FLEXURAL RIGIDITY OF A RECTANGULAR
STRIP OF SANDWICH CONSTRUCTION

Original report dated February 1944

Information Reviewed and Reaffirmed
Scptember 1962

No. 153056
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The flexural rigidity of a sheet of sandwich 1s not so high as the usual
calculations based on the Young's moduli of core and facings would indi-
cate. The relatively low modulus of rigidity of the core causes a.con-
siderable reduction in the calculated stiffness, especially for sheets
whose linear dimensions are not extremely large in comparison. to their
thickness. This reduction in stiffness is well known in the case of beams
of small span-depth ratio.

A method‘2 for calculating the effective stiffness of strips of plywood has
been developed and applied to certain types of ordinary plywood. This
method is used to obtain a formula for the calculation of the effective
stiffness of a strip of sandwich construction supported at its ends and
loaded at its center. The strip is considered to be made up of two can-
tilever beams. The relations between stress and strain and the conditions
of equilibrium and strain compatibility in the facings and core of the
sandwich strip lead to a differential equation that is satisfiled by a
stress function. A suitable stress function is chosen and fitted to the
proper boundary conditions of each facing and of the core. When this is
done it is found that only three constants remain to be determined by the
conditions at the fixed end of the cantilever. These constants are deter-
mined by placing the horizontal displacements at the top surface of the

lThis progress report is one of a series prepared and distributed by the
Forest Products Laboratory under U.S. Navy, Bureau of Aeronautics No.
NBA-PO-NAer 00619, Amendment No. 1, and U.S. Air Force No. USAF-FO-
(33-038) 4B-U41E. Results here reported are preliminary and may be
revised as additional data become available. Report originally written
in February 1944 by H. W. March and C. B. Smith, former Forest Products
Laboratory mathematicians. Revised in 1955 by H. W. March.

2Maintained at Madison, Wis., in cooperation with the University of
Wisconsin.

éMarch, H. W. Bending of a Centrally Loaded Rectangular Strip of Plywood.
Physics, Vol. 7, 1936, pp. 32-41.
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upper facing and at the bottom surface of the lower facing and the vertical
displacement near the center of the core (at the origin of the coordinate
system used) equal to zero. Thus the facings and the core are not restrained
from rotating about their associated points of restraint except by their
interactions with each other. The result is that their individual stiff-
nesses in bending are neglected at points directly under the central load
and, therefore, that the theory developed leads to a conservative estimate
of flexural rigidity if the individual stiffnesses of the facings contribute
substantially to the total stiffness of the sandwich strip. Both core and
faces will be assumed to be made of orthotropic material, such as wood.

The result can be extended immediately to cases where one or both of the
materials are isotropic.

The thickness of the facings will be denoted by f, and f,, respectively,

that of the core by c, and the total thickness by h. The width of the
strip will be denoted by b. The neutral plene, z = o in figure 1, is
taken to be at a distance g from the facing whose thickness is fl. The

velue of q will be determined in the course of the analysis. The differ-
ence, ¢ - q, will be denoted by p.

The reduction in stiffness of a rectangulaer strip of length a, as shown

in figure 1, will be determined by assuming a load P to be applied at the
center along & line perpendicular to the direction of the span. The strip
will be considered to be made up of two cantilevers fixed at their june-

tion x = 0 and under the action of a load % at the end of each, namely at

X = % and x = - %. The &idth of the strip will be taken to be large in

comparison with its thickness, so that the cantilever mey be considered to
be epproximately in & state of plane strain.

One of the cantilevers under consideration is shown in figure 2.

In the state of plene strain it is assumed that the components of dis-
placement u and w parallel to the axes of x and z, respectively, are fune~
tions of x and z only, and that the component v parallel to the axis of y
is zero. All components of stress and strain are independent of y. The
strain components exys Cyz» and yys and the stress components Xy, Y, all
vanish. The stress components Yy is, in general, not zero. Hence, to

maintain the strip in a state of plane strain, tensile or compressive
forces must be applied on the faces y = O and y = b of the strip. The
influence of these applied forces on the deflection of the cantilever is
assumed to be negligible.

