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In various reports (5), (10), (11), (12), (13), (18), (19)é issued by the
U. S. Forest Products Laboratory dealing with the behavior of wood and
plywood from the standpoint of the mathematical theory of elasticity, ex-
tensive use has been made of this theory as applied to orthotropic mate-
rials; that is, materials having three mutually perpendicular planes of
elastic symmetry. The visible structure of wood suggests that planes
perpendicular to the longitudinal, radial, and tangential directions, re-
spectively, as shown in figure 1, may be considered planes of elastic
symmetry. The purpose of this report is to present the fundamentals of
the mathematical treatment of orthotropic materials, as found in various
treatises on the theory of elasticity and in scientific papers in this field
(1), (2), (3), (4), (6), (7), (8), (14), and the extension of this treatment
to wood and plywoo-a. - T T

In the use of these materials, the applied forces may act in the direction
of the axes perpendicular to the planes of symmetry or the forces may be
inclined to these axes. Hence, the modification of the theory applicable
to isotropic materials involves the expression of the relations between
stress and strain in terms of the elastic constants associated with the
three principal directions in wood and plywood and the use of transforma-
tions to permit stress and strain to be referred not only to axes perpen-
dicular to the planes of elastic symmetry but to any other set of ortho-
gonal axes.

1This is one of a series of progress reports prepared by the Forest
Products Laboratory relating to the use of wood in aircraft issued in
cooperation with the Army-Navy-Civil Committee on Aircraft Design
Criteria. Original report published 1944.

—Maintained at Madison, Wis., in cooperation with the University of
- Wisconsin.
—Underlined numbers in parentheses refer to Literature Cited at the end
of this report.
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In this report, the axes perpendicular to the planes of symmetry will be
called the orthotropic axes.

gotation

For the components of stress and strain, Love's notation will be used.
The components of stress are (fig. 2):

7 Zx’ and XY

Of these, the first three are direct stresses, normal to the respective
planes on which they act. The last three are shearing stresses. The
other three components of shearing stress Zy, X, and Y that could

have been written down can be shown to be equal to Y,, —Z:, and X, re-

_z X X
spectively, by considering the conditions for the equilibrium of an ele-

ment of volurne of the stressed material.

I u, v, and w are the components of the displacement of a point in the
body at a pos1t10n whose coordinates are x, ¥, and z, the components of
strain are defined as follows:

ou v aw
e =— e =— e =—
XX &x YY oy ZZ 9z
(1)
ow Ov ou Ow ov  du
e ==+ — e =+ —, e = — + —
Yz ®y 09z ZX 9z Bx Xy 8x 9y

The first three components are extensional strains (extension or con-
traction), the last three are shearing strains.

Relations Between Components of Stress
and Strain in an Orthotropic Material

If the orthotropic axes are chosen as axes of reference, the following re-
lations express the strain components in terms of the stress components
and the elastic constants of the material:
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1 yx ZX
°xx "E *x " E_ Yy "E. 2%z
x y Y z
ny 1 T2
XY Sy . ZY 2
eyy 5 Xx+E y F Zz ()
X y z
T xz Tyz
e = ~ X -—/—™Y +— Z
ZZ Ex X EY y Ez Z
ey Y, .+ e, =tz ., e =Lx (3
LI By X YooByy Y

The significance of the constants in equations (2) and (3) is best seen by
taking successively all but one of the stress components equal to zero.
Thus, if X is the only stress component that is not equal to zero and if

it is posime (a tension), the extensional strain components have the
values:

exxz_fjl_xx ’ =-ﬂxx=—crx e ,
X Yy Ex Y xx
Tz
ezz:_Ex xx=_°—xzxx

In the first of these equations, the Young's modulus Ex appears in the

relation between the component of tension X, and the?)rresponding ex-

tension €yx- The second and third equations express the fact that

corresponding to the extension € associated with the tensile compo-

nent of stress X4» contractions occur in the directions parallel to OY
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and OZ perpendicular to the line of action of the stress component. Thus,
for example, the Poisson's ratio o-xy is equal to the ratio of the con-

traction parallel to OY to the extension parallel to OX associated with a
tension parallel to OX.

The remaining terms in equation (2) can be similarly interpreted by tak-
ing in turn YY and then Zz as the only stress component different from

zero. Equations (2) represent the superposition of the three states of
stress and strain that have just been considered.

