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1.0

SUMMARY

Future NASA and DOD missions will benefit from high-performance
reusable orbit transfer vehicles. With the advent of a space
station, advanced engine technology, and various new vehicle
concepts, reusable orbit transfer vehicles that provide significant
economic benefits and mission capability improvements will be
realized. Engine and vehicle design criteria have previously
lacked definition with regard to such issues as space basing and
servicing, manrating and reliability, performance, mission
flexibility, and life-cycle cost for a reusable vehicle.

This design study has resulted in the definition of a reusable
orbit transfer vehicle concept and subsequent recommendations for
the design criteria of an advanced LO/LH; engine. These

design criteria include number of engines per vehicle, thrust
level(s) per engine, mixture ratio, nozzle design, etc. The major
characteristics of the vehicle preliminary design include a low
lift-to-drag aerocapture capability, main propulsion system failure
criteria of fail operational/fail safe, and either two main engines
with an attitude control system for backup or three main engines to
meet these failure criteria. A maintenance and servicing approach
has also been established for the advanced vehicle and engine
concepts. Design tradeoff study conclusions were based on the
consideration of reliability, performance, life-cycle cost, and
mission flexibility.

This program was accomplished in two phases. In Phase I tradeoff
studies and analyses were conducted to define a baseline

LO,/LHy propulsion system at the major component level based on

the requirements of mission scenarios for future NASA and DOD space
architectures. Major engine assembly characteristics (number,
nozzle design, thrust, mixture ratio, throttling range, etc) were
determined using engine contractor parametric performance data.

In Phase II subsystem definition, servicing operational procedure
description, reliability, and life-cycle cost and sensitivity
analyses were performed to assess the design optimization and space
basing impacts on the baseline propulsion system established in
Phase I. The sensitivity studies provided overall system design
criteria and the rationale for choice of engine number, component
and subsystem development recommendations, servicing/replacement
methods, and recommendations for manrating criteria.




2.0

INTRODUCTION

The design requirements for a space-based, reusable, manrateable
orbit transfer vehicle (OTV) are substantially different from the
requirements typical of a ground-based expendable upper stage. The
mission may still require a delivery capability to geosynchronous
equatorial orbit (GEO) of a large payload. However, retrieval of
payloads from GEO may be required in addition to returning the
vehicle itself so it may be reused. If astronauts are on board,
the vehicle must obviously be manrated for that application.

The geometry constraints of ground launch for an upper stage can be
relaxed for a space-based OTV. But, depending on the mode of
return from a high orbit, geometric concerns are still an issue if
the aeroheating effects during an aerobraking maneuver are
considered, for example. Because the engine design requirements
must be compatible with the operation of an advanced OTV and a
suitable approach to servicing and maintaining the vehicle is also
essential, we must understand the issues surrounding the design
requirements of a space-based reusable OTV and appropriately
resolve them.

Previous OTV concept studies have investigated reusable propulsion
systems associated with aeroassisted vehicle concepts with moderate
and low lift-to-drag (L/D) ratios. There has also been interest in
a vehicle that can be packaged into an aft cargo carrier (ACC) on
the space shuttle orbiter external tank for delivery to orbit. The
trend in overall vehicle evolution is to move from ground-based
expendable vehicles to space-based reusable and manned vehicles.

This study focused on the "ultimate' vehicle that would be
space-based, reusable, aeroassisted, and manrateable. No attempt
has been made to show an evolution from ground basing to space
basing (however, initial delivery to the space station was
considered). Before proceeding into the conceptual design study,
the following previous related studies were reviewed.

Vehicle: -~ OTV Concept Definition Studies, General Dynamics
Contract NAS8-33533 and Boeing Contract NAS8-33532.
=  Future OTV Technology Study, Boeing Contract
NAS1-16088.
= In-house activity on ACC OTV, Martin Marietta.
Space Station and Servicing - OTV Servicing Study, General

Dynamics Contract NAS8-35039.




Aeroassist

- Definition of Technology Develop-
ment Missions for Early Space

Station, Martin Marietta Contract
NAS8-35042.

- Space Station Needs, Attributes,
and Architectural Options, Martin

Marietta Contract NASW~3686.

System Technology Analysis of Aeroassisted OTVs for
Moderate and Low L/D, General Electric Contract
NAS8-35096, and Boeing Contract NAS8-35095.

Technology Identification for Aero-Configured OTVs,
Boeing Contract F33615-82-C-3014.
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3.1.1

3.1.2

PHASE I - BASELINE OTV CONCEPT DEFINITION

This section describes the mission ground rules and requirements,
system requirements and baseline vehicle/engine identification.

The results of vehicle and engine performance and geometry tradeoff
studies are also shown.

>

GROUND RULES AND ASSUMPTIONS DEVELOPMENT

Mission Model Assessment

Space missions through the year 2000 include the delivery of many
large payloads, require manned presence, and will significantly
benefit from the use of a reusable advanced orbit transfer
vehicle. The MSFC nominal mission model PS-01 (Rev 6) for the
period from 1994 through 2000 has been used in this study. The
years 1994-2000 were used because 1994 is the earliest projected
initial operational capability (IOC) of a space-based OTV. Two of

the mission types involving large payloads in the 1994-2000 time
frame include:

1) Delivery of 5000 lbm to geosynchronous orbit (GEO) and return
of 2000 1bm (8 total missions);

2) Manned sortie with delivery of 13,000 lbm to geosynchronous
orbit and return of 13,000 lbm (7 total missions).

The remaining of the 47 LEO/GEO missions concern payload delivery
(up to 16,000 1bm) to GEO only.

These large payload missions will require a propulsion system with
high total energy capabilities. Other requirements include that
the vehicle be manrateable. The space station may provide a
suitable location for basing, servicing, refueling, and launching a
reugable OTV. The following discussion presents arguments for
configuring such a vehicle.

Recommended Vehicle Characteristics

The dry weight of a propulsion system can be expressed by a
constant value of hardware weight (independent of total system
size) plus a weight of hardware that depends on total propellant
loaded. This is expressed as:

Mary = A + B (Mprop)

prop

where ¢

3-1




Mdry = vehicle dry mass

A = constant hardware mass

B = .variable hardware factor
Mprop = loaded propellant mass

Figure 3.1-1 shows the characteristics of single-stage liquid
propulsion vehicles and their limitations. The x-axis is the
nondimensional parameter of delta V divided by specific impulse
(Isp). The y—axis is the ratio of vehicle and payload initial

mass (including propellant) divided by payload mass and vehicle
constant hardware mass (A).

0.05
103~
Mo
M* =
Mgy +A)
102 | Mgy =A+B M )
L ]
3
x for Low L/D
— Storable - 1.88 (341 s)
— Cryo-1.4{460s)
10—
Av = 20,585 fps (LEO-GEOQ-LEO)
1 |
102 10" ‘ 1 2 10
X= AV/gc | -

Figure3.1-1 OTV Parameters




Several conclusions may be drawn from the figure. The first is
that for a large enough delta V, there is an asymptotic value for a
given propellant combination and engine technology (Igp) for

which no amount of propellant can deliver any size payYoad.
Therefore, to complete a mission that imposes a delta V above the
asymptotic value, either a higher energy propellant must be chosen
or the required delta V must be reduced (as with an aerocapture
maneuver of some sort). For a low-earth orbit (LEO) to
geosynchronous equatorial orbit (GEO) payload delivery with an
aerocapture return, the required delta V is about 20,000 fps for a
vehicle with a lift to drag ratio (L/D) of zero. Also, a
reasonable estimate for B for large propulsion systems is about 0.1
for storable propellants (N,04/MMH) and about 0.125 for

LO2/LHy (ref Magnetoplasmadynamic Thruster Definition Study
performed for AFRPL, Contract F04611-82-C-0049). So, for a
storable propellant combination, the delta V of 20,000 fps places
the value of x very near the asymptotic value for total vehicle
weight. In other words, small savings in delta V and/or increases
in Isp result in very great savings in total vehicle mass for a
given payload mass. For example, providing a vehicle with a L/D of
1.0 will result in a possible inclination change capability on LEO
to GEO return of 14 deg and a delta V savings of only about 800
fps. This, however, is valuable in terms of reducing storable
propellant requirements and total size of the resulting vehicle
even with a subsequent increase in dry weight because of the higher
L/D ratio. Therefore the higher L/D approach appears suitable for
8 vehicle with a storable propellant combination.

A LOy/LHp propulsion system with an aerobrake and a L/D of zero
provides a delta V savings of about 7500 fps when returning from
GEO over an all-propulsive system and results in an x value that is
further away from the asymptotic value for total vehicle mass.
Therefore the reduction in total vehicle mass is not as dramatic
for reductions in delta V by going to L/D ratios greater than zero
as for the storable propellant system. This is a result of being
on a "flatter" part of the curve relating x and total system mass.
For instance, in providing a 800 fps reduction in delta V during
return from GEO (via L/D of 1.0), the resulting LO;/LH; total
propulsion system mass shows only a reduction of about 5%. This
also assumes no increase in dry weight as a result of providing the
vehicle with a higher L/D capability. Therefore a mid to high L/D
configuration is not recommended for a LOy/LH; vehicle because

an inclination change capability does not appear to benefit the
system to a great degree. The concept of a low L/D reusable
aerobrake, however, is consistent with materials techmology
evolution for the time frame of interest and the resulting vehicle
configuration may be more amenable to component accessibility and
servicing.




3.1.3

Figure 3.1-2 shows the relationship between total vehicle system
mass (propulsion system dry mass plus propellant) and specific
impulse. One can see that in going from an all-propulsive system
to one with aerobraking (L/D = 0) the aerobraked system is less
sensitive to specific impulse (Ig,) in the range applicable to
LO2/LHy propellants. Detailed vehicle studies assessing the
differences in vehicle dry mass for low vs high L/D ratios would be
rquired before determining the benefits of additional delta V
savings.

300 Reusable OTV
LEO-to-GEO Mission
All-Propulsive
(MF = 0.875)
[ 3 7,500 Ibm
4 200 Deploy/Retrieve
%
g
53
=
2
L2
=
©
2 12,000 Ibm Deploy
s 100
|2 Aerobraked
(MF = 0.86) 7,500 Ibm
Deploy/Retrieve
12,000 ibm
Deploy
oV 440 450 260 470 80

Specific Impulse, s

Figure 3.1-2 " Vebicle System Mass vs Specific Impulse

Propellant Requirements for Rev 6 Mission Model

In addition to the large payloads in the Rev 6 mission model that
require a high—energy OTV, numerous missions require much less
energy for each payload. This results in a wide range of payload
weights and propellant requirements for all missions. A single
reusable space~based OTV design for performing all the Rev 6
missions requiring orbit transfer would substantially reduce launch
costs because of eliminating the launch of the upper stages for
these small payloads. However, a single-stage design is not
feasible for performing single payload delivery missions for such a
wide range of payload masses.
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Figure 3.1-3 (ref Magnetoplasmadynamic Thruster Definition Study,
AFRPL Contract F04611-82-C-0049) shows the trend in cost for
putting various sizes of payloads into GEO. The two curves show
the differences in payload delivery cost depending on whether
propellant (LOy/LHj) would be available from scavenging

external tank residual and surplus propellant and reducing launch
costs accordingly. The main conclusion from the figure is that the
larger the payload and subsequent delivery vehicle (OTV) the
greater the cost savings will be. Therefore, fewer, larger
payloads to GEO would be desirable over many small payloads and a
few large ones.

aQr
Reusable Aerobraked
LO,‘,/LH2 oTV

30—
=
X

)
=
®»
o
o 20—
e
o
<
3
With No Propellant
Delivery Cost
10—
l L
0 1,000 10,000

Payload Delivery to GEO, kg

Figure .3.1-3 Costs for GEO Payloads |

The small payloads in the Rev 6 mission model (PAM, IUS, and LEASAT
class) may lend themselves to grouping for delivery. Distinct
groups that are intended to fly in the same month could possibly be
grouped and delivered to GEO with the same OTV flight. This would
also narrow the range of total propellant requirements over which
to design an appropriate OTV capable of performing the Rev 6
missions. Figure 3.1-4 shows the propellant requirements for all
(except three small PAM-delivered payloads that could not be
grouped by month) of the Rev 6 LEO to GEO missions from 1994 to
2000. The darkened bars represent the large single payload
deliveries by an OTV. The hollow bars are the propellant
requirements for the 'grouped" payload missions. The ground rules
for logical grouping of these payloads are as follows:
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Figure 3,1-4 Spectrum of OTV Propeiltz—nt Requirements

1) All non-DOD;
2) LEO-to~GEO delivery only;
3) Fly during same month.

The groupings of the smaller payloads and subsequent packaged
delivery to GEO results in propellant requirements in the same
range as those associated with the single large payload delivery
missions. However, the wide spectrum of propellant requirements
for the single large payloads and for the packaged groups leads to
the need for multiple sizes for OTVs, staging, drop tanks, or else
a totally modular approach to the design of an OTV.

In comparing these propellant requirements to estimates of
propellant available from scavenging residual and surplus space
shuttle external tank propellants, it appears that a large
percentage of these propellants could be available. For instance,
if the total propellant requirement for 47 LEO to GEO missions
between 1994 and 2000 were from 1.5 to 2.0 million lbm, as much as
two thirds of this propellant could be available from scavenging
(Ref STS Propellant Scavenging Systems Study, NAS8-35614). The
result here is that for the high-energy OTV missions, the average
propellant delivery cost may be significantly reduced by taking
advantage of scavengeable propellant.
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3.2

3.2.1

Based on review of previous study conclusions, the mission model,
and appropriate vehicle characteristics, the ground rules and

assumptions to be followed during the baseline vehicle development
of this study were:

1) Space-based, reusable LOy/LHy vehicle;

2) Space station-berthed and -serviced;

3) Single STS delivery (deliver empty);

4) Aerobraked return (low lift to drag ratio);

5) Manrateable;

6) Able to capture Rev 6 missions (LEO to GEO).

MISSION DESCRIPTION AND MISSION REQUIREMENTS

Migsion Description

The reference mission (Table 3.2-1) is a single payload delivered
to GEO and vehicle return empty with an aerocapture maneuver at
LEO. The aerobrake maneuver will nominally be a single pass.
Variations of this mission will include up to three passes, manned
servicing mission to GEO, and unmanned servicing at GEO. Timelines
for the mission are shown in the table. Figure 3.2-1 shows the
trajectory of the delivery portion and Figure 3.2-2 shows the
aerobrake return. For the purpose of system sizing, 325 fps are
included as gravity losses and 50 fps contingency for aerospike
operation. Additionally 500 fps is included in the perigee raising
and phasing scenario to adjust the altitude and inclination of the
orbit following atmospheric exit. The velocity taken out by the
brake was derived from work done at Martin Marietta on an aft cargo
carrier OTV.

The timelines were derived assuming a single shift on the space
station is required to load cryogenic propellants and launch the
OTV. A Hohmann transfer is used, and the return flight occurs
after the second nodal crossing allowing for one day at GEO for
operations. The OTV navigation and guidance is updated three times
before reentry. The OTV is then safed after achieving a proper
phasing orbit before the ACS is used to rendezvous with the space
station/OMV. Communications with the space station is used during
launch and rendezvous, and communications with the ground through
the TDRSS below approximately 6000 nmi is used for actual control
of the OTV operations.
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Table 3.2-1 Mission Timeline for Reference Mission

Mission Operation

[Time,

h min
from MES-1

System
Driver

System
Impact

Remarks

Launch

Space Station Grapples and Berths OTV
otV

Transfer to Loading Area L 730 Launch 1n one shift after
toading cryogens.
Chill Down and Load LI-L‘,/LO2 [} 7:15 Loading accuracy impact on
margins. Zaro-g gage on space station.
Terminate and Leak Check - 3:15
Disconnect Lines - 3-00 Valve redundancy. Seals, Purge lines between valves.
Perform Final Prelaunch Operations - 2.15 No venting near space Space station and TDRSS Communtcation links,
station. lenks. verify systems “‘go *’
OTV Payload Move from Space - 115 ACS sizing. Phasing orbit for targeting
Station during proximity operations.
Activate Mamn Engine - 30 10-m1 separation. Go into tank head idle Partial chilldown and loading
mode (THIM),
Navigation Update Position for Burn - 20 ACS sizing. Ground Monitor
GEO Transfer MES-1 (1st man engine ACS control. Burn time = 17 min, 7820 fps.
start)
Transfer, Coast and Thermal Rolls Temperature of insulation ACS sizing. 0.1 deg/s to 0.5 deg/s>
and components.
Navigation Update 3.00 TDRSS below 6000 nmi; Attitude adjustment for Ground control monitor OTV
NASA 85 ground station GPS hnk acquisition
above 10,000 nmi.
Midcourse 315 ACS sizing. Delta V = 30 to 40 fps.
Position for Burn 5:00 ACS.
GEO Injection MES-2 5.15 Burn time = 8 mm; defta V =
5840 fps.
S| aft Deploy Checkout 6:00 Communication links, test.
Operations
OTV/Payload Separation 6-15 Control of 50% full OTV. Collision avoidance—ACS.
GEO Operations, Thermal Rolls 27:45 Temperature of MLI, ACS sizing nodal crossing Will use 2nd (24-h) nodal
N components. avery 12 h, €rossing,
Navigation Update 28.50 Ground monitor NASA 85
ground station.
Position for Burn 29:05 ACS sizing.
OTV Deorbit Burn (MES-3) 29.20 Aerabrake perigee 45 nmi. Delta V = 6050 fps; burn time
=2 min.
Guidance/Navigation Update 32:00
et
Midcourse No. 1 3215 ACS. Oelta V = 30 to 40 fps.
Guidance/Navigation Update 34-00
Midcourse No. 2 3415 ACS. Delta V = 30 to 40 fps.
Navigation Update (MES-4) 34.50 Atmospherc variations. Start engine THIM.
Atmosphere Entry 35:00 Base haating aerospike. Structure, TPS, engine Delta V = 7800 fps, Viking
throttling, ACS control. shell, low L/D.
Atmosphere Exit 35.05 Delta V = 50 fps for aerospike
Apogee Boost No. 1 (MES-5) 35:40 Perigee 4 nmt, aerobrake Redundance, space Deita V = 250 fps, phasing
and manrating. station rendezvous. orbit,
Navig Update 36:56
Apoges Boost No. 2 (MES-6) 37:10 Rendezvous with space 80-fps allowance for inclin- | Delta V = 250 fps, circularize
station orbit. ation adjustment. and adjust inchination.
Safe OTV 41:00 Backup fuel cells. 4-h allowance.
ACS Moves OTV to Station 41-30 Safe operation, ACS ACS sizing.
near space station.
42:00 Safe ACS system. ACS system design.
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3.2.2 Mission Requirements

Table 3.2-2 shows the mission requirements. These were derived
from the reference mission scenario. A maximum time of two weeks
at GEO was selected for the manned mission to be compatible with
one month between missions and two-week servicing at the space
station,

Table 3.2-2 Mission Requirements

Mission
Operation Requirement Remarks
Delta V (Main Engine) 13,985 fps up, 6,600 fps down. 250-nmi space station; aerobrake = 7800 fps.
Payload Range 16k Ibm deliver to GEO. 13k ibm Rev 6 September 1982 13k manned sortie.
deliver/return {(GEO).
No. of Burns 6 nominal. Single perigee and aerospike return.
Throttling During aerospike or large space TBD.
system,
Maximum Time at GEO 2 weeks. Manned servicing—one month turnaround
{2-week servicing).
Safety—Manned Flight, Space Station | Fail operational/fail safe Shuttle 1CD-2-19001 and NHB 1700.7A.
safety.
Design Life 30 missions. TBD Phase I1.
Time Between Overhauls : 10 hours. Engine life paces overhaul.
Aerobrake Yes {low L/D), with aerospike. Use Viking configuration 70-deg half-cone
(C, = 1.6).
D
No. of Aero Passes Up to 3 {1 nominal). Minimize transfer time, reduce heating to
brake and stage.
Acceleration 3.2 g (maximum). Shuttle ascent.
Onorbit Thermal Environment Minimize boiloff. Thermal roll, 0.1 deg/s to 0.5 deg/s.
Guidance/Navigation GPS and Ground (and TDRSS) No control from space station. GPS state
tracking communications. vector.
10C 1994 to 1997. Space station 10C (advanced engine I0OC).
Mission Time Compatible with 2-week servicing One month between launch.
period at space station.
Initial (T/W) 0.15 (minimum), 0.22 {(nominal}. Minimize delta V for single perigee burn.

Near the space station, orbiter safety outlined in NHB 1700.7A was
used. Manned missions were assumed to be consistent with fail
operational/fail safe. At least in the early stages of this study
program, fail operational/fail safe was adopted as a "starting
point" in developing an appropriate vehicle design philosophy.

This allows the astronauts the option to return after one failure,
and the ability to return to the space station, STS, OMV retrieval,
etc after sustaining two failures. A 30-mission life is compatible
with two OTVs and approximately 60 missions. A 3.2 maximum g-level
was selected to be compatible with a shuttle launch. However, the
OTV will probably be delivered to the space station empty.
Therefore, the loads during orbit transfer (main engine burn and/or
the aerobraking loads) will probably be the structural design
drivers.
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3.3

3.3.1

3.3.2

SYSTEM REQUIREMENTS AND BASELINE SUBSYSTEM SELECTION

System Requirements

Table 3.3-1 shows the OTV requirements for the various vehicle
systems. These were derived from the mission requirements, study
ground rules, and the statement of work.

Table 3.3-1 System Requirements

Aerobrake Requirements

— Withstand 2500 F and 15 psf

~ Compatible with Space Station Servicing

— Reusable

— Compatible with Manned Mission Return
Engine Requirements

— Provide Impulse for GEO Transfer and Return
— Provide Aerospike Capability (TBD)

Operate At a Mixture Ratio Between 5 and 7
Reusable

Provide Main Propellant Tank Pressurization
Use LHZILO2 Propellants

— Throttlable (TBD)

ACS Requirements

— Provide Positioning and Alignment Capability of OTV
During All Mission Phases
Provide Translation Near Space Station
Perform Midcourse and Final Rendezvous Maneuver
Safe Operation Near Space Station
10% Margin
Reusable
Space-Based

ain Propulsion Requirements
Provide Subcooled LH,,/LO,, to the Main Engine
System (Engine NPSH Requtrements)

— Provide GHZ,IGO2 to Fuel Cell System (or TBD)

— Provide a Fill/Drain System Compatible with Space
Station
—~ No-Vent Operation Near Space Station Except When

Provision for Collecting Vapor [s Available
— Provide for Safe System Shutdown 20 mi from
Station {or TBD)
— Manrated and STS Safety (Fail Operationai/Fail Safe)
—~ Propellant Utilization (PU) System
Avionics
— Provide Following Capabilities on Orbit
— Guidance, Navigation and Control Compatible with
GPS
Telemetry, Tracking and Communications Compatible
with TDRSS, Ground Station and Space Station
Data Management
Safety Status and Control
Subsystem Status Indication
— System Checkout
— Goenerate, Control and Distribute Electric Power to All
OTV Systems
— Minimize Single-Point Failures of Safety- and/or Mission-
Critical Functions
— Provide Safety-Critical Data to Orbiter
Structure
— Ultimate Factor of Safety = 1.40 or Greater
— Pressure Vessels MIL-STD-1522 (Factor of Safety 2.0 on
Ultimate)
Thermal Protection
- Provide Protection for Aerobrake
— Provide Protection on Base Heating of OTV
— Provide Thermal Protaction of Cryogenic Tanks on Orbit
— Provide Protection of Components, Lines, Avionics, ACS,
and Engine on Orbit

Baseline Subsystem Selection

This study was intended to consider the issues of space basing and
engine operational design criteria for a reusable OTV. Most of the
vehicle subsystems were identified and fixed in order to proceed
with the key issues and tradeoff studies of importance. Previous
study results were used in subsystem selection. The fixed
subsystems and the rationale for their selection follows.
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Aerobrake - The baseline aerobrake configuration has the following
characteristics:

Shape Viking type, 70-deg half-cone angla.

Cp 1.6 without aerospike (highest drag loads).,
Aerobrake Surface Emissivity, e 0.8

Maximum Temperature (Nextel 2500°F.

Synthetic Fabric)

Maximum Loading 15 psf (approx 3.0-g loading).

Maximum Stage Temperature 750°F.

(e=05)

Past work at Martin Marietta (Ref 1 and 2) was used to derive
reasonable diameter and stage lengths considering the above
characteristics and convective heating. The effects of an
aerospike were not considered. From Reference 1, the sensitivity
of temperature to reentry weight and diameter were considered.
Reference 3 indicates that W/CpA should be constant for a given
stagnation point heating. However, given the state of aerobrake
analysis for an OTV, further detail was not attempted. With
information from References 1 through 3, Figure 3.3-1 was prepared
to relate ballistic coefficient and stage/aerobrake geometry.
Additional thermal protection could be required or multiple passes
could be used to reduce heating and brake diameter. The data in
Reference 3 indicate that the stagnation point heat flux can be
reduced about 30% with two passes, and up to 50% for three passes.

70 deg
Assumptions: ’
150 — Viking Brake Configuration =X
. — Cp = 1.6 (Constant) 1
— Stage €= 0.5 ° D
— Max Temperature Stage 750 F
— Max Temperature Brake 2500 F l
T ~2
A D
1.0~ z .
£ W = Reentry Weight
X
0.5~
0 1 1 d
5 10 5
W/CpA =B psf

Figure 3.3-1 Aerobrake Design Parametrics
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ACS - A GOy/GHy ACS was selected because of ease of servicing

and refueling. Commonality with space station attitude control
propellant would be a desirable feature for the OTV. Contamination
control would make a GO/GHy ACS attractive for OTV instead of

a monopropellant or bipropellant system, especially if the OTV is
to fly itself into berth at the space station. Also, as a possible
backup for the main propulsion system, the high performance as well
as the commonality of propellants make GO3/GHy a logical

choice. Sixteen thrusters were chosen for the full three-axis
control capability and limited redundancy.

Avionics — A system compatible with the GPS, TDRSS, and space
station was baselined. The OTV should be capable of rendezvousing
with space station, performing targeting for the aerobraking and
phasing maneuvers, and performing midcourse corrections. The
electronics on board the OTV will also need to handle the
diagnostics information to be recorded or transmitted to the ground
for postflight or inflight checkout of the subsystems requiring
health monitoring.

Electric Power - The major power source for the baseline OTV was
fuel cells with feed from the GOp/GHy accumulator system.

