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Figure 1. Location map of the Arbuckle-Simpson and Trinity aquifers and Edwards aquifer 
recharge area.

Evolution of 3-D Geologic Framework Modeling  
and Its Application to Groundwater Flow Studies

The various geologic processes 
that shape the Earth’s surface and sub-
surface all operate in three-dimensional 
(3-D) space. Within the U.S. Geological 
Survey (USGS), the greatest needs and 
applications for 3-D modeling include 
the following: (1) visualization of surface 
geology into the subsurface, (2) inter-
pretation and verification of the geology 
and its controlling fault structures, and 
(3) application of 3-D model data for 
investigating geologic issues (Jacobsen 
and others, 2011).

Three-dimensional geologic modeling 
of an aquifer can quantitatively depict 
the connectedness of rock units across 
fault and fracture zones. This model-
ing allows geologists to determine the 
distribution of geologic units, structural 
features, and other controlling factors, 
such as porosity and permeability. 
These parameters are complex vari-
ables that reflect original depositional 
conditions, alteration, dissolution, and 
dislocation. Geologic 3-D framework 
modeling also is useful for visualizing 
the interactions of fault and related 
structural features.

Three-dimensional geologic framework models can be directly converted into 
groundwater flow models, such as MODFLOW. Construction of the 3-D geologic archi-
tecture of an aquifer needs to be the first step in using geologic properties to constrain 
groundwater flow models. This first-step approach takes much of the subjective guess-
work out of constructing model layers and results in a model that is more realistic and 
representative of the actual subsurface hydrologic conditions of the groundwater basin 
being modeled.

Several USGS projects, supported by the National Cooperative Geologic Mapping 
Program (NCGMP), are using multidisciplinary approaches to reveal the surface and 
subsurface geologic framework of three important groundwater aquifers: the Edwards, 
Trinity, and Arbuckle-Simpson (fig. 1). In this Fact Sheet, the authors discuss the evolu-
tion of project 3-D subsurface framework modeling, research in hydrostratigraphy and 
airborne geophysics, and methodologies used to link geologic and groundwater flow 
models. The principal sections of this Fact Sheet are as follows:

In this Fact Sheet, the authors discuss 
the evolution of project 3-D subsurface 

framework modeling, research  
in hydrostratigraphy and airborne 
geophysics, and methodologies  

used to link geologic and  
groundwater flow models. 
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Geologic Framework of the Edwards and Trinity Aquifers

Figure 3. Three-dimensional model of the north Seco Creek area of Medina and Uvalde 
Counties, Texas (Pantea and others, 2008). Multiple fault structures (shown in red) 
and electromagnetic geophysical profiles (shown as blue and gray fences) were used 
to construct the model.

Figure 4. Buffalo spring, Chickasaw National Recreation Area, south-central 
Oklahoma.

Figure 5. Geology of the Arbuckle-Simpson aquifer’s Hunton anticline area, south-central Oklahoma (outlined in 
blue), and its major and minor fault structures (Faith and others, 2010).

The Edwards aquifer in Texas is one of the most productive freshwater 
aquifers in the world. It has been designated a sole source aquifer by the 
U.S. Environmental Protection Agency (EPA) and is the primary source of water 
for San Antonio, the Nation’s seventh largest city. Understanding the Edwards is 
essential for maintaining habitat for several threatened and endangered species. 
The Trinity aquifer forms the catchment area for the Edwards aquifer, and it 
intercepts some surface flow above the Edwards recharge area. The Trinity aqui-
fer also may contribute to the Edwards’ water budget by subsurface flow across 
formation boundaries at considerable depths. Dissolution, karst development, and 
faulting and fracturing in both of these carbonate-rich aquifers directly control 
aquifer geometry by compartmentalizing the aquifer and creating unique ground-
water flow paths.