At the planes of separation between the facings and the core the following
conditions hold:

The components of stress Z, and X, are continuous.
The components of displacement u and w are continuous.
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Within each layer the components of strain and stress are connected by the
following relations,X if the axes of x, y, and z are assumed to be normal
to the planes of symmetry of the orthotropic materials of the faces and
core.

) yX ZX
e AP Zgs )
x Yy z )
)
= 3’_(2'.)( 1l y .G_ZX )
y = "E x*g YWy g % ) (1)
X N4 2z )
)
g o] )
XZ Z 1
ezz-:—-———Xx-ELYy-l'ﬁ—'Zz,
X Yy Z
1
Bp = =%, (2)

In these equations E,, Ey, and E, are Young's moduli in the directions x,
Y, and z, respectively. Poisson's ratio Oxy is the ratio of the contrac-

tion parallel to the y-axis to the extension parallel to the x-axis associ-
ated with a tenslon parallel to the x-direction. The quantity i is the

modulus of rigidity associated with the directions x and z.

In the respective layers the components of stress and strain and the con-
stants of the materials will be denoted by the subscripts 1, 2, and c.
The subscript 1 will refer to the facing of thickness fl, 2 to the facing

of thickness f_, and ¢ to the core.

2
Since
=0
ey (3)
E E
T A 1 2
Y, = E, D B o Oy Ly (4)

Substituting (4) in (1), it is found that in each layer

EIL S. Forest Products Laboratory Report No. 1312, page 34k. Love's

notations for stress and strain components are used. See A. E. H.
Love, "The Mathematical Theory of Elasticity."
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1

exx=§(l-0xy0yx) Xx-ﬁ(ﬂ)rxdzy'l'o'zx) Zz
1 (5)
e ='E—(° g +0 )X +%—(1-0 g )%
22 XY ¥z xz' X 2 yz zy 2
Noting tha.t2
E
L S YR T P
yx E zy - E zx © B
X y x
equations (5) may be written
exx=aXx—BZz, (6)
g = = BXx + 72,
where
1 \ 1
a = E;" (l - ny oyx)) B = E—:); (ny Uyz + OXZ)’
1
Yy = E— (l - oyz o'zy)' (7)

Within each layer of the sandwich the equations of equilibrium of the
stress components Xx, Xz, and Zz assure the existence of a stress funetion

F such that

2 2 2
x, = 9F g - XF x . O f (8)
Jxdz

Substituting (8) in (2) and (6), and then making use of the compatibility
equation

Beexx 82e

22
+
Bze

sz ) ox Bz,

2
B d ey,

it follows that the stress function F satisfies the differential egpationé

2U. S. Forest Products Laboratory Report No. 1312, p. 3k.

§In printing equation (35) of the paper "Bending of a Centrally Loaded
Rectangular Strip of Plywood," Physics 7, 1936, pages 32-41, the co-
efficients @ and y were interchanged. Opportunity is taken to point
out an error that crept into the writing of equation (20) of that paper.
The term N cos 5, b in the denominator of the long fraction should be
replaced by N sinh y_ b. The calculations given were based on the

n
correct expression.
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ahF 1 ahF BhF
—T+ (— + = O
7 ox (“xz 2 dx2 dz° 32" (9)

A suitable solution is

3
F=g(x - %) (%— +ez) (10)

Expressions of the form (2), (6), and (10) hold for each layer separately.
Equation (10) will have the following forms in the core and facings 1 and
2, respectively.

3
F, =g, (x - %) (%— + e,2)
a 25
Fp =g (x-5) G+ e2) (10,8)

3
Fp = go (x - %) (%— + eyz)

The constants that appear are to be determined by the conditions that hold
on the planes separating the facings and the core, from the condition

q+ t

///' Xz dz = = (11)

-~ (p + £,)
and from the conditions that

X, =0, z=- (p+f,) end z = (a +.2,) (12)
It follows from (8) and (10,a) that in the core

2
(X,)e = -y £ # 5y) (13)
8
(X )e =28, (x - 9) 2 (14)
(Zz)c =0 (15)

For the facings 1 and 2 the subscripts ¢ are to be replaced by 1 and P2
respectively.

Equations (2) and (6), together with (13), (14), and (15), give the
following expressions for the components of strain in the core:
auc a ( 6
= = - = 1
(exx)c =% = 2% & (x 2) ~ )
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ow

(ezz)c = g:_ = = %c gc (X - g) Z (17)
du ow g
() = —= + —S =2 % =--C (2% +¢e,) (18)
X2 5z Ox he 2 He ¢

where u, and w, denote components of displacement in the core and p,

denotes the value of the modulus of rigidity py, in the core.