Small batteries used as a backup of the fuel cell power system and
for use during times when the main propellant tanks are empty were
baselined.

Gaging and Propellant Utilization - A point sensor system of gaging
during flight operation to monitor the level of propellant in the
tanks was baselined. During refill of propellant in low—g at the
space station, a flowmeter or other suitable gaging device is
recommended to monitor the level of propellants.

A propellant utilization system to minimize the propellant outage
was baselined for the OTV design. For a multiple-tank
configuration, the outage between tanks must be minimized and the
mixture ratio at the engine must be controlled for proper outflow
of oxidizer and fuel. Centaur data, space tug studies, and later
OTV studies provided a rationale for the performance advantages a
propellant utilization system offers a cryogenic vehicle.

Pressurization - An autogenous pressurization system for a

LO7/LHy OTV would provide a simple, lightweight means of
pressurizing the main propellant tanks with little or no
contamination. Therefore, autogenous pressurization was chosen for
the study baseline vehicle.

Thermal - Based on the results of a low-thrust chemical
orbit-to-orbit propulsion system propellant management study
(Contract NAS3-21954); conceptual design and analysis of orbital
cryogenic liquid storage and supply systems, (NAS3-22264); and an
IR&D D-24S project concerning advanced propulsion concepts (a study
performed at Martin Marietta) a multilayer insulation (MLI)

3-13




thickness of 1/2 in was chosen for the baseline vehicle main
propellant tanks. The previous studies show that a thicker
insulation is desirable for vehicles that experience boiloff before
launch and during ascent from the ground. However, because the
baseline vehicle of this study was intended for space operations
alone, less than 1 in. of MLI is optimum from a total vehicle
performance standpoint.

Venting - A thermodynamic vent system (TVS) with an active
component (small pumping unit) may be the lowest weight method of
venting for a large cryogenic vehicle as opposed to a passive TVS
that which would require a relatively heavy and sizable heat
exchanger. However, the active TVS presents a servicing concern
for access to the pump unit for inspection and maintenance. The
alternative to the two TVS methods mentioned is to simply settle
the propellants with the ACS and vent vapor from the tanks.

For this study baseline vehicle, a weight representative of a TVS
with pumping units in each tank was defined. Servicing of the unit
is addressed later in this report, noting possible modifications
and concerns (Section 4.1).

Tankage - A ground rule for this study was that the vehicle would
be delivered to orbit in the STS. Although it would be desirable
to deliver the space-based OTV to orbit in its fully assembled
configuration, assembly on orbit is consistent with the required
recurring operations. Other geometry constraints for a space based
OTV are associated with the problem of aeroheating during the
aerocapture maneuver. In other words, a short stage is desirable
to minimize requirements on aerobrake size and thermal protection
for the forward end of the stage. Also the space station hangar
will certainly not be an unlimited envelope of volume in which to
perform vehicle inspection and servicing. Therefore, in addition
to the classic shuttle constraints, other constraints drive the OTV
toward reasonable compactness.

In addition to the overall geometric considerations for the OTV
(tankage and packaging), the concerns include an inspection and
replacement capability for many of the components on board the
vehicle. Modular arrangement of the tankage would be functional
from a contingency replacement standpoint in case of tank damage
for one reason or another (meteroid pemetration, collision, MLI
replacement, etc). A routine interchange of tankage may present
problems with regard to the complex interface requirements and
handling. Nonetheless, an “open pack" arrangement of all
subsystems, including tankage, must be inherent in the design of a
space-based OTV.

An alternative to total vehicle modularity (where the vehicle size
can be scaled up or down to "fit" the mission/payload) is to have a
mixed fleet with at least two different sizes of vehicles.

Although these vehicles' tanks would not be intended for routine
changeout for mission/configuration flexibility, they would lend
themselves to system modularity for inspection, subsystem access,
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and contingency replacement. The total number of eventual
missions, along with vehicle reusability limitations, may warrant
at least a two-vehicle fleet. For instance, a two-stage concept
capable of performing the large payload LEO-to—GEO missions and
also capable of returning each stage to LEO via aerobraking is a
possible solution. The two stages may not provide significant
performance advantages over a single large vehicle for a large
payload (if at all), but would provide a method of performing the
wide spectrum of missions with minimum offloaded propellant. In
other words, this additional configurational flexibility of two
differently sized compact vehicles, along with the ability to stage
them, would provide a much more efficient use of propellant for the
range of missions by flying with a higher mass fraction than with
the earlier vehicle/fleet (single large stage or modular vehicle)
concepts mentioned. Also, from a servicing standpoint, the two
compact stageable vehicle fleet would simplify the hangar and
vehicle handling equipment design because:

1) The two stageable vehicles are the same size (or more nearly)
than for the two-vehicle fleet concept consisting of a large
vehicle and a small one;

2) The two stageable vehicles are reduced in size from the large
single-stage vehicle. Their smaller size is also important

from an aeroheating standpoint during the aerocapture maneuver;

3) Two small vehicles may ease turnaround servicing time
requirements depending on migsion frequency.

3.4 TRADEQOFF STUDIES PERFORMED

A number of tradeoff studies were performed to appropriately define
a vehicle and engine system that are to be space-based and
reusable. The following list itemizes the pertinent issues
identified:

1) Mixture ratio vs stage performance;
2) Number of engines;

3) Thrust level(s);

4) Throttling range(s);

5) Gimbaling vs differential throttling;

6) Fixed vs extendable/retractable nozzles;

7) Modular stage(s) vs staged vehicle vs mixed fleet (and
corresponding tankage and structure).




3.4.1

The difficulty involving most of these tradeoff studies is that
they are interrelated. For instance, the choice of engine number
was one of the most important tradeoffs made and directly affected
the selection of engine thrust, vehicle servicing, whether
gimbaling may be required, packaging concerns with the nozzle(s),
and strong consideration of engine reliability requirements.
Understanding the synergism of all these factors was important in

arriving at a justified conclusion as to the appropriate number of
engines for a space-based 0TV,

The judgment criteria considered during the performance of these
tradeoff studies included: ’

1) Overall stage performance;

2) Individual subsystem impact;

3) Impact on servicing timeline, equipment, tools, and manned
involvement;

4) Probability for mission completion and for safe crew return
(reliability and acceptable failure criteria);

5) Mission/configuration flexibility;
6) Life-cycle cost, including all of the above criteria.

Major Configurational Characteristics of a Space-Based, Reusable OTV

Developing an OTV design that will be cost effective in capturing
all the future space missions involves more than simply designing a
single propulsion stage and providing it with reusability and
serviceability. Because of the wide range of mission payload
masses and mission requirements (such as deploy only or
deploy/retrieve), a single-stage design would not result in an
efficient use of propellant compared with other concepts.

Figure 3.4-1 shows the propellant requirement for completing the
Rev 6 LEO to GEO missions (47) between 1994-2000 for various
vehicle fleet concepts. The single-stage approach to capturing the
missions is the most expensive in terms of propellant usage. The
modular stage was sized so its half-tankage version (two LOp

tanks and two LHp) would hold about 33,000 1bm propellant and
deliver 11,000 lbm to GEO. The full-tankage modular version holds
twice this amount of propellant and is capable of performing the
13,000 1bm GEO deployment and retrieval mission.
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Figure 3.4-1 Vebicle Fleet Comparisons

The stageable fleet was sized so the first stage would deliver
16,000 1bm to GEO. It will also perform the perigee burn for
delivery of the 13,000-1bm payload. The first stage would then
return to LEO via an aerocapture maneuver. The second stage would
perform the GEO circularization burn and then the decircularization
burn and aerocapture maneuver for retrieval of the 13,000-1bm
payload. The two stages would be used separately for the smaller
mission payloads according to their capabilities. The propellant
capacities of the first and second stages are about 40,000 lbm and
32,000 lbm respectively. The smaller stage (second stage for the
13,000 1bm deploy/retrieve mission) was sized to deliver 11,000 1bm
to GEO because this size of payload and its frequency of flight
appeared to be an effective breakpoint for propellant savings.
However, both stages being sized to deliver 16,000 1lbm to GEO would
still provide an efficient means of flying all missions.
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3.4-2

The mixed fleet simply consists of a large stage sized for the
13,000 1bm deploy/retrieve mission and a small stage sized for the
smaller missions. The smaller stage was sized for a 14,000 1lbm
delivery to GEO. Unlike the smaller stage of the stageable fleet
that was sized for an 11000 lbm delivery to GEO, the smaller stage
of the mixed fleet was sized for a larger payload because of the
difference in overall stage sizes of the mixed fleet. The
breakpoint in propellant capacity for sizing the smaller stage of
the mixed fleet is also a result of the large number of payloads of
14,000 1bm.

The main conclusion associated with Figure 3.4-1 is that a single
large stage design sized for the largest payload/mission is an
inefficient method of performing the missions from a propellant
usage standpoint (compared to the possible alternatives). The
modular stage, of course, has associated "scar' weight through its
modularity that the mixed fleet (two or more stages) does not
have. The stageable fleet, of course, would have a scar weight
associated with the staging interfaces.

An example of stage performance and character vs service life and
servicing requirements is selection of tankage. For instance, one
choice would be to provide the vehicle with complete meteoroid
protection for the vehicle's design life so the probability of a
penetration would be less than that acceptable. This design might
also alleviate any need to reproof-check (reverify) the tank(s)
between missions (unless an unforeseen incident such as a collision
occurred). Also, the removal of MLI for tanmk inspection would not
be required. The effect of dry weight on this particular design
would result in noticeably greater propellant usage than for a
higher performance (less protective dry weight) design. However,
the higher performing vehicle would demand a much higher level of
servicing activity. Therefore, the nature of a space-based
reusable vehicle is constrained by its impacts on the servicing
requirements.

Baseline Configuration Selection

The OIV characteristics ground-ruled early in this study included:
1) Deliverable in STS cargo bay;

2) LOy/LHy propellants;

3) Aerobraked (low lift-to-drag ratio);

4) Space-based and reusable;

5) Manrateable;

6) Able to capture Rev 6 missions.
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A desirable characteristic to add to the list is that of high
performance to minimize the use of propellants (and therefore their
launch cost). However, the amount of onorbit servicing the
resulting vehicle would require must be considered. Without prior
knowledge of the results of a servicing/performance tradeoff study,
a vehicle configuration was chosen that represents a reasonable
compromise of performance and service intensity as well as
complying with the study ground rules.

The vehicle concepts depicted in Figure 3.4-2 and 3.4-3 are the
study baseline vehicle concepts. Schematics of the recommended
feed systems are shown in Figures 3.4-4 and 3.4-5. The vehicles
were sized to perform the largest Rev 6 delivery mission of 16,000
lbm to GEO. The only missions requiring more total impulse (a
significant amount more) are the 13,000-1bm manned deploy/retrieve
missions to GEO. The rationale for sizing to the 16,000-1bm
delivery to GEO mainly lies in the advantages of performing the
profitable missions that comprise most of the mission model.

The low frequency of 13,000-1bm manned missions does not provide
the rationale for a dedicated large single stage. The baseline
configuration, however, is capable of providing the perigee boost
to the 13,000-1bm manned payload and an associated propulsion
system (cryogenic or storable). The manned payload with its own
propulsion system for GEO insertion and decircularization would
seem reasonable from several standpoints. First, if it were a
storable system, the boiloff problem might be eliminated for the
long onorbit time. Also, if the system were pressure fed, the
manrating complexities would be reduced. Because of the low number
of projected manned missions, the performance penalties associated
with the storable propulsion system concepts previously presented
would be minor relative to the overall mission model. This
scenario would leave the OTV as simply a delivery workhorse, for
the most part, and may even have implications of reducing the
operational requirements with regard to manrating.

Let us assume, however, that the 13,000-1bm manned payload will not
have its own dedicated propulsion system for GEO insertionm,
decircularization, and possible reentry with no need to return to
the space station. The baseline vehicles shown in Figures 3.4-4
and 3.4-5 will serve well as the larger of two stages for a
stageable/mixed fleet. A case exists for a stageable and/or mixed
fleet from the standpoints of propellant savings, mission frequency
and turnaround time, rescue capability, etc. In any case, for the
purposes of this study, the baseline configurations provided
reasonable starting points for performing main propulsion system
tradeoff studies and determining the implications of space basing
and reusability on an OTV.
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Figure 3.4-2 Space-Based Reusable Vebicle Definition, 2 Engines

VEUICLE DEFINITION CONFIGURATION SKETCH
Propulsion System: Space Based, Reusable , 238"
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Main Engine: Thrust 15000 1b , ISP: 480 S
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Figure 3.4-3 Space-Based Reusable Vebicle Definition, 4 Engines
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Modular spherical tanks were chosen over parallel cylinders because
of increased performance and decreased surface area and subsequent
propellant boiloff. Also, a shorter length is highly desirable for
the vehicle to minimize aerodynamic base heating. The vehicle,
however, would not be deliverable in its flight configuration in
the STS orbiter bay. It would be assembled after initial delivery
to LEO if delivered in the cargo bay. The configuration of modular
tankage is based on contingency replacement of tankage only. For




example, if a tank suffered a meteoroid penetration that was

detected in a routine leak test, the tank would be replaced. The

vehicle is not intended for routine configuration modularity for
mission flexibility because at this time fluid disconnect
technology will not allow such routine freedom. Therefore only
contingency replacement of tankage is recommended.
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Figure 3.4-5 Main Feed System—4 Main Engine Schematic
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Vehicle configurations designed to require no tank modularity for
contingency replacement are a possibility. In other words, the
exterior structural shell and meteoroid shielding provide the OTV
tankage with the protection against probable penetration during the
vehicle's design lifetime. Based on current estimates, the weight
penalty, however, would significantly increase propellant usage
over the baseline configuration and overshadow the costs of
periodic tank replacement.

Based on the results of vehicle sizing over a range of mixture
ratios, the minimum vehicle weight consistently resulted in a
mixture ratio of 6.0. Engine performance vs mixture ratio
information from Pratt and Whitney (Fig 3.4—-6) was used for the
vehicle sizing. Figure 3.4-7 shows the results for various
missions.
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Estimated Effect of Inlet Mixture Ratio on Vacuum Specific Impulse
at Full Thrust
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3.4.3 Engine Design Criteria for Aerocapture

One of the main drivers of engine design criteria for the study
baseline vehicle may be the operational requirements during the
aerocapture maneuver. Whether aerospike operation is a feasible

means of controlling vehicle trajectory during aerocapture remains
an open issue.

The design philosophy for the aerobrake and engine system will
include several considerations. Minimizing the aeroheating
environment of the vehicle is a major concern in keeping the
thermal protection system weight for the vehicle to a minimum.
Therefore, the aerobrake must be properly designed to withstand the
predicted heat load (2500°F) and radiate it. In addition, short
vehicle length must be emphasized to minimize the base heating in
the wake of the flow around the aerobrake. The aerobrake must also
be configured to be compatible with the predicted airloads (up to
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15 psf). Also, the aerobrake/vehicle configuration and operation
during the aerocapture maneuver should lend themselves to

aerodynamic stability to minimize the control authority
requirements.

The overall vehicle, aerobrake, and main propulsion system design
and subsequent operation must provide adequate control for
successful return from high earth orbit during normal main engine
system operation as well as during an engine-out condition.
Because the aerospike operation (engine operation during the
aerocapture maneuver) may be very effective for drag modulation
with blunt vehicle configurations as well as help minimize vehicle
structural and heat loads, this particular concept of operation and
brake design was carried through the main propulsion system
tradeoff studies. Based on studies performed to date, a 70-deg
Viking-shaped cone aerobrake appears to be a reasonable compromise
between drag and stability requirements.

Other aeroassist concept candidates include mechanically actuated
surface(s) for either lift capability or surface area variation for
drag modulation. A viable concept is one of vehicle cg offset and
roll for an angle of attack capability. This concept would most
probably provide a significant degree of control with a minimum
amount of probable failures.

Because of the wide variations expected in atmospheric
characteristics, it is questionable that a single degree of vehicle
control will provide total assurance for successful aerocapture on
a routine basis. For example, angle of attack (or rather, some
degree of lift capability) in addition to drag modulation may be
required for an adequate control capability. Possible failure
modes of the vehicle must also be considered, particularly for the
aerocapture maneuver because of the critical nature of steering
through a "thin" corridor and avoiding the obvious hazards of lack
of control and augering into the lower atmosphere.

Aerospike operation, particularly with two or more engines, may
provide this additional degree of control capability. Martin
Marietta Idea Report 83YD59, dated August 11, 1983, suggests that
differential throttling of multiple engines may provide lateral
motion (via induced angle of attack) by tailoring the bow shock and
subsequent streamlines around the vehicle. Whether this degree of
vehicle control is necessary or even feasible remains an open
issue. Figures 3.4-8 and 3.4-9 depict this method of control for
two— and four-—engine vehicle concepts respectively.
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Figure 3.4-8 Aerocapture Maneuver

Figure 3.4-9 Aerocapture Maneuver with Four Main Engines

Operations

~ ACS for Roll

— One Engine on (THIM or PIM)
and One Engine Off; or One-
Engine in THIM and One
Engine in PIM

Attributes

— Main Engine Failure-Tolerant

-~ No Mechanical Actuators

-~ Drag Modulation and Angle
of Attack

7/
with Two Main Engines

Operations
— Differentially Throttle
All Engines
— ACS for Roll with
Engine Out
Attributes
— Main Engine Failure-Tolerant
— No Maechanical Actuators
— Drag Modulation and Angle
of Attack




Other open issues with regard to aerobrake design include:

1) Lack of data relative to variation of aerodynamic drag
coefficient and flow stability during aerospike operation;

2) Effects of aerospike on reducing aeroheating;

3) Base heating from aerobrake radiation as well as convective
heating;

4) Necessity of continuous throttling vs thrust steps for drag
modulation during aerospike operation.

The following discussion presents the recommendations for
aerobrake/main propulsion system design criteria based on the
analyses performed.

As discussed earlier, the aerospike operation has the potential of
providing a vehicle control capability in the upper atmosphere
(drag modulation), aerothermal shielding for the vehicle, and (in
conjunction with drag modulation) loads alleviation on the
aerobrake structure. Figure 3.4-10 shows the acceleration levels
estimated for various combinations of low-thrust THIM (tank head
idle mode) burns and a high~thrust PIM (pumped idle mode) level.
Notice that two low-thrust burns before and following pumped idle
thrust help minimize the loads that affect the aerobrake
structure. The thrust range for aerospike operation is estimated
(based on present analyses) to be between 100 and 800 1bf. For
thrust greater than 800 1lbf, the rocket effect begins to take over
and the drag reduction effect is negated.

Two or more main engines have advantages as well as disadvantages
with regard to the aerocapture maneuver. Among the advantages are:

1) Shutting down selected engines (or differential throttling
them) to add to control capability of vehicle via streamline
(bow shock) shaping and possible use of ACS for roll-controlled
steering;

2) Achieving several thrust "steps" at low levels for drag

modulation by various combinations of engine(s) operation(s)
such as off, THIM, or PIM.

The disadvantages of having more than one engine include:
1) Size of opening in aerobrake;
2) Thrust vector offset with engine out;

3) Vehicle control complexity.
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Figure 3.4-10 Trajectory Simulations—Aerospike Control

Contingency operation of performing the aerocapture maneuver by
using ACS aft-pointing thrusters to create an aerospike effect may
be possible. To target for a multiple-pass (2 or 3 passes) return
trajectory without main engine(s) operating, a certain amount of
vehicle control is still required. Present estimates suggest that
a maximum of 200 to 300 1bf may be adequate for performing a 2- to
3~pass return. Therefore the use of ACS thrusters for the return
via multiple passes is a very feasible alternative.

Depending upon the results of vehicle/engine optimization,
considering engine length, diameter, and performance, nozzle
retraction may be required before entering the atmosphere. With
the emphasis on short vehicle length to minimize base heating in
the wake of the aerobrake, the long high-performance (high area
ratio) nozzles of the main engines will most likely protrude
through the aerobrake during the burns before entering the
atmosphere (up through GEO decircularization). The phasing and
rendezvous burns following the aerocapture maneuver are small and

the performance penalty for not reextending the nozzles may not be
significant.
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3.4.4 Main Propulsion System Tradeoff Studies

The determination of major engine characteristics should depend on
several criteria--propulsion system reliability, performance,
serviceability, cost, etc. During Phase I of this study, geometry
and performance were given highest priority, keeping in mind the
implications of cost, manrating, reliability, and serviceability.
Cost and serviceability were considered in Phase II (Section 4.0)
when a life-cycle cost model of the OTV service life was developed
and tradeoff studies were performed. The main propulsion system
trade study ground rules were:

1) Total of 15,000 1bf thrust;
2) 1,.2, 3, 4, 5, and 3 inline engines;

3) Fail operational/fail safe included in weight comparisons
(exception: single engine that is fail-safe only);

4) Long (retractable) and short (fixed) nozzles for each engine
system;

5) Two gimbal angles, 10, 20 deg (except for the 5 and 3 inline
engine cases which do not require large gimbal angles);

6) Long engine length chosen where length penalty balances
performance gain;

7) Adjacent nozzles separated by 1/2 ft.

The performance sensitivities for the baseline stage are as follows:

2.8 lbm propellant and 146 1bm propellant
1bm dry weight second Isp

These were used in comparing propellant requirements and total
vehicle weights for various numbers of engines, varying gimbal
angles, nozzle design, and engine arrangements. Aerobrake size
(and consequently weight) must increase as it is moved aft to
package the engine(s) because of the base heating that would
otherwise occur at the forward end of the vehicle. Therefore the
engine envelope is a strong driver in overall vehicle configuration
and performance. (Aerobrake and structure weight semsitivity is 57
1bm/ft further aft.)

Engine lengths for the retractable nozzle cases were chosen so
performance gains were balanced by the penalty of longer nozzle
length (in retracted configuration). Two axis gimbaling is
required for up to four-engine configurations for a two-engine-out
capability. The exception is for three engines inline with an ACS
for backup for decircularization at GEO and return. In this case,
the two outboard engines require one-axis gimbaling and the middle
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one requires two axes. Five engines provide a two-engine-out
capability with only one engine requiring two-axis gimbaling. The
ground rule for adjacent packaging of engines required a spacing of
0.5 ft between nozzles.

To provide equivalence in failure criteria (fail operational/fail
safe or two-engine-out capability) for the two-engine system vs the
multiple engine (3 to 5) cases, the performance penalty of extra
loaded propellant for ACS return of the stage only from GEO was
calculated. Because the ACS system (GO3/GHy) will operate at a
mixture ratio of approximately 5 to 1 and a lower Igp than the
main engines, extra propellant is required for contingency as a
backup mode as opposed to extra engine(s). Figure 3.4-11 shows
this weight penalty as a function of main propulsion system
performance. For instance, loss of the main propulsion system
(MPS) with a performance of 490 s results in greater contingency
propellant requirements than for MPS performance of 480 s because
of the greater difference in MPS and ACS performance.

Contingency Operation Propellant Margin
— ACS or THIM Return from GEO

- |sp =450s, MR = 4.0, AV = 6550 fps Total

500 r — Aerocapture: 125 Ibf Average Thrust for 10 minutes
{200 to 300 Ibf Maximum Thrust Required for 2 to 3-Pass Trajectory)
4.69 MR

g

2 LH,
€

K3

®

a

2

a

> B LO2
':i. 200

£

-

c

o

o

100p~-
0 l | I
470 480 490

Main Engine 'sp’ s

Figure 3.4-11 Contingency Operation Propellant Margin
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The parametric vehicle data points were computed using the
sensitivities mentioned and engine data from Pratt and Whitney
Aircraft and Aerojet Tech Systems. These two sets of engine data
appeared to "bound" the variation of engine performance with thrust
level. 1In other words, an attempt was made to include the range of
proposed engine concepts (large to small) and their subsequent
inherent characteristics and estimated performance. Figure 3.4-12
shows the total vehicle weights resulting from the Pratt and

Whitney data and the results for the Aerojet data are shown in
Figure 3.4-13.
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Figure 3.4-12 Initial Weight vs Number of Engines
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Figure 3.4-13 Initial Weight vs Number of Engines (Aerojet Engine Data)

Example notations for the charts are:

12-ft retractable - 1, 3 inline, or 5 engines that are 12 ft
aft of the tankage/accumulator subsystem
interface, with retractable nozzles;

10-deg Fixed - Engines allowed to gimbal up to 10 deg for
an engine-out capability with fixed
(standard) nozzles.

Table 3.4-1 shows the resulting conclusions and engine operational
requirements recommended from all Phase I activity.

Baseline Vehicle Configuration

Two baseline configurations were developed (Fig 3.4-14 and 3.4-15)
for two engines and four engines respectively. The two-engine
configuration is representative of an optimized vehicle
incorporating Pratt and Whitney engines with retractable nozzles
(as per the main propulsion system tradeoff study). Because the
tradeoff study showed short fixed nozzles to be optimum for the
Aerojet engine data and less penalty for lower thrust, the

four-engine configuration is representative of an optimized vehicle
incorporating four Aerojet engines.
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Table 3.4-1
Phase I Main Propulsion System Tradeoff Study Conclusions and Engine
Operational Requirements

Conclusions

— Results are sensitive to engine performance and geometry data.
— Further investigate 1, 2, 3, or 4 engines in Phase Il
— Vehicle subsystem impacts
— Implications of reusability/servicing
— Mission flexibility
— Life-cycle cost.
Nozzle design
— Fixed at 60 in, for diameter reasons (Aerojet)
— Retractable to 60 in. for length reasons {Pratt & Whitney)..
Benefits of retractable nozzles are more sensitive to available gimbal angle than fixed.
~ Differential throttling shows little or no benefit.
— 5 or 3 inline engines not competitive with other configurations.

Requirements

— Duty cycle
— 6 burns/mission {21-minute burn time)
Throttling (or step thrust levels
— Flow stability and drag modulation during aerocapture maneuver (aerospike).
— Reduce thrust after perigee burn to extend engine life (TBD).
~ Low-thrust missions (LSS).
- Gimbal
— Up to 20 deg providss significant benefits in total vehicle mass and propellant consumption.
- Specific impulse
— Greater than 460 s,
— Lifetime and reliability implications.
— Mixture ratio
— 6.0 oxidizer/fuel provides lowest weight stage and propellant usage.

The baseline main propellant tanks are supported at two
locations--forward and aft of each tank (Fig. 3.4~14 and 3.4-15).
The forward supports react forces in the X and Y directions while
the aft supports react against in the X, Y, and Z directions. The
structural attachments are designed to be easily detached and all
fluid and electrical lines are equipped with quick-disconnects
(QDs) to facilitate onorbit conmstruction, servicing and/or
replacement of the tanks.