If the component XY is the only stress component not equal to zero, the

last of equations (3) shows that sy is to be interpreted as the modulus of

rigidity associated with a shearing strain in the XY plane. In writing
equations (2) and (3), it was assumed that the extensional strain compo-
nents are associated with the direct stress components only and that the
shearing strain components are associated with the corresponding shear -
ing stress components. The justification for this assumption will be
given in the next section on the basis of the form that the expression for
the strain energy of deformation must have for an orthotropic material
when the axes of reference are the orthotropic axes.

Strain Energy Function for
Orthotropic Material

An expression will be obtairied for the strain energy per unit volume of
an orthotropic material in a given state of deformation.

In figure 2, let the parallelepiped shown be considered very small and
let its sides parallel to OX, OY, and OZ be a, b, and c, respectively.
Let the component X increase slowly from the value 0 to a final value

X,. Atthe same time, the total elongation of the side a will increase
from 0 to SN Then the energy stored in the parallelepiped will be
equal to one-half the product of the final value of the force X, bc and the
final value of the elongation e & or 1 X_ e__ abc. In like manner, the

2 X xx
energy stored by the component Yz in increasing slowly from an initial

value 0 to a final value Y, is equ;to
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lY e abc
2 z Yz

If then all components of stress increase slowly from initial values zero
to the final values X_, Y , Z , Y , Z_ , X _, the total strain energy per
x' Ty z z X y

unit volume stored in the small —p:ramlel_)q)ed is given by the expression

1
W = 'E(Xxexx + eryy +Ze,  + Yzeyz tZe o+ Xyexy) (4)

wheree , e , ... e are to have the final values associated with the
xx’ Tyy X

complete state of stress specified by the components

Now, in accordance with the generalized form of Hooke's law each com-
ponent of stress is a linear function of all of the components of strain,
That is, for the most general type of elastic material, equations of the
following form connect the components of stress and strain:

xx t €12 ®yy 132, T C1q ®yz 15 T 16 Cxy

% * % £ X x* ¥
% £ s x® % * *
% * s * %k * %

Xy %1 ®xx T 62 ®yvy T C6352 t Co4q ®yz T %65 Cx T 66 Cxy
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If these values of the stress components are substituted in (4) an expres-
sion of the second degree in the strain components will be obtained. It

. . 2
will contain 21 terms such as e, e e, e e .
: xx’ "xx xy' “yz xy

If now the material is orthotropic and the axes of reference are the ortho-
tropic axes, the strain energy function must be unchanged if the positive
direction of any one of the axes is reversed.

If, for example, the direction of the X -axis is reversed, the form of the.
strain energy function must be unchanged when the transformation of
coordinates

x' = -x, y' = vy, z' =z

is made. As a result of this transformation, it is found that (see equa-
tions (1)):

Consequently, the coefficients of the following products in the expression
for the strain energy function must vanish:

e e e
®zx €zz zX Yz

’ € e »

. e e e e
Xy XX Xy yy Xy zz Xy yz

By considering in succession, the effects of reversing the positive direc-
tion of the Y- znd Z-axes, it is found that the coefficients of the follow -
ing products must also vanish:
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’ € e ’

e e e e .
Xy zx Yz XX Yz Yy

e e
yZ ZZ

Hence, the strain energy function of an orthotropic material must have
the following form (2) when the axes of reference are the orthotropic
axes!:

2

2
vy + Cezz + ZFeyy e, . + ZGez e

1 2
W-E(Aexx+Be % Cxx

2
+2He e + Le2 + Me2 + Ne ) (5)
XX yy yz TUzx xy

The factors 1/2 and 2 are introduced for convenience in subsequent
manipulations.

