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1. Introduction 

A basic type of magnetic guiding structure used on atom chips is formed by placing a long, 
straight current-carrying wire in an externally produced uniform magnetic field that points in a 
direction perpendicular to the track of the wire (Fortágh, 2007). In this configuration, the roughly 
circular magnetic field of the wire is cancelled along a line that parallels the wire, creating a long 
straight line of zero magnetic field. Cold magnetic atoms can be trapped in quantum states in this 
type of magnetic field minimum near to the wire and be guided along parallel to the wire 
direction. This forms a type of magnetic waveguide for atoms that can, in principle, be used for 
constructing atom interferometers and other devices based on atom guiding.  

In an atomic waveguide based on magnetic interactions, the forces on different spin components 
have opposite signs. Thus, if one component of a spinor is bound near the guiding center, another 
component of the spinor is repelled from the center. This is simply an example of the Stern-
Gerlach effect commonly used to separate particles in different spin states. One difference 
between the simple Stern-Gerlach experiment, in which only the spin degrees of freedom are 
quantized and the atom waveguide, is that the spatial degrees of freedom must be quantized as 
well as the spin in the atom guide problem. 

In order to accurately treat the complete quantum problem both inside and outside the guiding 
region, a power series solution expanded about the guide center, yet valid for the whole real axis, 
has been developed. Using this series, both the bound and unbound components of the full spinor 
solution can be treated within the same framework. The power series converges quickly at very 
small radii but converges very slowly at relatively small distances from the guide center. 
However, this limitation is seen to be due to the fixed hardware floating point resolution 
available in modern computers. The power series solutions can be readily summed over a wide 
range of the radial coordinate by making use of software floating point techniques implemented 
in arbitrary precision arithmetic libraries. This technique produces high precision eigenvalues as 
well as detailed information about the behavior of the spinor wavefunction at both large and 
small distances from the origin, making it possible to perform detailed studies of atom 
propagation without resorting to the adiabatic approximation (Sukumar, 1997). 

Numerical solutions for the quantum modes and eigenvalues of spin 1/2 and spin 1 particles in a 
quadrupole guide have been published elsewhere (Hinds, 2000; Potvliege, 2001; Lesanovsky, 
2004; Bill, 2006); however, in all of these works, the boundary conditions used at the guide 
center have been chosen incorrectly and do not properly treat the regular singularity that exists 
there. This error in the boundary conditions clearly results from treating the two second-order 
radial equations (our equations 8) as though they uncouple at the origin before trying to perform 
a power series analysis on the full system of radial equations. The power series analysis can be 
performed without first decoupling the system but one must be careful not to assume that 
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relations like    R R    hold as 0  . This type of reasoning seems to have caused 

problems with the boundary conditions used in these earlier works. In Blumel (1991), the 
Frobenius method was used on uncoupled equations to properly handle similar types of 
singularities in the problem of a neutron in the magnetic field of a rectilinear current, a different 
but related problem.  

Failure to handle the boundary conditions properly leads to an incorrect description of important 
details of waveguide properties such as the energy spectrum and the ground state of the system. 
In addition, a whole class of modes goes undetected in these calculations simply because the 
boundary conditions are not treated carefully. The quantum properties of an atom guide cannot 
be treated consistently using an inconsistent basis set. Since the quantum system is linear, using 
incorrect boundary conditions in the numerical solution leads to apparent modes that are actually 
superpositions of the true modes of the system. These mixed modes cannot generally be 
stationary states of the system; they are mixtures of nondegenerate states. Various lifetime 
estimates have been performed by several authors (Hinds, 2000; Sukamar, 1997; Potvliege, 
2001; Lesanovsky, 2004; Bill, 2006) using these nonstationary modes. All such estimates are 
questionable, since the mixed modes used for those calculations would be time dependent simply 
due to the normal time evolution of a conservative Hamiltonian system and this point is not made 
clear in those works. Thus, any time-dependent properties calculated using these nonstationary 
modes might actually be due to the natural unitary evolution of the conservative system and not 
representative of an inherent limitation of magnetic guiding. This needs to be clarified before 
attributing a lifetime to the states.    

