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CHAPTER 1
INTRODUCT ION
1.1 General

Complex structural systems are most often modeled for analysis as
assemblies of discrete structural components. The most generally ap~
plicable discretization approach is the finite element method (FEM). In
this method it Is often necessary to divide the structural model Into a
very large number of elements In order to accurately evaluate displace~
ments, strains, and stresses. As the number of elements Increases, the
number of degrees of freedom (DOF) In the model can easily exceed the
capacity of many present-day computer facilities (both hardware and
software) or can make the solutlion of the large order matrix equations
prohibit+ively expensive [1.1]. This problem becomes particularly acute
In nonlinear analysis. The iterative nature of nonlinear analysis re-
quires that the matrix equations be solved repetitively, thus com-
pounding the computational expense.

The application of +tIme-dependent (dynamic) loading to complex
structural models Imposes additional difficulty on current structural
software systems. A linear dynamic analysis can be orders of magnitude
more expensive than a static analysis of the same model. When nonlinear

response [s also considered, +t+he computational effort required for

analysls can quickly make the solution Infeasible.



Recent advances in computer architecture, primarily in brute com-

putational speed, have somewhat relieved the problems of excessively
large and costly analyses. [t is not expected, however, that new
developments in hardware will keep pace with the growing demands, In
terms of model size and complexity, made by structural analysts. Nor
‘will the very expensive super-computers become widely available.
Moreover, it appears unlikely that orders of magnitude increases In
high-speed memory capaclty and data transmission rates (which analysts
have come to expect every few years) can be extracted from current tech-
nology. If any short term rellef is to come, it must derive from im=
proveﬁenfs in the structural analysis software. Such Improvements |ie
In more efficient use of existing hardware and In improved structural
modeiing techniques. The focus of this work is on +the Iimprovement of
structural modeling techniques.

One procedure that is used successfully in static analysis is mul=
+ilevel substructured modeling [1.2]. This approach allows the various
major structural units, or substructures, to be freated Independently
prior to final assembly. With the use of condensation techniques, a
reduction in total model size can be achieved while exactly retaining
the original system characteristics for static analysis. Substructuring
techniques also find broad applicability to the various +types of com=
puter hardware used by engineers today. Efficient use of both main-
frames and virtual memory minicomputers with either serial or pipeline
processors has been demonstrated [1.3]. In view of Independent sub-
structures, the possible adaptation of the software fo a system of in-

dependently operating processors (or computers) under the logical con=



trol ot a single machine becomes quite attractive.

Many Investigators have presented extensions of the substructuring
approach from static analysis to dynamic analysis of finite element
modeis. However, these efforts are |imited to one level of subsiruc
tures. No attempt has yet been made to formulate and implement mglr
‘tilevel substructuring for dynamic analysis in & general purpose FEM
system.  Thus,. the techniques are not proven effective from the prac-

tical viewpoint of large scale structural analysis. The need exists for

a comprehensive dynamic analysis system capable of processing multilevel
substructured models and Incorporating nonlinear response Into the solu-

tion,

1.2 Objectives and Scope

The objectives of this work are fourfold:

1. To review the state~of=-the-art of the multilevel substructure
methodology and model ing procedures for the statlic analysis of
complex structures by the FEM. Included is a presentation of
the design and implementation of the required software and an
illustration of the modeling technique by way of example
problems.

2. To review the analytical formulations and computational
procedures avallable for the analysis of complex structural
systems subjected +o time~dependent loads and capable of
|inear or nonlinear response. Emphasis is placed on methods
for reducing the size of the finite element model for dynamic
analysis., Also studied are eigenproblem solution procedures,
solution of the equations of motion, and formulations for
tracking nonlinear response.

3. To ldentify the reduction and computational procedures most
suitable for incorporation into a general FEM software system
with multilevel substructuring capabilities.

4, To discuss the Iimplementation considerations of the above
relative to a multilevel substructured envlronment,



The discussion of dynamic analysis methods is based on a review and
interpretation of the open literature. While the authors, along with
several other researchers, have experience in large scale |Iinear and
nonlinear static analysis with substructuring, large scale dynamic
analysis has been performed using only the simplest of techniques.

The remainder of this report is dlvided into chapters which Iden~
tify the major +topics covered. Chapter 2 is a presentation of the
methodology and implementation procedures of multilevel substructuring
In a general purpose software system. Methods for reducing the order of
the coefficient matrices In the differential equations of motion are
reviewed and evaluated in Chapter 3. Chapter 4 considers the varfous
computational algorithms required In dynamic analysls; Included are
elgenproblem solution methods, procedures for solving the differential
equations of motion, and selected minor toplcs. The nonlinear‘conTTnuum
mechanics equations for finite deformation, cast in matrix form, are
presented In Chapter 5. Exact forms for both %he Total Lagrangian and
the Updated Lagrangian approaches are desértbed in addition to the
finite deformation theories of elasto-plasticity. Chapter 6 presents
specific forms of the finite element matrices forlfhe Total and Updated
Lagrangian approaches. Details of the +transient solution procedure
based on an impliclt integration operator with the effects of substruc-
turing are discussed. Chapter 7 describes the input language designed
to provide a convenient user interface with the application soffware. A
summary of work performed thus far Is presented In Chapter 8 along with
proposed future activities necessary for successful dynamic analysis of

multilevel substructured models.



n

1.3 Notation

Most of the notation used in the following chapters is defined as

It is introduced. However, the following list may prove to be a useful
reference, Consistency is maintained whenever possible and exceptions
.are noted in the text. The complexity of the notation used In Chapters

5 and 6 warrants special discussion in those chapters.

{1} a vector

L] a matrix

p(X) characteristic polynomial

xg - yg global coordinate system

xl - y| local coordinate system

{q} vector of generalized displacement. coordinates

{u}, {ﬁ}, {u} displacement, velocity, and acceleration vectors In

geometric coordinates

{um}, {us} displacement vectors for master and slave DOF

Exj] matrix of trial mode shapes for Iteration "j"

K.E. kinetic energy for a structure

S.E. stralin energy for a structure

[A] a tridiagonal matrix

[8], [6] an Interaction matrix used Iin simultaneous Iteration
methods

Ccth] time dependent damping matrix

(o] substructure dynamic stiffness matrix

k1, [™MJ stiffness and mass matrices or submatrices



[k, CM]
[Ked, CMe]

[k3, ow*3
k3, T
k™3, [H™]
[L]

M) ]
CPl, [o]
{PCH)}
[R]

[s]

[Tel, [¢°]

[T,d

2
i

[w?]

W

A, LA
4]
[5"1

Guyan reduced stiffness and mass matrices

fixed-interface substructure reduced stiffness and mass
matrices

submatrices of generalized stiffness and mass for sub-
structure "i"

stiffness and mass matrices assembled from lower level
substructures

stiffness and mass submatrices for the system master DOF
within Eﬁ] and [§]

lower triangular matrix of Choleski factors of a stiffness
matrix

dynamic mass matrix

orthogonai transformation matrices

time dependent load vector

an upper friangular matrix

symmetric coefficient matrix for an eigenproblem in stan-
dard form

Guyan transformation matrix (static constraint modes)
frequency dependent transformation matrix

square of the substructure natural frequency for mode "i"
diagonal matrix of substructure natural frequencles
squared

unknown system frequency

an eigenvalue, dlagonal matrix of elgenvalues

matrix of substructure normal modes of vibration

set of retalned substructure normal modes
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CHAPTER 2
MULTILEVEL SUBSTRUCTURE STATIC ANALYSIS

2.1 General

Complex structures frequently consist of repeated, Identical compo-
nents. This may be dictated by economic, construction, or symmetry con-
straints, The boundaries between components (elther real or artificial)
partition a complex structure into a natural system of simpler substruc-
tures. Each substructure may in turn be partitioned to exploit aa-
ditlonal repetition. The associated finite element model generation
process Is considerably simplified through the repeated wuse of
previously defined components. In many cases, the computational costs
of analysis are reduced accordingly. This concept of substructured
modelIng has been termed the "superelement" technique in the Iiterature
due to the simltarity of the substructure merging process with that used
to connect finite elements. The ferm "user-defined" has also been em-
ployed to distinguish analyst specified substructuring from automatic
partitioning of the equilibrium equations.

The structural frame of an aircraft provides the classic exampie to
Il lustrate the concepts and advantages of a substructured analysis. In=
dependent design groups develop the individual substructures, for ex-
ample: the wing assembly, fusealage sections, and vertical stabillzer.
The substructures Interface through relatively small boundaries (in
terms of +the number of nodes). Even with such "first-level" substruc-
turing, the number of nodes and elements may be too large for efficient

processing of the substructures. The same substructuring process, in



theory, can be repeated within each first-ievel substructure to In-
troduce second, third, fourth, ... level substructures. The engine
nacelles, shrouds, flaps, ribs, and skin panel sections within a wing
assembly may comprise substructures flve or six levels removed from the
"highest" level structure that represents the complete airframe. The
-conceptual organization for this type of structural mode! paraliels that
of a tree. The tree has a single root node (the highest level struc-
ture). Any number of substructure levels may be defined below the root
node. No theoretical limit exists on the number of branches that enter
a node (substructure) at level "I" from level "I=-i1", All terminal
nodes of the tree are individual finite elements.

Substructure techniques have been utillized extensively by the Nor-
weligan ship bullding Industry [2.3] to construct and analyse finite ele-
ment models of oll tankers. Repeated bulkheads and common stiffener ar-
rangements in ships are well sulted for substructuring. Without mul-
tilevel substructures, typical analyses would Involve 100-150 +thousand
degrees of freedom. Problems of this size remain Impractical to solve
despite the avallabllity of super-computers. Both the alrframe and ship
building examples clearly demonstrate the usefulness of multi~ievel sub-
structuring to support practical analyses.

In the context of ilinear, static analysis, a substructured model
yields the same solution (to within round-off errors) as a "standard"
model that considers the structure as a single collection of nodes and
elements. The solution equivalence remains valid for static, nonlinear
analysis provided the substructures experiencing noniinear behavior are

Included in +the Iterative solution. Normally, regions of a structure



that remaln |Inear are substructured and eliminated via statlc condensa-
+lon from the iterative solution, For example, it Is a simple matter to
anticipate the plastic deformation that occurs near a stress concentra-
Tlon. Portions of the structure removed from the stress concentration
are defined as |Inear substructures and condensed. Nonllneaf finite
‘elements and reduced |lnear substructures comprise the highest level
structure for the iterative solution. Linear substructures simply
provide elastic restraint on the nonlinear region. In such cases, the
standard and substructured models again yield Identical solutions,
However, the substructured model generally requires much less com-
putational effort as a consequences of Its reduced size.

This chapter provides detalled background information on substruc-
tured modeling and solution procedures for static analysis. The advan-
tages of subsfruqfured analysis relative to the standard procedure are
first described. The |iterature concerned with static substructuring Is
reviewed, Varjous techniques adopted to address the user-software in-
terface are described and a simple example Is presented to Illustrate
the techniques used in the POLO-FINITE system. Computational and
software Issues that arise in programs for general substructured
analysls are surveyed. The chapter concludes with a study of tfwo ex-
ample problems that 1llustrate the computational savings possibie with

substructured models for |inear and nonlinear static analysis.



2.2 Substructured vs Sfandard'MQQels

Compared with a standard model ing and solution procedure, a multi=

level substructured approach offers a number of advantages. These In-

clude:

Input data requirements are reduced. Geometric and topologic
descriptions of a substructure are specified only once. When
the same substructure appears repeatedly at higher levels, In-
put data that must be provided by the user [s significantly
reduced.

The impact of design changes on reanalysis costs can be
reduced. Stiffness matrices and loading vectors for only the
modi fied substructures are computed during reanalyslis.

Models may be generated independently. Because substructures
have clearly defined Interfaces, the design and modeling
groups may work almost independently. Element numbering, node
numbering, and load case naming schemes are usually Indepen-
dent across substructures which simplifies model generation.