The baseline configuration employs a welded tubular aluminum
Primary structure. Tubular members were selected on the basis of
their high strength-to-weight and stiffness-to-weight ratios.
Additional stiffness gains and weight savings may be realized if an
all-composite structure is used. While an investigation of this
possibility should eventually be instituted, it was outside the
scope of this study.

The desire to minimize vehicle length and diameter placed strict
limitations on the size and envelope of the primary structure
located between the main propellant tanks. To avoid an undesirably
heavy structure, the primary launch and aerobrake loads on the
tanks in the X, Y, and Z directions are reacted through the tank
aft structural attachments. The structure forward of the tank aft
ends then need only react tank loads in the X and Y directions in
addition to payload and equipment module loads in the X, Y, and Z
directions. This concept greatly reduces the size and weight of
this forward structure.
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Figure 3.4-15 Four-Engine Baseline Layout




3.4.6

The equipment module is attached to the primary support structure
forward of the main propellant tanks. The GHy accumulators are
internal to the equipment module and the GO accumulators are
supported off of the module's aft end. The forward bulkhead of the
module serves as the payload interface. Detachable units
containing the OTV ACS, avionics, pressurant regulation and
control, and power systems surround the equipment module. Each of
these detachable units is attached at four structural QD points in
addition to any fluid or electrical QDs that may be required.

These units are serviced by removal and replacement with a new or
refurbished module.

In addition to the ACS units attached to the equipment module, four
aft-pointing ACS thrusters are attached to the aerobrake support
structure. These aft-pointing thrusters penetrate through the
aerobrake, permitting them to provide a limited aerospike in the
event of a main propulsion system failure. This thruster location
eliminates any thruster efficiency losses that would result from
thruster plume impingement on the aerobrake if these thrusters were
located forward of the aerobrake (near the payload interface plane).

An OMV is attached to the OTV aerobrake and the aerobrake is
attached to its support structure with the same type mechanisms and
at the same relative locations. This concept enables the OMV to be
attached to the OTV without the aercbrake attached. Berthing of
the OTV with the refueling station also employs these same
mechanisms, with an RMS accomplishing the actual berthing
operation. Propellant handling is accomplished through fluid lines
with QDs that could penetrate through the aerobrake if it were left
attached.

Space-Based OTV Propulsion Subsystems Design

A space-based OTV will require a unique design to accommodate the
needs of onorbit basing. This is necessitated by both space basing
and the desire for reusability. These two requirements are beyond
those imposed on previous upper stages. The space station will
provide the logistics and manned presence. From a servicing
standpoint the space station design will also influence the OTV
design. Such items as hangar design, resupply accommodations, and
the astronauts' servicing capabilities will all influence the
ultimate design. Because logistic considerations such as
consumables resupply and spares inventory will represent a large
portion of the routine operating expenses, the OTV design should
account for these requirements. It is also desirable to reduce
consumables both in quantity as well as in number. Fewer
resuppliable quantities on the OTV will simplify the servicing
operations. The subsystems design in the following description
will attempt to address these concerns in addition to such
"traditional" ones as minimum mass, cost, and maximum performance.
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Current LH/LO; upper stage designs have been highly optimized

for the present expendable mode of operation. High performance/low
weight were the major design drivers. In addition to the main
propellant, previous upper stages have also carried several fluids
to be used for various functions, e.g., NoH,; for attitude

control, and He for purging, pressurization and valve actuation.
This represented the best compromise toward the goals of highest
attainable performance and reliability. Reusability will shift the
optimum breakpoints from one-time usage design life toward periodic
replacement for certain high-maintenance or life-limited items such
as the main engines. These items would become prohibitively
expensive to make last the life of an OTV. Space basing adds yet
another constraint in that the number of feasible maintenance tasks
is severely limited by the available manpower and support equipment.

It is anticipated that the upcoming space station will develop
technology for GHy/GO; thrusters and associated components in

the thrust range of interest for an OTV to achieve a GHp/GO,
attitude control system (ACS). Once these gases are stored on
board, they could be made available to serve other functions as
well. The electric power system (EPS) fuel cells could obtain
their supply from the GH,/GO, storage bottles (accumulators),
eliminating separate storage and servicing. (Assuming fuel cells
compatible with propellant-grade cryogenics.) GHy could be used
in place of He as the actuator pressurant. The GH2/GOj system
would be recharged by a simple check-valve arrangement tied to the
autogenous pressurant lines between the engine(s) and the tanks.
The ACS could also be used as a backup for a failed main engine if
a contingency means for charging the GHy/GOy accumulators were
provided. On the basis of these arguments, the use of GHy/GOj

on a space-based OTV is proposed. The following subsystem
descriptions will further illustrate the advantages of a fully
integrated cryogenic OTV design with a preliminary point design.

The main propulsion system design is shown schematically in Figures
3.4-4 and 3.4-5 for two and four main engines, respectively. The
two-engine and four-engine cases have been selected as the
baseline. Only the number of engine isolation valves (propellant
and pressurant) and propellant manifolding are affected in
comparing the two schematics. A single valve is installed at each
tank outlet to provide tank isolation and for use by the propellant
utilization (PU) subsystem to control tank-to-tank outage. A
pneumatic valve with sufficient metering authority for the PU
system will be required. The downstream manifold communicates with
the main engine(s), an overboard dump, refueling quick-disconnects,
and the feed for a contingency auxiliary power unit (APU) used to
charge the GH,/GO, accumulators. Each main engine is provided

with isolation valves as a backup for the main engine valves.

These valves are also needed to facilitate removal of the main
engines. (There may be a blanket pressure in the lines.) A dump
system is shown on the liquid side in case the main propellants
need to be evacuated (anticipated to be a contingency event).
Residuals left at the end of a mission would be recovered. A
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single QD and valve are shown for the refueling lines. Parallel
QDs may be needed depending on the unit's reliability, which cannot
be resolved at this point. Also not shown are filters for the main
propellants. Presumably, each main engine inlet will have a filter
that is serviced each time the main engines are changed out. The
propellants should also be highly filtered by the time they are
placed on board the OTV. Autogeneous pressurization will be
provided by the main engine(s) at a temperature and pressure
dictated by the autogenous pressurization and accumulator systems.
The gases will be reduced in temperature and pressure by redundant
regulators although a simple valve and orifice may be sufficient.

A thermodynamic vent system (TVS) will most probably be needed but
is not shown because the exact requirements for the TVS are not
known at this time and it should have a design similar to those
used on existing stage designs. Recovery of the TVS vent gases is
not anticipated because the relatively small amount of mass is not
expected to be enough to warrant recovery. A pump would be needed
to boost their pressure from near zero to the approximately 2000
psi needed for the accumulators. The mass and power requirements
of these pumps are believed to outweigh any benefit gained by
recovering the gas mass. However, future design efforts should
reexamine this conclusion as the systems become available and more
realistic analyses can be made. The TVS will present some
servicing complications because most of the components will be
mounted inside the propellant tanks. A high degree of reliability
and/or access to the tanks will be needed if servicing the TVS
components is necessary. Alternative means of controlling tank
pressures and temperatures should be investigated.

The gaseous subsystem is shown in Figure 3.4-16. Essentially, four
accumulators are fed through check valves from the main tank
autogeneous pressurization lines. From these accumulators, gases
are regulated and distributed to four "user" subsystems—-the ACS
thrusters, the EPS fuel cells, the APU, and GHy for pneumatic
actuators. Four accumulators were chosen so the system could be
divided in half, providing full redundancy. It may become
desirable to use only half the system for particular missions. The
accumulators will be sized by the worst—case mismatch between
supply and demand. Isolation valves are provided for either of the
two gas sources (autogeneous or APU) so recharging can be done by
either. Each tank is provided with its own filter/check-valve unit
in full isolation from the other tank. A redundant filter/
check-valve unit is provided should either of the primary units
fail. Similarly, separate regulators are used downstream from the
tanks so the system can be run with only one tank (per gas). These
regulator units are manifolded on their downstream sides so they
may feed the redundant isolation valve pairs controlling
distribution to the four end uses. A common regulated pressure has
been specified because this is the simplest and lightest
arrangement. The total system is expected to be designed at one
time so all the individual units could be optimized together. It
is not anticipated that "off-the-shelf" components will be
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available to drive the design. The EPS fuel cells will probably
further reduce the pressure from that supplied by the system
shown. A nominal regulated pressure of 500 psi is envisioned.
This pressure will likely be determined by the needs of the
pPneumatic actuators and/or the ACS thrusters. The APU unit
depicted between the two tank pairs and will be discussed
separately in the following paragraphs.

From GH2 From (02
Press Line

5 r&w”@?g

Press Line

1
RCS Pnuenmatic EPS EPS RCS
Systen
m Pressurant tank F/D valve
s Liquid Pump

Pressure Transducer
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T Turbine
Latch Valve

Relief valve

Quick Dasconnect

Figure 3.4-16 GH,/GO, Subsystem Schematic
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Nominal operation of the accumulator system will be as follows. At
the beginning of a mission, at least one of the tanks for each gas
will have a pressure sufficient to start the APU and allow
activation of the engine valves. Normally, the APU would not be
used to charge the accumulators. The firing of the main engines
will accomplish this. The APU would be used as a backup for the
main engines to sufficiently charge the accumulators to enable
returning the OTV. Each main engine firing following the first
will keep the accumulators properly charged. A long stay at GEO
may require that the APU be started to recharge the accumulators.
On returning to the space station, the accumulators could be
offloaded to a safe blanket pressure. Alternatively, they could be
run down to a safe pressure just before docking with the space
station. In either case, they are not expected to require complete
evacuation, except when the system needs servicing. Routine OTV
turnaround would not require that they be empty, only that they be
at a safe pressure. Evacuation after each mission would require a
lot of time and energy in handling. In the space environment a
small leak will not constitute a safety hazard in itself. Rather,
because a small leak will need to be repaired to prevent the loss
of propellants, the blanket pressure will provide the gas needed to
detect the leak. Once detected, however, the leak repair may
require evacuation of the system. For this reason, the space
station may require a means of charging the accumulators back to
the necessary premission conditions. Potentially the APU could
also provide this if the gas gemerator could bootstrap itself. A
schematic for the APU is shown in Figure 3.4-17.

Hon-prop
Veat

GH
2 GH

Figure 3.4-17 Auxiliary Power Unit Schematic

Gaseous propellants from the accumulators are combined in the gas
generator from where they are expanded through a turbine and twin
heat exchangers before being released overboard. Liquid
propellants from the main engine feedlines are pumped to a high
pressure and vaporized in the cold side of the twin heat exchangers
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before being introduced into the accumulators. The size of the APU
will depend on its intended use. If it will serve as a backup for
the main engines, its reliability will need to be high. Redundant
APUs may be needed in this case. Steady-state operation vs duty
cycle operation will also affect its ultimate size. The expected
worst case is where the APU is used with the ACS as a backup for a
failed main engine(s). The primary mass use would be for the ACS
propellant but additional propellant will be needed to provide tank
pressurization and to power the APU. However, because of the
difficulty in building a very small turbopump unit, a better
compromise between unit mass and efficiency may well be a larger,
more efficient unit running at a low duty cycle. The following
first-level analysis explores this tradeoff.

The APU is to be used primarily as a backup system for a failed
main engine. As such, a premium will be placed on its
performance. As currently envisioned, the APU exhausts its
products nonpropulsively and thereby 'wastes" them. The design
must therefore make the most out of what it uses. This means
minimum mass use for the APU. However, dry weight must also be
kept to a minimum. A balance must be struck between the APU dry
mass and the mass consumption. A target weight of 50 lbm was
used. This is felt to be a reasonable penalty for the OTV to pay
for the flexibility gained by the APU. Approximate masses are
shown in Table 3.4-2, based on a steady-state APU design.

Table 3.4-2 APU Mass Estimates

Component Mass, tbm
Gas Generator and Valves 8
Turbopump Unit 22
02 Heat Exchanger (HX) 3
H2 Heat Exchanger 12
Miscellaneous 5

Individual performance will be covered in detail in the following
paragraphs. The design presented below is somewhat conservative
because it is based on a first~order analysis. An EPS use rate of
0.85 1bm/h for 48 h plus 78 lbm of ACS propellant at a 5:1 MR was
used to size the accumulators. The mixture ratio through the cold
side (liquid pumps and heat exchangers) of the APU was sized for
steady~state ACS usage. The hot side (GG, turbine and HXs) was

sized on a per 1lbm/s of cold side flow basis so some scaling could
be performed.

The APU cold side consists of the liquid pumps, the heat exchangers
and the associated valving. Flow rates, heat fluxes, temperatures,
pressures and power requirements are shown in Table 3.4-3. For the
steady state design point shown, the pumping requirements are quite
modest. Liquids at or below the saturated temperatures were used

for the inlet conditions to the pumps. Vaporization was assumed to
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take place entirely in the heat exchangers. Accumulator inlet
conditions of 200°R and 735 psi were chosen to minimize the heat
flux needed. Efficiencies of 90% were used for the pumps. The
JANNAF tables were used to determine the enthalpy needed by the
fluids. From this information, the power needed per 1lbm/s of cold
side flow could be determined. As shown in Figure 3.4-17, a single
turbine is used to drive the two pumps to facilitate the analysis.
This establishes a cold side mixture ratio. Separate turbines and
pumps would allow the mixture ratio to the accumulators to be
varied at a cost in simplicity. Future analyses may justify the
additional complexity this would entail. Also shown is a
gear—-driven LO2 pump. Again this was done for ease of analysis.

A detailed turbopump design was beyond the scope of this study.

Table 3.4-3 Cold Side Parameters

Turbopum, Heat Exchanger
) R . o © . R
Fuel Mass Flow, Ilbm/s | Ti, R Pi, psi Po,psi | Ah,Btu/lb | Ti, R To, R | Pi, psi Po, psi [ q, Btu/lb
02 0.833 165 20 750 1.59 167 200 750 740 11.24
H2 0.167 38 20 750 5.04 42 200 750 740 98.54

The APU hot side consists of the gas generator, the turbine, the
heat exchangers and the associated plumbing. Table 3.4-4 shows the
hot side parameters. Gas generator operation at 2500°R and 150 psi
was used. The operating pressure was chosen to give a good
pressure drop for the injector. The temperature was selected as
the highest possible without generating excessive thermal material
concerns. A higher operating temperature would be desireable to
reduce the mass flow needed to condition the cold side fluids.
These operating conditions yield a gas generator fuel-rich mixture
ratio of 1.35:1. The turbine needs 14.9 hp to drive the pumps,
assuming a turbine efficiency of 70%¥. The heat fluxes shown in
Table 3.4-3 size the mass flows to the hot sides of the heat
exchangers. The fluxes shown in Table 3.4-4 include 5% extra for
losses to the environment from the gas generator and heat
exchangers. A heat exchanger exit temperature of 500°R was chosen
to avoid freezing the water in the gas generator exhaust products.
The resulting heat exchanger effectivenesses are 80%Z for 07 and
76% or Hy based on these temperatures and flows. This implies
rather large heat exchangers with both boiling and convective heat
transfer. The heat exchanger design was carried no further than
needed to estimate weight.

Table 3.44 Hot Side APU Performance.

0.004

0.034

Gas Generator Turbopump Heat Exchanger
Fuel Ti,°R | Pi,psi | m,b/s | TirTo,°R | Pi/Po, psi | Ah, Btu/tb | Ti/To, °R| PifPo,psi | q.Btu/ib | . Ib/s
0, 200 735 0.021 | 2500 150 2333 113 11.80
2333 13 105 500 103
H, 200 735 0.016 | 2500 150 2333 113 103.2
2333 113 500 103
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3.5

As mentioned earlier, the design is based on steady-state operation
per lbm/s of cold side flow. For four 100-1bf thrusters firing to
return the OTV from GEO orbit, a mass flow to the thrusters of
0.847 1bm/s is needed at an Ig, of 472 s. The resulting APU mass
usage of 0.0315 1bm/s leads to an effective Igp of 455 s at a MR
of 4.7. There are several potential means of improving these
results. All involve reducing the hot side mass flow. Lowering
the accumulator inlet temperature and/or raising the gas generator
operating temperature would both be effective. Improving the
efficiencies of the pumps and the turbine would also help, of
course. However, these have already been chosen close to the
physical limits. Only percent improvements could be gained.
Running the gas generator oxidizer-rich (MR of 89:1) improves the
mixture ratio to 6.4 but reduces the Isp to 376 s. This is a
result of the higher molecular mass of oxygen, which may also
present material problems. A means of potentially improving the
efficiencies and simultaneously increasing the gas generator
operating temperature would be to operate the APU at a low enough
duty cycle to improve the efficiencies while not incurring
transient losses. The accumulators would need to be sized to
accommodate this as well as most of the rest of the gaseous
subsystem. As a backup mode to a failed engine, using the APU and
ACS thrusters offers improved performance (455 s and 4.7 MR vs 450
s and 4.0 MR) over tank head idle mode. Another route to
substantial improvement is an alternative means of heating the
gases after they have been pressurized. The turbine and pumps use
only 8% of the power used to condition the gases. A solar-powered
evaporator that supplies 100 Btu/s to the fluids could be used
although it would be quite large and massive. The APU will justify
itself only as a backup for totally failed main engines (2-engine
case) or where the operational advantages previously mentioned
become needed.

PHASE I CONCLUSIONS AND RECOMMENDATIONS

Based on the configuration and performance tradeoff studies of
Phase I, the following major conclusions resulted in addition to

the main propulsion system tradeoff study conclusions shown in
Table 3.4-1:

1) Investigate the range of vehicle/engine systems further (Phase
11),
a) Implication of reusability/servicing,
b) Life-cycle cost;

2) Spherical tankage with contingency replacement;

3) Retractable nozzles benefit only with large (15- to 20-deg)
gimbal angles;
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4) GH2/GO, accumulator system supplying ACS, EPS, pneumatics
and contingency APU;

5) Choice of engine number and nozzle design strongly depends on

engine performance characteristics and manrating failure
criteria;

6) Stageable fleet concept should be given further consideration.

These conclusions remain consistent with the philosophy of the
baseline vehicle development of Phase I.
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4.0 PHASE II -~ SERVICING, RELIABILITY AND LCC

This section describes the space based OTV servicing scenario,

engine configuration reliabilities and life-cycle costs (LCC) for
the respective engine configurations.

4.1 MAINTAINABILITY

4.1.1 Baseline Vehicle Servicing Character

The baseline vehicle configuration(s) developed during Phase I were
used in defining an appropriate approach to servicing a space-based
reusable orbit transfer vehicle. The objective was to develop a
reference servicing operational scenario for the life of the OTV
that appears reasonable considering life-cycle cost (LCC),
logistics, space station facilities, technology availability, etc.
Relevant tradeoff studies were then conducted to verify that the
reference scenario is the lowest LCC approach.

A reasonable approach to servicing a space-based reusable OTV
onorbit involves more than simply modularizing the vehicle so
everything imaginable may be easily removed and replaced.
Modularization seems to be a key word in the rhetoric surrounding
the issue of space servicing; however, the understanding of the
word leaves much to be desired. In examining the baseline vehicle
configurations, one finds items that should be included in a
simplified servicing approach of removal and replacement at the end
of a reasonable service life or following a failure of some kind.
These items include:

1) Avionics;
2) Batteries or fuel cells;
3) ACS thrusters or cluster modules;

4) Main engine(s).

These subsystems/components lend themselves to "modularization"
either because of their inherent geometric peripheral packaging,
their character of being at the "edge of things" schematically, or
their simple interfaces. Also, and maybe coincidentally, these
appear to be items that have shorter expected lifetimes than such
items as structure, tankage, isolation valves, etc. So it would
seem that providing for easy servicing of these short-life items

’ would be adequate. In further investigation, however, this

approach of designing the OTV for long life with the exception of
the easy service items makes little sense. For instance, if a
\ component other than those intended for easy serviceability were to




4.1.2

fail, the option of returning the '"space-serviceable" vehicle to
earth for unscheduled servicing does not appear attractive from a
cost standpoint. Typical components/subsystems that are not
easy—access items for simple remove and replace operations imclude:

1) Main tankage that may suffer meteoroid penetration and require
replacement ;

2) Thermodynamic vent system that may include moving parts and
require replacement (internal to main propellant tanks) ;

3) Multilayer insulation that may degrade as a function of time
on-orbit or may degrade as function of meteoroid penetrations
(that may leave microscopic holes on the exterior but literally
shred the underlying layers);

4) Valves, filters, regulators, vents, etc that are part of the
main propulsion feed and pressurization systems; and also the
accumulator system that feeds the ACS, EPS, and pneumatics
(that ideally would be welded into the system).

These typical items are not necessarily buried within the
propulsion system in all cases. However, their integration in the
propulsion system provides difficulty in arranging them for
individual removal/replacement or servicing in the space
environment. The ability to detect degradation or failures in each
of these items separately is also a significant design problem.
Some compromises must be made as to the design of the vehicle for
modularization (and proper degree thereof), component redundancy,
fault detection and isolation, component design lifetime, and
service intensity requirements.

The first step with the baseline vehicle configuration was to
examine the design's components and subsystems for estimated
lifetimes, failure modes, failure effects, and failure frequency
estimates. Grouping the components into reasonable modules for
contingency removal and replacement in addition to defining the
module interfaces, geometry, and servicing character was essential
for further development of the appropriate servicing scenario.
Therefore a failure modes and effects analysis was performed for
the baseline design as a starting point in addressing the
maintainability aspects of the OIV.

Failure Modes and Effects Analysis (FMEA)

A FMEA was performed to analyze the proposed OTV propulsion system
concept. Although the data available were not sufficient to
perform a complete FMEA, this method of analysis was used to
further refine the design by considering the effects of incipient
failure modes and to provide input to recommend replacement

intervals and component grouping arrangements for
remove—and-replace operations.
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The FMEA was structured according to the functional block outline
illustrated in Figure -4.1-1. Wherever possible and considered

appropriate, the OTV propulsion system was broken down to the
subassembly level.

i.O ) _l’r}o'.ﬁhls'i:o_n System 1.2 ACS and Accumulator 1,3 Main Propulsion 1.4  Avionics and Power
"1 Aerobrake 1.2 ACS 1.3.1 Main Engine Asssmblies 1.4.1 Guidance and Navigation
1.2.2 APU 1.3.2 Propellant Feed 1.4.2 Communications
1.2.3 Accumulator 1.3.3 Pressurization 1.4.3 Electric Power
1.3.4 Tank Assemblies

Figure 4.1-1 OTV Propulsion System Functional Outline

Design features and operating characteristics for the OTV
propulsion system were evaluated to identify the various failure
modes. The failure modes were then evaluated as to their potential

severity and likelihood of occurrence. These classifications are
tabulated.

Failure Severity

Severity

Classification Severity Category

4 Category |—-Catastrophic. Failures that may cause death or system loss.

3 Category 11—Critical. Failures that may cause severe injury or major system damage that will
result in mission loss.

2 Category l11—Marginal. Failures that may cause minor injury or minor system damage that
will result in delay or mission degradation.

1 Category 1V—Minor. Failures not serious enough to cause injury or system damage, but that

could result in unscheduled maintenance or repair.

Failure Likelihood

Failure

Likelihood

Classification Description

1 Low probability of occurrence some time during life of system.
2 Moderate probability of occurrence some during life of system.
3 High probability of occurrence some time during life of system..

It is assumed the OTV will require that the system be designed to
fail operational in the event of a single failure mode and fail
safe in the event of two failure modes. This assumption was used
as a criterion for evaluating the compensating provisions for each
failure mode and assigning the appropriate severity
classifications. Table 4.1-1 lists the results of the FMEA
exercise. Table 4.1-2 lists items identified as catastrophic and
critical failures and recommends the design considerations to
downgrade the severity classifications.
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Table 4.1-2 Severity Results and Recommendations Based on FMEA

from about 30 to 50 missions).

Beverity
Control Cosponent Fallure Classiti~ Recoaendations
Nuaber Description Nodes Faiture Effect on Gystes cation To Downgrade Severity
1.2.1.1 1solation External Leak Loss af Propellant Catastrophice Back up isolation valves.
Latch Valve
1.2,3.1 Latch Valves External Lesk Loss of propallant. Catastrophic Back up valves.
1:3.2.9 Engine External Leak Lose L1{qu0uol. Catastrophic Recosmend latch valve upstress
isolation to degrade effect to losing
Valve function of anly one engine.
1.3.2.6 APV Crve Fail Closed No contingency sode Catastrophic Design should reflect
Feed Valve accuaulator operation. redundant valves in parallel.
External Leak Loss of propellant and Catastrophic Consider selacting/developing
loss of ajssion. aare reliable coasponents or
reconfigurang systea.
1.3.3.4 EVA Test Port External Leak Loss of pressurization. Catastrophic Consider selacting/developing
aore reliabls cosponents or
reconfiguring systea,
1.3.4.1 L0, Storage Neteroid Minor loss of propellant, Critical Tanks should be verified by
Tank Penetration potentially aore serious testing and fracture sechanics
14 not detected. analysis. Also, establish a
sethod of lesak detection.

NL1 Deterioration Unkanown st this tiae. ? Need to deteraine etfects of
daterioratien over a prelonged
period of tise.

1.3.4,2 LN, Storage Neteroid Minor loss of prapelilant, Critical Tanks should be verified by
Tank Penetration potentially more serious testing and fracture aschanics
i not detected. analysis. Also, establish a
sethod of lesk dstection.
MLl Deterioration Unknown at this tise. ? Need to detersine effects of
- detarioration over a prolonqed
period ot tiaee.
1.3.4.3 Fluld Puep Pusp Fatlure Loss of propellant by Critical Ensure method of servicability
& lapeller vanting or dburning. or cosponants reliability

sxceeds tank lite.

The FMEA was used as an input source to estimate the number of
missions before recommended component replacement and/or overhaul.
These estimations were based on the failure modes, likelihood of
failure, and best engineering judgment of realistic, obtainable
goals for scheduled replacement to ensure safe operation and
availability of the vehicle.
replacement intervals disclosed that the missions to replacement
fell near 30 mission intervals for several subsystems (actually
Examples of estimated lifetimes are

Evaluation of the estimated

(1) main engines - 30-mission life, (2) ACS thrusters - 40 to 55
missions, and (3) main tankage — 100 to 200 missions.