In a previous work (Golding, 2009), series solutions to the radial differential equations were used 
simply to provide accurate initial conditions appropriate for the regular singularity at the origin. 
However, in that work, the initial conditions were simply used to initialize various hardware 
precision numerical integration routines that are routinely used for solving ordinary differential 
equations (ODE). The shooting technique, along with a root solving approach, was used to solve 
for the eigenvalues of the system as well as plot the radial eigenfunctions. The differential 
equations solved are stiff and it is difficult to judge the accuracy of the eigenvalue results 
obtained using the shooting technique. This is a well known problem with the shooting technique 
that occurs when an exponentially growing solution is present along with an exponentially 
decaying solution. When the value of the decaying solution is too small, round off errors can 
cause the growing exponential solution to become dominant, limiting the resolution of the 
calculated eigenvalues. In second order systems, this problem is often handled by integrating the 
system in both directions and matching the two solutions in a region where both are judged to be 
accurate. However, in the fourth-order system studied here, there are two oscillatory solutions in 
addition to the two exponential solutions that contribute significantly at large distances from the 
center. The oscillatory solutions cause practical difficulties in establishing satisfactory boundary 
conditions for an inward integration of the system since one cannot simply assume that the 
solution simply decays to zero far from the guide center.    
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In this work, the solutions to the quadrupole guide problem are formulated using a power series 
approach. The behavior at the regular singular point is properly accounted for by using the 
Frobenius series method (Ince, 1956; Bender, 1978) on the fourth-order equations derived from 
the coupled radial spinor equations. This is, in principle, an exact answer but leaves us to solve 
the problem of actually summing the series. Power series generally converge slowly and they are 
often used only to obtained local behavior, as in our previous work. However, the power series 
solutions can easily be summed at large distances from the origin if arbitrary precision arithmetic 
is used throughout the calculation. In the computer algebra programs, Maple and Mathematica 
arbitrary precision arithmetic is implemented using the GNU Multiple Precision (GMP) Library 
(GNU, 2010). The calculations in this work were done using Maple 14. Using arbitrary 
precision, all of the terms in the required sums, both very big and very small, are accurately 
included in the calculations resulting in very accurate solutions for both the guide wave functions 
and eigenvalues that can be confidently used in further detailed investigations of atom guide 
behavior.                

2. Development of Radial Equations 

The equations for the radial wave functions of the quadrupole guide are derived by making use 
of the angular symmetry of the quadrupole magnetic field. This symmetry is expressed as the 
conservation of alignment, z z zL S    (Hinds, 2001; Lesanovsky, 2004; Bergeman, 1989; 

Golding, 2009). Our approach is to find eigenfunctions that are common to both the 
Hamiltonian, H and the alignment z . This approach effectively separates the angular and radial 

dependence of the problem, leaving only a coupled system of radial equations to solve. These 
equations are solved exactly by series techniques and the resulting series are summed directly 
using arbitrary precision arithmetic.  

2.1 Hamiltonian for a Magnetic Atom 

The quantum description of an atom moving in a spatially dependent magnetic field must include 
both internal and external degrees of freedom. This means that the momentum, position, and spin 
degrees of freedom must all be treated as quantum operators. Using m for the mass of the atom 
and M


 for the magnetic moment, the Hamiltonian is written as the sum of the kinetic energy, 

2

2

p

m
 and the interaction energy of the magnetic moment and the field B


. The result is     

  
2

2

p
H M B r

m
  

  
. (1) 

The magnetic field  B r
 

 is independent of the z-direction and is taken to be an ideal quadrupole 

field (equation 2) extending to infinity in the x-y plane and uniform along z. An additional 
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uniform bias field B0 is added in the z-direction to help control possible spin-dependent losses 
that may occur at the zero field point at the center of the guide. The spatial dependence of the 
ideal quadrupole field is given by 

    1 0ˆ ˆ ˆB r B xx yy B z   
 

. (2) 

A cross-sectional plot of this field is shown in figure 1. The guiding center of this field is at the 
origin where the transverse field is zero. The quantity B1 is the magnitude of the transverse field 
gradient. It is taken as greater than or equal to zero in this work, although changing the sign of B1 
simply changes the quadrupole field configuration from one with the field point inward along the 
x-axis to one with the field pointing inward along the y-axis.  

 

Figure 1. Cross-sectional field plot of the general quadrupole guiding field 
used in this work. Magnetic fields come inwards along x and go 
outwards along y, resulting in a quadrupole null at the center that 
can be used for atom guiding. 