Isolated substructures may be Independently verified. Each

substructure may be constrained, loaded, and analyzed to study

the response of the Isolated model. Checkout analyses are

usually Inexpensive relative to the cost of a complete struc-

ture analysis. The higher execution priority assigned to jobs

that request fewer machine resources also decreases the total

analysis ftime. A complete analysis performed In smaller seg-

ments frequently costs less, and requires less residency time,’
Thagia comparable standard analysis performed in a single ex~

ecution,

Identical substructures may be used repeatediy. This Is +the
most often cited advantage of a substructured model. Sub=
structure quantities, for example the reduced stiffness
matrix, are computed but once and used repeatedly To form
other structure stiffness matrices. The degree of com=
putational savings 1Iis highly probiem dependent with cost
reductions in the range of 2 to 100 having been reported
[2.2]. The level of savings In nonlinear analysis depends on
the degree of size reduction and the frequency of tangent
stiffness updates.

Numerical conditioning problems are often reduced. Certain

types of numerical problems may be remedied through the use of
a substructured model ing and solution procedure. A common
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sltuation involves the joining of a very stiff substructure to
a comparatively flexible one which results in a loss of preci-
sion during stiffness assembly (a very large number overwhelms
the much smaller term). Condensation of a very stiff sub-
structure frequently reduces the magnitude of stiffness coef-
ficients for the remaining nodes to a level comparable with
those of the adjacent, more flexible component. The loss of
precision in the Important stiffness assembly process can thus
be minimized without extended precision arithmetic.

7. Exposure to machine failure is reduced. The solution ot a
structure with a very large number of DOF may require long
residency times on multipurpose computer systems. During
this time, the executing program is exposed to the possibility
of a machine fallure that would require restarting the
analysis. Procedures have been developed, termed checkpoint
restart, that save snapshots of the program status on disk
files at specified intervals, This process often requires ex-
tensive machine dependent coding which restricts the software
portability. Substructured models provide a more natural
solution to the fallure protection problem. Substructures are
processed in a logically Independent, sequential manner during
execution, Natural breakpoints occur between each substruc-
ture at which the the execution may be terminated and the
databases saved on ftape. |f a failure occurs while +the next
substructure 1is being processed, the databases on tape are
simply restored to disk and the analysis resumed.

These advantages of a substructured approach are equally applicable In

all types of analyses == static, dynamic, linear,fand nonl Inear.

2.3 Llterature Survey

Although the concepts and equations of substructured analysis are
generally well known for static analysis, relatively few papers on the
subject have appeared in the |iterature. A contributing factor to this
apparent lack of Interest Is the enormous software complexity required
to support substructuring, coupled with the Iimited avallabtlity or
software +o researchers. For static |inear and nonlinear analysis, the
governing equations are stralghtforward and simple to derive, The few

researchers who have examined substructuring have focused on improving



the computational efficiency and on the  computer implementation
problems. Because only approximate substructured solutions are feasible
In dynamic analysis, the |iterature concerned with Improving the al-
gorithms continues to expand and Is reviewed in the next chapter. This
section reviews previous sftudies that addressed static, Iinear and non-
-I1near substructured analyses.

In the early 1960s, Przemienlecki [2.15] presented the first com=
prehensive formulation for substructured analysis using the conventional
displacement method. Taig [2.17] described an attempt Yo Implement
these procedures for general analysis. These two early studies viewed
substructuring as automatic partitioning of the equilibrium equations to
overcome computer size |Iimitations, Interest In substructured analysis
declined during the late sixties when commercial programs using sparse
matrix techniques became operational on third generation computers. The
non-computational aspects of analysis, including model generation and
technlcal coordination, replaced computer |imitations as +the major
problem areas. Substructure techniques regained appeal as an approach
to solve these problems but In the form of analyst defined, rather than
automatic partitioning, Thus the term "user=-defined" substructuring was
coined. In this same period, Willlams [2.18] showed through operation
counts that equation solving with sparse matrix +ech;lques can never be
more computationally efficient than a substructured solution, when the

substructure arrangement Is suitably defined.



Furuike [2.5] described a software system capable of processing
three levels of substructures. The root and the next two levels of the
tree may contain only substructures. Fourth level stfructures consist
entirely of finite elements. The analyst suppllies, through input data,
the order of substructure processing and the proper sequencing of nodal
'DOF across substructure boundaries. Substructure stiffness condensation
Is performed with the inefficlent inversion algorithm described in Sec-
tion 2.5.1. The author presents several example solutions with and
without substructuring that demonstrate the numerical equlivalence of the
resumits, Unfortunately, no comparisons of computer resources are
provided,

Egelan and Araldsen [2.3] briefly surveyed the substructuring
capablilities of the SESAM=69 program. No detalls of the user—interface
for describing the substructure connectivity and orientation are
provided. SESAM supports multilevel substructured models. Finite ele~
ments and substructures cannot be mixed at the same level in SESAM.
This restriction is Imposed by the adoption of separate assembly proces-
sors for structures composed of only elements and those composed of only
substructures., The classical inversion algorithm for stiffness conden-
sation is Implied In the survey.

Descriptions of substructuring capablilities In NASTRAN are given by
MacNeal and McCormick [2.11] and In ASKA by Schrem [2.16]. Each system
tnitially supported only modest substructuring; the major emphasis being
directed toward efficlent sparse matrix techniques. Proprietary ver-
sions of NASTRAN have been expanded to support more comprehensive sub=

structuring, Including some techniques for dynamic analysis beyond Guyan



reduction., Software detalls are not publicly available. To perform a
substructured analysis, users must write "driver" programs in a special
language to manipulate disk flles and to control +the execution of
processing modules. Completely automated solution procedures for sub-
structured analysis are not avallable.

More recently, Peterson and Popov [2.14] addressed the com-
putational penalty that occurs with stiffness matrix rearrangement prior
to condensation. They propose a scheme fo eliminate nodal freedoms at
the element level before assembly of the condensed stiffness. The tech-
nique Is promoted as more efficient than the conventional method of
rearrangement although no comparisons of computer time are stated for
the example problems,

Lopez [2.9] presented POLO-FINITE as the first major system to sup-
port multi-level substructuring as a natural approach to finite element
modeling. Major advances incorporated in POLO=-FINITE 1include a very
simple substructure definition process and fully automated solution
procedures., The dependencies between substructures In the hierarchy are
determined completely by +the system from basic Input. Any number of
related and/or independent hierarchies may be defined within a single
database, with up to 20 levels of substructuring permitted in each
hierarchy., Substructures and finite elements may be mixed at any level;
the system processors treat finite elements and subsfructures iden-
tically, The extensive system logic 'Thaf automatically controls the
solution process also enables inteliigent reanalysis to incorporate sub-
structure modifications. As input data describing the modifications are

processed, substructure results dependent upon the modifications are in-



val idated. For example, changing a load case definiflion Invalldates ex~
'Is+lng displacements for that load case but not the structure stiffness
matrix. Prior to reanalysis, the system +raverses the hierarchy to
determine the +ype and order of computations required. During the
ftraversal, dependent results for other substructures are destroyed and
‘tagged for recomputation. When a substructure at level "I" Is marked
for computation, dependent substructures at level "i-1" are also marked
for computation, |In this manner, the effects of substructure modifica-
tions are automatically propagated upward through the hierarchy. POLO-
FINITE equation solvers are based on the hypermatrix techniques first
Introduced iIn the ASKA system. An efficient “partlial decomposition" al-
gorithm is utilized to condense substructure stiffness matrices.

The most recently publicized substructure system, MISA [2.7], was
developed by +the Japanese ship building Industry. MISA incorporates
several unique concepts. Wavefront, rather than variabie bandwlidth,
equation solvers are used to condense substructure stiffnesses although
no computational advantage Is claimed. The software logic deduces the
substructure hierarchy from parent-child relations input by the user. A
"copy" functlion facilitates repeated use of previously defined substruc-
tures. MISA does not support mixed substructures and finite elements at
the same level. It currently analyses |Inear structures for static and
thermal loads, and performs steady~state heat conduction analyses.

Dodds and Lopez [2.1] extended the POLO-FINITE system to support
multilevel substructured models for static, nonlinear analysis. The
analyst defines |inear regions that are substructured and condensed o

form effectively elastic supports surrounding the nonlinear, highest



level structure, The reduced size of the nonlinear structure analyzed
with the I1terative technique frequently ylields significant cost savings.
Currently, the nonlinear region must be defined prior to beginning the
analysis, This 1Is a major disadvantage of the approach. For the Ini-
tlal loading levels, this proves Inefficlent as a much smaller ﬁonlinear
-reglon develops than is actually declared. To Improve the situation, It
Is necessary to consider substructures that can be made nonlinear and
brought 1into the Iterative solution as the loading levels increase.
This requires yet another level of sophistication In the control logic

and has not been attempted.

2.4 User-Software lInterface

The user-software Interface for general purpose systems must
provide sufficient flexibility to invoke the options, and yet it should
not discourage the infrequent user with unnecessary detalls., Substruc-
turing further complicates this Interface with the introduction of more
elaborate topology, geometry, and computational algorithms. The
developers of most software to support substructuring have not made the
Interface particularly simple for the user. These systems usually In-
corporate substructuring as an extension of the original software
design. Substructuring Is viewed as a last resort to obtain a solution,
rather +than as a natural modeling approach. Users are required to
"program" the substructured solution by directly or indirectly Invoking
computational modules and by manipulating disk files that store sub-
structure data. Consequently, only the most experienced users attempt

substructured solutions; casual users are told to avoid substructuring.



The process of defining a substructured model and conducting the

analysis consists of flve logical steps. These are:

1. The definition of each Independent substructure (elements,
constraints, and loadings).

2. The elImination of substructure "“slave" (condensed) nodal
freedoms, '"Master" nodal freedoms remain after condensation.

3. The connection of Individually defined substructures In a
topologic and geometric sense. This requires matching of sub-
structure boundaries to Insure displacement compatipnility and
may also Include coordinate transformations of substructure
matrices from their local system to a common giobal reference
frame, Additional boundary constraints may also be required.

4. The creation of a loading set hierarchy that parallels +the
substructure hlerarchy, Equivalent nodal loads computed for
the loading cases defined in (1) for the Individual substruc-
tures are also reduced through condensation., Loads reduced to
the master nodes serve to define a hierarchy of loading sets
on +the complete model. For example, the reduced loads may be
applied to selected coples of a substructure at +the next
higher level to create a desired pattern of loading. The
loads may also be carried up through the hierarchy with scalar
multipliers and possibly combined with other reduced load
cases to form new loading cases on a higher level substruc-
ture,

5. Requests for computation and output. The complexity of com=
putational requests depends on the level of procedural detall
required by the software to effect the solution., Output re-
quests become complex when the user designates the hierarchy
level for which results are desired, for which loading cases,
elements, nodes, coordinate reference frames, etc.

The common ftechnique to approach these problems Involves the use of mul-
tiple programs or a single program executed many times. The programs
communicate through data stored on disk files (and/or +tapes). The
analyst 1Is responsible for coordinating +he program executions to
produce the desired results. A typical analysis with one level of sub-

structures might require that the following tasks be performed by the

analyst:
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1. Elements, nodal coordinates, topology, constraints and loads
are defined to a finite element program for each Individual
substructure., The analyst provides special Insfructions In-
dicating a condensation Is desired and the list of master (or
slave) DOF. Disk files are attached to the program onto which
the reduced stiffness matrices and load vectors are written.
Usual ly each substructure must be processed In a separate
program execution and with unique data files.

2. A substructure processing program is executed with all sub-
structure disk flles attached, This program [s provided with
disk file numbers for the substructures and the order In
which they are +o be processed. The connectivity relations
between substructure master DOF and +the glubal numbering
system are also specifled, Additional complexities arise when
substructure reference axes are not all parallel. Since only
substructures can be processed, It Is not possible with such a
scheme to mix substructures and simple finite elements at +the
same level, which Is Inconvenient in nonlinear analysis. The
substructure processing program assembles the reduced stiff=
nesses and loads to form a final set of equilibrium equations
for solution, then computes the displacements for the highest
level., Master DOF displacements for user selected substruc-
tures are extracted and written onto another set of disk
files.