It is not necessary to discuss the significance of the coefficients A, B,

C, ... in(5). They are numbers that characterize the elastic behavior
of the material, but it is more convenient to use the moduli and Poisson's
ratios that appear in equations (2) and (3). To establish the relations be-
tween the coefficients of equations (2) and (3) and those of (5), use is
made of the following equations which can be established (9) by consider-
ing a small parallelepiped (see fig. 2) in a body in a given state of strain
and giving each of the components of strain in succession a small

increment;

ow oW oW
xX_Se ] y ~ de y Zz—ae
XX vy ZZ
(6)
ow W ow
Y. = %e ! Zy = de ’ Xy T
vz ZX Xy

It follows from (5) and (6) that
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Y =He__+ Be__+ Fe (7)

Y =Le , Z_ = Me ) X. = Ne (8)

If the system of equations (7) is solved fore__, e, and e__ a system of
xx’ Tyy Z2Z

equations of the same form as equations (Z)_wi_ll?e—:;ult. On comparing
the coefficients of this system with those of (2), it is readily found that
if A denotes the determinant of the coefficients of the system of
equations (7)

2
*1__33c-1;*‘2 1 _ca -cg? 1 _AB-H (9)
- - E - - » - - - . -
E, A E, A E_ A
zy. 'yz AF - GH “2x “xz BG - HF
. E, A E, - E, a
(10)
o-yx_u-xy_CH-FG
E E. A
v x

I"'YZ=L ’ 13 =M , e =N (11)
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It has been shown from a consideration of the necessary form assumed
by the strain energy function for an orthotropic material referred to the
orthotropic axes that the relations between the components of stress and
strain must be those given by equations (2) and (3).

In equations (2) and (3), there are 12 constants, namely, three Young's

moduli, three moduli of rigidity, and six Poisson's ratios. As may be

seen from equations (10), the following three relations hold among these
constants:

g a ' o o a
_zy - YZ XZ - ZX VX - Xy ( 12)
EZ EY Ex Ez EY Ex

Consequently, nine independent constants are needed to describe com-
pletely the elastic behavior of an orthotropic material.

For simplification in writing, the following abbreviations will be used:

1 Tay Tyz 1 Txa Tax 1 Tyx Txy
Fx Ez Ey Fy Ex Ez Fz EY Ex

Rotation of Axes -~ Transformation of
Components of Stress and Strain

Frequently, as in the case of a rectangular panel in which the grain of
the wood is inclined to the edges, it is convenient to use a set of axes in-
clined to the orthotropic axes. Formulas are needed for the components
of stress and strain as referred to the new axes in terms of the corre-
sponding components as referred to the orthotropic axes. These formu-
las are well known and can be found in treatises on the theory of elas-
ticity. They are reproduced below.

Let OX, OY, OZ be the orthotropic axes and let O, On, O be another

set of orthogonal axes. The components of stress X, ... X and of
straine _ ... eyy a8 referred to the orthotropic axes are considered

—— —
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to be known. It is desired to find the corresponding components as re -
ferred to the axes Of, Om, O.

For symmetry of notation, it will be convenient to follow Trefftz (17

(15), and denote the components of stress X ... X byt et

L X RO
respectively. For the components of stram, we shall use temporarily
the quantities Yoo *°- ny’ where

——t .

Vax T 2Cxx Yyy = ZeYY ’ Yoz = 2855
sz = eyz R Yo = €y » ny = exy R (14)
Yz}’ " Czy T C%yz Yz = €xz = %ux Yyx T ®yx T ®xy

Denote by ch, cgy, c§z the direction cosines of the axis Of with re-

spect to the axes OX, OY, OZ and by similar symbols, the direction co-
sines of the axes On and Of.

It can be shown (9) (15) (16) (17) that the stress components referred to
the new axes are expressed in terms of those referred to the orthotropic
axes by the following formulas:

2 2
t = + t
68 = o “Bx ¥ty “ex “ty ¥ tan Otk Cta ¥ hyx Sty Sex Flyy gy

2
c c +t c +t (o] +t c
Ey "z T Tmx Ttz Ctx zy “tz Ey  zz &z

(15)

+t

ty =t +t +t
En ™ "xx “Ex “mx T “xy “gx Sy z “tx “mz " ‘yx ty “mx

tchéyc‘TY + tYZC*ch“’IZ + tzxcgzcnx+ tzycgzcny+ tzzc gzc‘f]z
Report No. 1503 ~-10-



The formulas for the remaining components t__, t. ., "ng' t ¢ can be

: m
readily written down. It will be observed that t e_%&rst letters of the sub-
scripts of ¢ in a given term are the subscripts of t in the left hand mem-
ber of the equatmn, while the second subscripts are those of t in the term
under consideration.

The equations for the transformation (9) (15) (16) (17) of the components
Yex ¢ Yy 2T€ identical with those for the components of stress t

tx.