Again the corresponding equations for the facings are found by replacing
the subscript ¢ by 1 and 2, respectively.

From (16) and (17)

% & (x - %)2 z + T, (z) (19)

Yo

We = - Bg 8e (x - %) 22 + 8, (x) (20)

where rc(z) and sc(x) are arbitrary functions which are to be determined,

apart from linear terms, by substitution of (19) and (20) in (18). On
substituting in (19).and (20) the functions determined in this way the
following expressions for the components of the displacement in the core
are obtained. . ’

a2 B 20 Pe 8 '
u, =@, gc-(x - 59 - ;% (3—-+ e,z) + 20 + k.2 + M (21)
ay, 2 ‘¢ B a\J
Wo = = BC Ee (X - 5) z - T (x - 5) - kcx + n, (22)

By writing the subscripts 1 and 2, respectively, in place of ¢, the
corresponding expressions for the components of displacement in the fac-
ings are obtained.

The condition that the component of displacement u shall be continuous at
the plane, z = q, requires that

3
a, g, (x -.%)2 q - Ec (%_ +e.q) + 923§S QP + k.q + m,

He
23)
g 5 B, 8 (
=0 g (x - %)2 q - 2L (2 + e1a) + 1oL g5 kiq + my
Hy 3 3
This relation is an identity in x. Hence
Qo 8 =0 81 (24)
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and

4 3 B. g
c
- — (%— + e,q) + @+ Koq + mg
c
' 2
= - %}_(92_+ e.q) + P f q5 + kg +m )
The continuity of the component w at the plane z = q requires that
a, 3
ay o c B¢ a
“Be 8 (x-35)a - == (x-3) -kx+n
o F ay .2 9 & a2 (26)
_—Blgl(x-§)q-_5—_(x~2) —klx+nl
This ldentity in x yields the further relations
2 2
2N - o 28
Bc & 1 3 it " Bl R i | (28)

The following equations, corresponding to (24), (25), (27), and (28), are
obtained from the .conditions that the components u and w are continuous
at the plane x = - p.

A B = %2 82 (29)
24 Be 8
g2 B & (30)
2 2 52
= ﬁ;’(gr'+ esp) - 3 P’ - kgP + o
2 ' 2
By 8, P~ +k, =B, & P +k, (31)
2 a 2 8
Bo 8. P 3+n,=B,8 P 5+, (32)

By comparing equations (24) and (29) and noting that o, = 0, since the

facings are made of the same material, it is seen that

g =&, (33)
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It will be convenient to introduce the notation

o (Eyx)e (1 - Oxy ny)l

p = a; i (Ex)l 1 - KR °yx)c (54)

Then in accordance with (24)

B =5 8 =P8 (35)
(]
Further

since the facings are made of the same material.

Hence in all of the preceding equations g, will be replaged by &5, 32 by
Bl) ag by al, and gc by pgl'

The condition that the component of shearing stress Xz 18 continuous at

the planes z = q and z = - p requires that
2 2
2 2
pg, (p° +e ) =g (" +e,) (38)

Further, it follows fram (12) that

(q+ )% +e =0 (39)

(p + f2)2 + ey, =0 (%0)
Hence

ey = - (a+ )" (82)

%=-(p+%ﬁ (42)

On substituting (41) and (42) in (37) and (38), respectively, it is
found that

+ fi) (43)

1

2 1 '
e, =-4d -3 (2q £

Report No. 1505 -8-



2 1 2
e, = - P -3 (2p £, + f2) (4k)

It is clear that q, the distance from the neutral plane z = O to the
Junction of the core and the facing fl, must be chosen so that the two

expressions for e, are equal,

By equating these expressions and recalling that p = ¢ - q, it 1s found
that
2 _ g2 2
.- f2 fl + 2¢ f2
2 (fl + f2 + pec)

+ pc
(45)

To complete the determinations of the constants that appear in the ex-

pressions for Uyy Wos Ups Wps Us, and LY the following conditions are

imposed at the fixed end x = O of the cantilever forming the right-hand
half of the beam.