3. Finally, the finite element program Is again Iinvoked with
proper disk files attached that contain displacements for the
substructure master nodes. Backcondensation procedures may
then be performed to recover siave displacements and element
strains-stresses, This process must be repeated for each copy
of the substructure since the computed displacements, unlike
the stiffness matrix, are unique. ‘

Each of the above steps Involve consliderable manipulation of disk files
and several program executions by the user. The manpower costs can
easily approach those for mode! generation. The process is almost fIn=-
tractable when more than one level of substructuring is used (if per=
mitted at all by the software). Nonlinear problems require looping over
the second and third operations for each load Increment. To place
numbers on the amount of user effort Involved with this approach, a

|inear model containing four substructures at the first level was

analyzed with one of the most successful commercial finite element
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programs. Following the recommended procedures in the user documenta=-
tion, nine separéfe computer jobs were required to obtaln a solution.
Absolutely no automatic solution techniques are availabie In the
program. Changes to one of the substructures required a complefe
reanalysis of the entire structure due to the arrangement of data on
‘tape storage.

Demands placed on the user are greatly simplified when the software
Is designed to support substructured analysis In an integrated fashion.
Standard analyses become the simplest default procedure in such a
system. The following example, analyzed with the POLO-FINITE system,
Il lustrates the degree of simplification péss!ble with a user-orliented
approach to substructured analyses. This example Is not Intended to
demonstrate savings of computational effort; +the computational aavan-
tages are demonstrated in more complex examples at the end of this
. chapter.

The structure Is a simple two span, planar tfruss as shown In
Fig. 2.1. The generally non-symmetric loads requires that a full model
(both spans) be analyzed. Components of the substructured model are
shown In Fig. 2.2, with names assigned to each component for Ildentifica-
tion in the model description. Figure 2.3 illustrates the substructure
hierarchy In tree form for this simple example. One span is defined and
>condensed to the four nodes necessary for connection with +the adjacent
substructure, The bridge Is defined using two coplies of the condensed

substructure and three rod elements to complete the model.



22

5
UTJNLONJLSGNS S4edisn| || Of 8J4niondig ebpiag -~ oz 24nbi4




I 4 5 6 1 8
AVZE
1n§: 2 3255_%"
BRIDGE
Rods
2 3 ' Ei_. 2 3

‘T 3 5 7 1 3
/l(l;l\ Xes _/(l;l\
1 2 4 6 8 1
"~ SPAN SPAN

Figure 2.2 -- Substructured Model for Bridge Example
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The lowest level (sub)structure, SPAN, consists of 8 nodes (each
with 2 DOF) and 13 rod elements. Input data describing structure SPAN
to FINITE are listed In Fig. 2.4. Element types, properties, topology,
and nodal coordinates are flirst specified. The problem oriented
language (POL) input eases data entry by eliminating column and command
.order restrictions. No natural boundary conditions occur at the nodes
el iminated by condensation, Constraints are thus omitted on this lowest
level substructure. Three independent loading cases are deflined fo act
on SPAN. These represent a uniform load applied over the bottom chord,
a uniform load on the top chord, and a lateral load acting on the top
chord. The magnitude of each loading Is unity to simplify +the defini-
tion of actual loading magnitudes In the higher level structure.

Structure SPAN_CON is defined as the statically condensed version
of SPAN. Figure 2,5 |ists the Input data describing this structure.
Nodes 1, 3, 7, and 8 are retalned after condensation. SPAN_CON in this
example corresponds to a "super—-element" in the terminology used by some
researchers. Analysts explicitly Introduce condensed substructures Into
the hierarchy through intermediate structures such as SPAN_CON, Struc-
ture SPAN Is referred to as +the '"child" of the "parent" structure,
SPAN_CON, which resides at the next higher level in the structure tree.
This technique has proven to be a natural means of Incorporating the
condensed version of the substructure into the hilerarchy. |+ eliminates
confusion on the analyst's part and maintains a consistent definition of
structures In the database. Some structures are simply tagged as "con-
densed" which serves to control execution of the processors. The In=

cidences specified for element one of SPAN_CON designate the nodes
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C PROBLEM UNITS ARE KIPS, FEET
C
STRUCTURE SPAN
NUMBER OF NODES 8 ELEMENTS 13
ELEMENTS ALL TYPE ROD E 4.32E06 AX 0.0347

COORDINATES
1
2 20
3 20 20
4 40 0
5 50 20
6 60 0
7 60 20
8 80 0
INCIDENCES
1 13
2 2 3
33 4

LOADING UNIT_TOP
NODAL - LOADS
3 7 FORCE Y -10
| 5 FORCE Y -20
LOADING UNIT BOTTOM
NODAL LOADS
2 4 6 FORCE Y -20
LOADING UNIT SWAY
NODAL LOADS
3 FORCE X 1.0

Figure 2.4 -- POLO=FINITE input Data for Structure SPAN
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STRUCTURE SPAN_CON
NUMBER OF NODES 4 ELEMENTS 1
ELEMENT 1 TYPE SPAN CONDENSED
INCIDENCES

1 1378 §$ BECOME NODES 1-4
LOADING UNIT_TOP
EXTERNAL ELEMENT LOADS
1 UNIT_TOP
LOADING UNIT BOTTOM
EXTERNAL ELEMENT LOADS
1 UNIT BOTTOM
LOADING UNIT SWAY
EXTERNAL ELEMENT LOADS
1 UNIT_SWAY

Figure 2.5 -~ POLO-FINITE Input Data for Structure SPAN_CON
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retained from substructure SPAN. FINITE currently requires that all DOF
at a node be either eliminated or retalned during the condensation
process. Loading cases are carried up through the structural hierarchy
with a loading type designated EXTERNAL ELEMENT LOADS. An EXTERNAL
loading specifies the names of loading cases on the child substructure.
‘The loads are condensed and placed on the parent substructure nodes
under the declared load case. There Is a one~to-one correspondence
between loading case names for the parent and child substructures iIn
this example, but this Is not required. Only loading case names within
a structure must be unique. Any number of loading cases, with optional
scalar multipliers, may be selected from the child substructure to con-
struct loadings on the parent substructure., After the stiffness and
loadings on SPAN are condensed during solution, SPAN_CON has the majoy
characteristics of any other structure; it has a stiffness matrix and
loading cases stored In a standard format.

Structure BRIDGE is modeled from two copies of SPAN_CON with three
additional bar elements to complete the modei. Figure 2.6 lists the in-
put data describing structure BRIDGE. Copies of SPAN_CON (elements 1
and 2) are placed in BRIDGE with the same orientation relative to the
coordinate system In which they are defined. In this model, substruc-
ture reference axes Xl--Yl and the highest level s+ruc+ure axes Xg--Yg are
parallel. In other cases, a rotational transformation of substructure
stiffness matrices and nodal loads may be required for proper geometric
al Ignment. Coordinates are required for nodes of the +three additional
bar ‘elemenfs. Coordinate values are used to determine element size and

orfentation, +hus +he origin location is Immaterial. For |inear
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STRUCTURE BRIDGE
NUMBER OF NODES 8 ELEMENTS 5
ELEMENTS
1 2 TYPE SPAN_CON ROTATION SUPPRESSED
3-5 TYPE ROD E 4.32E06 AX 0.0694

COORDINATES
X Y
2 0 0
5 -2 20
6 0 20
720 20
INCIDENCES
1 14502
2 2783
3 56
4 67
5 26
CONSTRAINTS
1-3 V = 0.0
1 U=0.0

LOADING FULL_TOP
EXTERNAL ELEMENT LOADS :
12 UNIT_TOP 2
NODAL LOADS
57 FORCE Y -20
6 FORCE Y -40
LOADING LEFT BOTTOM
EXTERNAL ELEMENT LOADS
1 UNIT BOTTOM

COMPUTE DISPLACEMENTS FOR STRUCTURE BRIDGE
[ output requests ]
STOP

Figure 2.6 -~ POLO-FINITE Input Data for Structure BRIDGE



analysls, mixing of substructures and elements Is more a convenience for
mode! definltion than a computational necessity. Constraints imposed on
the nodes of structure BRIDGE model the simple support boundary condi-
tions. EXTERNAL loads are again used to apply loadings from SPAN_CON to
BRIDGE. Load cases on BRIDGE are defined by selecting external loads on
-elements 1 and 2. Nodal loads, standard element loads (e.g., a
distributed force on an element), and external element loads may be com-
bined in any manner to deflne the loading cases on BRIDGE.

A request for analysis has the simple form COMPUTE DISPLACEMENTS
«oo 3s shown In Fig. 2.6. FINITE processors traverse the hierarchy to
automatical ly determine the order of processing required and +to check
for +opologlcal‘ consistency. The solution then proceeds to completion
without user intervention. A solution in this context implies the com-
putation of displacements for structure BRIDGE. The hierarchy traversal
performed for each COMPUTE DISPLACEMENTS command insures that only
needed quantities are actually generated.

Output requests provide the capability +o designate the Qnique
copy of a substructure for which results are desired in addition to
other iInformation such as loading cases, element and node numbers, and
coordinate systems for stresses-strains. The "substructure stack" is a
part of the structure name in the OUTPUT ‘commande Thus, to obtain
stresses in all bar elements for +the right span of BRIDGE for all

loading cases, the following command Is sufficient:
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OUTPUT STRESSES FOR STRUCTURE BRIDGE/2/1

In which the 2/1 designates subelement 2 of structure BRIDGE, which is a
structure named SPAN_CON, +then subelement 1 of SPAN_CON, which Is a
structure named SPAN. The [ist of elements and/or nodes (in this case
an Implled "all" elements) refers to the final structure listed in the
lsfack. FINITE processors examine the substructure stack and
automatically determine the type and order of backcondensation processes
required to satisfy the request.

The OUTPUT command provides considerable flexibillty for requesting
substructure results. The above command represents an extreme case in
which the stack points fo a unlqué occurence of a substructure In the

hierarchy. Altfernatively, the command
OUTPUT STRESSES FOR STRUCTURE BRIDGE

requests the printing of results for all elements in structure BRIDGE.
In this case, FINITE processors automatically traverse the complete
hierarchy below structure BRIDGE, recovering displacements, strains, and
stresses at every level., The output processor fraverses the same stack
to print the results from the top (BRIDGE) down.

The major advantages of the above approach to substructured model
definition and solution are now apparent. The complete problem defini-
tion and solution is accomplished in a single computer run with no user
Interaction concerning the placement of substructure information onto
data files. In effect, the analyst has access to a structural model
database which can be defined and modified at a very high (logical)

level, Substructure model description is a completely natural extension
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of standard model description procedures. When implemented In this
manner, computation requests are Identical with and without substruc-
turing. The traversal processes are performed automatically regardless
of the model complexity. Output commands are quite flexible In that
results for a wlde or |imited range of substructures may be requested.
“The POL Input, while not required, conslderably simplifles data entry
and provides ready documentation for the model. It Is mandatory for in-
teractive processing.

FINITE currentiy requires that the structural hierarchy be defined
in an Inverted order. For example, structure SPAN must exist in the
database at the time structure SPAN_CON Is defined. Similarly, struc-
+ure BRIDGE cannot be defined unless structure SPAN_CON exists. The
structural tree must be defined from the bottom up; however, each branch
need not be completely defined before beginnirg another branch. This
restriction Is sometimes inconvenient in +that descriptions of a tree

from +he top down may be more natural.

2.5 Computational and Software lssues

Multilevel substructuring creaTes.a number of computational and
software problems not encountered in conventional finite element
systems. This section provides a brief survey of the major com~
putational and software Issues. The algorithmic detalils of stiffness
condensation, load reduction, and displacement recovery for an Isolated
substructure are first reviewed. The logical control techniques and
data structures required to automatically process complex substructured

models are then examined. These non-numerical aspects of the software
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determine, to a large extent, the eventual generallty and user-
acceptance of 'The system. The final topic discussed In this section
concerns data structures and algorithms for the solution of very large
sets of |inear equations. The less widely known hypermatrix procedure
Is described. Hypermatrix computations offer a number of advantages
-compared to other techniques, Including skyline and wavefront, espe-
cially when the implications of a paged virtual memory system and
parallel-pipeline hardware are considered. Hypermatrix techniques are
also advocated later in this report for eigenproblem solution of very

large systems.