For example,
= cz + C c + C C + c C + c2
Vet ™ Vi “Ex T Yry Cfx Sty T Yam Cex €2 T Yyx Sty Ctx T Yyy Sty

+ + + +
Vyz Cﬁy Ctr T Yox %tz “tx T Vay “ta C&y' Yoz &z

(16)
Using (14), it follows that
e = e c2.+e c2 + e c2 + e c c
£€ xx Ex yy &y zz &z - yz &y &z
(17)

+
ezx cgz ch + exy ch cgy
In like manner it is found that

+ 2e

e§n=zex;: ch Cftx vy cgy cﬂy+2ez

” ng oz + eYZ (cgy c‘nz

tcg, CW} te, (cgZ Cx + ey C'qz) + Cxy (chcW+ngcﬁx)
(18)
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The expression for the remaining strain components can be obtained
from (17) and (18) by changing the first subscripts of the c's. Thus

2 2 e <:2 + e C C
m XX X yy ny zzZ Mz Yz My Nz

(19)

Relations Between Strain Components and
Stress Components When Referred to an
Arbitrarily Chosen Set of Orthogonal Axes

Relations will now be obtained between the strain components

€

°eE 0 %mm v Gy ¢ ng ' Seg 0 Ctn

and the stress components

tgg s ttm s t§.§ ’ tﬂ{, s

as referred to axes Of, Om, O¢ which are inclined to the orthotropic axes
0X, 0y, OZz.

In general, associated with any given stress component, there will be six
strain components which are different from zero. This is not the case
when the axes of reference are the orthotropic axes. For then, equations
(2) and (3) show that shearing strains, only, are associated with the
shearing components of stress while extensional strains, only, are asso-
ciated with the direct stress components.

The first and the last of six linear equations connecting the strain and
stress components will be written down. The coefficients that appear in
these equations will then be found in terms of the coefficients of equa-
tions (2) and (3).

Report No. 1503 -12-



e§§ =81 t§§ + 81> tfl"'l t 83 ti;{, + S14 tﬂ§+ 815 tgg + 5.6 tgn
(20)
€ty = 561 tgg t 8¢, t'rm t 863 tgg t 804 t'ﬂ§ + 565 tgg t 86 tgfl

The equations that are omitted would give expressions for enn, egg, e"'l{.’

and eg ¢ The first subscripts of the coefficients in these equations would

be 2, 3, 4, and 5, respectively. Among the coefficients 15 relations
such as the following hold:

512=521 N T T Sl6=S6l.

Thus the number of independent coefficients is reduced from 36 to 21.

The coefficients can be calculated in terms of the constants in equations
(2) and (3) by taking, in turn, all but one of the stress components to be
zero and making use of the equations (15), (17), and (18) for the trans-

formation of the stress and strain components.

I tgg is the only stress component that is not equal to zero, it follows

from (20) that:

Y 21 tgy 61 " Tye

(21)

To obtain 811 it is necessary to express et in terms of tgg. From

equation (155, interchanging the letters X, Y g_and _é, n, _Z, respectively,
and noting that tgg is taken to be the only stress component different

from zero, it is found that:
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2 2 2
txx = tgg ng ’ tYY = tgg cy_g , tzz = tgg ng (22)

tyz =tee Cyt Czt ¢ tox = tgg Cpt Cxt txy = tgg Cxt Syt
(23)

, given by (22), can be substituted in the right
! tyy = —'1:!, t, s = %, The result of

this substitution is that €y’ eyy’ and e,, are expressed in terms of tgg.

Equations (13) should be used to simplify the writing. In like manner,

€zt Cpx’ and e, can be expressed in terms of tgg by makmg use of

(23) and (3). I these values of ey s ... , eyxy are substituted in (17),
it follows readily that

xx’ tyy’ tzz

hand members of (2), since t =X

The values of t

e C4 4 4
EE kb T8 CefL 2 o2 1 2
Sll §§ Ex EY EZ Cyg ng (P'yz Fx)

2 2 1 2 2 2 1 2
+ Lt Cxt (P_-“—- - F—) to.t cyt (p_ -F ) (24)
zZX y Xy z

The quantities F % EZ’ F in (24) can be expressed with the aid of (13) in

terms of the Poisson' s rat1os Ty *°° Ty and the Young's moduli Ex’
E, E . 2y XY x
X _Zz

The modulus Eg is defined as the ratio of the stress component tgg to the

strain component egg in a state of stress in which all componenfs of

stress with the exception of tge are zero. Then from (24)

=E. (25)
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The coefficients 5,5, = llEn and s34 = 1/& can be found from (24) by re-
placing é in the subscripts by n and g, respectively.