The gradient of the transverse field is what provides the trapping force that keeps the atom 
confined in the transverse direction. The transverse field is zero at the center of the guide and the 
only nonzero field component at the very center is the longitudinal bias field B0. The magnitude 

of the transverse field is 2 2
1 1B B x y B    , where  is the radial coordinate in the 

cylindrical system. Even though the field is varying in direction as one goes round the guide, the 
contours of constant field magnitude are simply circles. 
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The potential is independent of the position along the guide. Therefore, pz is a constant of the 
motion and is ignored here. In future problems, when variations in the potential along the z-
direction are considered, the variations in the longitudinal momentum will be included. 
Variations in the transverse potential should show up as variations in the guide propagation 
constant and this will affect the accuracy of sensitive measurements based on interferometry. 

In the model of the atom described by equation 1, the magnetic moment of the atom is just the 
magnetic moment of a single outer electron. The atomic model used here can be thought of as an 
alkali atom with a spin zero nucleus and a total mass m. The magnetic moment is M S


, 

where  is the gyromagnetic ratio of the level considered and S


 is the spin angular momentum of 
the atom. Since a spin ½ system is being considered, the spin angular momentum is proportional 

to the Pauli matrices, .
2

S 
  

 

The Schrödinger equation for the guided atom eigenstate E  is  

        
2

2

2 E E Er S B r r E r
M

       
     

.
 (3) 

Equation 3 is made dimensionless by choosing a length scale such that x x  , where the new x 

is dimensionless. Then    
2 2 2

2 2

2 2E E

k
r r

M M
    

  
 and the recoil energy is defined as 

2 2

2R

k
E

M



, where 
1

k 


 is the wavenumber of the optical field used to cool the atom. This is a 

rather arbitrary choice at this stage, but the recoil energy is a convenient scale for atoms that 
have been laser cooled. After dividing through by the recoil energy, pulling out the relevant 

factors, and defining the dimensionless transverse field parameter 1
1 2 R

B
b

E
  

, the longitudinal 

field parameter 0
0 2 R

B
b

E
 

, and the scaled energy 
R

E

E
  . 

2.2 Eigenstates Common to H and Λz  

The common eigenstates of H and z  are found using the eigenstates of Lz, Sz in the following 

way 

 
, ,

, , .z

H     

    



 
 (4) 

When the longitudinal bias field, 0b  is zero the Hamiltonian is invariant under various symmetry 

operations. This symmetry is the cause of a degeneracy of the eigenstates at 0 0b  . The two 
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degenerate states for each value of energy have opposite alignment. The operation y xP takes an 

eigenstate  ,   to its degenerate partner ,  , 

 , ,y xP      , (5) 

where yP takes y to –y and x exchanges the spinor components when working in the position 

representation. In this representation, the spinor eigenfunction is given by   ,r r   
 

. 

The component form is 

    
 

 
 

/2

/2

,

,

i
i

i

R e
r e

R e


 

 
 

   
   

 


 

  
          


 (6) 

and the degenerate partner is found as follows 

 

   
 

 
 

 

/2

/2

/2

/2

( )

i
i

y x y x i

i
i

i

R e
P r P e

R e

R e
e

R e

r




 








 


 


















 
    

 
 

   
 

 





. (7) 

Once the eigenstate is found for positive alignment, the degenerate partner of negative alignment 
is easily constructed. For this reason, positive alignment is assumed throughout the calculations 
when 0b  is zero and degeneracy is not an issue. 

When the assumed form (equation 6) is used in the Schrödinger equation (equation 3) the 
angular dependence drops out leaving only the following radial equations for the specific 
alignment  , 

 

 

 

2

2
0 12

2

2
0 12

1/ 21
( ) ,

1/ 21
( ) .

L R R R R b R b R

L R R R R b R b R

 

 


 

 


 

 

      

      


       


       

 (8) 

These two equations define the differential operators and L L  that will be used in section 3. In 

the case of a spin half particle with integral orbital angular momentum, the pair must be solved 

for the allowed half-integral values of the alignment 
1 3 5

, ,
2 2 2

      , although the solutions 

for negative alignment are simply derived using symmetry when the bias field, 0b  is zero. 
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3. Solution by the Frobenius Technique 

The series solution of differential equations near singular points requires the use of the Frobenius 
method (Ince, 1956; Bender, 1978). This is essentially a generalized power series approach that 
allows an extra degree of freedom for proper handling of the system behavior near regular 
singular points. Even though the differential equation contains singularities, the Frobenius 
method produces some solutions that are well behaved at the singular points and some solutions 
that have logarithmic or other types of singular behavior that do not usually satisfy the physical 
requirements of a desired solution. 