w, =0 x =0 z =0 (46)
w o= 0] x=0 z=q+f (47)
u, = x=0 z =- (p + f2) (48)

Similar conditions of fixity were fouRd to lead to satisfactory conclu-
sions in the case of a plywood strip.=

From conditions (47) and (48) and equation (21) written with subscripts
1 and 2, respectively, it follows after a slight reduction, using (41)
and (42), that

trfarn) e =0 (19)
) 65 &1 %i (p+ 1) - %’Sﬁ (p+ f2)5 - Ei;& (p + fe)5
"o (o) vmp = O (50)

From (46) and (22) it is found that

3
n o-. P& (51)
c 2k
Substitute k, in terms of k, from (27) in (25) and k, in terms of k, from

(31) in (30) and substract, obtaining
Report No. 1505 -9-



_& g3 P g1 g3 pd
LT TR (3 + 5 +ea+ep) - ™ (3-+ 35 +ea+ep)
+—§-Bl g, (@ + p°) - % B, & (@ + p°) (52)
From (27) and (31)
_ 2 2y _ 2 2
kz—kl+Blgl(q p°) oBcgl(q p°) (53)

Subtract (50) from (49) after substituting (53) for k, in (50) and obtain
after some reduction

2 o &
ml‘m2='dlglﬁ_h’%u_i[(q"fl)a*(l’*fz)}]

By &

[(are)’+ (s 2’

2 2 2 2
-k h - + f - + + f - L
PP g (p 2) (¢° - p9) B & (p 2) (¢° - p7) (5h)
where h = q + fl + p + f2.

Equate expressions for m; - m, in (52) and (50) and solve for k, and
obtain after considerable reduction

2
N ['al:a. 1 2 2. 2.3 2
ky = - & T+_ulh(qf1+pf2+3fl+3f2

B f f
1,02 2 2, "1
+T1—(qh+qfl+pf2+5+3)

3 b
2

pp ‘
—v-h—c[%q5+q?p-%p5+(q2-p2) fe]

3 5
w B (A LB
Hoh (5 St ecc)} (55)

To obtain the deflection at the center of the beam the displacement vy at
the end x = %, of the cantilever will be calculated. This will be measured

with reference to a point on the plane of the neutral axis at the middle of
the beam. Consequently, the deflection of points on the neutral plane at
the center of the beam will be numerically equal to the quantity vy calcu-

lated at the end x = % of the cantilever.
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In accordance with (22)

a
A (56)

From (51) and (28)

“1=551|:""‘3c'3'q '31%‘1 T T2k (57)

On substituting (55) and (57) in (56) the following expression is obtained
after some reduction:

3
18 2.3 3
(wl)x =g {ale E’u h (qf + pf +3 1 +3 fg)

T2

Bl 2

+—(qf + pf, + 3 £

1 3
3 1+3f2}
pB & 3 3
¢ : P 2 2
+ 5 G%— +5+q" 1 +p fe)

3 3
q
- 2u - ( + 13’— + ecc)} (58)

and this expression can be further reduced to the form:

g Q. a
(w,). a =22 {l+-2—|:——(5qf + 3pf5 +2f3+2f5)
Vx =3 12 2. [an, 1

B 3 3 Bc
(5qf +5pf + f +f)+ (q +p +3qf +3pf)

al L o

_Lalu (a® + p° + e C)]} (59)
[&]

‘The coefficient g, can be calculated from the condition (11).

q + £y ;P q (@ + f)

1
/// X,dz = - 51 /// (22 + 82) dz - pg%)/(zz + ec) dz - g //f (22 + el) dz
-(p+ 1) (

—p+f2) - p q
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After performing the integrations and making use of (41), (k2), (43), and
(L4) the right-hand member of this equation reduces to:

%8 [ 2 2 2 S i . %
T[}qfl+§qfl+5pf2+5pf2+fl+f2+p(q +p)]

P

By (11) this expression is equal to 2 Hence

5P
g = | ol 2 f ' - ( &0
P 30 e 5p°r, + 3pfs + £ + £+ p (@ + pi)J

1 2

The dencminator is closely related to D, the stiffness of the beam as
calculated without correcting for the effect of shear deformation. For,

