure signature by 10 to 17 times compared to the move-pause technique. Consequently,
the total costs for a wind tunnel test would decrease because of the reduced tunnel occupancy costs
and electrical energy costs.

Effect of Filter Setting

Figure [23]| shows comparisons between the move-pause data and continuous data obtained at data
acquisition low-pass filter setting of 1 Hz and 1000 Hz. The continuous data in these plots were
acquired at the maximum longitudinal speed (v = 0.329 in/s) that the model support system could
move the model. Typically, data in the UPW'T are acquired with the data acquisition system filter
set to 1 Hz. The results of these runs show that at a filter setting of 1 Hz, the continuous data are
much smoother than the 1000 Hz data; however, at 1 Hz the data also show a slight time lag, i.e.,
Az shift, compared to the move-pause data. The time lag is especially evident at the model nose
shock (22.0 in. < Az < 22.5in.).

As discussed earlier, optimization of the time required for a continuous data run was not consid-
ered during this test. However, the low-pass filter setting data suggest that it might be possible to
adjust the data acquisition system filter setting and the model longitudinal speed setting to reduce
the time required to obtain a complete sonic boom signature and still acquire data that compares
favorably with the move-pause technique. The optimization of these factors would be a natural
extension of this test.

11



Concluding Remarks

A wind tunnel investigation was conducted in the Langley Unitary Plan Wind Tunnel to determine
the effectiveness of a technique to measure aircraft sonic boom signatures using a single conical
survey probe while continuously moving the model past the probe. Sonic boom signatures were
obtained using both move-pause and continuous data acquisition methods for comparison. The
test was conducted using an existing generic business jet model at a constant angle of attack and
a single model-to-survey-probe separation distance. The sonic boom signatures were obtained at a
Mach number of 2.0 and a free-stream unit Reynolds number of 2 million per foot.

The following is a summary of the significant findings:

1. The means of the move-pause and continuous sonic boom pressure signature data were sta-
tistically equivalent.

2. Performing a moving average on the continuous data smoothed the data but did not signifi-

cantly improve the comparison with the move-pause data.

3. The time required to measure a sonic boom signature using the continuous data technique

was 10-17 times faster than the move-pause technique.

4. Tt might be possible to further decrease the time required to obtain a complete sonic boom

signature using the continuous data technique by optimizing the model longitudinal speed,
data acquisition rate, and data acquisition filter setting. Additional research would need to
be conducted.
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Figure 15. Histogram of continuous data (from ﬁgure obtained at a single Ax location over
approximately 30 s period.
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Appendix

Equations for Calculation of Confidence and Prediction Intervals

The equations used to compute the confidence intervals for the mean of the six move-pause runs
and six continuous data runs were obtained from reference [I7. The symbols used in the equations
presented below are defined in this appendix.

The sample mean was computed from:

n
D@
=1

n

sample mean = T =

where,
xr; = individual sample
n = number of samples

The sample standard deviation that is used in the calculation of the confidence and prediction
intervals was computed from:

i=1
n

sample standard deviation = s =

n—1

The confidence interval on the mean for the move-pause and continuous data runs was computed
from:

confidence interval = z + (ta/g,n_l)%
where,
to/2,n—1 = two-tailed ¢ distribution value at a 100(1 — ) % confidence level for

n — 1 degrees of freedom

a = level of significance (0.05 used in this paper)

Finally, the prediction interval on the mean for the move-pause and continuous data runs was
computed from:

1
prediction interval = Z + (t4/2,,—1)s4/1+ =
’ n

The equations used to compute the confidence intervals for the difference in means between the
move-pause and continuous data runs were obtained from reference [I7 and are shown below:

(n1 — 1)3% + (ng — 1)8%
ni+ng —1

pooled standard deviation = s, = \/
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where,

ny
n2

number of samples from sample set 1
number of samples from sample set 2

s1 = sample standard deviation from sample set 1
s9 = sample standard deviation from sample set 2

confidence interval on difference in means = (71 — Z2) £ (ta/2.n,4ny—2)5py/ —

where,

to/2,n1+ns—2 = two-tailed ¢ distribution value at a 100(1 —«) % significance level for

n1 + ng — 2 degrees of freedom
mean from sample set 1
mean from sample set 2
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