4.1.3

Component Grouping for Servicing

The preliminary OTV baseline design prepared during the Phase 1
effort has been further refined to identify orbit replaceable units
(ORUs) that enable the OTV to be serviced at the space station. A
study was performed to determine what varying degrees of
serviceability would imply for the modularity of the entire
vehicle. Table 4.1-3 shows the results. Fluid system components
were divided into logical groups that should minimize the logistic
costs of servicing while maximizing the capability to handle
unforeseen failures. All major electronic components were left as
separate ORUs, there being no great advantage to a larger

grouping. Because no single component has an expected lifetime of
less than 30 missions, the grouping of similar life components into
modules was not needed as earlier anticipated. Figures 4.1-2 and
4.1-3 show the grouping of fluid system components and Table 4.1-4
depicts the module interfaces, geometry, accessibility and
operations anticipated.

The seven modules shown in Figure 4.1-2 for the main propulsion
system include all fluid components except the main engine, some
transducers and the pressurization system vent valves. Vent valves
will likely be permanently installed in the plumbing and located
remotely for functional reasons. If their reliability proves low,
they will be serviced as single components.

Five modules are envisioned for the GH,/GOs subsystem as shown

in Figure 4.1-3. The check valves and regulators are expected to
have the shortest life. Thirty missions are shown for these
components and they are therefore included as part of large
modules. If they do prove troublesome they would be isolated into
smaller modules so they could be replaced individually after they
have failed. Designing for more and smaller modules is undesirable
because of the increased number of fluid connectors necessitated
(more potential leaks). The APU is the most difficult item to be
serviced because of its many and different fluid connections.
Despite its rotating machinery, its life is expected to be at least
30 missions because of its contingency nature (backup for failed

main engines or possibly during excessively long onorbit hold
periods).

Table 4.1-3 Degree of Onorbit Servicing

Cumulative
No. of Items
Level Type Serviced Typical Items
1 Resupply 2 to 5 Fluids LOz, LHz, He, N2H4, GNZ
2 Subsystem-Level Module R/R, | 5to 15 RCS, EPS, Avionics, Instrumentation, Etc
Mechanical & Electrical
3 Subsystem-Level Module R/R, | 20 to 50 Main Engine, RCS Thrusters, Fuel Cell(s),
Mechanical, Electrical, Fluid Tanks, PCA, Etc
4 Major Component Remove/Re- | 60 to 100 Inlet Valves, Tank Valves, TVS, Turbopump
place, Mechanical, Elactrical, Assembly, MLI, Ete
Fluid
5 Piece Parts ? Seals, Bearings, PC Boards, Etc

4-13
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Space Based OTV ~ Main Feed system — 2 Main Engine Schematic

e e T

Regulation and |———-
Control- Typ of 2

Tank Icolation |
and PY Valves "‘
Typ of 4 N

* Refuel QO

Pressurization
Isolation - Typ of 4

g_.;

=B

o]
L_‘g1

M€ Pressur.
Isolstion valves

Typ of 2

Hain Engine
Iso Valves
Typ of 4

Notes: A) High pressure feed for GH2/G02 accumulator
8) Feed for contingency gas generator/turbo-pusp/heat exchanger unit for accumulator charging

Legend

P

fain Engine Preunatic
K vith NE valves @3

valve

Quick Disconnect

" Module Contents

CRAOR

Latch valve
Pressure Transducer
Filter

Oriface

Figure 4.1-2 Main Feed System Modules
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From GH2 From CO2
Press Line H Press Lineg

Check valve
Typ of 2

Regulator X
Nodule |—%
Typ of 2 :
Auxilisry Pover €S| Low Press | RCS
bod Latch Valve
t Typ of 7
Legend
O Pressurant tank (@  Pressure Transducer
d
Liquid Purp 82  Filter
EQ] Pressure Regulator ET Relief valve
Turbine 3 Quick Disconnect
K  Latch valve

Figure 4.1-3 Gaseous Subsystem Modules

The modules depicted in Figures 4.1-2 and 4.1-3 are further defined
in Table 4.1-4. The first column corresponds to the fluid modules
identified in addition to the avionics, fuel cells and thruster
clusters. The second cclumn defines the number and type of
interfaces needed. Rough geometry, access and operations type are
shown in the third column. Modules needing frequent servicing such
as engines, ACS thrusters and main tanks are given an access rating
of 1 (no obstructions) to simplify the remove and replace (R/R)
operation as much as possible. The other modules were judged




Table 4.1-4

Table 4.1-4 Vehicle Module Descriptions

Type and Type & Geometry, Access,¥*
Number Of Number of Packaging, Operations,
Modules Interfaces etc
Main 1 Mech 60 x 60 in DIA
engines 1 Elec
(2 to 4) Access - 1

5 fluid

[2 very high Ops - extensive

pressure for fluid R/&R

GOy and GHoy

autogenous pressures,

1 for GHp pneumatics,

(high pressure),

2 for L0 and LHy]
Tanks Mech, Elec LHy - 11 ft DIA
L0y (2) 1 1iquid L0, - 8 ft DIA
LHy (2) low pressure, Access - 1

1 low pressure Ops - fluid R/&R

gas
ACS (16) Mech, Elec, 10 x 5 in DIA
4 valves per 2 high -
thruster pressure gas Access - 1

Ops — fluid R/&R

APU (1) 2 very high- 1 ftx1lftx2ft

pressure gas,

(gas 2 liquid Access - 2

generator) (low pressure),

Elec & Mech Ops - extensive
fluid R/&R
Accumulator 3 high- 12 x 12 x 6 in

check valve
assembly (2)

pressure gas,

Access - 3

Elec & Mech Ops - fluid R/&R
Accunulator 3 high- 12 x 12 x 10 in
pressure pressure
regulator gas, Elec & Mech Access - 3

assembly (2)

Ops - fluid R/&R

Accumulator 2 very high-~ 6 x6 x4 in
latch valve pressure gas,
set (7) Elec, Mech Access - 3

Ops - fluid R&R

Main pressure
control
assembly (2)

1 high-pressure
gas,

1 low-pressure
gas,

Mech, Elec

8 x6 x 12 in

Access - 3
Ops - fluid R/&R

*  Access:

1 No obstructions

2

Remove access Panel

3 Remove other Items
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Table 4.1-4 Vehicle Module Descriptions (Concluded)

Type & Type & Geometry, Access,¥
Number Of Number of Packaging, Operations,
Modules Interfaces etc.

Main tank 2 low 6 x 6 x 8 in
pressure pressure gas,
isolation Access - 2

assembly (4)

Elec, Mech

Ops - fluid R/&R

Vent and
£i1l QD
assembly (2)

1 low-pressure
liquid,

1 high~pressure
pneumatic

gas,

Elec, Mech

3 x1 ft Dia
Access - 1

Ops - fluid R/&R

Tank isolation
and PU flow

control (&)

2 liquid

(low pressure),
1 high-pressure
pneumatic gas,

6 x 8 1n Dia
Access - 1

Ops — fluid R&R

Elec, Mech
Engine 2 low- 6 x 8 in Dia
Isolation pressure
valve (&) liquid, Access - 2 (3)
1 high-
pressure Ops - fluid R/&R
pneumatic gas,
Elec, Mech
Autogenous 2 very high- 4 x4 x 12 in
pressurization pressure gas,
isolation Access - 3

valves (2)

Mech & Elec

Ops - fluid R/&R

Fuel cells (2)

2 high-
pressure gas,

1 low-pressure
liquid (water),

1 ft x 2 ft x 2 ft
Access - 1

Ops - extensive

fluid R/&R
Elec, Mech
Avionics Elec, Mech 1 x1 ft x6 1in
Access - 1
(4)

Ops - fluid R/&R

* Access:

1 No obstructions
2 Remove access Panel
3 Remove other Items
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according to their anticipated physical location. The operation
type was determined by considering both the access and interface
complexity of the module. Any fluid R/R implies inerting of the
plumbing on both sides of the module, the removal and replacement
of the module, and finally checkout of the system to verify
successful operation. An "extensive fluid R/R" is used for modules
affecting more than one fluid circuit such as the APU or main
engines.

Determination of the module component groupings basically played
the benefits of few fluid connections against the opposing
logistics concern to capture the most components with the lowest
launch mass, i.e., replace the entire fluid system as opposed to
replacing each component. Further considerations were physical
proximity, functional similarity, failure frequency, physical size,
and such operational factors as requiring venting of the entire
fluid system (the OTV is stored with a residual blanket pressure in
the tanks and fluid lines to aid in leak checking and to minimize
propellant losses). Examples of the above are tank isolation
valves, which are are modules because of their physical location
and their replacement as individual units requires the evacuation
of only one tank (Fig 4.1-2), the vent and fill Q/D modules, which
have only two fluid interfaces, contain four components and are
located together on the aerobrake (Fig 4.1-3), and the APU, which
does not include the control latch valves because this would
require the evacuation of parts of both the GHy/GO5 and main
propulsion systems. In addition the latch valve pairs are grouped
as modules. The low-pressure latch valve pairs are shown mainly
because of their number and the inability to group them into a
larger set (Fig 4.1-3), Their number allows one spare to back up
several potential failures. On the other hand, the high-pressure
latch valve pairs are identical for the GHy and GO sides and
therefore lend themselves to grouping into a larger module, which
minimizes the number of fluid conmections required. This is
important because of the this system's high pressure.
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4.1.4

It must be emphasized that the fluid system modules shown are
preliminary at this point and should be further refined as a more
detailed cost analysis is undertaken to understand more fully the
logistic influences. This will aid in determining a cost effective
means of providing the necessary spares. A more extensive
operational analysis will also refine the necessary human factor
considerations, space station facility and service requirements,
and estimate the time required to complete the module servicing
operations. The component failure frequency rates can be further
considered as more accurate component life data are developed,
presumably when the actual components are in their development
phase.

The results of the FMEA and component grouping include:
1) Recommendations for component and subsystem redundancy;

2) Recommendations for fault detection instrumentation and methods
of fault isolation;

3)' Recommendations for reasonable groupings of components into
remove—-and-replace modules;

4) Design considerations for both mission success and vehicle
serviceability;

5) General maintenance philosophy.

Space-Based OTV Servicing Considerations

Space-based servicing of an OTV has been outlined in sufficient
detail to arrive at 0TV and support system servicing requirements.
The space station facilities needed and their functional
requirements have been identified. The impact of logistics and
space-serviceable design on the OTV design has been detailed.

Using the space station (SS) as a launch and refueling platform
will allow the decoupling of the space transportation system (STS)
earth to low earth orbit- (LEO) and the 0TV LEO to geosynchronous
equatorial orbit (GEO) legs of payload delivery to GEO. The
shuttle will no longer be forced to launch in a window dictated by
the payload delivery, but rather on a periodic basis that would
allow optimization of ground resources for routine flow. The
burden of meeting the launch window then falls upon the SS/OTV
system. This implies the need for a highly dependable OTV and OTV
support system 1f the launch windows are to be reliably met.

The OTV support system will in part consist of SS facilities
capable of performing routine maintenance and certain contingency
repair procedures. It will also need an efficient logistics
function to provide needed spares and consumables in a cost
effective, timely manner. Implied by this is a highly developed
health monitoring system for the OTV and its subsystems. This
system must be capable of diagnosing items in need of attention
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early enough so the necessary preventive action can be scheduled
and lengthy downtimes avoided. All this is made very challenging
by the fact that the SS will be able to provide only very limited
manned support because of the restricted number of men available,
the difficulty of working in the space environment, and the demands
of other SS activities.

Because none of the hardware actually exists, it was necessary to
make a few assumptions and establish sensible ground rules to allow
the study to proceed. These are shown in Table 4.1-5 and are
briefly discussed. Because the objective of this study was to
identify engine impacts with regard to servicing, detailed design
of the SS support facilities, etc was not attempted. For instance,
all refueling operations are assumed to be performed on the SS
instead of at a remote propellant farm. Operationally, the only
impact is on the timeline. The operations to be performed remain
similar. The major assumptions show up in Table 4.1-5 while many
of the smaller assumptions will be noted in the text as
appropriate. The study ground rules were use of the space station
as the OTV base, STS shuttle as the launch vehicle, manrating of
the OTV, LO2/LHy propellants, and the use of an aerobrake with

a low lift-to-drag ratio. From a servicing standpoint, LOp/LHp
propellants, manrating, and the aerobrake present the greatest
drivers. While the aerobrake itself may not need much servicing, a
fixed aerobrake restricts OTV maneuvering about the SS, drives
hangar design, and complicates engine servicing. Manrating implies
a high degree of reliability/redundancy which in turn affects the
integrity of servicing operations. The LOy/LHj; propellants

have a major impact on the propellant storage and transfer systems
and to a lesser extent on the engine servicing requirements.
Principally the latter was concerned only with engine changeout
implications and the required health monitoring system and its
requirements.

As previously mentioned, all space-based OTV servicing was assumed
to be at the SS and a means to maneuver the OTV about the SS was to
be provided. Specifically, the hangar and refueling depot were
assumed attached and controlled from a permanent OTV control
station at the SS. The OTV control station will control all
0TV-related operations--data handling, refueling, line-of-sight
(LOS) proximity operations, maintenance scheduling and procedures
[except extravehicular activity (EVA)], and SS inventory control.
The OTIV was assumed to be under ground control for the LEO-GEO-LEO
.phase of the delivery missions. Both the baseline Rev 6 mission
model and the SS mission model (Ref 5, Vol 3) indicate an OTV
launch frequency of one every two weeks to one month. Therefore, a
two-week turnaround was used as the ground rule.

Given the above assumptions and ground rules, the general OTV
servicing flow was estimated as shown in Table 4.1-6. From this
list of operations, those pertinent to engine and OTV servicing
were further broken out to allow an operational and functional
analysis that revealed the SS facilities needs and the engine
servicing impacts. These were used as a baseline against which
alternative servicing concepts were explored/evaluated. Also,
contingency operations such as unscheduled maintenance are
discussed relative to the impact on the baseline functional flow.
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Table 4.1-5 Space-Basing Study Assumptions

Space Station to provide up to 4 men/day , 8 hrs/day
Hangar, refueling area, and storage facilities attached to Space Station
OTV ground controled except when within Space Station line-of-sight
2 EVA/1 IVA men per EVA operation

Routine tasks automated as much as possible

Space Station to provide storage for necessary spares

OTV missions to average two week intervals
The OTV to be moved about SS by SS RMS(s)
Times for “routine™ operation, not development period
OTV RCS to provide OTV control for "prox ops®
Payload mated to OTV prior to OTV refueling

Table 4.1-6 OTV Mission Flow

Operations Timeline

Premission Operations - 7 Days

— Payload and Payload ASE Delivery to Space Station by STS - 7 Days

- Uplink Mission-Specific Software to Space Station Computer - 7 Days

Mission Preparation Operations - 2 Days

— Move Payload to Hangar—Perform Payload Checkout -24 h

— Move OTV to Hangar <20 h

— Verify OTV Readiness—Update OTV Mission Computer “19h

— Mate OTV and Payload—Verify OTV/Payload Interfaces -18 h

— Move OTV/Payload to Refueling Area “17h

— Secure OTV/Payload and Connect Umbilicals -16.5h

~ Perform Propulsion System Check -8h

— Chill Down and Fill Main Tanks with Required Propellants - 7h

— Resupply RCS and Pressurant (If Necessary) -6h

~ Disconnect Umbilicals—Release OTV/Payload/Deploy from Space Station -1h

— "Small’”” RCS Burn to Separate OTV and Space Station 05h

— Pass Mission Control from Space Station to Ground 00h

Perform Mission,Return to Space Station Line-of-Sight 0 to 3 Days

Postmission Processing 3 to 8 Days

— Pass Mission Control from Ground to Space Station 80.0h

— Safe Main Propulsion at TBD Miles from Space Station 80.5h

— RCS Burn to Space Station Rendezvous 815h

— Space Station Capture of OTV,Payload, Berth at Refueling Area 815 h

— Connect Umbilicals and Offload Propellant Residuals 820h

— Downlink OTV Mission Data to Space Station and Ground Computers 83.0 h

— OTV Exterior Visual Inspection 83.0h

— Perform Postmission Propulsion System Checks 86.0 h

— Disconnect Umbilicals and Move OTV to Hangar 87.0h

— Demate Payload (If Attached) 96.0 h

— Prepare Payload for Ground Return (If Necessary) 100.0 h

— Space Station and Ground Computers Return OTV Status and Service 1200 h
Requirements

— Perform OTV Service As Required 122.0 h

— Prepare OTV for Storage and Move to Storage 168.0 h
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A "top-down" approach was first used to divide up the nominal
two-week turnaround so the maximum available time to do tasks could
be delineated. Next, specific individual tasks were considered
"bottom-up" in that actual times and equipment needed to perform
comparable tasks on the ground were determined. In this fashion,
areas of further research were identified. For the purposes of
this study, the shorter of the two times was used to assemble the
timelines shown. Included with the operational analysis are

columns indicating facility needs, intravehicular activity (IVA),
EVA and delta time.

Tables 4.1-7 and 4.1-8 indicate tasks, facilities, and time data
for the baseline OTV turnaround for vehicle servicing and engine
servicing respectively. Complete mission turnaround is shown to

take approximately 10 days.

LEO-GEO-LEO time and the OTV postmission processing.
Table 4.1-7 OTV Servicing Overview

This is driven primarily by the

Delta Space Station
_ Time {SS) Manhours

Operation Facilities Tools IVA | EVA| Total

Resupply Area, RMS Resupply Software, 7.0 7.0 |- 7.0
Main Propellant—Resupply Cryo Tanks, Umbilicals Control System
Avionics—Scheduled Maintenance | SS Hangar - 6.0 6.0 12.0"
— Module Test SS Computer Test—Access 3.0 30 |- 3.0
— Module Replacement EMU, HPA, Lighting LRU ASE, Removal 3.0* 3.0 6.0 }9.0
~ ACS Update SS Computer SS & ACS Software 0.5 05 |- 0.5
Avionics—Health Monitoring SS Hangar - - - - -
Maintenance
— Modute Replacement EMU, HPA, Lighting LRU ASE, Removal 1.0* 1.0 |20 | 3.0
— Module Repair SS Workshop Electronics 1.0* 1.0 |20 | 3.0
Avionics—Mission-Peculiar SS Hangar - - - - -
— Module Replacement EMU, HPA, Lighting LRU ASE, Removal 1.0+ 1.0+ ] 2.0+ } 3.0+
— Reconfiguration EMU, HPA, Lighting LRU ASE, Removal 2.0+ 2.0+ | 4.0+ | 6.0+
Tanks—Scheduled Maintenance Resupply Area - 2.0 20 |- 2.0
— External Inspection CCTV Monitor RMS + CCTV 1.7 1.7 |- 1.7
—:PU and TVS System SS Computer Test + Access 0.3 03 |- 0.3
Tanks—Unscheduled Maintenance | SS Hangar - - - - -
— Tank Removal Resupply Area, RMS Console RMS, CCTV, Tank ASE | 2.0 2.0 |4.0t] 6.0
— Insulation Repair EMU, HPA, Lighting Insulation Repair Kit 3.0 3.0 160 | 9.0
— Transducer Replacement EMU, HPA, Lighting LRU ASE, Removal 1.0 1.0 120 | 3.0
— PU and TVS System SS Hangar, EMU, HPA LRU ASE, Removal 2.0 20 {40 |6.0
Tanks—Mission-Peculiar Resupply Area - - - - -
— Tank Reconfiguration Resupply Area, RMS Console RMS, CCTV, Tank ASE | 2.0 2.0 ]| 4.0t] 6.0
RCS—Scheduled Maintenance Resupply Area, Umbilicals - 1.0 1.0 | - 1.0
— Leak Check SS Computer, Pressure RCS Software 0.5 05 |- 0.5
— Transducer Check SS Computer RCS Software 0.5 05 |- 0.5
RCS~—Resupply Resupply Area, Umbilicals RCS Software 2.0 20 |- 2.0
RCS—Health Maintenance SS Hangar - - - - -
-~ Transducer Replacement EMU, HPA, Lighting LRU ASE, Removal 2.0 20 |40 | 6.0
— Thruster Replacement Hangar, EMU, HPA, Lighting LRU ASE, Removal 2.0 20 40 | 6.0
Structure and Aerobrake—Health - - - - - -
Monitoring Maintenance L.
— Aerobrake Refurbishment Resupply Area, EMU, MMU Aerobrake Repair Kit 3.0 3.0 [6.0 | 9.0
— Structure Repair SS Hangar, EMU, HPA LRU ASE Removal 2.0 20 ]40 16.0
Note:
* Mission average expected for all avionic modules, 1 hour for contingency.
t Tank replacement only for modular OTV; some EVA assistance anticipated.
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Table 4.1-8 Engine Servicing Overview

Space Station
Delta ($S) Manhours
Operation Facilities Tools Time IVA | EVA [Total
Engine—Turnaround Maintenance SS Hangar -- 3.4h 5.4--| - 5.4
— Analysis of Flight Data SS and Ground Computer Engine Software 2Days | 20 |- 2.0
— Lockup Pressure Decay SS Computer, Refuel Engine Software 0.5 05 |- 0.5
— Engine Valve Operation Check {SS Computer, Refuel Engine Software 0.5 05 |- 0.5
— Nozzle Visual Inspection SS Computer, Refuel RMS + CCTV 0.6 06 |- 0.6
— Nozzle Extension Check SS Computer, Refuel RMS + CCTV 0.2 0.2 |- 0.2
— Gimbal Actuator Check SS Computer, Refuel RMS + CCTV 0.2 0.2 |- 0.2
— Connect Umbilicals SS Hangar RMS 0.3 03 |- 0.3
— Turbopump Torque Check SS Computer Engine Software 0.3 03 |- 0.3
— Ignition System Check SS Computer Engine Software 0.3 03 |- 0.3
— Instrumentation Checkout SS Computer Enginr Software 0.5 05 |- 0.5
— Solenoid Checkout SS Computer Engine Software 0.3 03 | - 0.3
— Disconnect Umbilicals SS Hangar RMS 0.2 0.2 |- 0.2
Engine—Periodic Maintenance SS Hangar - 4.0 40 6.0 |10.0
— Setup Operations SS Hangar Engine, LRU ASE 0.5 0.5 1.0 1.5
— Turbopump Boroscope Power, Lights Boroscope 1.0 05 |10 1.5
— Thrust Chamber Inspection CCTV Monitor RMS, CCTV 1.0 10 | - 1.0
— Engine LRU Replacement Power, Lights, EMU, HPA Engine, LRU ASE 2.0 1% | 3.0 45
— Tool Stowage SS Hangar Engine, LRU ASE 0.5 05 | 1.0 1.5
Engine—OTV Engine Remove and | SS Hangar, RMS, EMU, Foot Engine Fixture, 5.0 3.8 |60 9.8
Replace Restraint, Lighting Engine Disconnect,
Protective Covers
— Setup Tools - - 0.5 05 | 1.0 1.5
— Attach Engine Fixture - - 0.5 05 | 1.0 1.5
— Disconnect Engine - - 0.5 05 | 1.0 1.5
— Move Engine to Storage - - 0.2 0.2 {04 0.6
— Pick Up Replacement - - 0.1 0.1 ] 0.2 0.3
— Align and Attach - - 0.7 0.7 | 1.4 2.1
— Check/Verify QDs - - 2.0 0.8 | 0.5 1.3
— Store Tools - - 0.5 05 | 0.5 1.0
Engine—Unscheduled Maintenance
— Repair in Hangar SS Hangar, RMS, EMU, HPA Above 2.0+ 2.0+| 4.0+ | 6.0+
— Repair LRU in SS SS Hangar, RMS, EMU, HPA Above plus LRU ASE | 3.0+ 4.0+} 4.0+ | 8.0+
— Repair on Ground SS Hangar, RMS, EMU, HPA AlsatE)ve plus Engine 2.0 1.7 ] 3.4 5.1
A

Ehe fo}lgwing discussion will cover the OTV mission flow. The
generic’ OIV mission was anticipated to begin early with the
mission planning activities and other operations by the payload
program. The SS begins its preparations two to three days before
the payload is delivered by the STS. The payload is delivered a
nominal one week early, principally at the convenience of the
shuttle, and is stored onboard the SS awaiting premission
processing. Facilities for handling the payload are presumed
gvailable. Their exact manifestation is immaterial, but should
include a means to mechanically restrain the payload and provide
dormant power, data handling, and thermal protection.

A day before the mission the payload is moved into the servicing
hangar for final checkout operations. No EVA is anticipated, but
could be used if the payload had nonstandard interfaces or required
some minor contingency repair. For normal operations all
Premission payload checkout operations will be handled remotely.
The four hours of checkout time are primarily to allow for payload
operations that may be more economically performed on the SS than
on the ground. For example, payloads could be launched without
fluids to relieve designing for launch loads.
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Following successful payload checkout, the OTV will be moved to the
servicing hangar for mating with the payload. A final health check
will be made of the OTV and the mission parameters will be loaded
into the OTV main computer. The OTV-to-payload interface (I/F) is
assumed to be primarily mechanical with a minimal electrical I/F
provided. The electrical I/F would be standardized as well as the
mechanical I/F. If nonstandard I/Fs were used, the timeline would
need to be modified to allow for OTV I/F modification. No fluid
1/Fs are anticipated. Two payload I/Fs are implied--one for the
OTV and one for the STS. Once mated and the I/Fs verified, the OTV
and payload will be moved to the OTV refueling area.

Refueling is performed as the last major operation in the prelaunch
flow to avoid bringing a fully loaded OTV into the hangar and to
minimize boiloff. This implies a refueling area capable of
accommodating the OTV, aerobrake, and payload. The OTV is docked
and refueled on the aft end. A fixed aerobrake will complicate the
refueling area design. Presumably a door will be provided in the
aerobrake to allow the fluid umbilicals access to the OTV fluid
interfaces. The refueling operation itself is the subject of much
debate and is simplified here into a tank chilldown operation
followed by the bulk fluid transfer. Simultaneous fluid transfer
is assumed. Nonhypergolic fluids and '"no-leak" quick-disconnects
(QDs) should allow this. Also, the attitude control system (ACS)
propellants and pressurants are resupplied in parallel with the
main propellants. Pressurant needs should be minimized as much as
possible because of the inordinate costs of resupplying pressurants.

Following resupply, a final OTV checkout can be performed (gimbal
actuators, pressure checks, etc). The OTV and payload are then
disconnected from the refueling area and deployed from the SS. The
timeline shown assumes that the SS remote manipulator system (RMS)
releases the OTV and payload combination with a small delta-V
relative to the S8S. The OTV uses ACS burn to give additional
delta-V of about 3 fps, allowing swifter OTV and SS separation. At
a safe distance from the SS the OTV control is passed to the ground
and the delivery mission begins. An orbital maneuvering vehicle
(OMV) could be used to accomplish the same operation.