- p " q ; q + f} -
(E 2 Be)n & E z
=B __f%g___ dz + b E—i%g———-dz + b E—EXL———
2 C ; |
~fp+ 1) - p q
where
ANomh w{(l=ad @ ) hn{l-®w g ) (60,a)
2 1 xy yx 1’ u Xy yxc
(Exj2 = (Ex)l' After noting that
(Ex)e - (Ex)l - 1 and (Ex)c _ 1
)»2 )"1 ocl kc ac

the expression for D is readily reduced to

D = 325;[5q2fl + 3qf5 4 3p°E, + 3y £ £2 4 T3 4 p (o + p5)},(6l)
where in accordance with (34)
_a
P =3
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It follows from (60) and (61) that

8 = Eaiﬁ (62)

By using (62), equation (59) can be written in the form:

3 2
P
() - 8= o5 [+ 0 5] G
where
o [1 2 2 3 3
1 =5 [———— (3£ + 3pfS + of? + of2)
3 [ogny 1 2 1 2
ﬁ . .
+ ai-(}qfi + 3pf5 + £ + £)
B |
-y (@ + ° + 3°) + 3°F,)
A (® +p° + 3ecc)] (64)

In this expression q and e, are to be calculated by formulas (45) and
(43). Further, p=c - q.

As will be seen from the steps taken to calculate 1t, the stiffness D is

the stiffness that would be determined in a load-deflection test of a
centrally loaded beam if a correction for shear deformation were not
necessary. Equation (63) shows that the effective stiffness_of a centrally
loaded strip of sandwich is equal to D divided by 1 + 1 h2/a?. Consequently;

Effective stiffness = ———2——5 (65)

1+ 0%
8

Formula (64) for the factor 7 that expresses the effect of shear deforma-
tion in the core, can be written in a form more convenient for calculation
by introducing the following notation:

Let

f,=f-5 end f,=f+5 (66)
8o that

f + f i A =t

_].'._..é___2.=f and _.2_2__l=5 (67)
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Also,

h=c+f +f,=c+2f (68)
and

foboc (69)
Let

Q=5+ ¢ (70)
and

p=g-9® (T1)

Then it follows from equation (45), the relation p = ¢ - q, and from
equations (67) and (68) that

5h
¢_h-c+pcj' (72)

The following expressions that are needed in transforming (64) are obtained
from equations (66) to (72).

2 2

f2-f1=hf'a

2. .2 2 2 (h-o), 2
£5 4 £ = 267 4 267 = A0 + 25
r3+f3'=$£-ﬁ-°—)3+5(h-c)62
17 %2

N 2
qf$+Pfg=c—Ql-h—-—gL+c52-2(h-c) 56
2; 2 2h-c 2
qfl+Pf2=-uK—l-205¢+(h-c)¢

- 3 '
q3+p3=-ﬁ—+§c¢2

After introducing these expressions in (64) for v and replacing ¢ by its
value given in (72), after considersble reduction a formula is found for
n that it is convenient to break up into four parts. Thus:

IR NER WS PR (13)
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where

2 [l -2 - (1 - p)ﬁj

3
1 ¢ c 5 ¢
N = o LCe o O E ; (T4)
. g By Pt [1 5 [ p)%}
C
o[ el o gl-areg
T]E:?ﬁ: 1—3—§+2~—§-—-12'—2" (75)
. e & = [l - (1 -p) %]
| 1, - 28 4.2 (1 - p) e
o Belie L, 2l . 6
s = A en e masl iE — = (76)
h
C
) o {l +(1-0) H] 3
g PR - g Lt
1Me h h {1 - (1L - p) %] b7

The part ), will often be found to be a sufficiently good approximation

to the value of n because the factor 1 in the coefficient of the ex-
o
1He

pression for nh is usually very large in comparison with the corresponding
Tactors in the coefficients of the expressions for nl, “2’ and n}. Further,

the last term in the brackets in the expression for 0y, will often be
negligible. When this is the case, the approximate value of 7 is given by

the equation:
c

c c 5 ¢
"rmgoPE o) -2
e | h h Ll - (1 - p) %}

(78)

It is difficult to state the limits within which the formuwla (78), or

the somewhat more accurate formula (77), is a sufficiently good approxi-
mation. With a given type of sandwich it will be necessary to consider
the other terms in formula (73) in order to decide the limits within which
either formula (78) or (77) may be used to calculate n. The computation
for a series of similar specimens will be materially shortened if it can
be shown that either of the simpler formulas is adequate for the series.
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In the notation introduced in equations (66) and (67) the formula (61)
for the stiffness D, not corrected for shear deformation, takes the
following simpler form:

Y-
b Ipd 34 p0d - 12b a-p) (79)

D= -
2| 1- (-0

where @y, p, and d are defined by equations (7), (31), and (67), respec-
tively.