Three-dimensional modeling studies of aquifer-bearing units in south-central 
Texas concentrated on the area’s carbonate-rich hydrostratigraphic units, and 
underscored the importance of airborne electromagnetic data for defining new 
unit contacts and fault structures (Blome and others, 2006). Two 3-D models 
discussed as follows highlight key controls on aquifer permeability and provide 
insights on subsurface aquifer processes and aquifer boundaries and interfaces. 
The proprietary software EarthVision (EV) was used because of its ability to 
combine various data types and accurately define faulted surfaces while main-
taining stratigraphic and structural integrity and complexity.

The 3-D EV model of northern Bexar County (fig. 2) reveals the subsur-
face geology and groundwater flow units of the Edwards and Trinity aquifers, 
where water wells range from 60 to over 300 meters in depth. This 3-D model 

Figure 2. Three-dimensional model of northern Bexar 
County, Texas (Pantea and Cole, 2004).

is based on mapped geologic relations that 
reflect: (1) Balcones fault zone structures, 
(2) detailed interpretations of 40 principal wells, 
and (3) gross geometry of the Edwards Group 
hydrostratigraphic units derived from prior 
interpretations of depositional environments and 
paleogeography. The 3-D model was also con-
structed to determine whether hydrostratigraphic 
units could be accurately modeled in the sub-
surface and to visualize the lateral connections 
between hydrostratigraphic units of contrasting 
permeability across fault strands.

A 3-D EV model of the rock units of the 
Edwards and Trinity Groups in the north Seco 
Creek area of Medina and Uvalde Counties, Texas 
(fig. 3), was constructed using a variety of digital 
datasets, such as: (1) geologic maps, including 
the current geologic map of the area (Blome and 
others, 2004); (2) lithologic descriptions, interpre-
tations, and geophysical logs from 31 drill holes; 
(3) helicopter electromagnetic geophysical data 
(Smith and others, 2003); and (4) known major and 
minor faults in the study area. This model reveals 
the complex intersections of both major and minor 
faults in the subsurface, and the impact these faults 
have on the continuity of the Trinity and Edwards 
aquifer-forming units.

The Arbuckle-Simpson aquifer of south-central Oklahoma (fig. 1) encompasses more than 
850 square kilometers and provides water for public drinking supply, farming, mining, conservation, 
and recreation. The aquifer also contains a number of unique freshwater and mineral springs, such as 
Buffalo spring (fig. 4), in the Chickasaw National Recreation Area.

The aquifer’s eastern groundwater basin (Hunton anticline area, fig. 5) has been designated a sole 
source aquifer by the EPA. Proposed development of water supplies from the aquifer led to concerns 
that large-scale withdrawals of water would cause decreased flow in rivers and springs, which in turn 
could result in the loss of surface water supplies, recreational opportunities, and aquatic habitat.

The Oklahoma Water Resources Board, in collaboration with the Bureau of Reclamation, the 
USGS, Oklahoma State University, and the University of Oklahoma studied the aquifer to determine 
the volume of water that could be withdrawn while protecting springs and streams. The USGS 
NCGMP, in cooperation 
with the USGS Oklahoma 
Water Science Center 
and other Federal and 
State agencies, supported 
construction of a 3-D EV 
framework model of the 
water-producing Hunton 
anticline area. Construction 
of the model was chal-
lenging due to the folded, 
faulted, and fractured nature 
of the Hunton anticline 
geology (fig. 5), variable 
unit thicknesses (from 
600 to 2,750 meters), and  
scarcity of well information.
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Figure 6. A perspective view of the 3-D geologic framework model of the Arbuckle-Simpson 
aquifer (Faith and others, 2010). The yellow boxes represent the wells used to construct the 
model. The white polygon outlines the area of the helicopter electromagnetic survey shown 
in figure 7.

Figure 7. Apparent resistivity map from the helicopter electromagnetic survey on the south-
western flank of the Hunton anticline (Smith and others, 2011). Previously mapped geologic 
contacts and faults are shown as gray and black lines, respectively.