Space station control resumes following the return of the OTV to a
safe area within LOS of the SS where OTV safing is performed. This
may comprise venting the OTV propellant residuals. However, this
timeline assumes that the cost of propellants is sufficiently
important to warrant recovery. Safing would then primarily entail
deactivation of the main engines and the ACS if an OMV is used to
recover the OTV. The OTV is returned to the SS following safing
either by the OTV ACS or an OMV. The OTV is berthed at the
refueling area.




If safing were to entail venting of propellants, it may have a
major impact on the OTV. Nonpropulsive vents must be provided with
the appropriate valving and controls. Venting through the engines
would be possible but could impose undesirable characteristics on
the engine. Additionally, the resulting thrust would need to be
accounted for. An OMV would not be able to do this because the OMV
would likely be mated to the aft end of the OIV so its thrust can
act through the OTV/payload center of mass.

Postmission processing is essentially the reverse of the premission
flow. The residual propellants are removed after docking at the
refueling area. Liquid propellants are returned to the SS cryogen
tanks and gaseous propellants are recovered for use by the SS5. ACS
propellants would also be returned to storage to aid in the
accuracy of premission loading (mass measurement errors would
otherwise accumulate). It may be desirable to leave a blanket
pressure of propellant gases in the tanks for structural reasons.

During propellant offloading, the SS data handling system will
downlink mission data from the OTV and return the bulk of these
data to the ground where they will be processed. Additional data
will have already been sent to the ground during the mission. Some
data will also be retained by the SS computer to allow SS personnel
to begin postprocessing scheduling. Quick data analysis and
turnaround will be essential to efficient OTV servicing. The bulk
of the analysis software is assumed to reside on the ground because
it isn't cost effective to burden the SS computer or personnel with
this task. Two days are allowed for the ground to return a
preliminary postmission maintenance schedule to the SS. During
these two days, the OTV would be returned to the hangar if it still
has a payload attached. Otherwise, the OTV would be moved to its
storage area.

Because postmission OTV servicing highly depends on what
maintenance needs to be performed, the routine servicing flow will
be discussed along with a separate discussion of such major
contingency operations as engine removal or aerobrake repair.
Because crew time is expected to be a valuable commodity, routine
operations will be highly automated. The ground processing of
mission data will also perform an optimization of servicing tasks
and return a timetable detailing the exact operations to be
performed. An approximation is only possible now because both
routine (every mission) and contingency operations will be
interwoven to effect the optimization. This approximation appears

in Table 4.1-6 made up of the scheduled maintenance tasks from
Tables 4- 1-7 and 40 1-80

While the OTV is still berthed at the refueling area, a propulsion
system check will be performed. This check will be in support of
ground analysis of flight data to determine items in need of

maintenance and to execute tests designed to isolate any anomalies
detected in the flight data. The objective of this checkout is to

provide early detection of failures that can be remedied in the OTV
maintenance to follow. Also, tests that require pressurants will
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need to be performed here. If the OTV were equipped with removable
tanks, the tank operations would be performed in this area.

All maintenance operations will be performed in the servicing
hangar after the schedule has been returned. The first operation
will be an overall OTV visual inspection. This could be done via
EVA, but will likely be done with a closed-circuit TV (CCTV) and
monitor. In this case, sufficient mobility must be given to the
CCIV to allow it to reach all areas of the OTV. Most likely, only
specific areas will routinely be inspected such as the engine
nozzles, aerobrake, and OTV exterior. CCTIV movement could then

proceed in a preprogrammed manner and the crew would only override
to inspect questionable areas.

The servicing hangar is expected to provide for more extensive
checkout umbilicals than those provided at the refueling area so
specific tests of the avionics can be run. All umbilical actuation
will be automated to avoid EVA costs. EVA is anticipated only for
nonroutine module changeout operations, nonroutine inspection, and
other infrequently performed operations it wouldn't be cost
effective to automate. After checkout umbilicals are attached, the
avionics will be checked via checkout software and equipment
carried for this purpose. Any anomalies will be noted and factored
into the maintenance schedule relayed from the ground. Any EVA
operations would be performed following schedule finalization. EVA
module changeout would be performed on all items so identified in
the preceding checks. This assumes that the proper modules are
already on board the SS and that the modules were designed for EVA
replacement. Both of these assumptions will be discussed more
completely later. No modules that will require changeout after
every mission have yet been identified. If this were the case,
this would likely be accomplished robotically using only one IVA
crewman, once again to avoid EVA costs. Table 4.1-9 lists the
example EVA-replaceable modules. This table includes estimated
times and anticipated interfaces. Because ACS modules may involve
fluid disconnects, two operations are shown to illustrate the
differences. The fluid QDs lengthen the time because of the
additional effort required to assure the crew's safety

(installation of spill containment shrouds and checkout following
installation).

Table 4.1-9 EVA-Replaceable Modules

R/R Time,
Subsystem Module Contents Interfaces hours
Avionics Main Computer CPU, 1/O Unit, Memory Mechanical, Electrical 0.5
TT&C Antennal(s) Mechanical, Electrical 0.2
C&DH RF Electronics Mechanical, Efectrical 0.5
Guidance Gyros Mechanical, Electrical 0.4
Reaction Control System RCS Module Tanks, Valves, Thrusters Mechanical, Electrical 0.6
Thruster REA Valves, Thrust Chamber | Mechanical, Electrical & Fluid 1.5
Etc
Electric Power System Power Supply Fuel Cells, Valves, Tanks, Mechanicali, Electrical 0.5
Heat Exchanger & Pumps
Structure & Aerobrake Aerobrake Aerobrake Module Mechanical 1.0
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Two major contingency operations identified are engine removal
(which could also be routine) and aerobrake repair. Aerobrake
repair is included at this point as a possibility. It is too early
to say exactly what aerobrake repair implies or what type of
failure it may suffer. Holes could be repaired either by patching
or panel replacement. Aerobrake removal to ease servicing would be
desirable but isn't a contingency operation. This would be
included in overall processing flow near the end of premission
processing and the beginning of postmission processing.

Several levels of engine maintenance are identified as detailed in
Table 4.1-8. Two types of scheduled maintenance are
shown~-operations performed after every flight and those performed
every 10 missions. These latter operations are more extensive and
performed in addition to the regularly scheduled maintenance. They
also include EVA operations (turbopump inspection and orbital
replaceable unit (ORU) replacement). The engine removal and
replacement operation is detailed as well as three possible
unscheduled engine repair operations. Unscheduled maintenance
could occur on the engine while it is attached to the OTV. This
would involve essentially replacement of an ORU that failed
prematurely. A removed engine could have a failed ORU repaired in
a SS workshop if future analysis showed this to be feasible and
cost-effective. Any major repair of the engine will entail removal
and return to earth for repair.

The tasks listed are indicative of the types of operations viewed
as feasible. When the engine is further defined, the tasks will
need to be reevaluated. The turnaround maintenance tasks are to be
fully automated so they may be performed with IVA. Because the
inspection tasks will need manned involvement, more manhours are
assigned to the tasks. These tasks are listed separately from the
OTV tasks previously discussed for ease of discussion. They would
be fully integrated with the OTV tasks as part of the ground
timeline optimization performed to arrive at the appropriate
maintenance schedule. If an engine removal were scheduled, the
inspection would be eliminated.

An experienced ground crew under ideal conditions (air-conditioned
test cell fully equipped with the necessary tools) can remove an
RL-10 in about five hours. The EVA crewmen are expected to replace
an engine in four hours in the SS hangar. This short time is a
goal to make sufficiently efficient OTV turnaround a possibility.
It will be necessary to simplify the OTV/engine interface to enable
both the engine removal itself and provide the necessary functional
integrity to the interface once the engine has been replaced. For
this reason, it is desirable to eliminate pressurant-activated
components because this eliminates a gaseous QD from the OTV/engine
interface. If the propellant tanks are left with a blanket
pressure, a set of valves will be needed on the vehicle side. The
main engine valves should remain with the engine so they can be
serviced after the engine has been removed (possibly on the SS,
likely on the ground). The simplest interface design has all QDs
aligned along a plane that separates the engine and the vehicle.
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This design type would lend itself to remote engine removal, which
is a desirable feature. This approach would likely incur a weight
penalty relative to an approach that minimizes weight at the
expense of requiring EVA assistance. Cost modeling of OTV
servicing scenarios is expected to aid in recommending which
approach to use.

The functional and operational analysis just presented identified
five basic space station facilities that will be needed to support
a space-based OTV. The facilities are shown in Table 4.1-10.
While the facilities are treated as separate items dedicated
entirely to the OTV, in the actual space station they will be
general-purpose facilities designed to support the OTIV, OMV and
other spacecraft designed for SS servicing. At this point, the
facilities are separated more for functional reasomns than for
hardware reasons. The actual S5 facilities will probably recombine
the functions into units logically arranged as part of the 88
design effort. Therefore, the following facility discussions
emphasize the needed functions divided functionally. Possible
overlaps are included in the individual discussions.

The servicing hangar will house all the necessary items used for
servicing the OTV and other spacecraft. It should be a
general-purpose facility with some dedicated items specifically for
servicing the OTV and the SS OMV because these two spacecraft will
comprise the majority of the servicing requirements. A means of
mechanically holding the various spacecraft will be needed. A
variety of umbilicals will also be needed, mostly electrical. It
may also be desirable to provide a pressurant umbilical.
Propellants and other hazardous fluids may be handled at another
facility. Power for lighting and power tools should be supplied as
well as a means of securing the astronaut, his tools, and any other
loose items necessary. One current hangar concept (Fig. 4.1-4)
involves a translation mechanism for the crewmen and a rotary
carriage for the spacecraft. This would allow the possibility of a
quasi-EMU (extravehiclular maneuvering unit) in which the EMU (or
spacesuit) shares the SS atmosphere through an umbilical carried
with the translation mechanism. In this hangar, total portability
would not be necessary because a combination of translation and
spacecraft rotation will allow access to all portions of the
spacecraft.

Because, as with the servicing hangar, many functions of the SS
computer system have already been mentioned, they will only be
summarized here. Only a small portion of the SS computers'
responsibilities will be represented by the OTV activities. The S8
computer will function primarily as a link between the OTV
computer, ground facilities, and the SS crewmen. OTV data stored
during the mission will be downlinked to the ground through the SS
computer with a portion being retained for the SS crewmen to act
upon (SS safety-related items, for instance). After ground
processing, an estimate of the OTV maintenance schedule will be
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returned to the SS. The SS computer will then factor in
maintenance tasks discovered during postmission processing of the
OTV and prepare a final maintenance schedule. The SS computer will
also handle loading of the OTV computer with mission-specific data
before the OTV mission. Part of the SS computer will also handle
control of the many automated servicing mechanisms. These will
include the SS RMS(s), refueling, and CCIV movement.

The above-mentioned functions may more logically be part of the OTV
control station. Certainly items that are entirely OTV-specific
will be functions of the OTV control station. The major item here
is OTV refueling and OTV LOS control. The SS computer will
probably just monitor safety-related items so it can respond
properly if an emergency should occur. The bulk of the OTV-related
software and systems will reside in the OTV control station
(functionally at best). The OIV control station will be the
primary man/machine link between the OTV and the SS crew. Several
OTV display and equipment controllers will be logically arranged to
enable efficient IVA control of the various phases of the OTV
mission. The OTV control station, as with the servicing hangar,

will probably share hardware with other spacecraft. That, however,
is a space station issue.

The OIV refueling area will work closely with the control station.
The primary function here is, obviously, refueling of the OTV.
However, several other propellant- and fluid-related functions will
also be accomplished here. Because the refueling area will
represent a significant portion of the SS mass, its location will
be critical to SS control. The disturbances caused by the
propellant transfer will also need to be accommodated.

The refueling area will house the cryogen tanks, an OTV mechanical
interface, and the necessary umbilicals to allow refueling of all
propellants and pressurants. An electrical umbilical is also
necessary to allow control of the OTV and the downlinking of OTV
data stored during the OTIV mission. It is not envisioned that
other spacecraft will be able to employ this hardware for their
refueling, mainly because of the physical size of the OTV compared
to other spacecraft. Another refueling station will likely be
provided by the SS for these smaller spacecraft. (They are also
likely to require earth-storable propellants, not cryogens.)
Spacecraft wishing to use this facility will accommodate the OTV
and not vice versa. All the necessary control hardware will reside
here (valves, pumps, plumbing, etc) while the control software will
be housed at the OTV control station. One or more CCTVs will be
necessary if the refueling area is not visible from the control
station.

The space station will need to provide some sort of storage
facilities for both the OTV spares and the various payloads. These
facilities will at least provide mechanical holddown and minimal
power and data interfaces to sustain the vehicles in a dormant
mode. Desirable features would be thermal and meteoroid
protection. The servicing hangar could provide all of these at a
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loss in utility. These are, of course, space station issues.
However, they are worth some discussion because there are several
possible modifications of the baseline timeline. For instance,
payload and OTV mating could be performed at the storage area if
the proper alignment capability existed. The payload checkout
could also be performed there, saving time and minimizing the
movement of masses about the SS thereby saving SS propellant.

As an aside, this brings up the subject of the multiple payload
interfaces necessary on the payload that it otherwise wouldn't
need. The STS interface now involves trunnion fittings and an
electrical umbilical. The OTV, on the other hand, would require
some sort of axially acting mechanical interface and an electrical
umbilical separate from that used for the shuttle. Presumably one
of these two interfaces could be used by the space station storage
facility. A tradeoff exists between requiring the payload to
supply these interfaces and scarring either the shuttle or OTV to
eliminate one of the interfaces. Because the payload is launched
only once while the STS and OTV make multiple trips, the mass

penalty may be best assigned to the payload. This is a subject for
further study.

The timelines discussed so far are for a routine mission where no
major failure has occurred that requires a delay to allow the STS
to bring up the needed spares or, worse yet, return of the OTV to
the ground for extemsive servicing. Very few missions are likely
to be "routine" and may well require delays that affect the
baseline timeline. The learning curve is likely to extend through
much of the "routine" mission time frame of the early to late
1990s. A fully debugged OTV/SS system by 1994 is unrealistic and
an operational OTV by then is an ambitious goal. However, all the
mission analyses to date suggest large payoffs for the ability to

fly LEO-GEO missions on a two-week schedule. A case for an OTV
fleet 1is emerging.

The other response to downtime impacts is a sufficient spares
inventory at the SS to avoid the majority of the delays. Because
failures are by nature unpredictable, this implies storing many
spares that may never be needed. Unnecessary spares cost both in
launch mass for the spares and in the mass of the facilities needed
to house them. As a part of the evolving SS and OIV, a
comprehensive inventory management effort is recommended that will
simultaneously minimize the required mass at the space station and
the downtime incurred by the OTV. This would entail a
high-reliability OTV coupled with a component-by-component failure
analysis to pinpoint likely failures. 1In addition, grouping the
high failure items so they may be replaced as a unit(s) is
required. The OTV design must adhere to this modular philosophy to
some degree. One spare unit capable of remedying several failures
will be very valuable. A reusable space-based OTV cannot be

optimized alone; rather the OTV and its support system should be
optimized.
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Serviceability and Basing of the Baseline Vehicle

The conceptual design philosophy incorporated in the baseline
vehicle (Fig. 4.2-1) reflects the considerations for serviceability
based on the nature of the vehicle and its usage. This is
evidenced by the central core structure, removable tanks, removable

aerobrake, easily accessible avionics and propulsion subsystem
modules.

Optimum vehicle serviceability also implies consideration of the
space station servicing facilities and the operations required in
the servicing scenario. Figure 4.2-2 depicts a space station
servicing bay dedicated to accommodating the OTV. The orbiter-like
doors open for initial berthing of the OTV following a mission.
Both routine and contingency turnaround operations, including
aerobrake removal for ease of vehicle inspection and servicing,
will be conducted here. The doors may also be opened for radial
main propellant tank removal/replacement. However, they can remain

closed for most remaining turnaround operations to provide the
needed meteoroid protection.

Figure 4.2-1 Baseline (Two-Engine) OTV Layout
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Figure 4.2-2 Conceptual Space Station OTV Servicing Facility

The space crane will be used for:
1) Docking the OTV with the rotisserie carousel;

2) Removal and replacement of tankage and aerobrake (tankage
replacement on a contingency basis);

3) Maneuvering an inspection and servicing platform for astronaut
use.

Additional intelligent pairs of manipulators for coordinated
anthropomorphic operation may be attached to the mobile work
platform(s) and translated to areas/subsystems of the vehicle that
lend themselves to such automated servicing.

General Servicing Considerations

Servicing will be key to successful space basing of an OTV. Though
traditionally defined as "fuel it and fix it," servicing involves
much more than this definition suggests, which the succeeding
discussion clearly demonstrates.
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Technology development and utilization will, in turm, be the keys
to successful onorbit servicing. The existing technology is not
sufficient in some areas to allow the conduct of servicing
operations. New technologies will, however, emerge and, if
carefully applied, will support the evolution of satellite
servicing capabilities.

Goals and Guidelines for Future Servicing - The goals for OTV
servicing in the space station IOC time frame include:

1) Minimization of total system life-cycle cost;

2) Utilization of emerging technology (the state of art is a
function of time frame);

3) Development and utilization of systematic technology
projections that affect hardware evolution so evolutionary path
avoids deadends;

4) Evolution of the servicing mode toward increasingly automated
operations.

Other goals will be treated within the context of the detailed
discussions that follow. Our reference servicing scenario reflects
consideration of all of the above-mentioned goals.

Reference Servicing Scenario Development - Space-based OTV
servicing is expected to encompass a wide variety of preflight, .
postflight, and eventually, inflight servicing operations. These
operations have been widely discussed in relevant literature from a
variety of viewpoints. Most of the operational descriptions have
been rather superficial. Some of the available analyses, however,
have attempted to go to a greater level of depth and identify
specific service needs and functions for both propulsion vehicles
and payloads.

The Teleoperator Human Factors Study (THFS) recently completed for
NASA-MSFC, took a different approach and made the assumptions
necessary to go to great detail. THFS identified several levels of
operational and servicing functions and, through iterative
analyses, compiled preliminary lists of low-level (task and
subtask) functions we seek to describe as generic, "primitive"
tasks. These primitive tasks are the basis for all higher level
tasks. The levels of operational and servicing functions
identified in THFS are sequence, activity, task, and subtask.

These terms are defined in Table 4.2-1.
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Table 4.2-1 Levels of Decomposition

Term Definition Example

Sequence A group of goal-directed related activities comprising a major Deploy Spacecraft
portion of a mission.

Activity A group of goal-directed related tasks that fulfill a limited purpose | Proximity Operations
within a sequence.

Task Basic unit of behavior; smallest logically definable set of Adjust Orientation
perceptions, decisions and responses to complete a task. {Perception of Data, Decision,

Control Activation, Feedback
of Response Adequacy)

Subtask Each perception, decision, or response that is a task component. Initiate Adjustment

The functions at each level were identified by progressive
decomposition of scenarios for representative programs selected

from the NASA-OAST space systems technology model on the basis of
their widely varying natures.

The THFS study and succeeding work will ultimately lead to the
identification of a finite set of specific "primitive actions"
that, when assembled into complete service operations, can be
performed entirely by man, entirely by automation, or by some
combination of the two. How the operations will be performed is a
function of technology availability; the possibilities range from
EVA to IVA, from purely manual to hard automation, teleoperation
and flexible automation. Timeline knowledge and knowledge of
probable equipment capabilities and configurations, when combined
with the knowledge of the composition of the functions, will permit
a bottoms-up process of determining the work organization for each
servicing function and the overall servicing process.

Figure 4.2-3 presents an overview of this directly applicable

hierarchical work organization development approach in an OTV
servicing context.

Program
Project
Servicing Functions Mission Work Organization Pracess
/ | Personnel I Automation
sequence r———-’ Job Operation f—— Work Cell
Layout
Positions <—=ece——— Timelings === |nterfaces
Activity Duties g EQUIPMent Task
o8 Capabilities Organization
Task | Task
Transition
‘ ‘ Subtask
Subtask or
Task Element

Figure 4.2-3  Work Organization Development for OTV Servicing
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The lower level functions, those that go through the transition in
Figure 4.2-3, fall into three categories——manipulation, mobility,
and housekeeping. These primitive actions are, as stated
previously, the building blocks assembled into successively higher
level groups--subtasks, tasks, activities, and sequences.

Typical activities are:
1) Capture; 4) Module R/R;

2) Berthing; 5) Umbilical connections.

3) Leak check;

Typical sequences include:

1) Retrieve; 7) Repair;

2) Detank; 8) Resupply (fluids);
3) Inspect/examine; 9) Reconfigure;

4) Check out; 10) Store;

5) Conduct preventive maintenance; 11) Mate payload;

6) Prepare for deorbit; 12) Deploy.

The illustrative top-level scenarios combining these sequences for
specific operations are shown in Figure 4.2-4. These illustrative
scenarios have been integrated with other scenarios foreseen into a
comprehensive top-level turnaround flow for servicing a nominal
space-based OTV. Figure 4.2-5 depicts this flow.

Service Operations

The service operations depicted in Figure 4.2-5 are analyzed at
some length in the following paragraphs. These operations are
decomposed to the level necessary to identify relevant requirements
and issues. The requirements, issues and other associated
considerations identified in the decomposition process are then
organized and discussed separately for each of the operatioms.

Succeeding sections of this report will discuss the implications of
these requirements, issues, and considerations for OTV and space
station design. Although these are high~level discussions
incomplete at this early stage of OTV design, they represent a
first step toward organizing the information that will ultimately
result in the identification and justification of systemwide and
vehicle-specific design requirements.
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Figure 4.2-4 Representative Servicing Scenarios

0TV Proximity Operations — This process, as nominally conceived,
encompasses maneuvering the OTV from its rendezvous and shutdown
position to the location where the RMS (or other grappling device
such as a "space crane" variation of the RMS) will assume control

of OTV movement.

retraction of deployable components.

this sequence is depicted in Figure 4.2-6.
succeeding sequences are also shown in this figure for perspective.

It could be preceded or interrupted by the

The flow of the activities in
Preceding and
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Figure 4.2-5 Top-Level Turnaround Flow for Space-Based OTV

Options for transition of an OTV from free flight to space station
control include using its onboard attitude control system (ACS) to
maneuver and using an OMV to go out and retrieve the OTV. As can
be quickly deduced from Figure 4.2-6, use of the OTV's ACS would be
the simpler total system. This is the baseline recommendation.
However, if an OMV is to be available for this purpose between
commitments to support other activities, it could probably be used
to pick up the OIV after shutdown and transfer it to its berth at
the detanking facility. Alternatively, the OMV or some other means
such as an EVA with the MMU could be used to ferry a cable (tether)
out to the OTV so it could be reeled in.

Use of OTV Attitude Control System - This option, as stated
earlier, involves the simplest system in terms of equipment,
interfaces, and procedures. It would require the OTV design to
provide the capability to operate ACS thrusters remotely after all
other systems have been shut down. Implementation of this scheme
could also require development, installation and support of a
remote control station in the space station if tradeoffs indicated
local control to be preferable to automated operations and/or
ground-based control. But such an integrated teleoperator/
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supervisory control workstation would be justified by a number of
other applications such as OMV control from the orbiter or the
space station and OMV- or OTV-mounted servicer-kit operation--
although the latter application would considerably increase the

complexity and weight of the workstation.

For this reason and

others, servicer-kit operations may best be left to ground-based
controllers where these operations can be satisfactorily conducted
if communication link delays can be overcome.
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Figure 4.2-6 OTV Proximity Operations
A number of relevant issues are involved in this option. The first

is the issue of control location--the determination of the space

station's role in the proximity operations process. Though many
argue that it is intuitive that local control would be preferable,
a formal tradeoff may introduce less apparent concerns that, in the
end, argue strongly for ground-based control in which the OTV would
be docked with a passive space station or for total automation of
proximity maneuvering.
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The next issue with a direct impact on design of both the OTV and
the space station is control mode. Relevant questions regarding
this issue include: Will automated control be feasible? Desirable?
Supervisory control? Teleoperator control? What will be the
hardware, software, processing time, and other impacts of the mode
chosen? A discussion of these points is beyond the scope of this
study but they are being treated in a number of ongoing efforts.

Other points relating to this approach must also be considered.

The first is the contamination implication of OTV ACS and other
system propulsion products, venting and leakage--contributing to a
"brown cloud." The resultant system design requirements may affect
the development of OTV and space station hardware as well as
operational procedures. However, it should be noted that many
experts feel the oxygen/hydrogen system selected for the vehicle
can be used in the vicinity of the space station with no
significant contamination risk.

Another concern is plume impingement. Handling procedures and
space station surfaces will have to be designed to prevent damage
from ACS plumes if thrusters are used for close-in mobility. Some
minor damage to MLI surfaces was noted from MMU plume impingement
during the Solar Max rescue mission.

Yet another is illumination management. Obtaining proper levels of
lighting during the rendezvous and docking maneuvers may
necessitate some stationkeeping activity once proper illumination
levels are determined.

Lastly, the additional thruster use for these operations will
affect the OTV's ACS life and servicing requirements and the
significance of this effect must be determined. It could be that
formal tradeoffs will result in clear arguments for or against this
option based on such things as reliability impact, servicing
timeline optimization, and/or comparative ease of servicing one
vehicle or the other.

Use of OMV to Position OTV - Many issues and considerations of this
option are, as one should expect, identical to those involving use
of the OTV ACS for proximity maneuvering. Should control be
automated? Teleoperator controlled? From where: the ground? The
space station? It is assumed the OMV would be controlled from the
same workstation as the OTV. Will OMV outgassing present a
problem? Will plume impingement?

The impact of incremental use is also relevant, but in a broader
context than for the previous option. Not only are vehicle life
consumed and servicing requirements increased, but scheduling
conflicts may be created by the multiple demands on OMV time. Also
to be considered are the safety and control issues associated with
flying two vehicles simultaneously. While risks may be only
nominal, they will exist and will certainly be greater tham those
associated with managing a single close-in free-flyer.
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One possible advantage of using OMV in this application will result
from its greater maneuverability. This assumes it will be designed
for close~in operations and the OTV will be designed principally as
a bulk carrier. The factors that will determine whether this
increased maneuverability is really advantageous include whether it
is necessary for safety reasons or for positioning before RMS
capture of the OTV.