 The differential operator form of the coupled radial equations is useful for understanding the 
series solution technique that follows. The operators /L   defined in equation 8 are explicitly 

written as 

 

 

 

2

2
02

2

2
02

1/ 21
( ),

1/ 21
( ).

L b

L b

 

 




 




 






      


      

 (9) 

   

Using operator notation the coupled system is just written as the pair of differential equations 

 
1

1

,

.

L R b R

L R b R





  

  




 (10) 

3.1 Uncouple to Produce Fourth Order Differential Equations 

In order to apply the Frobenius method to this system, the equations are uncoupled producing 
two fourth-order equations that are central to this technique. By solving for both  and R R 

directly on the right-hand side in the above system (equation 10) and substituting back into the 
other equation, we find the pair of fourth-order differential equations 

 

1 ,
1

1 .
1

1

1

L L R b R
b

L L R b R
b







   

   

 
 

 
 

 
 

 (11) 
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These equations are uncoupled in the sense that only one unknown function is involved in each. 
Both equations are fourth order, homogeneous linear differential equations and therefore four 
independent solutions are required for the general solution of each. Both equations have a regular 
singularity at the origin and an irregular singularity at infinity. Equations of this type are called 
Hamburger equations (Ince, 1956). 

The general solution of each equation in equation 11 is actually only the general solution for one 
component of the two-component spinors defined in equation 7. The other component is found 
by substitution back into the original system (equation 10). Thus there are two distinct ways of 
finding the general solution of the system (equation 10). One could either solve the first equation 
in equation 11 for R and use the second equation of equation 10 to calculate the corresponding 

R components or use the reverse process to get R from R . Because the Frobenius method 

always produces a log-free solution for the largest indicial index found, these two reversed 
solution processes determine the two distinct types of physically acceptable modes in this 
system. 

3.2 Frobenius Series Approach 

The Frobenius series technique is applied by assuming a modified power series solution of the 
form 

 1
1

0

n
p n

n

R cp 






 , (12) 

where the coefficients ncp and the index 1 are unknown except that 0 1cp  . In both the 

subscript 1p and in the coefficient cp , the p refers to the fact that this solution process starts 

with the spin-up (or plus) radial component. The number 1 in the subscripts labels these solutions 
as modes of type 1. The reverse solution process will produce modes of type 2 and the letter m
will indicate a spin-down or (minus) component. Setting 1pR R  in the lower equation of 

equation 11 results in 

 1 1

1

1 1 1
1

12
1

0 0

2
1 1

0

1

1

1
0

p p

n n
n n

n n

n
n n

n

L L R b R
b

cp L L b cp

cp L L b cp

 






 





 

 
  

 
 




  


 
 

 
 

 
 

 
  

 

 



. (13) 

The result of letting the operator 
1

L L
  act on 1n   is 
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   

1 13 1 5 11
3 5

, ,1 n nP n P nP
L L   

 
   

 
 

  
    

   
 (14) 

and the functions iP  are defined here 

 

   
   

  
   

2 2 2
3 0 0 0 0

4 3 2

2 2

2 2
5

3 2 2 2

4 3 2 2 2 4 2

1 0

( , ) 2 4 2 2 2 2 2 / 2 2 2

( , ) 4 6 17 / 2 18 2 6

4 18 17 4 3 / 2 6 6

35
6 2 17 / 2 3 / 2 6 6 9 19 / 2

16

P n n b n b n b b

P n n n n

n

P b

     

    

     

   



    

     

           

       

      

         







 (15). 

Inserting equation 14 into equation 13 produces  

     1 1 1 11 3 5 2
1 3 1 5 1 1 1

0

, , 0n n n n
n n n n

n

cp P cp P n cp P n b cp        


      




    . (16) 

By adjusting the indices in the terms of equation 16, an equation in which each term of the sum 
contains only one power of  can be obtained. In this form, the coefficients ncp are defined to be 

zero for negative n and it is easy to pick out both the indicial equation and the recurrence 
relations for the coefficients,  

 

     1 52
5 1 2 3 1 4 1 1 6

0

0

, 2, 0

0  for  0

1

n
n n n n

n

n

cp P n cp P n cp P b cp

cp n

cp

  


 
  



    

 




. (17) 

This equation is solved by setting the factor multiplying 1 5n    to zero for each n . This 

produces the following system of equations that defines both the indicial equations and the 
recurrence relations for the coefficients, 

     2
5 1 2 3 1 4 1 1 6, 2, 0, 0n n n ncp P n cp P n cp P b cp n          . (18) 

The first several of these equations have been written out explicitly here, 
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 
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



 

 

 

 

 



 

 

  

  

   

   

    

  
   

2
5 3 1 3 1 1 1

2
8 5 1 6 3 1 4 1 1 2

5, 0,

8, 8, 6, 0,

cp P cp P b cp

n cp P cp P cp P b cp



 

   

     

 (19) 

Since 0 1cp  , the 0n  equation determines the allowed values of 1  in terms of the alignment. 