If the values of €x? s exy in terms of t§§ that were used in obtain-

ing (24) are substituted in (19) the following value of 58,, =e__/t., is
) 21 - "mn” €€
obtained.

e c2 c2 c2 c2 c2 'cz c2 c2 +c2 (o]
g oo Smx%Ex  Cmy "8y “ma %6z Cwy "6z " Tma Ty
21 tgg E.x Ey Ez FX
cz c2 +c2 ¢ c2 c2 +<:2 c2 c Cc (o} c
c
CTmp bx mx bz mx &y My Ex My mz &y ¢z
F F j
y Z vz
C C c c c c cCy ©
, Nz T £z “£x L Ty Ex €y (26)
Mzx IJ'xy

The significance of the coefficient 8,, can be discovered by noting that

the Poisson's ratio, L is defined as follows:

Ty = " (emmlteg) [ (ege/tee)

=~ (enqlteg) By

Here it is to be understood that tgg is the only stress component different

from zero.

Then
Tenl Bs = (Cqmltee) (27)

and from (26)
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521 7 " Tgn/Fy

From (26) it is evident that

€ e
mo_ 88 (28)
‘e mm

because the right hand member of (26) is unchanged if £ and M are inter-
changed. In the left hand member of (28) t tge is assumed to be the only

stress component different from zero while in the right hand member

the same is true of trm It follows from (28) that:

B8y =81, = - Ugn/Eg = - o'ng/En (29)

If the values of €pyr e o exy in terms of tgg, that were used in obtain-

ing (24), are substituted in (18) it is found that:

X Nx §y Cﬂy ZCZZ an
861 = tgg = E + E + EZ + ng_ ng (ng an

1 2
'TY) (:'-H— - f‘_) + Ctz “tx (cgz “mx + Cex cnz)
Yz x

+ngC

1 2 : 1 2
X - =)+ + —— - =
G- Fy) Stx Sty (Cey Sy +op o) ‘uxy r)

(30)
This coefficient expresses the ratio of the shearing strain egl|1 to the

direct stress component tgg when the latter is the only stress component

that is not equal to zero. Such a shearing strain is not associated with a

Report No. 1503 -16-



direct stress component when the axes of reference are the orthotropic
axes,

Now let tg"'l be the only one of the stress components that is not equal to
Zero. ———

From equation (15), interchanging English and Greek subscripts, it fol-
lows that

txx = 2t§"l Cx§ Cxn tyy = Ztgn CyE, CYTI s
tzz = Ztgn ng Czﬂ (31)
tys “fen (Cpg Cantoyncag) 0 Tax Tten(Cpg Cunt Cancae)
= 32
tey = ten (Cxt Syn t Cxm Syt) (32)

On substituting these expressions in (2) and (3), recalling that =X,

.., t_ =X, and entering the resulting expressions for e e R
i gt 4 ' e -} i
in terms of tgﬂ in (18) the following value of the constant S¢¢ 18 found:

oot & as £ 5 2 €. C. €
N 4 “tx “mx . “Ey “ny £z “mz “ty “ny "tz “nz
B G E E E - F
66 g"] x ¥ z X
> +
) chx £ S oy chy cwch e . (cﬁycnz £z Sny
¥ F 78
y z vz
(ng c,qx+ch c"_lz)2 (ch Cn +cg cm)z
+ + LA (33)
Mo Moy
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Since the modulus of rigidity ug is equal to the ratio tg"l to egn when all

of the remaining stress components are equal to zero it it follows that:

1
8, = —1— (34)
66 Fen

The remaining coefficients of the six equations such as (20) can be calcu-
lated by the methods used in finding 811 Bypr Bgye and S¢¢ OF they can

be obtained from the expressions for these coefficients by suitably chang-
ing the subscripts. It is to be recalled that the following relations hold:

S12 %210 0 v Bpg T8gy

Plane Stress. Orthotropic Material

In a state of plane stress in planes parallel to the XY-plane, the stress

components Z = zz Yz =t 2’ and Z = tax are zero. The equations
of transformatlon from one set of axe—sjo another in the XY -plane and
the expressions for the elastic moduli are obtained from the correspond-
ing equations for the general case by noting that in addition to the three

components mentioned above, the direction cosines ¢, and 1z also van-

ish. It will be assumed that the XY -plane is a plane of elastic symmetry
and that the axes OX and OY are orthotropic axes.