Design requirements that result from this proximity operations
concept include:

1) Interface (docking) provisions for joining OMV to OTV;

2) Possible simplification of the OTV ACS system because it will
not be employed in the vicinity of the space station.

Use of OMV (or MMU) to Attach Tether to OTV - Tether retrieval
would partially overcome the "brown cloud" and plume impingement
concerns inherent in close-in thruster operation. However, it
would still require outward-bound propulsion and maneuvering as
well as the necessary support systems. Because it probably could
not be justified solely on the basis of the emission reductions
that would result, it is envisioned principally as a candidate for
backup mode operations. If, however, it is possible to somehow
eliminate the OMV/MMU role in tether retrieval, this optiom would
become clearly superior in terms of the criteria previously noted.

One advantage that could accrue from any tether approach employed
would be the elimination of RMS handling of an incoming vehicle.

If the tether system was based at the first service berth, it could
bring the vehicle directly to its mooring. Of course, such issues

as tether maneuvering (control) and deceleration must be
satisfactorily resolved before such a system becomes feasible.

An associated benefit is simplification of service bay design.
Elimination of the requirement to roll back a portion of the
service bay (cylinder) wall for RMS access may become feasible if
the vehicle to be serviced could be brought in through the open end
of the cylinder by a tether terminating inside.

Station design requirements resulting directly from this retrieval
approach include:

1) Addition of the tether system;
2) Accommodation of the tether within the service bay;

3) Integration of the tether system into on-station mobility
operations.

No impact on vehicle design is foreseen. The vehicle/tether
interface envisioned would employ the docking facilities and
operations discussed in the following paragraphs.
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Preparation for Station Handling Operations - Though not really a
part of the retrieval process, these preparation sequences will be
briefly considered at this point because they interrupt the
retrieval process here——where they appear in the nominal process
flow. The first activity that will be considered is retraction of
deployable components. This discussion will be followed by
consideration of the destacking operations aspects and what could
be called contingency preparations. As illustrated in Figure
4.2~7, any or all of these activities could occur.

Retract/
Remove
Deployable
Components

. Disassemble
Prox-rn_uty and/ Transfer
Operations or Stack

|

|

|

|

|

|

|

l |
l Conduct :
|

J

| Onboard
Mobility ’
1 Operations

Contingency
l Preparations

Figure 4.2-7 Preparation Operations

These processes, depending on situation-specific variables, could
occur either before or after control over OTV motion is exerted by
the RMS.

Retraction or Removal of Deployable Components - This sequence
would be necessitated by conflicts between OTV appendages (such as
antennas, engine nozzles, and/or the aerobrake) and the clearance
at the service berths/bays. The number and complexity of the
activities involved would, of course, be a function of system
design. With proper forethought, any appendages that could not be
eliminated by design could be designed for automated retraction or
simplified removal operations. Furthermore, any problems in the
retraction process could (again assuming accommodating design) be
satisfied by a teleoperator or by an EVA sortie as noted in the
contingency preparations discussion.

Destacking Operations - This sequence would be necessitated if a
payload is too large to fit within the servicing bay or if safety
considerations or physical configuration require separation before
detanking. It could become the preferred method of operatiom,
rather than a contingency method, if vehicle/payload control issues
can be satisfactorily resolved.

c - -
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If it is necessary to remove a payload or decouple the OMV/OTV pair
in free space rather than within the confines of the servicing bay,
these operations would best be treated as a separate sequence.
Whether the operations involve EVA or whether they can be
accomplished autonomously or with the intervention/participation of
a manipulator, their characteristics and associated issues will
differ in a uniform manner from operations inside the service bay.
For example, because the OTV (and payload) will probably not have
been detanked before these operations, the safety and operational
concerns associated with operating and working on fueled vehicles
will apply. Control during and after demating operations will be
another shared concern. Will the vehicle(s) be free-flying?
Tethered? Held by grappling arms?

Contingency Preparations - This sequence includes activities that
would be performed by a servicer (EVA or teleoperator) to correct
anomalies preventing routine station handling and processing.
Examples include:

1) Failure of deployables to automatically retract thus violating
envelope constraints;

2) Docking adapter malfunction;
3) Safety-related failures;

4) Attachment of grappling fixtures or other adapter(s) to the
payload returned by the OTV.

The issues, options, and alternatives associated with these and
other contingency operations would, of course, vary. But certainly
the design of hardware and procedures to accommodate multimode
operations (EVA, teleoperation, automation) will be a primary
concern.

Onboard Mobility Operations - Grappling the OTV is, in the truest
sense, a transitional element in the servicing process flow. It
both ends free-flight operations and begins onboard mobility
operations. This activity and the positioning activities are
presently envisioned as the components of the initial onboard
mobility sequence. Figure 4.2-8 depicts this sequence.

Grappling Operations - Grappling, with a minor variation (OTV
docked at the start instead of in flight), and positioning and
berthing will be repeated throughout the servicing process as the
OTV is moved from bay to bay and operation to operation around the
station. Table 4.2-2 lists the moves that could be involved; each

move represents a repetition of the sequence depicted in Figure
4.2-8,
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Onboard Mobility Operations
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Figure 4.2-8 Onboard Mobility Operations

Table 4.2-2 Possible Onboard Moves N

<

From To

Capture Point Detanking Berth

Detanking Berth Maintenance Bay (for Postflight Maintenance)
Maintenance Bay Storage Bay

Storage Bay Maintenance Bay (for Preflight Maintenance)
Maintenance Bay Stack Assembly Area

Stack Assembly Area Tanking Berth

Tanking Berth Launch Point

All grappling activities associated with these moves, except
possibly those involving initial capture and those occurring before
movement to the launch point, could conceivably disappear if an
alternative onboard mobility system such as a rail or cable system
is developed. The task flow for this grappling activity would
remain unchanged whichever approach is chosen. This flow is shown
in Table 4.2-3, which also indicates the nature of the tasks
involved.

Grappling will drive a number of requirements in both OTV design
and station equipment design. OTV design will be affected in three
areas. The first, relatively minor, is the requirement to provide
grappling fixtures. Alternative approaches to satisfying this
requirement include the schemes illustrated in Figure 4.2-9. The
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first involves using target fixtures located about the periphery of
the vehicle and the second approach employs a probe at the end of a
manipulator arm to attach to one of the vehicle's docking

fixtures. It is assumed the OTV will have a docking fixture at
each end to facilitate stacking operations, OMV docking, and
maintenance. The RMS standard grapple fixture described (Fig.
4.2-10) is an example of a concept that could be employed.

Table 4.2-3 Grappling Activity Task Flow

Task

Nature of Task*

{dentify Target

Locate Target

Select Path to Target Vicinity

Move to Target Vicinity

Paosition (Rough) Manipulator(s) to Grasp OTV
Place {Final) Manipulator(s) to Grasp OTV
Grasp OTV

Verify Grasp

ONONHLWN=

o0

c/e

vz

*C = Cognitive; P = Perceptual; M = Motor

Stack Attachment Fitting Set

Docking/Grappling
Fixtures

Figure 4.2-9 OTV Grappling Fixtures
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Figure 4.2-10
The RMS Standard Grappling Fixture

The standard grapple fixture consists of a rigid shaft, three
alignment cam arms, and a target fixture (Fig. 4.2-~10). The rigid
shaft that is grappled by the special end-effector (SEE) provides
the structural support between the payload and the RMS. The
grapple target fixture is sighted by the RMS wrist camera and is
used to align the SEE with the grapple fixture before capture.

When the grapple fixture is within the capture envelope, the snares
of the SEE are closed about the rigid shaft and are withdrawn to
the end of the end-effector until a firm connection is made. The
grapple fixture cams are fitted into corresponding slots in the SEE
to rigidize the payload during manipulation.

Specifications:

Maximum weight: 22 1b
Torsional moment about longitudinal axis of SEE: 450 1b-ft

Bending moment to SEE: 1,200 1lb-ft
Shear force associated with bending moment: 50 1b

Maximum payload weight: 32,000 1b

The second OTV design requirement resulting from grappling
operations accommodation involves stabilization of the vehicle.
Methods of stabilization that minimize rotation must be developed
to support grabbing various peripherally located fixtures if this
capture approach is chosen/required. The necessary fixtures would
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already exist because they will be necessary to satisfy other
operational requirements such as:

1) Stack stabilization (postdocking);
2) Remote (inflight) servicing;
3) Contingency grappling.

If the probe and docking fixture approach is chosen, the vehicle
could either be '"mormally" stabilized or spin-stabilized and would
simply require orientation to facilitate the approach of the
arm-mounted probe. Spin stabilization would be possible because
the docking fixtures are located at each terminus of the vehicle's
longitudinal rotational axis. This approach provides a
straightforward contingency capability that seems to contain few
risks and that would appear to be easy to perform either with a
remote manipulator or with total automation.

The third grappling-imposed requirement on the OTV would be to
accommodate the structural loads induced in the capture process.
The impact of this requirement can probably be minimized by proper
design and procedure development.

The station equipment affected by grappling all relates to the
manipulator arm. Specifically, its structure must be designed for
the loads involved and its controls must provide the response,
accuracy and flexibility necessary to (1) avoid damage to itself
and the OTV, and (2) satisfy established timelines. The controls
must meet these requirements in autonomous and teleoperator
operational modes and for normal and contingency situations.

The key issues involved in control of the grappling process include
speed and accuracy of response to control commands and design of
the feedback link for teleoperator situations where the human is in
the loop. The first two are a function of the evolving state of
the art in manipulator design and the situationally imposed
requirements (speed and accuracy required). The feedback issue is,
simply stated, determination of the video requirements--line of
sight, resolution, and 2-D or 3-D--necessary to accommodate
consistently satisfactory grappling performance. Future
investigations will have to resolve these issues.

Positioning and Mounting/Berthing Operations - As for grappling
operations, a fairly set task flow would be involved if an RMS-like
system is used for positioning (and mounting or berthing) the OTV
stack (Table 4.2-4).
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Table 4.2-4 Positioning (and Mounting/Berthing Task Flow

Task Nature of Task*
1 | Clear Locale (Where Grappled) c/P/Mm
2 | ldentify Destination (o]

3 | Locate Destination P
4 | Select Path to Destination c/p
5 | Move (Transfer) OTV to Destination’s Vicinity M
6 { Position {Rough) OTV M
7 | Place (Final) OTV P/M
8 | Wait for (Assume Autonomous) Activation of Locks -
9 | Release Grasp M

10 | Verify Released P

11 | Clear Locale {Where Released) c/p/iMm

*C = Cognitive, P = Perceptual, M = Motor.

Tasks 8 through 11 would be eliminated for the "position for
destack operations" sequence because it is assumed, for the purpose
of the present task flow, that destacking would occur with the OTV
"hanging" on the end of the manipulator arm. The remaining tasks
would be unchanged. Careful consideration of this sequence may
drive a requirement for more than one RMS. On the other hand, if
the tether attachment procedure is employed, the Table 4.2-4 steps
would be significantly changed--and hopefully simplified. Tether
attachment steps would represent the first tasks in rail or cable
mobility system operations. Under this scheme of operation some of
the tasks identified in Table 4.2-4 would no longer be necessary
and the nature of many of the tasks remaining would be changed.

Task 4 in the table, selecting a path, would no longer be
necessary; the cable or rail system would be the path from origin
to destination. Tasks 1 and 11 would become purely academic
because the set path would presumably not contain obstacles. The
transition from Task 6 to Task 7 could be simplified to nothing
more than a speed adjustment. And, finally, Tasks 8, 9 and 10
could be deleted because no manipulators would be involved.

The remaining tasks (2, 3, 5, 6 and 7) would be simplified enough
to permit automation using existing technologies and techniques. A
human role would, however, still be necessary until artificial
intelligence capabilities advance sufficiently to permit automated
task and path planning. This role would, at a minimum, involve
selecting and entering through a keyboard the appropriate code to
tell the automated system the destination of the vehicle.

The issue of automation, passed over lightly in the treatment of
grappling operations, bears further explanation at this time. The
three categories of tasks (cognitive, perceptual and motor)
identified in Tables 4.2-3 and 4.2-4 will be used to structure the
discussion that follows.

All the motor tasks readily lend themselves to full automation.
The only reservations that must be mentioned are the possible
impacts of control response speed and accuracy limitations imposed
by the state of the art in relevant technologies.
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Perceptual tasks present an interesting mixture. Some, such as
"verify released,”" can be performed by electromechanical devices.
Others, such as "locate destination," require either some sort of
built-in and automatically updated position reference map or some
ability to interpret visual information. Both would require an
extensive computational capability to automate. Further, image
understanding is only an emerging discipline and will probably see
only limited use over the near term. An alternative technology

such as radar may, however, be able to perform many perceptual
tasks.

Cognitive tasks are the most complex of the three types. They
involve knowing and/or understanding, and often imply choices among
alternatives in varying, unstructured situations. Such descriptors
as "identify" and "select" are typical of cognitive tasks. There
is some overlap between the cognitive and perceptual
categories—-"identify" typifies this group.

Some degree of intelligence--the ability to cope with a new
situation, to learn or understand--is required to perform the
cognitive tasks. An advanced understanding of the reasoning
process and extensive computational power will be required before
these tasks can be automated. Again, as with image understanding,
the necessary capabilities (often referred to as artificial or
machine intelligence) are beginning to emerge and may see limited
application over the near term.

In summary of this brief discussion, it can be said that for highly
structured tasks (e.g., "mormal" docking), full automation is a
reasonable short-term goal. Indeed, it may be preferable to human
involvement. However, for less structured tasks (e.g.,
"contingency" docking or unplanned remove and replace operations)
where more complex perceptual and cognitive capabilities are
required, man—-in-the-loop operation, either supervisory or
teleoperator, will be required over at least the short- and
intermediate-term goals.

Other considerations relevant to positioning and berthing

operations include positioning accuracy requirements and the impact
they will have on manipulator and berth design, vision requirements
(camera location) and accommodation of any operational
contingencies arising from equipment malfunction. The first two
subjects were adequately discussed under grappling operations. The
last implies accommodation of multimode operations by designing the
mobility system (whether a manipulator or a cable/rail system) to
readily permit a backup system such as another arm, another tether
(possibly with spread bar or sling), or an EVA astronaut to assume
control of the OTV and complete the desired transfer, positioning
or berthing process.
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Detanking Operations - The detanking operations presumed necessary
for technical, economic, and probably safety reasons will be the
first servicing sequence performed aboard the station. Figure
4.,2-11 shows the activities in the process. The issue of whether
multiple fluids would be transferred simultaneously or sequentially
is beyond the scope of this study; it should be addressed in future
fluid transfer studies.

Operate Leak
Detectors

rI:)etaﬂking Operations —i
-— b ety l
r(;nb«?a‘rd -‘ | a Connect Drain Vent & Purge Umbilical(s) } Onboard
: Mobility 1 an Umbilical(s) Tanks Tanks & Lines| | Disconnect ] Mobility
Operations Operations
| Inp A | [

-

Figure 4.2-11 Detanking Operations

Several fluids could potentially be involved in these detanking
operations. However, for this particular OTV design the number
will be minimized because the propellant and oxidizer will be used
for electric power reactants and for the ACS, the propellant will
serve as the pneumatic system fluid, tank pressurization will be
autogeneous, and a space station-provided means will be used for
purging fluid lines. This approach will permit operations
employing only two fluids——1liquid hydrogen and liquid oxygen.

Umbilical Attachment - The first of these activities, umbilical
attachment, would preferably be a fully automated activity either
occurring at the time of docking or initiated on completion of
docking. (Though we believe the present space station baseline
envisions manual make/break, we foresee a possible change in this
position to take advantage of available techniques and
capabilities.) This choice will affect both space station and OTV
design.

Simultaneous umbilical connection could eliminate some mechanisms
from the berthing platform for positioning and inserting the
umbilicals and some tasks from the operation. However, it would
require precise positioning of the OTV and require the vehicle's
propulsion module to employ QD-type connectors and associated
plumbing specifically designed for onorbit refueling.

If umbilical attachment is to be initiated after completion of the
docking (berthing) activity, a number of additional cognitive,
perceptual, and motor tasks would be introduced. The aspects of
each type of task were previously discussed. But the specific set
of tasks involved cannot be identified until design iterations
determine such details as whether access panels will have to be
opened, whether connector covers will have to be removed and
stored, and so forth.
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Table 4.2-5 presents a nominal task set. It ignores questions like
those above and focuses on the narrow issue of deploying the
umbilical. It is a 'worst-case" task set and is described in a
manner intended to show adequate detail to illustrate that the
individual tasks (and hence the set) could be performed by hard
automation, by a sophisticated remotely controlled manipulator or
by an EVA individual. For hard automation, Tasks 1 through 3 would
be predetermined so they would be dropped from the flow.

Table 4.2-5 Umbilical Attachbment Activity Task Flow

Task Nature of Task*
1 | Identify Target (Connection Point) (o

2 | Locate Target (Connection Point) P

3 | Select Path to Destination c/e
4 | Free Restraints M

5 | Extend Umbilical {(Move to Target Vicinity) | M

6 | Position {Rough) Umbilical M

7 | Place (Final) Umbilical {Connect) M/P
8 | Lock (Turn?) M
9 | Verify Locked P
*C = Cognitive, P = Perceptual, M = Manipulative.

The addition of this activity requires the station to provide and
accommodate the manipulator(s) capable of performing the included
tasks. Selection of the hard automation alternative to accomplish
the tasks would impose weight and maintenance penalties over the
flexible automation alternative because hard automation is, by
definition, specifically oriented toward a single purpose--it could
not be used for anything else. Selection of the flexible
automation alternative, in the form of a relocatable, multipurpose,
remotely controlled manipulator, would overcome these penalties but
impose penalties of its own in terms of operational complexity when
compared to simultaneously occurring docking and umbilical
attachment.

Whichever attachment method is chosen, some decisions will have to
be made about where the attachment(s) will be located. That is,

will plumbing within the OTV be used to group all connectors so a
single umbilical can simultaneously connect to all of them or will
multiple umbilicals be required to minimize OTV plumbing line runs
to satisfy weight, maintenance, safety, or technical requirements?

Leak Detection - Activated before or at the time of umbilical
attachment, leak detectors would be operated throughout the
detanking operations sequence. Presumably they would be tied into
caution and warning panels in the station and/or service bay. They
could also possibly activate automatic shutdown/recovery sequences
(contingency operations) if their reliability were high enough.
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Tank Drainage - For the propellants this activity should involve no
more than (1) activating (opening) valves to allow the autogeneous
pressure to displace them, and (2) closing the valves when the
process is complete. Contingency situations, like inoperative
valves, would require the OTV either to provide a way to
mechanically actuate the valve or to provide a second access route
(valve) into each tank to permit depressurization/drainage of the
tank.

Inoperative (open) valves would also require some contingency
provision for closing the tank before umbilical disconnect to
prevent undesired venting. The same solutions, a second valve or a
local mechanical means of actuation, would apply. 'Design for use"
considerations such as location (access), clear identification, and
force application requirements must be accommodated in designing
and locating these valves. They will have to accommodate all

possible contingency-mode operations as well as any changes caused
by evolutionary growth.

Thermal management of the tankage and lines throughout this process
will also be a concern of note. Because blockage of a line by
freezing during the process could prove to be a critical hazard, it

must be carefully considered in the design of lines and defueling
operations.

Venting and Purging - Clearing residuals from tankage and lines
after they are drained will involve two sets of considerationms.
The first focuses on ensuring the residuals will not be hazardous
or contribute to the "brown cloud." Venting directly to space will
not be allowed to occur in the vicinity of the space stationm.
Rather, purged residuals will be processed for reuse through a
collection system. Whether this policy becomes flexible over time
will be a complex function of the seriousness of the contamination
problem in the station's environs and of the delivered "cost" of
the fluids as well as the weight, complexity, power consumption,
etc of a collection system.

The second set of considerations focuses on how the purging will be
accomplished. Two distinct phases or types of activity are
projected. The first is gas displacement (using autogeneous
pressure and, maybe, nitrogen) and the second is vacuum drying.
Combined, the two will ensure no residual fluid remains to
interfere with the refueling or remove and replace maintenance
operations that may become necessary. Both OTV and space statiom
systems will have to be designed to accommodate these processes.

The tasks associated with erecting and retracting the venting masts
intended to move the vented gases away from the facility will be
included in this venting and purging activity unless it proves
preferable and feasible to permanently erect the masts. The only
other tasks involved will be opening and closing valves
(essentially switching functions) that will be easy to command from
a remote site when in a normal operations mode.

é
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Umbilical Disconnect - Once connecting lines are purged, the

umbiligal(s) will be detached and stowed to complete the detanking
operations sequence. Table 4.2-6 shows the tasks that would be
involved in this activity.

Table 4.2-6
Umbilical Detachment Activity Task Flow
Task Nature of Task*
Ref | Vent & Purge Operations c/P/M
1 Unlock (Turn?) M
2 Disconnect (Turn?) Umbilical M
3 Retract Umbilical M
4 Position {Rough) Umbilical M
5 Place (Final) Umbilical P/M
6 Secure Umbilical M
*C = Cognitive, P = Perceptual, M = Manipulative.

Note that these tasks are all primarily manipulative in nature and
none are very complex. This tends to make them amenable to hard
automation. Any associated perceptual tasks could easily be

accomplished through the use of existing technology, e.g., sensors
and switches.

Of course, proper system design would have to allow for manual
(EVA) and/or teleoperator task conduct in contingency situations.

Issues and Considerations - A key issue was avoided in the
preceding discussion by assuming the OTV tanks will require
evacuation. However, a technology goal is to develop systems and
procedures that will eliminate this requirement. Two alternative
approaches come readily to mind:

1) Refilling partially full tanks without having to first empty
them;

2) Removing the "expended" tanks and replacing them with full
tanks.

The implications of such servicing alternatives in terms of OTV
design, space station design, operational hazards, timeline
reduction, etc, will require future investigation.

This discussion also avoids another key issue by not attempting to
define where the detanking facility should be located. It would be
convenient if detanking could be conducted at the same berth as
inspection and checkout (I&CO) and remove and replace (R/R)
maintenance functions. However, it is assumed that safety issues
and pollution considerations will drive this decision in spite of
timeline considerations. For example, safety requirements will
impose strict controls to prevent release of propellant and/or
oxidant near the orbiter; crew safety and potential contamination
of sensitive components are specific concerns. The treatment in
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the following paragraphs applies whether the facility is remote
(tethered or a separate formation flyer) or a part of the main
space station structure (a separate bay or a hookup in the main
service bay).

A number of components, systems and technologies will be critical
to these detanking operation processes. Components that heavily
affect design, operation and maintenance include valves, filters,
couplings, and comnectors. Key systems include drainage
interfaces, mass gaging, and component replacement systems. The
technologies identified as critical include mass gaging, commodity
transfer, slosh control and venting.

Interface management is the next area of concern. As has been

alluded to in previous discussions, any given interface must not
only accommodate automation, it must also be both EVA- and

manipulator~compatible.

Fluid management methods must be developed and definitized for the
scenario. Although chilldown procedures/techniques, particularly
for lines, are safety-critical, they have not been well defined.
Neither are the methods for measuring fluid levels in the tanks or
for handling residuals. Present technology mass and flow gaging
techniques are not yet very precise—-+10% is typical. It is
presumed that a two-step (gas displacement and vacuum cleaning)
residual purging process will be effective but the process and
hardware to effect it are unproven.

Finally, an assumption made early in the discussion of this
sequence was that EVA avoidance was a relatively high-priority
objective, at least for routine task performance. There are two
reasons. The first involves timeline impacts on baseline
operations. The total service timeline is extensive--prebreathing
before each EVA sortie and the manipulative limitations imposed by
the suit-—are significant contributors to this total. Therefore,
minimization of this timeline through avoidance of EVA seems a
reasonable goal.

The second reason for assuming the desirability of EVA avoidance
involves the potential hazards inherent in management of fluids
and, specifically, management of cryogen transfer operationms.

These operations can be performed by automation; there is no reason
to expose an EVA astronaut to the hazards involved under normal
operating conditions.

Inspection and Checkout Operations - Very simply stated, the
purpose of this sequence is determination of the "fitness" of the
OTV for continued operations. It involves two, possibly parallel,
activities-—inspection and checkout--plus a third, analysis of
inflight data. It should occur before initiation of either
inspection or checkout. Figure 4.2-12 depicts the sequence.
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Figure 4.2-12 Inspection and Checkout Operations

Inspection focuses on detection and interpretation ot anomalous
physical characteristics through sometimes augmented but typically
human sensory (principally visual) means.

Checkout, on the other hand, implies detecting and subsequently
isolating systems or components producing anomalous electronic
signals during simulated operating conditions if in a service bay,
and/or actual operating conditions if in flight. Data may
originate from specific sensors or from the capture of enroute
signals, depending on the system/component being checked.

These two activities could conceivably be conducted in parallel to
minimize timelines if technically compatible techniques are
employed. Undoubtedly they will often influence one another; data
from one will suggest the need for specific and possibly additional
attention to aspects of the other.

Inspection - The requirements for inspection will be a function of
the overall maintenance philosophy and its impact on vehicle
design. It is safe to assume that whatever the requirements, the
techniques employed will be nondestructive. Destructive test
techniques will presumably be reserved for unreparable
vehicle(s)/components and will, again presumably, be conducted by
"depot"-level ground-based activities.

Nondestructive inspection (NDI) techniques that could be considered
for use on an OTV at the space station include, but are not
necessarily limited to:

1) "Sniffer'"-type leak detectors;

2) VUnaided vision;

3) 1Image enhancement;

4) Multispectral imaging (e.g., thermal, electric field);
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5) Dye penetrant;

6) X-ray radiographic;

7) Ultrasonic;

8) Eddy current;

9) Magnaflux;

10) Magnetic particle.

Each has advantages and disadvantages that affect its desirability
in space environment applications. For example, the magnaflux
technique requires inducement of a magnetic field and use of metal
flakes, both undesirable. Table 4.2-7 summarizes significant

strengths and weaknesses of these techniques in space-based
applications.