2.5.1 Substructure Reduction

The three major computational activities associated with processing
an isolated substructure include:
1. Condensation of the substructure stiffness matrices +to
el iminate the slave nodal freedoms;

2. Condensation of the equivalent nodal loads applied to the
slave nodes;

3. Recovery of slave node displacements once master nodal
displacements are known from solutions of higher level struc-
tures.,

The classical equations for these operations were first presented by
Przeimienick! [2.15] and are included here for completeness, The formal
procedures are inefflicient and seldom followed. Two additlional conden-

sation procedures, referred to as coordinate transformation and partial

decomposition, have better efficlency and are discussed in detall,
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Equiltbrium equations for an Isolated substructure are first par-

titioned Into fwo sets corresponding to the slave and master nodes as

|
Kss:Ksm { us% ps
comshacctfinaat = {emam : (2.1)
KmsiKmm um pm

where the superscripfs m and s denote master and slave nodes respec-
tively. The number of slave DOF Is designated by "p", the number of
master DOF by "q". Constraints forcing a slave displacement to have a
prescrfbed value and multi-point constraints between slave displacements
are assumed to have been imposed by modification of the coefficient
matrix and load vector(s). The solution of Eq. (2.1) in partitioned

form follows the standard procedures summarized below:

(0% = k%5717 V%) - k3317 k™1™, (2.2)
(Ck™3 - ™30k k™) ™ = g ), 2.3)
(P ..} = (P™} - [k™S7CkS577 " p®). (2.4)

eff
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These equations reveal the form of the condensed stiffness matfrix,
Eq. (2.3), +the reduced load vector, Eq. (2.4), and the procedure o
recover slave node displacements from known master node values,
Eq. (2.2). Their inefficlency derives from the computation of [KSS]_ﬂ
The computational penalty increases dramatically when [KSS] has a narrow
-bandwidth but a fully populated Inverse (the most common case), Opera-
tion counts for the computations are given later In +this section for
comparing the reduction methods.

In the second method for condensation, the slave node displacements
are related to the master node displacements through a coordinate frans-

formation matrix, [T], such that
{u®} = [T2{u™}. (2.9)

Each column of [T] contains the displacements of the slave nodes for a
unit value of one master node displacement component, all other master
DOF displacements being held zero, Because these displacements
represent deformed substructure shapes that are analgous to mode shapes
in dynamics, they are often referred fo as "static constraint modes".
The matrix [T] is evaluated by substituting Eq. (2.5) into the first row

partition of Eq. (2.1) which yields, In the absence of external loading,
Ck®SICTILL™Y + Ck3™I{u™) = {o}. (2.6)

After eliminating {u™} from both sides of this equation, the product of

[K°) with each column of [T] equals the corresponding column of =[K°™.
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Equation solving ftechniques are thus applicable to compute the columns
of [T]. The matrix [K®%] Is triangulated only once using the front,
Choleskl or some other decomposition scheme. The procedure may be rela-
tively efficient since [K°S] is often banded (the natural ordering of
slave DOF Is not altered In forming these equaflons), The columns of
LT] are obtained by successive forward and backward subs+1+uflon over
+he columns of -[KS"H. An expression for the condensed stiffness matrix
is obtained by equating the strain energy of the substructure with and

wlthout the coordinate transformation. Thus,
*
[k] = CTITCK®SI0TT + L7103 + CK™SI0TT + LK™, (2.7

Using the symmetry of off-diagonal submatrices, [K®™ and [K"®], and the
symbolic form of [T], the right side of Eq. (2.7) can be expanded and

simplified. The form of the condensed stiffness for computation becomes
* ‘ ;
[K] = CK™™1 + [K™ICT]. (2.8)

Eq. (2.8) is often written in an unexpanded form that includes an fiden-
tity matrix in the definition of [T]. The condensed load vector for the
master DOF is related to the siave DOF load vector by [T] In a similar

manner using contragredience

(P} = (P™} + [T1T(P°}. (2.9)
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A third technique for substructure condensation, which has been
widely adopted, employs a "partial decomposition™ of the stiffness
matrix. Wilson [2.19] provides a detalled explanation of +the com-
putational procedures, Equations for an isolated substructure are as-
sembled and partitioned into slave and master nodal DOF as in Eq. (2.1).
.Gauss or the more efficient Choleskl decomposition is applied to com-
pletely eliminate the first "p" rows corresponding to the slave DOF.
Row-wise storage and decomposition of the lower trilangle Is assumed in
this discussion, Similarly, the master-slave coupling terms of [K"=]
are reduced following standard procedures for off-diagonal terms. The

Choleski reduction formulas applicable to the slave DOF are

[ [ k=1 |k -
Jj-1
O A A .
e P = Tk gk <p (2.10)
N Jos
JJ

Lower |imits of k=1 on the summations imply a fully populated coef=
flcient matrix. Extension tfo accomodate a variable bandwidth Is
straightforward.

A partial decomposition is then performed on the remaining Ck™™
submatrix of master DOF coefficlents to eliminate the coupling effect of
slave DOF In the matrix [K™®]. This Is accomplished by terminating the
normal summations in Eq. (2.10) at column "p" for the terms 1,] > p.
The master DOF stiffness terms are modified by this process to reflect
fﬁe original coupling between siave-slave DOF and slave-master DOF en--

tirely within the master~-master DOF terms. The modified submatrix k™™
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Is the desired condensed stiffness matrix for the substructure.

Final elimination of the master DOF occurs during solution ot the
highest level structure. The basis for partial decomposition is that
slave nodes within a substructure do not have a +topological connection
with nodes elsewhere in the hlerarchy. Thus, standard decomposition of
-the complete structure stiffness, generated without substructuring,
simply skips +the summations +that involve zero coupling terms between
slave DOF in the equivalently substructured model.

Condensation of substructure loading vectors Is accomplished
through a forward reduction using the partially triangutated stiffness.
Summations for master DOF terms are again terminated at column "“p".
Condensed loads for the master DOF reside In the last "q" rows of the
load vectors. The first "p" rows contain partial displacements of slave
DOF reaay for backsubstitution. These are termed the "partial siave
displacements.,"

Recovery of slave DOF displacements Is performed by completing the
backward substitution over the first "p" rows once master DOF displace-
ments are avallable for the next higher structure. Before the back sub-
stitution 1is begun, the partial slave displacements generated and saved
during load condensation are placed in the first "p" rows ot +the load
vector. Although this appears to be a frivial task, it becomes a very
complex logic problem when users are permitted to define load cases on
higher level structures as combinations of condensed loading cases. In
effect, users may Implicitly define new load cases on the lower level
substructure for which partial slave displacements are not computed

during load condensation. The displacement recovery loglc.  must



traverse the hilerarchy again from the top, down to the level being
processed to generate the loading combinations defined implicitly. Only
then can the correct partial slave displacements be computed by summing
the separate load case values with the implicitly defined multipiiers.
Computational efficlency Is always of concern when large matrices
.are manipulated. Experience with a large number of analyses has shown
that generation of the condensed stiffness matrix requires nearly all of
the computational effort associated with processing an individual sub-
structure, Load case condensatlions and slave displacement recovery com-
bined seldom require 10% of the effort for stiffness condensation., Each
of the algorithms described above Involve extensive summations *o
generate resultant terms. The number of multiplications performed In
evaluating these summations provides a measure of their relative ef-
fliclency, Operation counts were developed for the stiffness condensa~
tlon phase of the three algorithms based on the following assumptions:

1. Matrix [KSS] Is symmetric, has "p" rows, and an average half
bandwidth of "rv;

2. Matrix [K™%] = [KS™ Tand Is fully populated as a consequence
of DOF reordering necessary to partition slave and master DOF
for condensation;

3. Matrix [K™™] Is fully populated.

In the best possible case matrix [K™®] ‘is upper triangular; the
fully populated worst case is assumed here., Matrix [KS=] will nearly
always be banded. With these assumptions, It Is a simple task +to

estimate the number of multiplications required for each algorithm., The

resuits are tabulated below:
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1. Classical Inversion: p(().5r2 + pr + pq + qZ)
2. Coordinate Transformation: p(O.5r2 + qr + pg .+ q2)
. 2 2
3. Partlal Decomposition: 0.5p(r° + pg + q7)
To illustrate the effort required for each algorithm, consider a sub-
structure for which p=500, g=50, and r=100; only 10% of the nodal DOF

are retained after condensation. The operation counts for each al-

gorithm are listed below:

1. Classical Inversion: 4,125 x 10”7
2. Coordinate Transformation: 1.875 X 107
3. Partlal Decomposi+ion: 0.940 X 10/

The results demonstrate clearly the Inefficiency of the classical
inversion algorithm employed In early substructure software. The
coordinate transformation algorithm, which is explicitly required for
dynamic reduction, and the partial decomposition algorithm are con-
siderably more efficient. The effort for coordinate transformation
rapidly approaches that for classical [nversion when "q" nears the value
for "pt, fhéf Is, when a larger percentage of substructure DOF are
retained after condensation. The results also demonstrate that the par-

t+ial decomposition procedure should always be used for static analysis.
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2.5.2 Loglical Contro! and Data Structures

The numericai algorithms described In the previous section are ap-
plicable for an Isolated substructure. Before the computations for a
substructure may begin, the soffware logic must determine the correct
.order In whi¢h to process the substructures, The proper ordering
depends on the type of operations to be performed (such as stiffness as-
sembly or displacement recovery) and the topologic relationships between
substructures, as represented by the hierarchical +tree. This [s not
trivial task for models that consist of forty or fifty substructures
distributed through five and six levels In a hierarchy. Finite element
models wlth such characteristics are quite common for the analysis of
large, geometrically complex structures. This section first outlines
the familiar techniques used In standard analysi§ programs. An overview
Is then given of the techniques required to support general subsiruc-
tured analysis as i{llustrated in the POLO~FINITE example of Section 2.4,

Programs that support only standard, static analysis have compara-
tively simple control and data structure problems., A solution [s accom-
plished by Initiating a set of processing modules in a completely
predetermined order that does not vary from one analysis to another.
The typical sequence Is: (1) read the input data, (2) compute the ele~-
ment stiffnesses, (3) assemble the structure stiffness and triangulate,
(4) generate the loading vectors and perform a load pass to obtain
displacements, (5) compute element stralns and stresses, and (6) output
results., Extensions to accomodate new loading cases are quite simple,

Mcdification of the structural model necessitates a completely new solu-
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tion,

The data is storea In a sequential manner that reflects the simple
access mechanism required in the processing modules. A few sequential
disk files suffice for most programs, Random flles are occasionally
adopted to facilitate stiffness assembly and friangulation for large
. structures processed with out-of-core techniques.

In contrast, the automatic solution of a general substructured
mode| requires a dynamic confrol capabi!lity. Each model solved with a
general system may potentially require a unique order of module execu~
tion. The order of execution cannot be “pre-programmed" in the sofiware
as It is for standard analysis. Rather, the software logic must use a
description of the substructure hierarchy to determine the flow of ex-
ecution for each particular analysis (or reanalysis). Dynamic control
logic easily accomodates modifications to substructures that alter the
flow of execution during reanalysis. More sophisticated data structures
and access schemes are needed to support the dynamic nature of the solu~
tion procedure. The requirement for equal access to the data for any
substructure el Iminates consideration of sequential file storage (unless
titeral ly hundreds of files are available). The topologic dependencies
between substructures suggest the use of a hlerarchical data organiza-
tion that parallels the natural substructure hierarchy. Formal data
base management techniques are necessary to define, maintain, and access
the data structures. With this approach it becomes feasible to ef=
ficiently maintain data for any substructured model, regardless of size

and complexity, within a single disk flle.
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For purposes of discussion, the substructured solution Is con~
sidered to have two computational phases. These are: 1) processing the
mode! through the computation of dfsplacemenfs for the highest level
structure, and 2) recovery of substructure displacements and element
stralns-stresses, The separation Into these two phases follows froh the
-data structures and processing logic naturally suited for each task.
Output generation is also Important but does not Impact the com-
putational processes or data organization. The first phase involves
stiffness and load vector assembly, and requires that substructures be
processed upward from the bottom of the hierarchy. Data structures must
support the repeated use of a substructure stiffness matrix and loads to
form similar matrices for higher level structures. In the second com-
putational phase, processing of the hlerarchy occurs from the top-down
and then only along user designated paths, Displacements, stralns, and
stresses are not normally recovered for all substructures. Data struc-
tures must reflect the unlqueness of displacements, strains, and
stresses for each occurence of a substructure in the hierarchy.