It is convenient to introduce the angle 6, the angle through the axes have
been rotated as shown in figure 3.

The equations of transformation (15) become:

_ 2 , 2
tgg—txx cos e+tYY sin e+2txy sline cos 0O

. 2 2
t - i
o t._ sin” 9 + tYY cos” @ thy sin @ cos 6 (35)

t — 1 3 2 - gi 2
gn t s5in ® cos 0 +t s5in @ cos 0 + t (COS 0 8in 6)
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The equations (2) and (3) reduce to the following:

1 o
Cox T E tex B
x y 7
Xy . 1
= — 4=t
Ty T E, xx CEyy
(36)
O-XZ U!Z
e = - t - t
zz E,ox=x Eo oy
e -l
Xy R XY
Hereafter, we shall not be concerned with the third of equations (36).
Equations (17), (18), and (19), for the strain components become:
2 . 2 )
epg = €yy COS O+e sin 6+e sin6® cos 9 (37)
XX Yy xy
e = - 2e s5in @ cos 6 + 2e sin @ cos 6
En. XX Yy
2 . 2
teyy (cos 6 - gin"” 0) (38)
e._=¢e sinz 0 +e cos B -e sin ® cos 0 (39)
m o Txx vy xy

Equations (20) connecting the components of stress and strain, when they
are referred to the axes O§ and Om in the XY-plane as in figure 3, will
be written in the following form:
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- 40
nm =221 teE T 222 tyn T 223 by (40)

eﬁ'ﬂ = a31 tgg + a32 t'l"l + a33 tg"1

where in terms of the coefficients of equations (20):

11 - %11 © %227 %2 %337 %%
12 7%21 7 %12 T %21 0 2137331 7 %16 T 61 (41)
323 T332 826 T %62
The values of the coefficients ajy -+ 233 can be obtained from (24),

(26), (30), and (33) and corresponding equations that can be written down
by changing subscripts, by noting that

ng = an =0
It is readily found that:
cos4 0 sin4 0

. 2 2 1
11" F t g +sin 6 cos 8 (r -5 (42)
X y Xy z

a
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4 4
sin” © cos O 2 2 1 2
a,, =R - + sin” @ cos 0 ( -5 (43)
£ b4 xy z
b
" sins B cou e sinze o Zsinze cos 8
33 E E F
x v z
2
2 o
o (cos "8 - sin 8) (44)
P'xy
_ _ sinze cosze sinze cos_z_e_ sin46 + cos46
5y =R = E E - F
x v ‘2
2
_sin @ cosze (45)
p'xy
3 . .3
a.. = _ _2cos 0's8in © N 2sin O cos O
31 7713 7 E E
X Yy
. 2 2 1 2.
+ cos 0 8in 0 (cos” 6 - sin” 0) (FT_ - —F—) (46)
xy z
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B Zsin39 cos 8 . 2cos36 sin @

d32 T 8,3 7 5

E
X ¥

1 2
- 5in 0 cos 0 (cos2 8 - sin’ 9) (p-__ - 41*:,-—) (47)
xy z

In these equations in accordance with (13)

g

o
Lo xy_ yx (48)
F, E; EY
" 1 1 . . .
The quantities — and F— were similarly defined in (13).
% .
The significance of the coefficients a 10 e 333 follows from the dis-
cussion of the three-dimensional case. Thus
aj = 1/E€ , a,, = 1/E1_| s ay3 = l/p'f.n
(49)
a.. =

12 %221 7 " gyl By = - 0/ Ey

The fact that shearing strains are associated with the direct stress com-
ponents and extensional strains with the shearing stress component is

made evident by the presence of the coefficients aj3 =23, and ay3 =25,

Plywood Plate Under the Action
of Forces in Its Plane

A plywood plate will now be considered that is in a state of plane stress
under the action of forces in the plane of the plate. The grain of the wood
in adjacent plies will be taken to be mutually perpendicular and the con-
struction will be assumed to be symmetrical with respect to the middle
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plane of the plate so that bending of an initially flat plate does not occur
under the specified system of forces so long as the stress remains below
the buckling stress. The effect of the glue, other than that of securing
adherence of adjacent plies, is assumed to be negligible. Hence the for-
mulas derived are not intended to apply to partially or completely impreg-
nated plywood. The lateral dimensions of the plate are assumed to be so
large that irregularities in the stresses at the edges may be neglected.
The shearing stress and the displacements will be continuous at the
planes of separation of the plies. Each ply is considered to be homoge -
neous. This implies that the variations of the elastic constants from
springwood to summerwood are disregarded and average values of the
constants are used.