Table 4.2-7 NDI Technique Advantages and Disadvantages in Space

Technique Advantages Disadvantages
Sniffer(s) — Detect Small Concentrations — Requires ““Sniffable’”” Medium
Unaided Vision | — Easy to Implement via Multiple Means (EVA — Limited Capability
or Remote Camera) — Limited Consistency
Image — Permits ‘“Seeing’’ Things That Normally Cannot | — Equipment Required
Enhancement Be Seen
Multispectral — Permits ““Seeing’’ Things That Normally Cannot | — Equipment Required
Imaging Be Seen — Limited Applicability
Dye Pgnetrant —~ Enhancss Visibility — Fluid Confinement
— Does Not Require Elaborate Equipment — Detects Only Surface Defects
Radiographic — Usable for Many Metals & Other Materials — Weight of Equipment
(X-Ray or — Film Provides Permanent Record — Dark Room Required
Gamma Ray) — Detects Surface & Subsurface Defects — Film Use
-~ Power Consumption
— Potential Safety Hazard
Ultrasonic — Simple Procedure — Interface Medium (Coupling Agent)
— Detects Surface & Subsurface Defects Required
~ Can Provide a Permanent Record — Oscilloscope Required
- Interpretation Requires Highly Trained
Personnel
Eddy Current - Simple Procedure — Electric Current Required
— Detects Surface & Subsurface Defects — Does Not Give Physical Shape of
Discontinuity
Magnaflux —~ Simple Procedure — Employes Magnetism & Requires Loose
(Magnetic — Equipment is Portable Particles
Particle) — Only Usable on Ferromagnetic Metals
— Electric Power Required

Inspection procedures, whatever they turn out to be, will probably
be conducted in the service bay. They will have a number of
implications for the OTV, for the facility and for support
equipment.
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Until vehicle design becomes more firm, specific techniques and
requirements will be hard to identify but general requirements for
all techniques should be considered now. These include such things
as provisions for:

1) Access to all areas of the vehicle requiring inspection;

2) Lighting requirements;
3) Storage and handling of inspection aids (tools);
4) Minimization of inspection requirements and timelines.

Checkout - Three levels of checkout operations are envisioned. The
first, inflight operations, will focus on (1) identifying the
source of anomalous signals (unsatisfactory performance) so the
faulty component/system can, if possible, be brought back into
tolerance and, if not, be compensated for, and (2) recording the
anomaly for future analysis and correction. Compensation would be
accomplished by isolation and subsequent use of backup systems or
by other workarounds such as alternative approaches to the function.

The second, probably more extensive, level is postflight checkout.
These operations will focus on investigation (verification) of
inflight anomalies and the conduct of predictive investigations as
well as postmaintenance verification.

The third level of checkout operations occurs before operations
checkout. It could involve several separate procedures conducted
after unscheduled maintenance operations, after removal from
storage, after payload mating, after loading consumables and after
maneuvering to the launch point. Presumably these operations would
be comparatively brief and focus on ascertaining that specific
vehicle subsystems are ready for operationm.

To be efficient, all these checkout processes must be effectively
automated. All three levels of checkout operations will require
similar interfaces and support, including:

1) Sensor/test equipment;

2) Communications link;

3) Data analysis and comntrol hardware;

4) Data analysis and control software;

5) Data analysis and control executives.

The aspects of each will be discussed in the following paragraphs.




Automated checkout, particularly for inflight engine condition/
performance assessment, will demand substantial upgrading of
present diagnostic sensors. Ideally, these advanced diagnostic
sensors will be tied into local onboard or other no-delay
executives so they will be able to detect impending out-of-limit
situations and trigger immediate corrective action.

Diagnostic sensors will also have to be upgraded to support
effective automation of pre- and postflight checkout operations.
For these applications, attention will be focused on accurate and
timely diagnosis. Timeline minimization is seen as a key goal.

The use of these sensors and the issue of where they will
reside—-built-in, plugged-in, or remotely located at the end of an
umbilical or RF communication link--will have a key impact on
system design. Overall system implications will be complex.

Turning from the sensors themselves to the handling of the data
they will produce, three additional sets of considerations become
relevant. These are the link from the sensors to the analytic
facility, the analytic facility including hardware, software, and
executives, and the process control conducted by the executives
and/or human supervisory controllers.

The communications link from the sensors to the analytic facility
can be very simple or very complex. A number of "whethers"
influence the issue. The first is whether the link will be direct
RF or through an umbilical into the space station. The next is
whether all diagnostic procedures will reside in programs at one
location or in several locations. Another involves whether time

delays induced by NASA's block-formatting can be worked around if
they are relevant.

Options for analytic facility basing include the ground, the space
station, and the OTV itself. Issues such as weight, information
processing requirements, equipment reliability and maintenance, and
communications (link) management will drive the basing decision.

In the end, multimode basing will probably be employed even though
it will increase the complexity of the communications system
because of the weight and maintenance advantages it will offer.

Process control, management of the checkout process, is seen as
presenting the most complex set of considerations. Relevant
technologies will still be evolutionary during the space station
era. Use of artificial (machine) intelligence techniques will
relieve the need for much of the present day's routine process
intervention (by humans) at simple decision points as well as
permit better use of other techniques such as parallel processing
to speed up the automatic checkout process. The human role will
evolve over time to that of supervisory control.
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These machine intelligence technologies will also be directly
applicable to communications management. They will be able to make
routine and instantaneous decisions to (1) select the optimum
combination of 0TV, space station, and ground-based information
processing resources, (2) select the optimum data link at a given
time and for a given situation, and (3) possibly impact the NASA
communication system block format-induced time delays. The end
result will be to speed up the checkout process while minimizing
OTV and space station information processing requirements.

Maintenance Operations - Maintenance has been defined as a specific
operational subset of '"servicing" for the purpose of this

analysis. It is envisioned as involving assembly/disassembly and
upkeep action as taken to prolong system life, enhance system
operation, or prepare the system for a specific mission. As a
result, only two categories (types) of maintenance operatiom are
envisioned for this space-based reusable OTV. These categories are
module removal and replacement and general service operations.

Though there are only two categories of operations, a number of
specific (varying) characteristics within each category warrant
consideration. For example, module R/R could be scheduled or
unscheduled; it could be undertaken to restore operational
capabilities, to upgrade the vehicle, or to reconfigure it for a
specific purpose; and it could be undertaken by a number of
different methods or schemes. Potential onorbit maintenance
schemes include intravehicular activity (IVA) in a pressurized
compartment, IVA using remote manipulators, extravehicular activity
(EVA) using teleoperation, astronaut EVA using advanced
high-pressure '"tactile" space suits, and IVA-based supervisory
control of advanced automation operating in either an IVA or EVA
environment. Table 4.2-8 summarizes the full range of spacecraft
maintenance method options. Onorbit maintenance approaches and
concepts are shown in some detail.

Table 4.2-8 Spacecraft Maintenance Mode, Approach and Concept

Ground— Onorbit
Expendable | Refurbishable Maintainable
Mode Spacecraft Spacecraft Spacecraft
Approach | No Repair, Space Station Visiting System
Maintenance | Refrubish, & Maintenance Maintenance
Reorbit - .
Service Inside Orbiter. OMV/0TV
Bay P & Front-End
Service Inside Kit
Bay
Concept | N/A Total Level 1 Level 2 Leve! 1 Level 2 Level 1 Fetch
Maintenance | Capability Capability | Capability. Capability | Capability| for
Capability r Orbiter
Auto- or S/S
EVA [Auto- Manual EVA| mation] Manual Autp- |
mation B (TWS) mation | o
Combination Combination mation
Level 1 Maint: Major Moduie Diagnostics and R&R; Fluids Replenishment; TBD Services (Kick It, Oit it, Lock/Unlock
and Reposition . . . )
Jovel 2 Maint: Submodule Diagnostics and R&R; Submodule Repair (?); Limited Submodule Modification (?)
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Because these schemes imply certain operational limitations and
impose specific requirements on space station OTV accommodations,
they will define maintenance and other service operation methods as
well as influence the OTV's configuration and the space station
facilities needed to accommodate the processes.

The numerous general service operations envisioned for the vehicle
involve many considerations. Some of these operations are wearout
prevention, cleaning, adjustment, recharging of energy storage
devices and refurbishment of thermal control coatings. Some of the
considerations involve access, modularization tradeoffs, definition
of advanced automation's role and design for multimode operationms.

The many factors inherent in these operations and considerations
must be treated in any discussion of OTV maintenance. These will
be covered in subsequent paragraphs but first it seems appropriate
to briefly introduce Figure 4.2-13 that illustrates the
time/process relationships for OTV maintenance operations. This
depiction is not intended to be a linear representation of actual
time relationships; it does, however, identify and show the time
phasing of these operations.
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Figure 4.2-13 OTV Maintenance—Time/Process Relationships

The first aspect of OTV maintenance operations that will be
discussed 1s whether they are scheduled.or unscheduled. Scheduled
servicing includes planned functions conducted to permit continued
orbital operation of the OTV. Examples include component
replacement to avoid predicted breakdowns (design life limitations)
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and to replace expendable items that have been consumed. The
necessary actions are known well in advance and the service crew
will have been familiarized and trained and will have conducted the
necessary verification simulations for these events before actual
operations. All crew aids/devices/tools and any other necessary
support equipment will also be in place and rehearsals will have
been conducted to support the scheduled servicing. Unscheduled
servicing involves the functions conducted on a contingency basis
to restore the OTV to an acceptable level of operational
capability. It includes repair or replacement of components that
fail randomly (unpredicted breakdowns) or because of "unscheduled
events" (accidents). It is also characterized by improvisation and
will, by definition, extend timelines. Table 4.2-9 summarizes
these points.

Table 4.2-9
Characteristics of Scheduled and Unscheduled Maintenance Operations

— Scheduled Servicing

Conducted to Permit Continued Orbital Operation

Replaces/Refurbishes Design Life Limited items and Consummable Items
Programmed Operations

Crew Well Trained and Verification Simulations Conducted

Characterized by Use of Specifically Designed Tools and Support Equipment

— Unscheduled Servicing

Conducted to Restore the Vehicle to an Acceptable Level of Operational Capability
Replaces/Refurbishes Items Which Have Failed Randomly or Due to Unscheduled Events
Extend or Modify Timelines

Characterized by Crew Improvization (Tools and Methods)

Unprogrammed Operations

Given the tight turnaround schedule expected for the OTVs and the
characteristics of unscheduled servicing just listed, it would seem
a reasonable goal to seek to minimize unscheduled OTV servicing.

Maintenance Scenarios - The activity scenarios for maintenance
operations must be kept as simple and uncomplicated as possible to
accommodate present-day EVA processes and, at the same time,
promote evolution toward advanced automation. These scenarios will
be influenced by OTV characteristics (degree of modularization,
interfaces, retention hardware, etc) and by the evolution of
onorbit servicing equipment and techniques as we progress from the
present manual mode operational capability to increasingly
automated methods.

Detailed scenarios for these maintenance operations cannot be
developed at this time without a great deal of speculation about
the specific aspects of the modules, tools and processes involved.
However, experience gained through previous analyses of similar
situations (e.g., our remote orbital servicing satellite and
teleoperator human factors studies) indicates that, as for other
sequences and activities discussed earlier in this report, the
maintenance processes will be assembled from the known set of
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"primitive actions" into higher level processes (subtasks, tasks,
activities, and sequences). This same experience also indicates
that module and tool design will significantly affect the ultimate
process design.

The Role of Automation and Artificial Intelligence -~ The purpose of

the present focused effort to apply advanced automation technology
to space station is not to replace man, but to augment or enhance
his capability in a technologically complex and sometimes hostile
environment. It is analogous to the development of diagnostic
tools (expert systems) for the medical profession. In this case,
there is no intent to replace the physician; rather the intent is
to increase his database and to enhance his diagnostic capability
using the experience of others that are "built into" the
user—-friendly tool. Although we were able to design, build, and
operate flying machines long before the advent of the computer,
with the computer we have been able to extend our flight regime
well beyond the solar system.

A recent aerospace automation industry study group recommended four
areas for technology advancement. Three are relevant to 0TV
servicing efforts at the space station:

1) Spacecraft services self-management (through AI);
2) Ground support automation;

3) Space station robotics for inspection, assembly, servicing and
repair, refurbishment and onorbit experiment interaction.

The first area involves the application of artificial intelligence
and expert systems to spacecraft services and self-management.
Current artificial intelligence research emphasizes the development
of self-modifying codes, that is, software that learns, modifies
itself, and becomes smarter and better. Useful results are being
obtained in this area and some expert systems that have been built
perform reasonably well. Some explorafﬁry work is being conducted
at NASA Kennedy Space Center on the application of expert systems
to ground support operations (ground support automation). The real
benefit of expert systems that is directly relevant to onorbit
servicing is to reduce the number of human experts needed to do a
given job that requires human expert judgment. The human experts
cannot be eliminated, but they can be called on less frequently and
made more productive. This is the recurring theme for development
of automated design and analysis tools.

The following list summarizes potential expert systems applications
in space-based OTV servicing:

1) Assist crew in failure detection, diagnostics;

2) Direct test procedures;
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3) Chart preferred servicing modes and task sequencing;

4) Assist crew in decision making (autonomous decision making
without ground support;

5) Direct safing procedures before crew access;

6) Assist crew in responding to emergencies;

7) Prevent crew-overload from massive data flow;

8) Enable autonomous remote servicing (a long-term prospect).

There is potentially a very large cost impact (savings) in this
area because the application is not understood (so no one knows how
to plan for it). It is important to understand the potential of
this automated technology before the OTV and space station program
costs are cast in concrete and budgeted.

Robotics/AI on the space station will be specifically useful for
OTV inspection, checkout, assembly, servicing and repair
processes. Here, robotics deals with both true robotics (machine
intelligence is applied and the mechanisms are autonomous) and
telepresence. In telepresence, communication techniques put man in
in a remote location so intimately in the loop that he loses
"sight" of his remote location and feels that he is physically
present at the worksite and is himself doing what his robot proxy
is actually doing. Figure 4.2-14 depicts the space shuttle's RMS
system. It is an existing teleoperator system that includes
necessary telepresence capabilities. Figure 4.2-15 summarizes the
relationship of these technologies to each other and to manual
operations and total autonomy and Figure 4.2-16 summarizes their
characteristics.

It is conceivable under certain scenarios that the use of presently
available (state-of-the-art) automated maintenance techniques could
eliminate the need for space station personnel to conduct EVA
operations in support of many OTV maintenance operations. Of
course some contingency situations will always remain that require
the versatility and capability to improvise provided by EVA
personnel.

For example, it should be possible to use existing teleoperation
capabilities to remove and replace (R/R) major assemblies
containing multiple submodules. Further, the mechanism could
transfer the major module assemblies to an interlock area where the
station crew could access the assemblies for submodule repair all
without any EVA. Extending this concept, the mechanism could
easily be equipped with a camera or other imaging system(s) to
enable the station crew to visually inspect the OTV from within the
space station.
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This mechanism would have to be flexible, probably programmable to
some degree, and retain the option to conduct remote control
operations. If the overall system engineering approach ensures the
OTV's design packaging complements the mechanism'’s capabilities,
programming needs can be minimized. For example, if the OTV were
designed to break down into five major assembly groups, the
maintenance mechanism would only require five program variants to
R&R the major assemblies. A potential maintenance scenario

employing these capabilities might be something like that described
in the following paragraph.

The space station's onboard computer detects a fault during the
preoperational checkout sequence and proceeds to isolate the
underlying failure to a specific submodule. A space station crew
member would subsequently note the error message and determine (if
the system had not already) that the submodule is in major assembly
group number two. The crew member could then install a
preprogrammed disk, tape or chip into the robot command computer or
simply authorize execution if the program were already on line.

The OTV's berthing platform would then rotate to its proper
orientation and the maintenance mechanism would move down its rail
and proceed to remove major assembly number two. It would then
carry the assembly into the interlock area. The interlock area
would then be pressurized so the space station crew could access
the assembly to R/R the failed submodule. The repaired major
assembly could then be returned to the vehicle and reinstalled by
the mechanism. The space station onboard checkout computer could
then verify the repair and continue the preoperational checkout
sequence.
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With respect to the development and application of automation and
machine intelligence technology, consider the following concerns:

1) Although we have built and tested expert systems and natural
language front-ends for various applications, we have only
recently become concerned about the real-time operation aspects
of expert systems. Much work is required over the near term if
we are to be able to successfully implement automated real-time
decision-making processes for a variety of space station-based
OTV maintenance applications such as we are doing in the
current automated management of power systems (expert systems
development) project;

2) With regard to robotics and teleoperators, once again, the
emphasis is not on replacing man in space but rather on
enabling a greater amount and variety of more dextrous, remote
and cost effective activities. To accomplish this, significant
laboratory work is required to evaluate such potential
techniques as task allocation schema, available control modes,
and human interaction optimization. It should be noted that in
many cases unique laboratory and space facilities will be
required to investigate these potential capabilities and to
define specific system requirements.

In summary, with specifically relevant and timely advanced
automation-related initiatives, we will be able to take a
significant step beyond present capabilities and extend man's reach
and utility through the use of integral system intelligence,
robotics, teleoperations, sensory perception, and unique processing
and packaging concepts (VHSIC). We must, and will, continue to
pursue optimized use of man with the goal of increased productivity
in space.

Maintenance Concept and Implications - The maintenance concept
envisioned for this vehicle was discussed in some detail in Section
4.1. The aspects of the concept that warrant further discussion at
this time and in this context are treated in the following
paragraphs.

The concept is not firmly set, it is evolutionary and is expected
to develop over time as the knowledge (definition) of OTV and space
station operations and equipment improve. The philosophy
underlying the concept is to limit what is to be done at the
vehicle to minimize the complexity of service bay operations and
thereby reduce EVA requirements and maximize the near-term use of
automation. This philosophy leads to an interactive set of vehicle
design approach and maintenance concept considerations.

The first point of the maintenance concept is to perform only major
module removal/replacement in the service bay, not onsite component
repair or replacement. Such activity would be unnecessarily
difficult and time consuming when compared to available
alternatives. The next point involves "intermediate'-level
maintenance that is defined for this purpose as submodule R/R
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operations. They are envisioned as possibly being conducted on an
as-necessary (contingency) basis inside the space station or in the
service bay if the parent module is too big to transit the
airlocks. The final point of the concept is to avoid returning the
entire OTV to the ground. If the vehicle is to be space-based and
if it can be highly modularized, it should only be necessary to
deliver and install one or more replacement modules to correct any
anomaly that occurs.

Several vehicle design approach considerations have been
identified. The first is component grouping (by life, type, and
location) into submodules and "major modules"--roughly comparable
to today's space-replaceable unit concept. Four types of
module-to-module and module-to-structure interfaces are
envisioned. These are fluid, electric power, mechanical, and
data. Mechanical module interface options (roughly illustrated in
Fig. 4.2-17) include multiple~fastener direct, single-fastener
direct (like MMS), and indirect through a transition plate. There
similarly are a number of alternative options for each of the other
module interface types, each with specific advantages and
disadvantages.

LDEF

Experiment

Tray
10SS
Retrofit

Concept

Individual Fasteners Module
Indirect to
Module Spacecraft .
Direct to
Spacecraft Interface
MMS Mechanism
Module . " '
Single
Fastener
Mechanism
Module
Direct to
Spacecraft

Figure 4.2-17 Mechanical Module Interface Options

Although it will be highly desirable to standardize and minimize
the number of interfaces (particularly for the major modules), the
design process may possibly mandate that a variety of options be
employed for one or more of the interface types because of varied
operational and maintenance requirements and characteristics.
Figure 4.2-18 shows two concepts for the engine/OTV interface that
would both employ a variety of interface types.
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The implications of this standardization objective extend beyond
design of the OTV itself. We will need to carefully develop tasks,
processes and tools common to the widest possible variety of
space~based servicing operations. A few of the other space statiom
activities that would make use of these common facilities are
payload assembly and/or repair, OMV servicing, and expendable
propulsion vehicle servicing.

The implications of these points are:

1) To seek common onorbit servicing capabilities and requirements
for the widest possible range of applications;

2) To seek OTV, OMV, MMS, and other systems (vehicles and
payloads) commonality at the widest possible range of
levels—from major module to submodule, and, possibly, to the
component level.

The following basic maintainability principles also provide design
objectives for OTV system development:

1) Design to minimize the complexity of maintenance tasks such as
ad justment, inspections and calibrations;

2) Design for optimum interchangeability and use of standardized
(or commercial) items;
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3) Design for rapid and positive recognition of equipment
malfunction or marginal performance;

4) Design for minimal resource requirements in accomplishing
maintenance tasks;

5) Design for rapid and positive identification of the replaceable
defective part, assembly or component;

6) Design to require minimum maintenance skills and training;

7) Design to require minimum numbers and types of tools and test
equipment (special and standard);

8) Design for optimum access to all equipment and components
requiring maintenance, inspection, removal or replacement;

9) Design for maximum safety for both equipment and personnel;

10) Design so the mean time to accomplish scheduled and unscheduled
maintenance is sufficiently low to assure the required
operational availability of the equipment;

11) Design to enhance and facilitate organizational~ and
intermediate~level maintenance action;

12) Design to require a minimum number and type of repair parts and
assemblies;

13) Provide technical data for easy use (AI maintenance tutors,
etc) concurrently with the equipment;

14) Maximize the extent that performance can be verified,
malfunctions anticipated and located, and calibration performed.

In regard to the impact of advanced automation on the OTV
maintenance concept, a few additional points need to be made. The
first is that the OTV modules, support equipment and maintenance
procedures should be designed for multimode operations. Whether we
baseline EVA activity, automated module replacement, or some
intermediate capability, the need to accommodate evolution and
contingency operations will remain. As Figure 4.2-19 depicts, it
should ideally be possible to conduct these multimode operations
with only minimal mode-to-mode change--substitute a proxy for the
man but use the same work carriage and module service tool(s).

The next point is that module size and interfaces must be carefully
engineered to be compatible with the baseline (1990s) automation
capabilities. And the last point, a related one, is that small
components/assemblies must be carefully grouped to attain optimum
module and submodule size without inextricably confusing the
ability to develop reliability calculations and conduct maintenance.
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Figure 4.2-19 System Design for Multimode Maintenance Operations

OTV Storage - This sequence (if indeed it can qualify as a
EEEEEEEETSTS the transition between postflight and preflight
operations. The processes involved are expected to focus only on
thermal conditioning of the tanks and possibly conditioning
portions of the power system. It could, however, prove
advantageous to include provisions for data system access within
the storage facility to accommodate automated checkout and
reprogramming while the OTV is there. These provisions would
permit extended use of such other maintenance facility capabilities
as inspection and module changeout.

Transfer Stack Assembly - The transfer stack assembled would always
be a function of the mission to be performed. It would include a
payload for deployment missions, a servicer-kit and possibly an OMV
for service missions and some retrieval missions, and only the OTV
itself for many retrieval missions.

The sequence is envisioned as including two distinct activities.
The first would be employed only if a scenario using the OMV for
close~in mobility operations or remote recovery operations were
selected. This activity is mating of the OMV and the OTV. The
scenario for the activity is to use available manipulators in the
facility to position the two vehicles and hold them while the
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4.3

docking interface was activated. Tasks in the activity would be
essentially similar to those in the destacking activity previously
discussed.

The second activity, joining the payload (or the servicing kit) to
the 0TV, would routinely be performed. The single exception would
be for recovery missions that would not require front-end kit
(manipulator) preparation before orbit transfer. Again, this
activity contains essentially the same tasks as the destacking
activity. The noticeable difference would probably be in the
positioning accuracy required before docking.

Remaining Sequences - The balance of the sequence depicted in
Figure 4.2-5 are checkout operations, consumables loading,
preparation for launch, proximity operations, and launch (that
really begins the mission operations sequence). These will not be
treated further because they are either repeats of previously
discussed sequences (or portions thereof) or rearrangements of
activities treated in previously discussed sequences. They do not
introduce any new servicing considerations given the present depth
of analysis.

RELIABILITY ANALYSIS AND EFFECTS OF NONINDEPENDENT FAILURES

A reliability analysis was performed that considers the effects of
nonindependent failures (failures that render the entire main
propulsion system inoperative) on mission success probability. The
purpose of generating main propulsion system mission reliability
numbers (other than for the conclusions that can be drawn from them
alone) was to incorporate the delta reliability between various
engine configurations into the life-cycle cost comparisons of these
configurations to account for mission loss costs. This is
discussed in Section 4.4 of this report.

A range of engine single-burn reliability from 0.994 to 0.999 was
chosen to bound the problem. Also, a nonindependent failure rate
from 0 to 5% was selected. Then, for a six-burn mission, the main
propulsion system reliability for completing the mission was
calculated for various numbers of engines (from 1 to 4) and
engine-out capability. The results are shown in Figures 4.3-1
through 4.3-3. The obvious results show that multiple engines (3
or greater) provide the highest mission reliability for low (less
than about 2%) nonindependent failure rates. Correspondingly, two
engines provide the highest reliability for the higher
nonindependent failure rates. The crossover points of highest
mission reliability vary as a function of single burn reliability,
however. Agreement concerning reasonable estimates of engine
single-burn reliability and nonindependent failure rates will have
to be reached within the industry before firm conclusions can be
drawn. However, the trends shown here should aid in the definition
of engine and main propulsion system design decisioms.
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4.4 LIFE-CYCLE COST (LCC) ANALYSIS

The major efforts reported here include the development of a LCC
model for the development, production, and operation of the
baseline space-based reusable OTV. The cost trends and comparisons
that the LCC model was used to generate data for are also included.

4.4.1 L1CC Model Development

Figure 4.4-1 depicts the methodology used for development of the
OTV LCC model. Table 4.4-1 defines the terms used for each of the
model development stages and this is followed by a description of
the modeling approach as applicable to the OTV.
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Figure 4.4-1 OTV Life-Cycle Cost (LCC) Model Scenario

Table 4.4-1 LCC Model Development Stages

Stage Description

Problem Formu!ation Identify the problem requiring solution.

System Definition Determine the boundaries, restrictions and measure of effectiveness to be used in
defining the system to be studied.

Modeling Determine the most suitable form of modeling for solution of the problem.

Mode! Formulation Reduce the abstraction of the real systemto a logtc flow diagram.

Data Preparation Identify the data needed by the model and reduce the data to an appropriate form.

Model Translation Describe the model in a language suitable for computer use.

Validation Assure, to an acceptable level of confidence, that an inference drawn from the
model about the real system will be correct.

Experimentation Execute the model to generate the desired data and then perform sensitivity
analyses.

Interpretation Draw inferences from the data generated by the modei.

implementation Put the model and results to use.

Documentation Record the project activities and results and document the model and its use.
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Problem Formulation - All the major cost elements associated with
the deployment, design, development, test and evaluation (DDT&E),
production, operation and maintenance of an orbital transfer
vehicle (OTV) were identified. Cost sensitivities were analyzed to
assist in obtaining an optimal design in terms of operational
capability and life-cycle cost.