Stiffness matrix and load vector assembly proceed upward from the
lowest levels of +the hierarchy. Assemply of a structure at level "["
cannot begin until all dependent substructures at level "i-1" have been
completed, Control of the assembly process +through a stack driven
traversal of the hlerarchy appears, at first, to be a natural approach.
However, a topologic sort of the hlerarchy (performed using a stack) to
determine the processing order before computations begin is far simpler.
The topologic sort provides the stiffness module with a properly ordered

list of substructures to process. Figure 2.7 presents a block flow
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diagram for the tfopologic sort. A substructure appears only once in the
sorted |ist regardless of Its number of occurrences In the hierarchy.
During reanalysls, the topologic sort simply omits all unmodified sub=-
structures from the list. Logical control within the assembly module
becomes quite simple given the sorted |ist of substructures to process.
.Figure 2.8 illustrates the overall assembly logic, with the topologic
sort shown as the first operation. The first structure In the list is
extracted and i+s stiffness assembled, followed by the second structure
In the |Iist, etc. Only structures appear In the sorted list. The as~
sembly module generates matrices for finite elements which occur in the
structure being assembied.

When a ﬁcondensed" substructure is extracted from the sorted |ist,
the assembler will have already computed the "uncondensed" stiffness
matrix since the single child of the condensed substructure occurs one
level lower in the hierarcﬁy. The éssembler suspends execution and in-
vokes the equation solving module, passing It +the identifier forf The
substructure to be condensed as indicated in Fig. 2.8. After the sflff—
ness condensation 1Is completed, +the assembler resumes execution,
retrieves the master node matrices, and saves them In data structures
for the condensed structure. No traditional assembly operations are
performed. Thereafter, the condensed substructure has a stiffness
matrix with the same format as any other structure (or finite element).
The assembler continues executlon by selecting the next structure In the
sortea |ist., Because the processing modules are dynamically Invoked,
condensation at any number of levels creates no logical control dif-

ficulties with this procedure.
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Figure 2.9 Il lustrates the essential features of a data structure
for storage of +the hierarchy description and stiffness matrices. The
ELEMENTS table contains one column for every finite element and struc-
ture declared by the user. Rows of this table describe attributes for
the element or structure, for example, the number of nodes "NUM_NODES".
A STRUCTURE table exists only for columns that contain a structure. The
STRUCTURE table stores polnters to lower level tables that contain data
applicable only to a structure, for example, subelement Incldences,
subelement orientations, nodal coordinates, and components. The COMPO-
NENTS table has one entry for each subeiement In the structure. The
data value for each subelement Is the column number, denoted ECOL on the
figure, In the ELEMENTS table that defines the subelement. The subele-
ment may be a structure or a finite element. Given the ECOL for a
structure, the hilerarchy from +hat level downward may be easily
traversed,

The stiffness matrix for a finite element and for a structure have
Identical storage formats as shown In Fig. 2.9, A stiffness matrix con-
sists of nodal "submatrices" which are stored In a row-wise format. The
column of the flrst non-zero submatrix In a nodal row Is Indicated by
the value of FIRST_COL. For finite elements, this value Is always one.
For structures, the value of FIRST_COL reflects the half bandwidth for
the nodal row. The lower triangle of the element stiffness 1Is stored.
All submatrices from column FIRST_COL through the diagonal are generated

even though there may be intermediate null submatrices.
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Assembly of the equivalent nodal loads for a mulfilevel substruc-
ture model Is logically more complex than stiffness assembly. For ex-
ample, when displacements for a load case defined on the highest level
structure are requested, the equivalent loads processor must traverse
the complete hierarchy while determining which substructures have load
.cases that contribute to the one specified on the highest level struc-
ture. The procedure Is even more Interesting when analysts define load
cases In terms of other load cases from one substructure level to the
next, A more flexible data structure than a simple vecfgr of structure
fdentifiers Is necessary to accomodate the load case laentifliers. A
multiple vector, Inverted list proves adequate. Condensation of the
load vectors Is performed in the same manner as stiffness condensation--
as an Interrupt in the normal procedure of fransferring loads from one
substructure level fo another.

Phase two computations recover substructure slave displacements and
element strains-stresses., The analyst generally specifies a path
througn the hierarchy that identifies the occurence of a substructure
for which results are desired. The particular substructure may be at
the lowest level of the hierarchy, In which case relatively few results
are generated. Alternatively, [t may be an Intermediate level substruc-
ture, which can be used to Imply displacement recovery for that level
structure and all lower level substructures of the same branch.

Logical control using a stack technique is most convenient to drive
substructure displacement recovery. Glven the analyst supplied path and
the COMPONENTS table shown In Fig. 2.9, the traversal procedure to reach

the desired substructure(s) is quite simple. The back-condensation com-
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putations fo retrieve slave displacements from the master values are
logically +“reated as an Interrupt in processing down the hlierarchy. In
a manner paralleling the assembler condensation procedures, the
displacement recovery module suspends execution, then initiates the
equation solving module to compute siave DOF displacements for the cur=
-rent substructure. On resuming execution, the displacement recovery
module extfracts Thé slave DOF displacements in the solver data - struc-
tures and reformats them +to conform with standard displacement data
structures. The next lower level In the substructure |ist may then be
processed. Element strain-stress computations may be performed im-
medlately after slave DOF displacements are' recovered or a separate
module may be Invoked following the completion of all displacement
recovery. A stack driven procedure also facilitates the computation ot
substructure strains-stresses.

The most interesting aspect of phase two invol§es the development
of data structures for storage of substructure displacements, strains
and stresses. Only one stiffness matrix exists In the database for a
substructure regardless of its number of occurrences, but the displace-
ments, strains, and stresses are unique for each occurrence. The data
structure shown in Fig. 2.9 for phase one processing requires extension
to support substructure displacement recovery. One soclution for this
problem 1is [{llustrated In Fig. 2.10. The uniqueness of substructure
EesulTs Is recognized only at the highest level structure. The LOADS
table points to lower level tables that contain the definition and com=
puted results for each load case. Displacements, strains, and stresses

for the complete hlerarchy for a load case are stored under the cor-
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responding column of the LOADS table (defined for +the highest level
structure), Results are packed Iinto sets of variable length vectors
that reside under the DISPLACEMENTS, STRAINS, and STRESSES pointer
tables. The allocation and retrieval of result vectors is accomplished
by a two-level pointer scheme. For example, vector SPOINT shown in the
-flgure contains one entry for each subelement in the structure. For
subelements that are finite elements, the "i" th entry in SPOINT
defines the vector and position within the set of result vectors at
which values for the element begin. For subelements that are substruc—
tures, the SPOINT entry defines a relative shift In the vector numbers
from the current level structure's vector to the first relative vector
for +the specific occurrence of a substructure. SPOINT entries for the
substructure refer to vector numbers that are relative +to the first
result vector for the substructure. Results for multiple occurrences of
the same substructure thus appear in different stress-strain vectors.
The absolute vector number for processing at any time is obtained by ac-
cumulating relative shifts for each substructure present in the traver=
sal stack.

The most compl icated aspect of this scheme Involves construction of
the SPOINT vectors for each substructure., Note that the SPOINT vectors
are Independent of any load cases. The mapping of substructure results
onto vectors 1Is 1identical for each load case. An identical scheme Is

used to store substructure nodal displacements, reactions, Initial

strains-stresses, and residual loads in nonlinear analysis.



2.5.3 Linear Equation Solving

Efficient procedures for |inear equation solving are essential In
finite element analysis, Reduction of the symmetric stiffness matrix to
triangular form often requires 50 percent of +the computational effort
.for Itnear analysis and a slightly smaller percentage for nonlinear
analyses. Many efficlent algorithms and the detalls of their computer
Implementation have been publlished. Meyer [2.12] has presented an ex-
tensive review of the subject.

The growing avallabllity of computer hardware designed speclflcally
for "number crunching" appllications has spurred renewed Interest In
equation solving procedures. The details of data storage and access
mechanisms comprise the key factors in the ability to utillze advanced
hardware., Advanced machine architectures Include paral lel processors
(the basis for most supercomputers) and virtual memory superminis. Some
of the most recent supermini computers also have a pipeline design that
greatly speeds up numerical operations compared to more conventional
scalar processing.. The pipel ine concept uses a single processor but
with separate prefetching of data fo minimize processor wait ftimes. |t
thus represents a Intermediate design between a scalar processor and the
parallel processing machine. The scalar design superminis can also be
enhanced with the addition of an attached array processor.

The basic requirements for any equation solving procedure can be

summarized as:



54

1. The number of equations should be |imited only by the amount
of disk storage available;

2. Use a reasonable amount of memory so as not to severely impact
schedulIng of the computfer runs;

3. Minimize the storage of zero coefficients and operations on
them;

4. Minimize data transfers to and from disk (1/0);

5. Exploit capabilities of modern computer architecture.

Substructure condensation by partial decomposition Is essentially an
equation solving procedure and therefore the same requirements lls*éd
above apply. However, stiffness condensation may adversely effect one
decomposition procedure more than another. With band-based solvers, for
example, reordering of the equations to facilitate condensation may
produce a border-banded matrix of coefficlents. The computation time
required for partial decomposition is greatly Increased compared to the
time required for complete decomposition of the equations without
reoraering.

This section brlefly surveys three standard equation solving
procedures, namely (1) Choleski with variable band (skyline) storage,
(2) the front method of solution, and (3) Choleskl with hypermatrix

storage. Each of these Is a direct solution algorithm that involves a

three step process: (1) reduction of the coefficient matrix to
t+riangular form, (2) forward reduction of +the load vector(s), and
(3) recovery of displacements by a backward pass. The primary interests
in the current discussion include the impact of reordering the equations
prior fo condensation and the prospects for adopting each procedure ‘o

new computer hardware.



VYariable Bandwidth Procedure

This ftecnnique uses a Choleski or Crout +triangulation algorithm
with a compact storage scheme to accomodate wide variations in band-
width. Jennings and Tuff [2.8] originally developed +the procedure.
'Mondkar and Powell [2.13] later published the implementation detalls and
results of timing studies. This procedure appears to have been widely
adopted for "in-house" finite element systems because the data handling
details are straightforward.

Contiguous columns of the upper triangle are grouped tYogether In
blocks (Fig. 2.11). All coefficlents In a block are fransferred to and
from disk In a single, logical operation. The avallable memory deter-
mines +the number of columns assigned to each block., The first non-zero
row In each column Is recorded during assembly.A This Information Is
slmply appended after the last column of each block. All terms from the
first: non-zero row to the diagonal in a column are assumed to flll=In
during triangulation.

Reduction of each term in column "i" requires that column "I and
at least one other column, "j", where J < I, reside In memory. Thus, at
least two blocks of columns must fit simultaneously into the available
memory, During forward Iload reduction, one coefficient block and one
load block are required in memory (multiple load cases are handled very
efficiently)., The same memory requirements exist for the backward pass

to recover displacements.
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Over 80 percent of the effort in triangulating the matrix Iinvolves
computing inner products of two non-contiguous columns. This makes the
algorithm very attractive for all types of advanced hardware. The
number of tYerms In the Inner products Is usually large relative to the
break even point on most haruware (some overhead Is involved in parallel
‘processing to Initially align data which requires that inner products
have a minimum length fo recover the overhead time--generally 5 to 10
terms) .