This is the indicial equation and is given by 5 1(0, ) 0P   or

    4 3 2 2 2 4 2
1 1 1 1

35
6 2 17 / 2 3 / 2 6 6 9 19 / 2 0

16
                      (20) 

By inspecting equation 19, it can be determined that all of the odd n  coefficients ncp are zero 

since  5 11, 0P   and all odd coefficients are proportional to 1cp .  

The roots of the indicial equation in equation 20 determine the form of the solutions for 1pR

generated by the Frobenius technique. The four roots are  

 1 [ 1 / 2, 7 / 2, 5 / 2, 1 / 2]           . (21) 

The allowed values for  are positive half-integers so all of the values of 1 are integers. In the 

Frobenius method, repeated roots and roots separated by integers generally introduce logarithmic 
singularities into the solutions and negative values of 1 produce solutions with poles at the 

origin. All of the singular solutions must be excluded in the physical problem. In the Frobenius 
method, the solution corresponding to the largest indicial root is always free of logarithmic 
terms. For 1 / 2  , the largest allowed value of 1  is always 5 / 2  .  

This calculation is essentially repeated for the type 2 modes by solving the first of equation in 
equation 11 using   

 2
2

0

n
m n

n

R R cm 







   (22) 

to develop the slightly different indicial equation for 2 ,     

    4 3 2 2 2 4 2
2 2 2 2

35
6 2 17 / 2 3 / 2 6 6 9 19 / 2 0

16
                    . (23) 



 
 

 11

This indicial equation can be obtained directly from equation 20 by simply changing the sign of 
 and the solutions are easily obtained in the same way from equation 21, 

 2 [ 5 / 2, 1 / 2 , 7 / 2,1 / 2 ]           . (24) 

However, the largest index for positive  is now 7 / 2  and since the largest index is always 
log-free, the solution (equation 22) using this value of 2  is the second physically acceptable 

solution of the system and is referred to as mode 2.  

It is straightforward to see that for 7 / 2  there are at least two solutions to equation 11 that are 

unacceptable because of the  singularity at the origin. For smaller values of  , it is not as 

obvious because there are some cases in which three values of  are unique integers. In these 
cases, the three solutions need to be checked more carefully to be certain they are not all log-
free. We have checked this using the computer algebra program, Maple, and it turns out that two, 
and only two, log-free modes can be found for any value of  in this system.   

Once the allowed indices have been determined, the coefficients of the series expansions 
equations 12 and 22 must be found to complete the solution. The ncp are determined directly 

from equation 18 as 

 
 

 

2
2 3 1 4 1 1 6

5 1

2,
2 and even

,
n n n

n

cp P n cp P b cp
cp n

P n




     
   (25) 

and a similar expression is obtained by the same technique for the ncm . The recurrence relations 

defining the two physically acceptable solutions, determined by 1 5 / 2   for the ncp and 

2 7 / 2   for the ncm are 

 

   
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n n n
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n n

b cp b cp n b cp
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n n n n
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n n n n

cp cm
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n

n n

 

 

   







  

  

 


    



  

    


    



 
  

. (26) 

Using these recurrence relations, the following power series solutions for the two types of 
physical modes can be used directly for calculating eigenvalues, eigenfunctions, and the quantum 
behavior of the quadrupole waveguide. The mode 1 solutions for both spinor components are   
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1

0
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1
2
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


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

 

  






  

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
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
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

 
 (27) 
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and the equivalent solutions for the mode 2 spinor components are  
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n
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b
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b






 

 


 






  


 


    







 
. (28) 

4. Series Evaluations Using Arbitrary Precision Arithmetic 

The waveguide modes are completely defined by the coefficients in equation 26 and the series 
solutions presented in equations 27 and 28. In order to find the eigenvalues, the series solutions 
are evaluated at some large value of  and   is adjusted until the bound component of the spinor 
at that large radius is near zero. The bound component is just the combination p mR R  (Hinds, 

2000; Golding, 2009) for the specific mode type, either 1 or 2. Asymptotic analysis shows that 
the bound components die off exponentially, but there is a small quickly decaying oscillatory 
component that can have an effect on the eigenvalues calculated using this technique and this 
possibility must be studied further.  