This 3-D framework model was con-
structed to quantify the geometric relations 
of four hydrostratigraphic units of the 
Arbuckle-Simpson aquifer in the Hunton 
anticline area (Faith and others, 2010). 
The model (fig. 6) shows the volumetric 
extents of the Arbuckle and Timbered Hills 
Groups (light pink) and Simpson Group 
(dark pink) rocks, which are the primary 
water-bearing units of the aquifer. The 
data used to define the model and modeled 
surfaces were obtained from geophysical 
logs, cores, and cuttings from 126 water 
and petroleum wells.

The model stratigraphic contacts 
and faults were defined from the surface 
geologic mapping by Johnson (1990) and 
the geospatial map database of Cederstrand 
(1996). The top of the basement was 
defined using data from 13 drill holes. The 
top of the Arbuckle-Timbered Hills Group 
was picked from 89 drill holes and rep-
resents the model’s primary reference 
surface, which was used to define other 
model surfaces. The top of the Simpson 
Group was identified in 54 wells. Locally, 
pre-erosional surfaces for the Simpson 
Group and basement model units were pro-
jected based on the x-, y-, and z-values of 
a known contact. The post-Simpson model 
unit was defined as the volume between the 
top of the Simpson Group and the surface 
of the digital elevation model.  Over much 
of the model area, post-Simpson rocks are 
missing because of erosion.

Geophysical data, including a helicopter 
electromagnetic survey (Smith and others, 
2011), were used as follows: (1) to pre-
cisely locate mapped faults, (2) to identify 
shallow faults that have no recognizable 
surface expression, (3) to refine the 
outcrops of the lithostratigraphic units, 
and (4) to map the transition between 
freshwater springs in the east and saline 
springs in the west. A map of apparent 
resistivity over one survey block on the 
southwestern flank of the Hunton anticline 
(fig. 7) represents rock units with clarity 
and detail unachievable by using traditional 
field geology mapping techniques.
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Arbuckle-Simpson 3-D Geologic Framework Model 
to Groundwater Flow Model

Figure 8. Thickness of the Arbuckle and 
Timbered Hills Groups, and faults modeled by 
the 3-D EarthVision geologic framework model 
(Christenson and others, 2011).

Figure 9. Simulated steady-state 
potentiometric surface in MODFLOW layer 1 
of the Hunton anticline area (modified from 
Christenson and others, 2011).

The boundary of the 3-D EV model 
of the eastern Arbuckle-Simpson aquifer 
(fig. 6) precisely matches the MODFLOW 
model developed by the USGS as part of 
the Arbuckle-Simpson Hydrology Study, 
which was led by the Oklahoma Water 
Resources Board and the USGS Oklahoma 
Water Science Center. Hydrostratigraphic 
surfaces in EarthVision were sampled 
and interpolated to match nodes in the 
MODFLOW model. These nodes provide 
the land-surface elevations and the thick-
nesses of the Arbuckle and Timbered Hills 
Groups, Simpson Group, and the post-
Simpson units across the entire MODFLOW 
model domain. The Arbuckle and Timbered 
Hills Groups make up the major part of the 
aquifer for thickness, outcrop extent, and 
volume of groundwater (fig. 8).

Arbuckle-Simpson MODFLOW Model

A MODFLOW groundwater-flow 
model was specifically developed to 
simulate discharge to streams and springs 
in the eastern Arbuckle-Simpson aqui-
fer (Christenson and others, 2011). Six 
layers of 200-meter cells were used to 
represent the aquifer over a total area of 
1,002 square kilometers. The resulting 
simulated potentiometric map (fig. 9) 
represents over 25,000 data points and 
agrees well with water level measurements 
made in the field. Because of concerns that 
large-scale withdrawals of water from the 
aquifer would cause decreased streamflow, 
the model was optimized to simulate the 
effects on the streams with the largest 
streamflows: Blue River and Pennington 
Creek. Model simulations of the effects of 
distributed withdrawals on daily stream-
flow show that increasing withdrawal of 
groundwater from the aquifer would result 
in reduced streamflow and in reduced 
discharge to streams and springs in 
many locations.
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