At first assume that all plies are of the same species of wood and that
they are rotary cut.

As directions of the axes of reference OX and OY for a system of rectan-
gular coordinates choose directions parallel and perpendicular; respec-
tively, to the grain of the face plies.

Let

h; = sum of the thicknesses of plies with grain parallel to OX.

h sum of the thicknesses of plies with grain parallel to.-OY.

2

h=h, + h2 = thickness of plywood.

» (Y ’ denote the components of stress in plies with
(Xx) » (Yy) - (Xy) P P

grain parallel to OX.

(x,), (Y,), ). denote the components of stress in plies with
: sz ( Y/, (Xyz P p

grain parallel to OY.

At a given position (x, y) the components of strain e, , and e

e ar
yy Xy
the same in all plies. This is a consequence of the assumption that bend-
ing does not occur.

e

From the first two of equations (36) it follows that
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E E E
(X)=—L(e + 0 e )=-—Le + I"TLe
e | A EX TL ¥y A XX A vy
(50)
E
(X)=El(e +0 e)=~]::le +LTLe
x's A XX LT “yy N XX Yy
where
= 1 51
» vt 'TL (51)
Denote the mean stress components by ix and Y_. Then
h1 (Xx) + h2 (Xx)
— 1 S
XX = h
h1 EL + h2 ET I EL Tl
T + e (52)
h A A Yy
_Fa . 4 SLoTL
N oxx N vy
where
h, E. +h, E
1 7L 2T
Ea = o (53)
In like manner,
E E_ o
—_ b L "TL
Y =— —_—
- ~ vy + x ey (54)
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where

h. E_ +h, E
T 2 "L
E, = 1 : (55)
h
To find the effective Poisson's ratios, & and a:yx solve equations (52)
Xy
and (54) for e, and eyy and obtain
Ep —  Eporg 5
e = — -
= H % H y
(56)
E E, o
e -2y __ L TL %
yy H Y H X
where
2 2
E E_-E. ¢
b L "TL
H= X (57)
Equations (56) can be written
1 — Tyx —
e == X_ - :Yf Y
XX E X E y
x Y
(58)
T
— 1 —
e, =-—%X +— 7Y
yy g X §g Y
X

where Ex and Ey are effective moduli given by the equations
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— H — H
E =5 EY =5 (59)
b a

On comparing (58) and (56), it is found that:

= _F Epopn  Ep .
yx Ty H - Ea TL
(60)
_ .y Lt Fu
xy ~“x H E_ 'TL

The quantity H defined by (57) can ordinarily be replaced by Ea E, because

2 2 . . .
EL Oy, €D usually be neglected in comparison with Ea Eb and \ usually

differs from unity by a few percent. With this approximation Ex and fy

defined by (59) become E, and E,, respectively. Equations (56) can then

be replaced by the approximate relations

e =% .ET

XX Ea X Eb vy
(61)

ny— l =

Yy=-—]§‘a"—xx+qu

In all plies the relation, Xy = p‘LT eXY holds. Hence, XY is identical

with the mean stress component iy'

———

If the veneers of the plywood are edge-grained, the letter T in all sub-
scripts is to be replaced by R.
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In the foregoing analysis irregulariiiea in the state of stress at the edges
of the plate have been neglected. This amounts to assuming that on a
loaded edge exteraal forces statically equivalent to the applied external
forces are distributed over the thickness of the plate in such a way that

the strains e and eYY are constant across the thickness of the plate at

any point of the edge. In the case of a free edge, a system of forces in
statical equilibrium at each point of the edge is to be supposed to act to
cause the strains to be constant across the thickness of the plate at all
points of the edge. In both cases, it follows from St. Venant's principle
that the states of stress and strain at points a short distance from the
edges are the same as those under the actual distribution of external
forces.