The series solutions converge but they cannot be easily summed using the standard floating point 
hardware available in most computers. The solution adopted here is to use an existing 
implementation of arbitrary precision arithmetic for these calculations. The computer algebra 
program Maple makes use of the GNU Multiple Precision (GMP) Library (GNU, 2010) to 
perform the basic arithmetic calculations addition, subtraction, division, multiplication, and 
exponentiation. These operations are all that are needed to sum the power series solutions in 
equations 27 and 28 to perform the calculations reported in section 4.1. 

4.1 Series Calculations 

The basic difficulty in direct summation of the series solutions in equations 27 and 28 is not that 
the series diverge or that they do not converge quickly, it is really just that the intermediate terms 
in the sum are very large and cannot be represented accurately in hardware floating point. 
Arbitrary precision arithmetic techniques eliminate this constraint at the expense of some speed 
and efficiency. The tradeoff is extremely useful when extreme accuracy is needed and other 
techniques are suspect.  

In order to do these calculations effectively, the number of digits needed to represent the largest 
number in the sum to at least the precision needed in the final result should be estimated. In 
addition, the total number of terms needed for convergence at the desired accuracy needs to be 
known. For example, in the solution of an eigenvalue problem, the value of an eigenfunction 
might be required to 20 significant digits at 40  . In order to guarantee that the sums will be 

accurately calculated, individual terms of the series should be calculated for a reasonable test 
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case and the maximum term value obtained. If the maximum value is 30010 and the desired 
precision of the zero is 2010 then at least 320 digits are needed to avoid losing precision in the 
final sum due to a loss of precision of any single term in the series. In practice, some guard digits 
should be added and convergence should be checked by changing the number of digits and the 
number of terms used in the calculation.  

Both the number of digits and the number of terms required to evaluate a particular sum 
accurately can be visualized by creating a term plot. This is just a plot of the log base 10 of the 
magnitude of the terms in the sequence to be summed. The term plot for the series defining 1Rp  

is shown in figure 2. The summation calculated is the first sum in equation 27. The terms plotted 
are just the individual 10log n

ncp   for n from zero to the largest value needed. The number of 

digits needed for the sum is just the difference between the maximum value and the minimum 
value assuming the plot is terminated when the term with the desired precision is reached. 

.  

Figure 2. Term plot of the log of the magnitude of the individual terms  
used in a calculation of the first series in equation 27. The target  
value of radius is 40 and the maximum eigenvalue is 30. The  
largest term in the sequence is roughly 10100 and therefore  
120 digits needs to be used to do an adequate job of summing  
this series for any value of radius up to 40 for eigenvalues less than 30.  

If the number of required digits is underestimated, the calculation will breakdown numerically at 
values of the radial coordinate smaller than the desired target value. The results of using different 
numbers of digits in the summations are shown in figures 3, 4, and 5. In figure 3, the number of 
digits used is 15, which is approximately the number of digits used in floating point hardware 
calculations on many machines. The calculation breaks down at around 12  . The range of the 
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calculation can be extended significantly by using 25 digits, as shown in figure 4. In figure 5, 
100 digits were used in the calculation and there are no obvious problems with the calculations 
over the whole range from zero to 40. In figure 6, the tail of the 100-digit calculation is blown up 
by a factor of 10,000 and a very clean but heavily damped oscillation is observed. This particular 
oscillation can be predicted by asymptotic techniques but it has been difficult to verify in 
previous calculations performed at hardware precision. Understanding this behavior in detail can 
help avoid certain types of systematic errors in the eigenvalue calculations that involve 
accurately locating zeros in the tails of the eigenfunctions.  

 
Figure 3. Calculation by series summation of the lowest two bound components using 15 digits of 

precision. This kind of result is representative of hardware floating point. Beyond a certain point 
the calculation breaks down. As the number of digits used in the calculation is increased, the 
target radius can be significantly increased. In this way, hardware floating point limits the 
ability to obtain accurate eigenvalues. 
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Figure 4. The same calculation as in figure 3. The only difference is that 25 digits of precision are used. 

One can see that the calculation can proceed to much larger target values as the number of digits 
is increased. 

 

Figure 5. The same calculation as displayed in figures 3 and 4, except that 100 digits were used in this 
calculation. The effective target radius can be pushed out to 40 with very clean results. This 
technique lets us calculate significantly more accurate eigenvalues as well as perform checks 
on asymptotic series expansions for future work. 