The varlable band procedure has a number of drawbacks. It can be
very 1/0 Inefficlent during structure stiffness assembly If only one or
two blocks fit Into memory. Elements are usually processed In sequen-
tial order to assembie the structure stiffness. As a consequence, It Is
possible for a structure to have a very narrow bandwidth and yet require
considerable swapping of blocks during assembly, The classic example Is
a narrow rectangular grid with nodes numbered in the short direction to
minimize +the bandwidth and elements numbered in the long direction
(which does not affect the bandwidth). To assemble each sequence of
elements In +the long direction, each coefficient block must be brought
Into memory. Another drawback occurs when column heights vary sig-
nificantly. Large numbers of Inactive terms are transferred into memory
during friangulation as a consequence of the blocking (Fig. 2.11a).
Lastly, the storage scheme Is biased towards accessing coefficients
column-wise, which Is natural for triangulation and forward load reduc-
tion. As noted above, each block is transferred to memory only once
during the forward pass. During the backward pass, however, row-wise

access Is the most natural. A block of columns may be transferred into
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memory many times depending on bandwidth varlations.,

When executed on virtual memory hardware, the logical memory space

(that declared In FORTRAN DIMENSION statements) for blocks may be very
large, for example, sufficient to store seven or eight blocks. The
program issues fewer logical 1/0 requests to transfer blocks than a con-
-ventional approach In which space for only two blocks is allocated. The
virtual memory operating system performs additional 1/0 required forcing
the program to execute In a gliven amount of real memory (working set
size). This process Is normally handled through fragmentation of data
arrays Into pages which are transferred to and from memory as the array
elements are referenced in the program. Considerable experimentation is
necessary to balance the virtual paging and program block 1/0, espe-
cially on virtual machines that permit users to explicitly deciare the
working set size.

Condensation causes difficulty only when the bandwidth increase due
to reordering becomes excessive., - Consider a structure which is numbered
to minimize +the average bandwidth for conventional analysis. in
general, +the reordering to accomodate condensation produces the border=
banded matrix shown In Fig. 2.11b. This procedure requires that at
least one complete column fit Into a block. For large 3=-D structures,
this requirement may lead to large Increases In block sizes to ac-
comodate the very long columns corresponding to master degrees of
freedom. During the partial decomposition process, no computational
penalty occurs until the equations with +the large band in the last
blocks are reached. Most of the trlangulation time may be involved in

eliminating these terms. However, advanced hardware can be exploited to



the fullest in processing the very long columns,

Erontal Procedure

The highly touted frontal procedure was first Introduced by Irons
[2.6] and has since been extended to include condensation. The frontal
'solver Is essential ly Gauss el Imination with exrensive bookkeeping to
minimize operations on zeroes. The structure stiffness matrix is never
explicitly assembled. Rather, element stiffnesses are brought sequen-
tially into memory, +their terms added to the system matrix and then
triangulated, all In one loglical (but very complex) process. The
ordering of equations in the system matrix Is determined b9 fhe element,
rather than the node, numbering scheme. As elements are processed,
newly appearing DOF are simply appended as new equations. The memory
occupied by active equation coefficents is referfed to as the "front."
The front storage space varies dynamically during solution as new equa-
tions are added and old ones are compietely eliminated (eliminated coef-
ficients are +transferred to disk)., The front Is very similar to the
"active triangle" concept in band-based solvers.

The frontal procedure eliminates much of the CPU and |/0 costs as-
soclated with sfrpcfure stiffness assembly. The triangulation aspect Is
no more efficient than the Choleskl process. There are two major disad-
vantages of the frontal procedure for non-substructured analyses.
First, the active front size becomes quite large for 3-D solld analyses.
The bookkeeping logic Is very complex when the complete front fits Into
memory; I+ appears intractable when coupled with a "spIli" algorithm to

accomodate a large front +that is partially memory resident. Storage
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space of 100-200K words for an active front Is common. This may cause
schedul ing problems on some machines and Impose absolute structure size
Iimitations on others, The second difficuity with the frontal method is
itfs adaptation to advanced hardware. Unllke the Choleski procedure,
inner products InvolQIng hundreds of terms are not common in the frontal
.solver, Operations are performed almost randomly over the active front.
Parallel and pipeline hardware offer |ittle advantage.

The frontal method appears ideally suited for virtual memory com=~
puters with scalar processors. The problem of handling a very large ac-
tive front Is relegated to the virtual memory operating system of the
computer. - An extremely large array space is dimensioned for the front.
The operating system pages the array segments as needed to maintain a
predefined working set. The random accessing Into the front causes no
penalty on a scalar (sequential) processor,

The absence of an explicitly assembled structure stiffness Is a
drawback of the frontal solver for substructured analyses. Substructure
stiffness matrices (original and reduced forms) must always be available
for use In defining other structural hierarchies. Stiffness condensa~
tion also affects the efficiency of the frontal solver as [t does the
variable band solver. Consider the element grid shown in Fig. 2.12a.
All nodes on the perimeter are retained after condensation. Conven-
tional node numbering for a band solver produces a border-banded matrix.
Condensation In the frontal solver Is accomplished by retaining all
master nodes in the front until slave nodes are completely el iminated.
For the mesh shown, the active front size Increases each time alfop and

bottom row element is processed. The front size reaches a maximum when
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element 88 is processed. Alternatively, elements can be numbered as
shown in Fig. 2.12b for front scolution. The front slize remains constant
while all slave DOF are completely ellminated. |t then grows rapidly to
the same maximum size for +he previous numbering scheme as elements
coupling the master and slave DOF are processed. The only advantage of
‘the second case Is that a maximum front size exists for less execution
time. This could drastically reduce the paging rate on virtual memory
machines. The same effect occurs for the variable band solver In that
the active friangle reaches a maximum size when the master DOF are en-

countereaq,

Hypermatrix Procedure

The basic concept of hypermatrix storage Is 1illustrated in
Fig. 2.13a. A block of contiguous columns defined in the variable band
procedure Is further partitioned row-wise to form rectangular 'hyper-
matrices". This storage format overcomes the major problems with
variable band storage--excessive column helghts and the +transfer of
unused terms during friangulation.

Diagonal hypermatrices are always square; off-diagonal matrices are
frequently rectangular. Hypermatrices with all zero fterms are never
created. It Is thus a simple matter to omit large numbers of zero
operations with such a storage format. The sizes of hypermatrices can
easily be adjusted to fit+ a particular amount of memory available for
processing. The use of larger blocks (i.e., greater than 50 x 50) in-

creases the number of zero terms picked up at the periphery of the band.

The use of smaller blocks Improves the recognition of zero terms but [n-
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Figure 2.13 == Hypermatrix Storage of Sparse Matrices
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creases the data handl ing overhead.

A formal data structure for hypermatrix storage is shown In
Fig. 2.13b. Indlvidual hypermatrices are stored as separate entities
(for example, a logical disk file record)., Polinter vectors that locate
all hypermatrices within a column eminate from the header table shown.
‘Pointers to zero hypermatrices are not maintained in the vectors. In-
stead, tThe header table contalins an offset locating the first non-zero
hypermatrix in eachbcolumn.

Hypermatrix pér+ifioning has been studied extensively by computer
sclentists [2.10] in connection with array operations on virtual memory
(paging) hardware. |t has been demonstrated that hypermatrix par-
t1tioning requires +the least working storage and incurs the least page
faults for the operations of multiplication and +triangulation. The
usual scalar formulations for matrix multipilication and triangulation
(Gauss, Cnoleskl, Crout) have very similar counterparts when cast Iin
hypermatrix form. Cholesk! decomposition in hypermatrix form requires
the same number of floating point operations as In scalar form. Both
mult+iplication and triangulation require that only three hypermatrices
reside simultaneously In memory. Therefore, large problems may be
solved in a very small memory space, for example, 7500 words If 50 x 50
blocks are used., Moreover, 1f memory for only three blocks Is avallable
i+ becomes a +trivial problem +o predict exactly the number of block
transfers to and from disk. When space Is available in memory for more
than three blocks, It has been suggested [2.10] that a "least recently

used" replacement algorithm efficiently utilizes the additional memory.
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Fuchs and Schrem [2.4] devised a Choleski triangulation scheme In
hypermatrix form and Implemented the procedure 1In the ASKA program
[2.16]. The data structure In ASKA employs a two level matrix of
pointers to the hypermatrices instead of the scheme shown In Fig. 2.13b,
The POLO-FINITE system uses the hypermatrix procedure with the storage
-format shown in Fig. 2.13b., Both ASKA and POLO-FINITE use demand
paging, virtual memory management systems for which hypermatrices are
Ideally sulted, Hypermatrix sizes are usually defined such that one
hypermatrix fits onto a page. A page corresponds fo a single random
disk flle record. The advantage of allocating one hypermatrix per page
1s that totally unblased access to any block Is obtained. Trlangula-
tion, forward pass, and backward pass operations thus have equal ef=
flclency with respect to data access. As previously noted, the variable
band scheme suffers a heavy access penalty during the backward pass.

As with the variable band procedure, the major effort 1in hyper~
matrix friangulation involves Inner products of non-contiguous columns.,
Figure 2,14 illustrates this. However, In hypermatrix form, the Inner
product Is actually a sequence of matrix multipllications as indicated on
the figure, In effect, Inner products over multiple scalar columns
proceed simultaneously, Timing studies for large sets of equations have
shown that the matrix multiplications usually represent 90% of the
triangulation effort, The data handling overhead seldom exceeds 5% of
the triangulation time., For example, after two 50 x 50 blocks are
brought 1Into memory, approximately 250,000 fioating point mul+tiplica=~
tlons and additions (plus subscripting) are performed to complete the

matrix multiplication.
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Hypermatrix triangulation appears well sulted for adaptation to
parallel and pipeline hardware.' The order of matrices In the multiply
operation shown In Fig. 2.14 is particularly Important. Because the
first +term Is transposed, the matrix multiply is simply fnner products
of columns in the two matrices, rather than the +traditional row mul-
‘tipltied Into a column, Storage of the lower trlangle in hypermatrix
form eliminates this advantage of column-wise Inner products. The
equivalent matrix product requires inner products of two rows, rather
than two columns. The cholce of lower or upper friangle storage is Im

material for computations performed on scalar hardware. However, upper

triangular storage Is preferred for the most general case.

The large bandwidth Increase that occurs with equation reordering

prior to condensation presents no difficulties In +the hypermatrix

scheme, Large bandwidth fluctuations simply increase or decrease +the

number of non-zero hypermatrices In a column., The problem of fitting an

entire column Into memory that occurs with the variable band method does

not occur with hypermatrix storage.

2.6 Examples of Substructured Analyses

Two example analyses are described In this section +to 1llustrate

typical computational savings achieved with substructured models. I[n
the first example, a |lnear analysis is performed for a portion of a jet
engine exhaust duct, Condensation Is applied at two levels in the sub-
structure hierarchy -=- at the lowest level to reduce the bandwidth and
at the next higher level to utilize repeated components. The exhaust

duct represents an excellent test case for substructured dynamic
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analysis with modal synthesis (discussed In Chapter 3) considering only
I inear response, Dynamlc analyses using a full, unsubstructured model
and some |imlted experimental data are avallable in the |iterature for
comparison,

The second example problem consists of a slightly curved +thick
"shell constructed of Impact resistant acrylic. A uniform pressure Is
applied over a very small area at the apex to simulate the Impact of a
nondeformable object, The magnitude of the pressure is increased In
each load increment but the loading area remains constant. Nonlinear
response due to yielding of the material In the impact region is con-
sidered. The problem typifies a large class of structures for which
substructured models reduce the computation time. The region of non-
linear response Is easily estimated prior to the analysis. Standard and
substructured models for this example are analyzed to provide data for
comparIsons of computational effort. This problem also provides an ex-
cellent +test case for substructured, nonlinear dynamic analysis. A
fransien+ analyslis Is required to predict dynamlic response following the
Impact of a high velocity projectile. Even under such loading, the non-
linear zone remains small relative to the overall structural dimensions.