System Definition - Figure 4.4-1 depicts the OTV development and
operating scenario. Total cost was developed for DDTSE and
production of two OTVs, ground preparation and launch via the
shuttle. The OTV was assumed to be docked at and operated from the
space station. All OTV missions were costed with propellant use
and EVA time. Scheduled and unscheduled repair actions, including
EVA, IVA, spares, ground resupply etc were costed against the OTV.

Modeling - The most appropriate approach for developing cost
predictions for conceptual design studies was through cost
estimating relationships (CERs) based on known design parameters
and factors from similar programs and reasonably substantiated
ground rules and assumptions. The CERs were developed for all
major cost elements associated with DDT&E, production and
life-cycle operation and maintemance of the OTV. Certain
parameters within the CERs may be fixed values, whereas others were
variables to enable gensitivity analyses to be performed. These
sensitivity analyses were beneficial in achieving the optimal
design at the least LCC.

Data Preparation - The following tabulates the baseline ground
rules and parameters used in development of the OTV LCC model.

All costs reported in millions of 1984 $.

One failure per two OTV missions {(one OTV subsystem module R/R)}.
$30k per hour per man for EVA,

$10k per hour per man for IVA.

Seven missions per year for seven years.

30 missions between major overhauls (both modules and engines).
Four hours EVA R/R time for unscheduled failures.

Four hours 1VA time for unscheduled failures.

Orbiter fees for OTV {and spares) transportation based on percent of total orbiter cargo weight capacity.
OTV ground processing factored from STS launch operations.

Flight operations at JSC $12k/hour.

STS transportation cost $1476/pound.

Average module weight 33 pounds.

13 module types (52 total modules).

50 manhours EVA turnaround time per mission.

112 manhours IVA turnaround time per mission.

One, two, three and four engine configurations.

Propuisian system total thrust 15,000 Ibf.

The following CERs have been developed for inclusion in the OTV
life cycle cost model. Each CER algorithm and source is presented,
followed by the validity range and a description of the associated
rationale.
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Structure/Mechanisms (MSFC)

0.821 x strucO-437
0.064 x STRuUCO-545

STRRDM
STRUCM

where: STRRDM = Structure/mechanism DDT&E cost
STRUCM = Structure/mechanism unit cost
STRUC Structure/mechanism weight in 1bm.
Validity range: 60 to 2000/1bm

The structure/mechanism subsystem consists of a primary structure
of an aluminum tubular truss design. It includes trunnion fittings
and aluminum panels for the mounting of avionic components and

assemblies. Docking and interface mechanisms for payloads and the
orbiter are also included.

Thermal Control (MSFC)

THRMRDM = 0.821 x THERMO-437
THRMUCM = 0.064 x THERMO-545

»

where: THRMRDM = Thermal control subsystem DDT&E cost

THRMUCM = Thermal control subsystem unit cost
THERM Thermal control subsystem weight in 1lbm.
Validity range: 60 to 2000 1lbm

The thermal control subsystem maintains the temperature of the
spacecraft, mission equipment, and propellant within allowable
limits in certain orbital conditions. The thermal control
subsystem includes paint, insulation, radiators, heaters, louver
assemblies, temperature sensors, heat pipes, and a thermodynamic
vent system. Thermal control can be accomplished either passively
or actively. Passive control often means nothing more than a coat
of reflective paint. Active control ranges from mechanical
shutters to heat pipes running through the structure.

Propulsion (Space Division)

1.668 + (0.126 x PROP)
0.43 x PROp0.494

PROPRDM
PROPUCM

where: PROPRDM = Propulsion subsystem DDT&E cost
PROPUCM = Propulsion subsystem unit cost
PROP Propulsion subsystem weight in 1lbm
Validity range: 200 to 4000 1bm

The propulsion subsystem provides a reaction force for
orbit-keeping, orbit—changing, and attitude control. The
propulsion subsystem includes a reaction control system, fuel and
oxidizer tanks, pressurization and accumulator system, and flow
system hardware. Specifically excluded are costs for an advanced
engine and onorbit propellant costs.
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Electric Power (MSFC)

£pg0-584
Epg0-784

EPSRDM
EPSUCM

»

0.597
0.042

b

where: EPSRDM = Electric power subsystem DDT&E cost
EPSUCM = Electric power subsystem unit cost
EPS Electric power subsystem Weight in 1bm

Validity Range: 100 to 10,000 1bm

The electric power subsystem stores, converts, regulates, and
distributes electrical energy to and between spacecraft
components. The electric power subsystem includes batteries, fuel

cells, regulators, converters, distribution units and wiring
harnesses.

Guidance, Navigation and Control (MSFC)

GNCRDM = 3.08 x GNCcO-516
GNCUCM = 0.5763 x GNc0-494
where: GNCRDM = Guidance, navigation and control subsystem DDT&E
GNCUCM = Zszsance, navigation and control subsystem unit
GNC = gzzgznce, navigation and control subsystem weight
in 1bm

Validity Range: 200 to 4000 1lbm

The guidance, navigation and control subsystem generates control
signals that interface with the propulsion subsystem to produce
thruster forces for translation and stabilization of the spacecraft
orbit. The guidance, navigation and control subsystem includes
inertial reference units, accelerometers, range-rate sensors, valve
control electronics, and attitude computers.

Data Management and Communications (MSFC)

0.615 x pMc0-653
0.053 x pMc0-917

DMCRDM
DMCUCM

where: DMCRDM = Data management and communications subsystem DDT&E

cost
DMCUCM = Data management and communications subsystem unit
cost
DMC = Data management and communications subsystem

weight in 1lbm
Validity Range: 50 to 1000 1bm




The data management and communications subsystem processes
information on spacecraft conditions and mission progress, stores
or transmits such data to the ground, and receives commands from
the ground and initiates their execution. The data management and
communications subsystem consists of processors, memory storage
units, coders and decoders, timing units, control consoles,
antennas, transmitters, and receivers. The software needed to

operate the data collecting and transmitting functions is also
included.

Aerobrake (MSFC)

ABRDM = 1.668
ABUCM = 0.064

™

(0.126 x ABWT)
ABWTO-545

]

where: ABRDM = Aerobrake DDT&E cost
ABUCM = Aerobrake unit cost
ABWT = Aerobrake weight in lbm

Validity Range: 60 to 2000 1bm

The aerobrake CERs are the same as those used for
structure/mechanisms. As the design matures, an update should be

made to account for the aerobrake specifically.

Advanced Engine (Pratt & Whitney)

ENGUNITWT = 28.33 x THRUSTO+2825

ENGWT = ENGUNITWT x ENG

ENGDD = 306.25 + (0.0029 x THRUST)
ENGUNITCOST = 1.963 + (0.000103 x THRUST)
ENGUC = ENGUNITCOST x ENG

where: ENGUNITWT = The single engine weight in lbm

THRUST = Single engine thrust in 1bf i
ENGWT = Engine system weight in 1bm
ENG = Number of single engines on the OTV
ENGDD = Engine DDT&E cost

ENGUNITCOST = Unit cost of a single engine

ENGUC = Engine system unit cost
Validity Range: 250 to 500 1lbm
3000 to 15000 1bf

The engine subsystem weight equations and CERs were developed from

data supplied by Pratt & Whitney. They represent the best-fit
regression curves of single data points.
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Spacecraft DDT&E Cost

DDTE = STRRDM + THRMRDM + PROPRDM + EPSRDM + GNCRDM + DMCRDM +
ABRDM + ENGDD

where: DDTE

1}

Spacecraft DDT&E cost

STRRDM = Structure/mechanism subsystem DDT&E cost

THRMRDM = Thermal control subsystem DDT&E cost

PROPRDM = Propulsion subsystem cost

EPSRDM = Electric power subsystem cost

GNCRDM = Guidance, navigation and control subsystem cost
DMCRDM = Data management and communications subsystem cost
ABRDM = Aerobrake DDT&E cost

ENGDD = Advanced engine DDT&E cost

The DDT&E equation gives design, development, test, and evaluation
cost of the total OTV. A detailed discussion of each subsystem is
given in the preceding pages.

Flight Hardware Cost

FH = STRUCM + THRMUCM + PROPUCM + EPSUCM + GNCUCM + DMCURM + ABUCM

+ ENGUC
where: FN = OTV flight hardware cost
STRUCM =  Structure/mechanism subsystem DDT&E cost
THRMUCM = Thermal control subsystem unit cost
PROPUCM = Propulsion subsystem unit cost
EPSUCM = Electric power subsystem unit cost
GNCUCM = Guidance, navigation and control subsystem unit
cost
DMCUCM = Data management and communications subsystem
unit cost
ABUCM =  Aerobrake unit cost
ENGUC =  Advanced engine system unit cost

The flight hardware equation gives the unit cost of a single OTV.
Each subsystem is discussed in detail in the preceding pages.

Spacecraft Weight

SCWT = (STRUC + THERM + PROP + EPS + GNC + DMC + ABWT + ENGWT)x1.15

where: SCWT OTV Weight in 1lbm

STRUC = Structure/mechanism subsystem weight in lbm

THERM = Thermal control subsystem weight in lbm

PROP = Propulsion subsystem weight in lbm

EPS = Electric power subsystem weight in 1bm

GNC = Guidance, navigation and control subsystem
weight in lbm

DMC = Data management and communications subsystem
weight in lbm

ABWT = Aerobrake weight in lbm

ENGWT = Advanced engine system weight in lbm
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The OIV weight equation gives the total weight for a single OTV.

Space Station Crew Cost

SMAINT = (SEVA x EVA + SIVA x IVA) x MISYR x NYO/lO6
USMAINT = (EVARR x EVA + IVARR x IVA) x FAIL x MISYR x NY0/106

where: SMAINT

Scheduled maintenance labor cost

SEVA = Scheduled EVA time in hours

EVA = IVA cost per hour

SIVA = Scheduled IVA time in hours

IvVA = IVA cost per hour

MISYR = Number of missions flown by OTV per year
NYO = Number of years of OTV operation
USMAINT = Unscheduled maintenance labor cost

EVARR = Unscheduled EVA time in hours

IVARR = Unscheduled IVA time in hours

FAIL = Number of failures per OTV mission

The space station crew cost equations represent the cost of EVA and
IVA time while on orbit.

Program Support Elements (MSFC)

GSE = 0.10 x
SEID = 0.10 x
PMD = 0.05 x
IACP = 0.20 x
SEIP = 0.10 x
PMP = 0.05 x
where: GSE
DDTE
SEID
PMD
IACP
FH
SEIP
PMP

DDTE
(DDTE + GSE)

(DDTE + GSE + SEID)
FH

(FH + IACP)

(FH + IACP + SEIP)

Ground support equipment cost

OTV DDT&E cost

System engineering and integration cost

Program management cost for DDT&E phase

Installation, assembly, and checkout cost for
DDT&E phase for OTV subsystems

OTV flight hardware cost

System engineering and integration cost for
production phase

= Program management cost and integration cost for
production phase

The program support equations were derived from NASA costing

information.

They represent an average percentage factor of

certain elements.
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Propellant Cost (Derived from Rev 6 Mission Propellant Requirements)

PROPWT [BPROP + 148x (SCWT-5096) - 7660 x (ISP - 480)]
PROPLB = SHLC x 106 / 65000
PROPCOST = PROPLB x PROPWT / 10©

(]

where: PROPWT

Total propellant weight in 1lbm

BPROP = Baseline propellant weight in 1lbm

SCWT = Total OTV weight in 1lbm

ISP = Advanced engine specific impulse in seconds
PROPLB = Propellant cost per lbm

SHLC = Shuttle launch cost in millions of dollars
PROPCOST = Total propellant cost in millions of dollars

The propellant cost equation calculates the total propellant cost
based on the basic propellant usage plus the effects of changes in
OTV dry weight and engine specific impulse. The cost per pound is
calculated assuming a 65,000-1b cargo capacity for the shuttle.

Operation and Support Factors (Engine Replacement and Spares
Scenario)

ENGREPCOST = (ENGUNITCOST x ENGREP x MISYR x NYO) +
(MISYR x NYO/MISOV x ENGUC)

SPARES = FAIL x MISYR x NYO

SPARESWT = SPARES x MODWT

OVWT = MODS x MODWT

MODULEWTS = SPARESWT + OVWT

SPARESCOST = (0.22 X MODULEWTSCO+%%) + ENGREPCOST

LOGISTICS = (0.6 x FH) + (0.02 X SPARESCOST x NYO) +
(0.0005 X DDTE x NYO/3)

GC = 15 x NYO

where: ENGREPCOST = Total cost for engine replacements over the

life of the OTV

ENGUC = Advanced engines system weight in 1lbm

ENGREP = Number of engines replaced per OTV mission

MISYR = Number of spacecraft missions per year

NYO = Number of years of OTV operation

MISOV = Number of OTV missions between scheduled
overhauls

SPARES = Number of replacement modules required over
the OTV lifetime

FAIL = Number of failures per OTV mission

SPARESWT = Contingency replacement module weight in 1bm

MODWT = Average replacement module weight in 1bm

OVWT = Replacement module weight, in 1lbm, per OTV
overhaul

MODS = Number of replacement modules on the OTV
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MODULEWTS

SPARESCOST
LOGISTICS

FH
DDTE

GC

Total replacement module weight, in 1lbm

Total cost of OTV spares

Total cost of training, technical data,
inventory control, and sustaining engineering
OTV flight hardware cost

OTV DDT&E cost

Ground control cost of OTV operations

The operation and support equations represent the cost, except for
labor, to maintain and operate an OTIV at the space station.

Mission Loss Cost (two loads propellant and turnaround operations)

MPS x 2
where: MISLOSS

PROPCOST
SMAINT

USMAINT
SPARESCOST
LOGISTICS

MPS

of missions flown.

Life-Cycle Cost

SMAINT + USMAINT +

where: LCC
DDTE
FH
SEID

SEIP
GSE

PMD
PMP

I n

MISLOSS = (PROPCOST + SMAINT + USMAINT + SPARESCOST + LOGISTICS) x

Cost to recover a lost mission

Total propellant cost

Scheduled maintenance labor cost

Unscheduled maintenance labor cost

Total cost for spacecraft spares

Total cost for training, technical data,
inventory control, and sustaining engineering
1 - Main propulsion system reliability

The mission loss equation represents the cost to complete failed
missions using a second OTV and to retrieve the disabled OTV on the
return trip. The number of mission losses is calculated by
subtracting the main propulsion system reliability, which is the
probability that the system will function properly, from 1.00
(which represents 100% success) and multiplying by the total number

LCC = DDTE + FH + SEID + SEIP + GSE + PMD + PMP + SPARESCOST +

LOGISTICS + GC + PROPCOST + MISLOSS + IACP

OTV life cycle cost
OTV DDT&E cost
= OTV flight hardware cost

System engineering and integration cost for
the DDT&E phase

System engineering and integration cost for
the production phase

Ground support equipment cost

Program management cost for the DDT&E phase

Program management cost for the production
phase
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4.4.2

SPARESCOST = Total cost of 0TV spares

SMAINT = Scheduled maintenance labor cost

USMAINT = Unscheduled maintenance labor cost

LOGISTICS = Total cost of training, technical data,
inventory control, and sustaining engineering

GC = Ground control cost for OTV operations

PROPCOST = Total propellant cost

MISLOSS = Cost to recover a lost mission

The life-cycle cost equation represents the entire cost of the OTV
from its inception throughout its useful l1ife,.

Model Translation - The CERs were translated into BASIC and entered

on an IBM personal computer.

Model Validation - Each CER was developed from data obtained from
numerous previous and current space programs. Historical data are
probably the most valid and accurate from which to develop CERs and
these data were used in the preparation of the OTV CERs. Much of
the data was contained in the Space Station Cost Model (PRC D-~2115)
and the remainder were developed through analysis of 0TV design
requirements.

Model outputs of dollar values for the cost groups of DDT&E,
production and operations/maintenance were compared with actuals or
other similar complexity programs and found to be of the same
nominal order of magnitude.

Life-Cycle Cost Results

Life~Cycle Costs for Engine Configurations — The LCC and propulsion
system performance reliabilities were developed for 1, 2, 3, and 4
engines with single~engine burn reliabilities of 0.994, 0.996, and
0.999, and nonindependent failure rates (NIFR) of 0, 0.03 and

0.05. Pigures 4.4-2 through 4.4-19 reflect OTV LCC and propulsion
system reliability for the respective number of Pratt & Whitney and
Aerojet engines. The engines selected for LCC/performance analysis
were 1 engine with a 0 engine-out capability, 2 engines with a 1
engine~out capability, 3 engines with a 2 engine-out capability and
4 engines with a 3 engine-out capability.
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Based on an engine selection criteria of minimum LCC, Table 4.4-2
reflects the optimum number of engines for all combinations of

engine burn reliability and nonindependent failure rate for the
Pratt & Whitney engine data.

Table 4.4-2
Pratt & Whitney Optimal LCC Propulsion Configuration

Nonindependent Failure Factor

Burn Reliability 0.00 0.03 0.05

0.994 ) 2 Engines 2 Engines 2 Engines
0.996 2 Engines 2 Engines 2 Engines
0.999 1 Engine 1 Engine 1 Engine

An examination of Table 4.4-2 shows two engines to be optimal under
the selection criteria for all but the 0.999 single-engine burn
situation. Further examination of Figures 4.4-2 through 4.4-10
demonstrates three or four engines to be only marginally superior
in reliability and significantly higher in LCC than two engines.
Nominal delta LCC values are $M70 for three engines and $M130 for
four engines over the two-engine configuration. A single engine
shows the least LCC only for a burn reliability of 0.999 (by a
delta of nominally $M10) but not for burn reliabilities of 0.994 or
0.996.

These data lead toward the conclusion that across the selected
spectrum of single-engine burn reliability (0.994-0.999) and
nonindependent failure factor (0.00-0.05), two engines demonstrate
near maximum reliability and minimum or near minimum LCC. 1In
addition, in making a two-engine configuration fail
operational/fail safe for the return of a manned capsule, an amount
of subsequent propellant cost must be added to the two—engine case
LCC for contingency operation of a GO;/GHy ACS system. For

seven 13,000-1bm manned payloads in the 1994-2000 time period (Ref
6 Mission Model), approximately $20M must be added to the
two~engine case to make it fail operational/fail safe. This
appears to be an affordable method of providing a high level of
manrating reliability and flexibility along with remaining the
lowest LCC configuration for the performance of the Rev 6 Mission
Model.

Table 4.4-3 reflects the optimum number of engines for all
combinations of single—engine burn reliability and nonindependent
failure rate for the Aerojet engine data. The results and
conclusions are the same as for the Pratt & Whitney data.
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Table 4.4-3
Aerojet Optimal LCC Propulsion Configuration

Nonindependent Failure Factor

Burn Reliability 0.00 0.03 0.04

0.994 2 Engines 2 Engines 2 Engines
0.996 2 Engines 2 Engines 2 Engines
0.999 1 Engine 1 Engine 1 Engine

In comparing cost element outputs from the LCC model, most cost
elements (including DDT&E, unit production, GSE, program
management, spares, scheduled/unscheduled maintenance, overhaul
labor, and ground control) show only minor delta cost differences
between the various engine configurations. However, two cost
elements contribute toward major cost deltas between the engine
configurations—propellant cost and mission loss cost. Propellant
cost is directly related to the propellant usage to achieve a
15,000-1bf thrust for the respective engine configurations.
Mission loss cost is related to the propulsion system reliability,
which in turn is derived from engine burn reliability, number of
engines and the nonindependent failure factor.

For Pratt & Whitney engine data, a greater number of engines
results in higher propellant usage and therefore higher LCC.
Conversely mission loss cost is highest for a single engine and
generally lowest for two engines (depending on burn reliability and
nonindependent failure factor - see previous discussion on optimal
propulsion system reliability considerations). The costs
associated with these two elements tend to be the determining
factors in the relative costs of the respective engine
configurations. The mission loss costs for two, three, and four
engines are relatively low and balance out, whereas one engine
generally has a very high mission loss cost. The resultant
summation of mission loss cost and propellant cost across the
selected ranges of single-engine burn reliability and
nonindependent failure factor shows two engines to be the optimal
or near optimal choice.

For Aerojet engine data, the propellant cost is less of a cost
driver because of the reduced propellant consumption differences
between the engine configurations. In view of this, the primary
cost driver for the Aerojet propulsion system becomes the mission
loss cost. The two-engine configuration demonstrates least mission
loss cost for all but the single—engine configuration with a burn
reliability of 0.999.




LCC Model Sensitivities - Tables 4.4-4 and 4.4-5 summarize the
sensitivities of cost parameter variations on LCC for Pratt &
Whitney and Aerojet. The two-engine burn reliability of 0.996 and
a nonindependent failure factor of 0.03 was selected as a baseline
for developing the cost parameter sensitivities. , The sensitivities
are generally the same for other engine configurations although the
LCC "actual values" differ. Each parameter has been varied over
ranges as wide as might be conceived at this time. Figure 4.4-20
shows the sensitivities of LCC to missions per overhaul (average

number of missions between remove and replace for the vehicles'
subsystems).

Table 4.4-4 LCC Sensitivities Summary (Pratt & Whitney)
(for 2 engines)

Parameter Sensitivity
(LcC $M per -)

Propellant Cost $182M per $100/1b

IVA Cost $59M per $10k/h

EVA Cost $28M per $10k/h
Failures/Mission $11M per failure/mission
Missions/Year $23M per mission/yr

(not including propellant)
Missions/Overhaul $3.8M to $0.33M per mission/overhaul

Specific Impulse $11M per second of Igp
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4.4.3

TABLE 4.4-5 LCC Sensitivities Summary (Aerojet)
(for 2 engines)

PARAMETER SENSITIVITY
(LcC $M per __)

Propellant Cost $176M per $100/1b

IVA Cost $59M per $10k/hr

EVA Cost $28M per $10k/hr .
Failures/Mission $9.3M per failure/mission
Missions/Year $23M per mission/yr

(not including propellant)
Missions/Overhaul $4M to $0.33M per mission/overhaul

Specific Impulse $11M per second of Isp

The sensitivities for the Aerojet data are almost identical to
those shown for the Pratt & Whitney data.

Propellant cost variations provide the greatest impact on OTV LCC
even for only minor propellant cost deltas. This cost element
tends to outweigh all other cost elements considered in this
analysis in both actual magnitude and relative LCC sensitivity.
Secondary cost sensitivities are IVA, EVA, specific impulse and
missions per year. 1IVA and EVA variations contribute to LCC
sensitivity because of the significant amount of IVA and EVA time
involved in mission turnaround activity. Specific impulse changes
contribute significantly to LCC sensitivity because of the direct
relationship between specific impulse and propellant usage.
Missions per year changes drive LCC because of the direct
relationship with propellant usage, EVA, IVA and all other cost
elements. Variations in failures per mission and missions between
major engine overhauls are shown to provide minimal impact on LCC.

Life-Cycle Cost Profiles

The two-engine Pratt & Whitney propulsion system configuration with,
a single-engine burn reliability of 0.996 and a nonindependent
failure factor of 0.03 was selected as a baseline for developing
LCC cost profiles. Figure 4.4-21 shows the baseline cost profile
with operations and support (0&S) costs being the major contributor
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with 74% of the total LCC. The majority of this 0&S cost is
attributable to $M2685 propellant cost. Propellant represents 67%
of the total LCC and has been removed from consideration in
subsequent cost profiles to allow closer examination of the
secondary cost drivers.

The most significant LCC element is DDT&E (Fig. 4.4-22) of which

engines (34%), propulsion (18%), and aerobrake (14%) contribute 66%
to this element.

Operations and support costs (excluding propellant) is profiled in
Figure 4.4-23 where scheduled maintenance (mission turnaround) and
ground control comprise the majority of this cost element.

The third and least contributor to the LCC is production cost (Fig.
4.4-24), which accounts for only 2% of the total LCC.

Figure 4.4-25 shows the tall poles, or largest of the secondary

contributors to LCC, in descending order of magnitude (propellant
being excluded).
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4.5

Level of Vehicle Modularization

Section 4.1.3 describes the process used in modularizing the
baseline vehicle concept. The assessment criteria used in grouping
the vehicle components into modules include module size,
accessibility, interface complexity, module functional similarity,
failure frequency, physical proximity, operational concerns, etc.
This section provides a rationale from a LCC standpoint to

substantiate the level of serviceability (modularity) selected and
discussed earlier.

As demonstrated by the LCC model outputs and sensitivities, the
orbiter payload transportation costs are a significant cost

driver. Although space station storage costs have not been
computed, it is reasonable to expect that this type of storage (for
spares and equipment) will be at a premium. A review of Table
4.4-6 indicates a reduced cost for level 3 over the level 1 or
level 5 for these two major cost drivers (items A and B). Analysis
of the LCC model outputs and sensitivities indicated that items C
through G in Table 4.4-6 were not major cost drivers. A cost
comparison for items C through F in Table 4.4-6 marginally favors
level 1 over level 3 and substantially over level 5. In summary,
level 5 probably has the least life-cycle cost. Levels 3 and 5
offer an advantage over the level 1 in that they canm incur multiple
failures. Further analysis is required to determine which modules
require the most support because of their higher failure rate
and/or criticality to quantify these tradeoffs. Additional
maintainability and design engineering will enhance the location of
these modules for easier EVA R/R actions. Module design permits
technology upgrade more readily than either full assembly design
(via cost) or the subcomponent design (via interfaces).

Based on estimates of the major cost drivers, Figure 4.4-26
illustrates where the probable minimization of LCC will occur with
regard to vehicle and engine modularization.

MAJOR STUDY CONCLUSIONS

Phase II results served to verify the results and conclusions
arrived at during the Phase I study effort (see section 3.5). This
applies to development of the baseline vehicle(s), engine
operational requirements, and design recommendations.
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A summary of the study conclusions for Phase II exclusively are
tabulated.

o LCC Sensitive to:

- MPS Reliability (Mission Loss)

=~ Vehicle Dry Weight

- Isp

- Propellant Cost (amount scavengable, etc)

o LCC Relatively Insensitive to:

-  Number of Missions/Overhaul
- Failures/Mission
- EVA and IVA Cost

o Two or Three Engines Recommended Because of:

- Highest Reliability

= Minimum LCC - Across Estimated Range of Dependant Failure
Rates and Engine Reliability

- Fail Operational/Fail Safe Capability
(affordable manrating criteria)

o Onorbit Servicing is Cost Effective~—Proper Degree of
Modularity Required:

- Engine: 2 to 8 modules
- Vehicle: 20 to 100 modules
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