 
 

 16

 

Figure 6. This is a blown up version of the tail of the 100-digit calculation displayed in figure 5. The 
plot is from radius of 0 to 40 and the scale is expanded by a factor of 10,000. Very clean 
damped oscillations are observed. This is an example of the power of the basic arbitrary 
precision techniques. In the same region where we saw complete breakdown of the 
calculations at 15 and 25 digits in figures 3 and 4, extremely useful information about the 
asymptotic behavior is obtained by simply summing the series using 100 digits of 
precision. This cannot be obtained directly using hardware floating point techniques.  

4.2 Eigenvalues: Shooting or Summing? 

In order to solve eigenvalue problems of the type studied here, a variation of the shooting 
method is used. The shooting method is the technique in which a differential equation is 
integrated from a boundary point where the solution is known to a target point where the solution 
should attain a target value. In practice, the eigenvalue or some other parameter can be adjusted 
so that the unknown function has the desired behavior at the target point. When the solution is 
acceptable, the eigenvalue or desired value of the parameter has been found. One limitation of 
this technique is that the differential equation solver must be able to integrate the system 
accurately from the known point to the target point. This can be difficult if the system is stiff or 
unstable or otherwise very sensitive to the exact value of the eigenvalue.  

To determine the eigenvalues using the series approach, a variation of the shooting technique is 
used. In this approach, the solution does not depend on numerical solutions of the differential 
equations from an initial point to a target point. The only requirement is to accurately sum the 
series at the target point for various trial eigenvalues. The initial condition is built in to the series 
solution. The eigenvalue must be varied and the summation repeated until the target value for the 
unknown function is determined. This type of effective shooting technique can be accomplished 
over a large range of distances in systems that support arbitrary precision arithmetic and have 
series solutions.  
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Because the sum of the two components p mR R  is an apparent bound state for both mode types 

1 and 2 (Hinds, 2000; Golding, 2009), the leading behavior of this bound component dies off 
exponentially with distance from the center of the guide. Using this fact, the target behavior for 
the eigenvalue solution is just that 0 as p mR R     . The eigenvalues are then readily 

found using a root solving routine that uses arbitrary precision arithmetic to look for zeros of the 
sums defined in equations 27 and 28 at large radii. We have found that in this way the target 
point can be much farther from the origin than it can using the similar ODE based shooting 
techniques. This results in much more precise calculations of the eigenvalues. This enhanced 
resolution is expected to be useful as these functions are used for further calculations on the 
detailed properties of atom guides. 

The results of eigenvalue calculations for 01 / 2, 0b   and 1 1b  are shown in figure 7. The 

first 52 eigenvalues are shown. The eigenvalue data can be approximated by the simple equation
0.73551.893790658 1.270128257n . In table 1, the first 26 values of each type of mode are 

presented. Careful inspection shows that eigenvalues form an interleaved series in the sense that 
the first eigenvalue is a type 1 mode and second is a type 2 mode; this pattern holds up as far as 
we have checked. In figure 7, mode type 1 points are red and mode type 2 points are blue.  
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Figure 7.  Plot of the first 52 eigenvalues. The red points are mode type 1 eigenvalues and the blue points are 
mode type 2 eigenvalues; an approximate fit to the eigenvalues as a function of n is given in the 
text.    
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Table 1. First 52 energy eigenvalues for our system with alignment 1/2, 
zero bias field and a transverse gradient of b1=1. The sequence of 
eigenvalues alternates between type 1 and type 2 eigenvalues as n 
is increased. Because of this double counting the index n in the 
table is not the same as the index n used in the plot of figure 7.  

n Type 1 Eigenvalue Type 2 Eigenvalue 
1 1.893790658 2.770959115 
2 3.735223647 4.436734695 
3 5.211244681 5.827843267 
4 6.504703191 7.067475471 
5 7.681587325 8.20585412 
6 8.774989674 9.269728735 
7 9.80443751 10.27548299 
8 10.78265521 11.23407047 
9 11.71851157 12.15327128 

10 12.61849734 13.03886265 
11 13.48754237 13.89528345 
12 14.32950179 14.72603767 
13 15.14746211 15.53395267 
14 15.9439429 16.32135181 
15 16.72103469 17.09017376 
16 17.48049623 17.84205754 
17 18.22382493 18.57840462 
18 18.952309 19.30042528 
19 19.66706684 20.00917379 
20 20.36907731 20.70557569 
21 21.05920333 21.39044912 
22 21.73821055 22.06452178 
23 22.40678229 22.72844459 
24 23.06553163 23.38280277 
25 23.7150113 24.02812491 
26 24.35572179 24.66489048 

 

4.3 Eigenfunctions 

Once the eigenvalues are determined, the corresponding eigenfunctions are found by a 
straightforward summation of the series solutions equations 27 and 28 at any desired value of  . 