Condensation of +the |linear region should greatly reduce the com-

putational effort for a fransient analysis. For comparison, the com=
putational effort within each +time step of a transient analysis cor=
responds to that for a load Increment in static analysis. The results
presented here for the static solution provide a basis to estimate com=

putational savings for transient analysis.
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Each sfructure has been analyzed with the POLO-FINITE system. Com-
parisons between substructured and standard model solutions are made on
the basis of CPU time and 1/0. The POLO supervisor performs database
and memory management functions for FINITE subsystems. POLO has exten-
slve instrumentation that provides detalied summarles of CPU usage among
‘the FINITE subsystems, for example: Input, assembly, and triangulation.
Within each subsystem, the CPU time expended on data management ac-
tivitlies and on actual finite element computations is also avallable.

CPU times are presented In non-dimensional form to elIminate dependen-

cles on the processor executlon speed. |/0 activity 1s measured by the

number of "page faul+ts" executed by the POLO memory management system.
A page fault represents the transfer of one 2500 word record from memory
to disk followed by the transfer of another 2500 word vector to memory.
For a glven structural model, the number of page faults performed by
POLO is Independent of the computer hardware; It depends only on the
dimensioned length of a data vector within POLO. Page faults are thus a
very simple measure of /0 activity. Printer output and 1/0 transfers

to sequential card image files are ignored.

2.6.1 Linear Example

Figure 2,15 shows a portion of a jet engine exhaust duct modeled
for static stress analysis. The duct consists of a thin circular shroud
connected to the central core with radial fins. Loadings of Iinterest
Include +orsloﬁ, unlform external pressure, and nonuniform femperature
distributions. For this analysis, the Inner edge ofleach fin Is com-

pletely fixed.
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DIMENSIONS
Shroud Fins
R=170mm L =64 mm
t=1.5mm t=30mm

w=8l mm w =27 mm

Full, 360° Model

320 Isoparametric Shell Elements
88 |soparametric Solid Elements
9504 Degrees of Freedom

Figure 2.15 -~ Jet Engine Exhaust Duct for Example Linear Analysis
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Difficuitlies in constructing a proper finite element mode! arise at
each junction of a fin with the shroud. Accurate determination of the
bending stresses in the junction vicinity requires a relatively fine
mesh and the malintenance of element displacement compatibility. Curved
shel| elements adequately mode! major portions of the fins and shroud.
"The 8 node Isoparametric shell element Is used here. Each junction is
modeled as a 3-D solid with shell-to-solid, and solld-to-solid transi-
tion elements employed to malntain displacement compatiblility. This
mode! provides realistic predictions of stress distributions at each
Junction without an undue increase in the number of nodal DOF. Figure
2.16 1llustrates the four types of elements employed in the analysis,

A 360 degree model Is required for general analysis. For the grid
shown In Fig. 2,15, +he full model has 408 elements and approximately
9500 DOF. The generation of each element stiffness matrix requires
numerical integration. And while the large number of DOF does not
present major problems for general purpose systems, the grid topology
does introduce some severe computational penaltles. The traditional
node numbering scheme follows the narrow (axial) direction then the cir-
cumferential direction. Each flin causes a large re~entrant area in the

equation coefficients, but the most severe penalty arises because the

first and last nodes are coupled. As a result the stiffness matrix is
border-banded; the last 78 rows have a bandwldth of nearly 9500. This
drastically Increases the +triangulation effort. Substructuring with
condensation proves very computationally efficient for this structure as

demonstrated below.



a) 8 Node Shell (QSHELL) b) Sheli-to-Solid Transition
(SHELL-TRANS)

c) 16 Node Solid (TS161SOP) d) 18 Node Solid Transition (TS181S0P)

Figure 2.16 -- Element Types for Exhaust Duct Model

cL



73

Division of the full model into ldentical 90 degree substructures

is obvious. The selected partitions place the fin at the center of the
substructure as shown in Fig. 2.17. The location of each type of finite
element 1is also Indicated on this figure. Condensation of this sub-
structure reduces the number of nodeé to 26; 13 nodes across each end
“for connection with adjacent copies of the same substructure. Within
the 90 degree substructure, the fin is also modeled as a substructure
and condensed to the 13 nodes that connect to the shroud. Condensation
of the fin eliminates the re-entrant area in the coefficients described
above for the full model, Figure 2,18 shows the same 90 degree section
model without substructuring.

Considering the analysis of an Isolated 90 degree section, the fin
condensation reduces CPU time by 14% and 1/0 fransfers by 21% compared
to an analysis without fin condensation. (Fin stiffness generation and
condensation t+ime are included in the comparison.) However, condensation
to el iminate all but the 26 boundary nodes Increases the CPU by 53% and
the 1/0 transfers by 65%. These Increases reflect directly the penalty
Incurred by reordering the equations prior to condensation. Reordering
for this substructure has the same effect on the bandwidth as closing
the ring on the full model. The first and last nodes are effectively
coupled by +he reordering, but final 156 rows have a bandwidth of only
2400 compared to 9500 for the final 78 rows of the 360 degree model.
The large bandwidth difference produces the major savings for the full
mode! generated with substructures. (Recall that the triangulation ef-

fort 1s proportional ‘o bandwidth squared.)
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Figure 2.17 =-- Substructured 90° Model for Exhaust Duct
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Qlide 407 Node 419

Standard 90° Model

80 Isoparametric Shell Elements |
22 | soparametric Solid Elements
2402 Degrees of Freedom |

Node 1

Node 137

Figure 2.18 -~ 90° Section of Exhaust Duct Without Substructuring
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Using four properly oriented coples of the reduced 90 degree sub-
structure, +the 360 degree model was generated and solved. The final
structure has only 312 nodal DOF with effectively a full bandwldth.
(The condensed substructure stiffness is fully populated.) Figure 2.19
Illustrates the substructure hierarchy for the 360 degree @odel. Five

‘levels of substructures are present in the model.

Table 2.1 compares the CPU and 1/0 for the various solutions. The
CPU and 1/0 required for complete solution of the substructured 360
degree mode! are assigned values of 1.0. Relative times are given for
other models., Over 90% of the full model solution effort is expended in
the substructure reduction process. This Is not too surprising given
the very large DOF reduction and the very small number of DOF at the
highest level structure. It was not possible to analyze the unsubstruc-
tured 360 degree model with POLO=FINITE given the current limitation on
the number of nodes In a structure (the system |imits the number of
nodes In a single substructure to 833). However, accurate estimates of
the CPU and 1/0 time are possible using the exact timings obtained for
solution of +the isolated 90 degree structure without fin condensation.
The estimated CPU and 1/0 consider the factor of 4 in element stiffness
generation effort, +he factor of 4 In number of DOF, and and the
quadratic increase with bandwidth for the final 78 equations. The rela=
tive savings with the substructured model are in the 13-14 range for CPU
and 18-20 for 1/0 transfers. Most of the saving resul+ts from the band=
width reduction noted above, but a minimum factor of 4 Is realized from

the reduction in nodal DOF and element stiffness generation.
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Figure 2.19 -- Structural Model Hierarchy for Exhaust Duct
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Model CPU /0
(1) 90° Standard 0.69 0.63
(2) 90° Substructured 0.60 0.54
(3) 90° Condensation 0.92 0.89
(4) 360° Substructured .0 .00
(5) 360° Standard l3.6* 18092*

*
Estimated using CPU and |/0 measures for the 90°

standard model

Table 2.1 =-- CPU Times for the Exhaust Duct Analysis
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Figure 2.20 provides a detalled breakdown of CPU among the various
POLO-FINITE subsystems for solution of the 360 degree substructured
model. Not surprisingly, the major effort is expended in the assembler
and equation solver modules. It Is interesting to note that a rela-
tively small percentage of the total job time (14%) Is expended in data
‘management activities. The percentage of data management time In the
assembler Is larger due to the very large number of smail matrices that
must be manipulated. In contrast, the equation solver accesses data in
larger blocks (50x50) and performs a significant amount of numerical
computation oh them. Consequently, percentage of data management time

In the solver Is very small.

2.6.2 Nonlinear Example

Figure 2.21 shows one quarter of a thick, shallow shell structure
constructed of Impact resistant acrylic. A monotonically increasing
pressure s applied over a small region at the apex to simulate the Im-
pact of a projectile. Yielding of material in and around the Impact
zone is the nonlinear behavior of interest. Large geometry changes are
fgnored In the present analysfs.

Flgure 2.22 shows the details of the element grids. The square
panel represents the element grid projection onto the global X-Y plane.
The middle surface of the shell |ies on the surface of a sphere having a
radius of 60 In, (152.4 cm). The rise along diagonal A-D Is 3.15 in. (8
cm). Edges C-D and B~D {ie on symmetry planes; edges A-C and A-B are
compléfely fixed (no translation). A simple von Mises yield criterion

with associated flow rule 1is adopted for +the nonlinear material
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Figure 2.20 -~ CPU Time Distribution for Exhaust Duct Analysis,
360° Substructured Model
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response, The uniaxlial stress~-strain curve Is Ideallized as elastic-
perfectly plastic for simpliclity,

Three types of 3=D sollid isoparametric elements are used +to model
the shell. Each node of these elements has 3 translational degrees of
freedom (u,v,w). In the Impact zone, 20 node parabolic elements are em

"ployed as shown in Fig. 2.22. Two elements are used in the thickness

direction very near the loaded region. Away from the Impact point, one
16 node +thick shell element is adequate through the thickness. A ring
of 18 node transition elements connect the 20 node and 16 node elements
without loss of displacement compatibility. A 2x2x2 Gauss Integration
order Is used in all elements.

Figure 2,22 defines the substructured model components. The outer
Iinear region has 483 nodes (1449 DOF), 59 thick shell elements, and 8
transition elements., Condensation reduces the number of nodes to the 43
(129 DOF) +that Interface with the nonlinear region, The natural node
numbering scheme places retained nodes last In [KJ, which ellminates
reordering. The highest level structure consists of 56 nonlinear
parawvolic elements In addition to the condensed |inear substructure.
The final nonlinear model has 376 nodes (1128 DOF). The standard model
for this structure has exactly the same element grid but without sub-
structuring. This model has 818 nodes (2454 DOF) and 123 elements on
which the nonlinear solution is performed. The substructured mode! thus

reduces the number of DOF by 54%.
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A total of four load increments were applied to each model with the
modified Newton-Raphson procedure to distribute residual forces. Itera-
tions at constant external load were conducted until the Euclidean norm
of the residual force vector fell below 1% of the applied load vector
norm. Tangent stiffness updates were performed before iterations 2,5,
"and 8 1In each step. Table 2.2 provides the number of yleided Integra-
tion points, the number of stiffness updates, and the number of itera=-
tions for each load Increment., The fourth load increment propagated the
plastic zone into the third element band from the apex. Sufficient CPU
timing data was collected during the first four load steps for the
desired comparisons.

Figure 2.23 compares CPU time for the standard and substructured
models. The normalized CPU +time used through each load step is ex-
pressed as a percentage of the total +time required for the standard
mode! analyzed through load step four. Solution times for load step one
are nearly equal. The standard model requires slightly more time due to
the larger number of elements for which strains and stresses are com=
puted. The results for step one clearly demonstrate the negligible
overhead for controliing +the substructured solution. The major CPU
savings with the substructured model begin fo occur In load steps +three
and four. At the end of step four, the substructured model used 72% of
the CPU required for the standard model. Both solutions appear to have
reached a steady-state condition (constant slopes) at load step three.
Linear extrapolation of these curves to one hundred load steps shows
that solution of the substructured model would require 64% of the stan-

dard model solution time. The Improvement from 72% to 64% arises from



Load Increment Number of Number of Number of
Yielded Points | terations [KT] Updates
| [ 2 |
2 6 5 2
3 1 4 [
4 8 3 I
Table 2.2 -~ Computation Summary for Nonlinear Example (ldentical Resulfs

for Substructured and Standard Models)

6
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Figure 2.23 -~ CPU Time Comparison for the Example Nonlinear Analysis
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the decreasing significance of equal times in step one and equation
solver savings In the substructured model.