Facings of Equal Thickness

When the facings are of equal thickness, the formulas (74) - (77) for
the components Mys Moo n3, and n), take much simpler forms. For if fl = f2,

it follows from (67) that & = O. Consequently, all terms containing & as

a factor disappear from equations (74) - (77). At this point the necessary
formulas are collected for the case of equal facings.

The central deflection is given by:

2

\N

: Pa h
(), s =T [+ 7] ()
2 .
where
Lo N L P (73)
and
SR ) PRI (80)
1 24y h 3]
Bl B czf R,
N, = = 1-3—+—2—] (81)
2 2_0‘1L : h2 h5 ‘
Be T c2 el
n=——3—-mﬂ (82)
3 20; L h2 h5
1 c c2 : c3
e [53(1'—2)”29—3] (83)
- 1e h h
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In the original form of this report the thickness of the core was denoted
by t. The change from t to ¢ has been made here for the sake of agreement
with the notation of more recent reports.

Formulas (63) and (73) combined with equations (80), (81), (82), and (83)
are substantially the same as formulas (53) and (5&5 of the original form
of this report, except that in the present report the factor » =1 - ny oyx’
both for facings and core, has not been replaced by unity but has been re-
tained throughout.

For sandwich beams with facings of equal thickness, such as were considered
in the original report, Hoff and Mautnerl have derived by an entirely
different method an approximate formula expressing the effect of the shear
deformation in the core on the central deflection of & centrally loaded
beam. Numerical calculations of s few beams indicate reasonable agreement
of their formula, sppliceble to the case of equal facings, with formula (73)
combined with equations (80), (81), (82), and (83) and with the simpler
approximate formula to be mentioned below.

As in the case of unequal facings, 1t will often be found that my, is a

sufficiently good approximation to 2. Often a further approximation can
be made by dropping the term 2pc5/h . When this is permissible, the fol-
lowing simple approximate formula for 1 results:

: 2
M=t 2 (1 - &) (84)
2(.'L_Lu h 2
c h
or, in terms of the elastic constants, this approximate formula can be
written as:

> % 2'(1 - £ (85)
(L= jl Hoxe B K2

T':

g o
Xy Yyx
where the subscript 1 denotes an elastic constant of the facings and the
subscript ¢ an elastic constant of the core.

4

As in the case of the approximate formulas for sandwiches with unequal
facings, it will ‘be necessary to refer to the more exact formula to deter-
mine the limits within which n,, g, and.q3 mey be neglected for a given
type of sandwich.

For sandwiches with facings of equal thickness, the stiffness D from which
.the effective stiffness can be calculated by equation (65) can be obtained
by using equation (79) and setting & equal to zero.

Zﬁoff, N. J., and Mautner, 8. E. Bending and Buckling of Sandwich Beams.
Jour. Aeronaut. Sciences 15, 707, 1948.
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Notation

span

width of strip

thickness of core

flexural rigidity of strip, neglecting the effect of
shear deformation in the core

constants in expressions for the stress functions
Equation (10,a)

components of strain

Young's moduli

thickness of the facings
f = (fl + f2)/2, average thickness of the facings

constants in expressions for the stress functions
Equation (10,a)

thickness of strip

constants of integration

distance from the neutral axis to the facing f2

load applied at mid-span

distance from the neutral axis to the facing fl

components of stress

components of displacement
combinations of constants of facings or core
Equations (7)
5=(f -f_)/2
(£, - £,)/
factor showing influence of shear deformation,
?gu§tions (63), (64), (73), (77), (718), (83), and
h. )
combination involving Poisson's ratios.
modulus of rigidity

in core
Hyo

Equation (60,a)

Hyy in facings
ratio of constants of facings end core. Equation (3h)

Poisson's ratios
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Figure 2.--Half of strip as a cantilever.
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