The eigenfunctions determined in this way display detailed behavior in regions beyond those 
accessible using the hardware precision ODE shooting techniques. This type of behavior is 
shown in figures 8 and 9. It is clear that the bound component does not simply decay away 
exponentially but has a small and quickly decaying oscillatory component as well. This behavior 
is explained by a detailed asymptotic solution of the problem. The ability to compare the direct 
calculations of the series technique with the asymptotic solutions over wide ranges will be very 
helpful in checking various aspects of the asymptotic behavior of these solutions.  
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Figure 8. The first 10 type 1 mode radial eigenfunctions. The black curve with no zero crossings is the ground state 
wave function. The first excited state is the blue curve. 

 

Figure 9.  The first 10 type 2 mode radial eigenfunctions. The black curve is the lowest energy type 2 mode but is 
actually the first excited state of the system.  
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5. Conclusions 

The use of series solution techniques along with arbitrary precision arithmetic is a very powerful 
combination for investigating the solutions of differential equations in regions where ordinary 
hardware precision numerical integration techniques break down. The use of arbitrary precision 
in differential equation solvers is implemented in Maple and these can be made to produce 
accurate solutions at large radii. However, the solution of a differential equation by the series 
technique simply requires the appropriate power series formulation of the solution and a software 
system that implements an arbitrary precision library, such as GMP (GNU, 2010). By using a 
judicious choice of the number of digits and terms needed for a particular set of calculations, the 
solutions can be calculated very quickly and with excellent resolution. We have found this 
technique to be extremely useful for calculating radial wavefunctions and eigenfunctions for the 
atomic waveguide problem as it produces accurate solutions in situations where spinor equations 
can be uncoupled to produce higher order differential equations that are difficult to solve 
analytically.  



 
 

 22

6. References 

Bender, C. M.; Orszag, S. A.  Advanced Mathematical Methods for Scientists and Engineers; 
McGraw-Hill: New York, NY, 1978. 

Bergman, T. H.; et al. JOSA B 1989, 6 (11), 2249. 

Bill, J.  Phys. Rev. A 73 2006, 053609.   

Blümel, R.; Dietrich, K.  Phys. Rev. A 1991, 43, 22–28.  

Fortágh, J.; Zimmerman, C.  RMP 2007, 79, 235. 

GNU Multiprecision Library documentation located at http://gmplib.org/ (accessed 2010). 

Golding, W. M.  Atomic Waveguides for Atom Chips; ARL-TR-5014; U.S. Army Research 
Laboratory:  Adelphi, MD, Oct. 2009. 

Hinds, E. A.; Eberlein, C. Phys. Rev. A 2000, 61, 033614. 

Hinds, E. A.; Eberlein, C. Phys. Rev. A 2001, 64, 039902(E). 

Ince, E. L.  Ordinary Differential Equations; Dover: New York, NY, 1956, p. 396. 

Lesanovsky, I.; Schmelcher, P.  Phys. Rev. A 2004, 70, 063604. 

Potvliege, R. M.; Zehnlé, V. Phys. Rev. A 2001, 63, 025601. 

Sukumar, C. V.; Brink, D. M.  Phys. Rev. A 1997, 56, 2451.  

 
 



 
 

 23

NO. OF 
COPIES ORGANIZATION 
 
1 PDF DEFENSE TECH INFO CTR 
 ATTN  DTIC OCA 
 8725 JOHN J KINGMAN RD STE 0944 
 FT BELVOIR VA 22060-6218 
 
1 DARPA 
 ATTN  J  ABO-SHAEER 
 3701 N FAIRFAX DR 
 ARLINGTON VA 22203-1714 
 
1 CD OFC OF THE SECY OF DEFNS 
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 ABERDEEN PROVING GROUND MD  
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1 COMMANDER 
 US ARMY RDECOM 
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 W C  MCCORKLE 
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3 DEPT OF THE ARMY 
 WEAPONS SCIENCES  
 DIRECTORATE 
 ATTN  AMSRD AMS WS 
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