Now the requirement that the veneers are made of wood of the same spe-
cies will be dropped. The plies will be considered to be numbered con-

secutively from the upper face to the lower face. The stress components
in the itP ply will be denoted by (Xx)i, (YY)i’ and (Xy)i. The mean stress

components will be denoted by Xx and Y,,. The value of the factor A
(equation (50)) in the jth ply will be denoted by \;- A subscript affixed to

the symbols for Poisson's ratios and the moduli will indicate the Ply to
which reference is made. The thickness of the it® ply is hi' That of the

plate is h. The strain components are uniform across the thickness of
the plate.

In the ith ply:
(Ex)i
(Xx?i = N [egy + (o'yx:li eyy] (62)
Then
X = 2 ——e. +—Z e 63
X h )\i xx h N vy (63)
E_ 7 E,
- - D LN 64
n, = Cyy (64)
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where

Z(E ) h
= i 1
E =
a h
z (EX)i h. /N
-X—— =
a Z(E ) h
1
~ >:.(1~:x)i (o'yx)i hi /N
o =
yx Z(Ex)i hy /N

In like manner,

where

E.) h E
B ) (),
== —_— + =
Yy = g &7 \, VY 'h
E, oy By
= —a +_——)t-—— ex_x
R b
FHED B
CERY
y ZJ(EY)i hi/)\’i
X"":

S(E_) h.
b (Y)il

= (Ey)i (o‘xy)i hi/)\i

a.
Xy
Z‘,(Ey)i b/
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Greatly simplified approximations are obtained by setting \;, \_, and Ay

a

all equal to unity. Normally the error committed by doing—go is small.

The simplified approximate relations are:

X =E_e +E_o e (73)
x a “xx a yx vyy
YY =E sy + Ey Yy Cxx (74)
Shy (E,) (o,,).
7= 5 : (75)
yX hEa
Zh. (E
~ ; ( y)i (trxy)i (76)
o =
Xy hEb
From equations (73) and (74)
e = ! X ny ? (77)
xx  Ej (1 - Ty o‘yx) x  E/ (1 - Ty o‘yx) y
e, = 1 Y s X (78)
Yy - E (1 - Ty (ryx) y "E,(1- ny Fyx) x

The factor 1 - ny T < is usually approximately eilual to unity. On re-

placing this factor by unity, the following approximate relations are ob-
tained from (77) and (78):

1 —
exx=}§xx-—E—Y (79)
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q
el

1 — Vv —
e ==Y - ==X (80)
vy Eb Y Ea X

These equations show that Ea and Eb may be considered as approximate

effective Young's moduli of a plyw?gd plate in a state of plane stress
under the action of forces in the plane of the plate. The corresponding
effective Poisson' s ratios are ny and ny as defined by (75) and (76).

More exact expressions for the effective moduli can be obtained from
equations (63) and (68). Thus, to obtain E_, the effective Young's modu-

lus in a direction parallel to the X-axis, let ?y = 0 in (68), solve the re-

sulting equation for ey in terms of e and substitute the result in (63).

It is found that:

L — (81)

The coefficient of e,y is the effective Young's modulus in a direction

parallel to the X-axis. It agrees with the expression obtained by Price
(14) for the "apparent Young's modulus" E, for stretching. In like man-

ner the effective Young's modulus in a direction parallel to the Y-axis
can be obtained.

For rotary-cut plywood with all of its plies of the same species, the ef-
fective modulus E_ just defined by equation (81) reduces to the modulus

fx as defined in equation (59). A similar procedure could obviously be

followed for plywood made of quarter -sliced veneers.
It is to be observed that the effective moduli and Poisson! s ratios just ob-

tained for a plywood plate are associated with the stretching, compres-
sion, or shearing of a plate in its plane and not with the bending of the
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plate. Different effective moduli and Poisson's ratios are associated
with the bending of a plate than with stretching or compression.

For the mean shear modulus we obtain from the relation

(%)), = (hy) ey (82)
the following definition

>2 hi (xy)i z hi (l-"xy)i
k.= = ) (83)

m
xy hexy hi

From the effective values of the constants E_, E,, & _, o__, E__, the
& b xy’ yx' xy

constants associated with any orientation of axes of a given sheet of ply-

wood of symmetrical construction can be obtained by applying formulas

(42) - (49).
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