The bar graph of CPU distribution among processing modules shown In
Fig. 2.24 Indicates the source of CPU savings. Input trans|ation and
strain-stress computation (which includes material updating) consume an
-Insignificant percentage of the CPU time. The equation solver Is most
dominant followed by the stiffness assembler (which Includes element
computations) and the resldual loads generator. Savings in the equation
solver for the substructured model are approximately 25% at the end of
step four., This figure would increase to 40% with additional stiffness
updates during subsequent load steps. The substructured nonlinear re-
gion with 1128 DOF requires 40% less CPU to triangulate than the full
2454 DOF nonlinear model.

Little savings accrue In the assembler for the substructured model;
however, this Is to be expected., After step one, there is very Iittle
difference in the operations performed by the stiffness assembler for
each‘ model, The same number of nonlinear element stiffnesses are
generated regardiess of whether or not the model Is substructured. The
small savings result from the reduced number of element stiffnesses as-
sembled In the substructured model. Moreover, this is an 1|/0 rather
than CPU intensive activity,

Figure 2.25 compares |/0 activity for the two models. The 1/0 ac-
+lvity +through each load step 1Is again normal ized by the total [/0
througn load step four of the standard model. The curves follow the
same +frend as the CPU +time 1in Fig. 2.23, The substructured model

savings are 33% at the end of step four, which Is slightly better +than
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the CPU savings. Most of the 1/0 savings occurred in the equation
solving file.

Figure 2.26 provides a breakdown of the CPU time distribution among
POLO~FINITE subsystems for the substructured solution. A similar com-
parision for the |inear example fs given In Filg. 2.20, These +*wo
"figures I1llustrate the Increased percentage of job CPU time expended In
data management activities for the nonlinear analysis, While It is not
strictly valid to compare a |inear analysis of one structure with the
nonl inear analysis of another structure, the same +trend of increased
data management time has been observed In other analyses performed with
POLO-FINITE., For most |Ilnear analyses, data management activities
represent 10-25% of the total CPU time. In contrast, data management
activities consistently require a larger percentage of the CPU time for
nonlinear analyses, The Increase Is aTTrIbeed'To the much larger dafa
base sizes (generally a factor of 10), the larger number of data struc-
+ures +that must be accessed to obtain noniinear data, and the large In-
crease in solution logic that requires movement and duplfcaflon of data

without computation.
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CHAPTER 3
DYNAMIC REDUCTION OF STIFFNESS AND MASS MATRICES
3.1 General

As demonstrated in Chapter 2, multilevel substructuring provides an
.economtcal approach to static analysis of very large |lnear and non-
I Tnear structural models. Slize reduction of the substructures, +through
nodal condensation, yields an exact and economical solution to the
statically loaded problem. Since dynamic analysis of a finite element
mode! requires slgn!ficanfly more computational effort than a static
analysis of the same model, an analogous reduction scheme would be use-
ful in dynamics.

As an [llustration of the usefulness of substructured models in
dynamics, consider the following example. Agsume that a particular
structural model contains 5000 DOF and has a half-bandwidth of 500,
Computation of the 50 lowest natural frequencies and corresponding mode
shapes by a method suitable to +the problem characteristics requires
roughly 706(109) operations. Now suppose that the model can be divided
into- flve Identical substructures, each containing 1200 DOF. Reduction
of a . substructure to 100 Independent DOF while retaining the 10 lowest
natural frequencies and mode shapes requires roughly 7.5(10%) opera-
tions. Since all flve of the substructures are identical, the reduction
must be performed only once. Assembly of the substructures into final
form results in the reduced model containing only 300 independent DOF.
Since the equations for the substructured model are fully populated, a

different procedure may be appropriate for computation of natural fre-
93
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quencies. Computation of the 50 Ilowest frequencies and mode shapes
would require only 2.3(107) operations. Thus, a savings In required
operations of a full order of magnitude can be realized by using sub=-
structuring on this hypothetical model. These operation counts are, of
course, highly dependent upon the algorithms used and the model being
-analysed, but the computational savings Is well illustrated. Additional

savings can be gained In the solution of the equations of motion and 1In

the recovery of substructure displacements, sfrains, and stresses.

The goal of dynamic reduction methods is to generate stiffness and
mass matrices that accurately represent the stiffness and inertia
characteristics of the substructure with the minimum number of DOF. As
previously stated, reduction in static analysis Is exact and can be
mathematically viewed as an equation solving technique. In dynamic
analysis, however, exact dynamic reduction of an individual substructure
Is dependent upon the unknown frequencies of the +total structural
system. Since these system frequencies are actually objectives of the
analysis, the analyst must use reduction methods which are either itera-
t+ive or frequency independent (and therefore approximate).

Two classes of methods for dynamic reduction have evolved for use
with the FEM. The first class, known as Guyan reduction [3.6], Is an
extension of static condensation. |t Is currently +the +technique most

widely used to reduce the number of DOF prior to frequency or transient

analysls of standard (nonsubstructured) finlte element models., The

method Involves el imination of DOF that are assumed to have a negligible

effect on mode shapes and thus vibration response of +the structure.

Dynamic results, especially strains and stresses, are generally quite
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sensitive to the choice of DOF to be eliminated. Although the method
has proven useful for smaller models, its extension to multilevel sub-
structuring Is expected to be only marginally successful,

The second class of dynamic reduction techniques, termed modal syn-
thesis, contains methods that rely on a Rayleigh=Ritz transformation of
.each substructure's geometric coordinates to a smailer set of
generalized coordinates. This transformation is usually based on tThe
natural frequencies and mode shapes of the isolated substructures. The
reduced stiffness and mass matrices for the substructure are defined in
terms of the generalized coordinates. Assembly of the stiffness and
mass matrices for the next higher level structure is based on displace=
ment compatibiiity. The reduction process can then be successively
repeated for each additional level of substructuring. Many techniques
in the category of modal synthesis have been devised in an attempt to
select the best combination of substructure modes and displacement com=
patibility conditions.

This chapter provides detailed descriptions of the initial formula=
tions of Guyan reduction and modal synthesis. Derivations of the
governing equations of the methods are followed by a brief review of
thelr respective extensions and modifications. Although many more of
these alternate techniques have been proposed in +the open |iterature
than are presented here, those discussed effectively encompass the

breadth of the topic. The chapter concludes with an evaluation and com-

parison of the dynamic reduction technliques and recommendations for [m=

plementation in a general purpose software system.
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3.2 Guyan Reduction
3.2.1 Basic Formulation

Consider an isolated substructure consisting of simple elements,
such as the FIN substructure used in the exhaust duct example problem of
‘Chapter 2 (see Figure 3.1). Let the internal boundary of the substruc-
ture Identify Its Interface with other substructures while an external
boundary corresponds to the physical boundary of the entire structure.
The undamped, free vibration equation of the substructure, partitioned

to seperate master (m) and slave (s) DOF, is

] W2 | : . (3.1

Master DOF are those that will remain after condensation and are usually
chosen to 1le on the iInternal boundary of the substructure. They are
used for connectivity fo adjacent substructures. The slave DOF are
those +o be eliminated and usuaily Ite in the Interior of the substruc-
ture or on its external boundary. The natural frequency wi Is that of
the complete structural system, not just the isolated substructure. The
presence of nonzero off-diagonal blocks [M°™] and [M™] in Eq. (3.1) Im-
plies the use of a consistent mass formulation. When a |umped mass
model Is used, the mass matrix Is diagonal.

The lower half of Eq. (3.1) can be expanded to
(CK™T - WM™ (W™ + (K] - WiTMD) (%} = {0}. (3.2)

Solving for {u®} in terms of {u™} vylelds a coordinate transformation
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which [s dependent on the unknown system vibration frequency W, £ 1t
Is assumed that the Inertia forces on the slave DOF are small compared
to +the static forces, the former can be neglected. Thus, the frequency

dependence Is eliminated and Eq. (3.2) simplifies to
k>3] {u°} = -[K*™ ™. (3.3)
Defining the coordinate transformation [TG] from "} to {u°} as
Wr=[rgd W™ (3.4)
{us} can be el imlnated from Eq. (3.3) resulting In

(k5] [T = ~[K ™., (3.5)

As dlscussed In Chapter 2, [TG] Is evaluated by standard equation
solving techniques. It is important to recall that the columns of the
transformation matrix are composed of the previously defined static con-
straint modes. The complete substructure displacement vector can be re-
expressed,'uslng Eq. (3.4), as
m |

{u} = ¢==z=p = |- "}

G

(3.6)
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The substructure strain and kinetic energies are given by

f
um T Kmm 'Kms um
-~ !
S.E. = 1/2 e ey ey =37 and (3.7a)
u K :K u

. i . ;
F e (3.7b)

where {u} Is the first time derivative of {u}. These expressions are
rewritten In +terms of +the master DOF by substituting Eq. (3.6) Into
Eq. (3.7). The resulting Guyan reduced stiffness EKG] and mass [MG] are
given by

[k, =[K™1 + (KT [T.]  and | _ (3.8)
[T = O™ + [ TIM%S1 [T + Ol ™ + ™XT gl 3.9)

For the simpler case of a lumped mass model, Eq. (3.9) reduces to
[M,1 = [M™] + [T, 1'% C7 0 (3.10)

In Guyan reduction, the inertia effects of +he slave DOF are not lost.
Instead, the contribution to +the mass of +these eliminated DOF is
distributed to the master DOF. It Is assumed that the dynamic response
of the slave DOF of the substructure is adequately approximated from
that of the master DOF by linear combinations of the static constraint
modes. Note +that regardless of which mass matrix formulation Is used,
consistent or lumped, the reduced mass matrix, EMG], wili be fully

populated. This situation must be considered when choosing algorithms
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for solving the free vibration and transient response problems for the
assembled structure,

When loads are applled to the slave DOF, +they +too must be con-
densed. If the substructure 1Is subjected to an arbitrary virtual

displacement, {Sul}, the work done by the substructure forces {P} is
o rent o
SW = {su} {P}. (3.11)

The statically equivalent condensed forces, {F}, applied at the master
DOF must do the same work during a virtual displacement consistent with

{8u}, so
(™ F} = {au} Pl (3.12)

Recalling Eq. (3.6), the condensed force vector becomes

T
(F} = |-——-] {P}. ‘ (3.13)

Each substructure has i+s stiffness, mass, and loads similarly par-
titioned and reduced., Assembly of both the reduced substructure mass
and stiffness Into the next higher level follows the procedures outlined
In Chapter 2. Geometric compatibility .be+ween substructures Is
automatically assured by the use of +the master DOF as generallized
coordlnates,

The extension of Guyan reduction to multilevel substructuring Is
stralghtforward. Referring to the terminology of Chapter 2, assume that
all substructures at level "I" have been assembled either from simple

elements or level "i+1" substructures. The level "i-1" substructures
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are built up by selecting slave and master DOF for each substructure at
level "I", condensing these substructures using Eq. (3.8) and Eq. (3.9),
and assembling as described above., When the highest level structure Iis
reached, the final condensed stiffness and mass matrices can be used fo
form the equations of motion for the entire structure.

After a free vibration problem has been solved for +the highest
level structure, It may be necessary +to recover the portion of the
system mode shapes contalned within lower level condensed substructures.
This 1is achieved by simply applying Eq. (3.4) recursively to each sub-
structure to recover the components of the vibration modes at the slave
DOF from the master DOF. Recovery of the displacement patterns after a
transient analysis Is not as elementary. A procedure analogous to the
computation of partial slave displacements discussed in Chapter 2 must
be adopted. During the condensation process, ioads applied at the slave
DOF are transformed Into work-equivalent forces at the master DOF.
Thus, application of Eq. (3.4) to displacement patterns at +he master
DOF does not yield the total response of the slave DOF. A separate
transient analysis of the substructure with its master DOF fixed is re-
quired. The displacements of the slave DOF from this analysis must then
be superposed with those from Eq. (3.4) to obtain the total response of
the substructure. Of course, this procedure Is unnecessary when the In-
ternal response of condensed subsiructures is of no Interest in the

analysis of the structure.
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3.2.2 Automatic Selection of Master DOF

To Insure complete geometric compatibility, all DOF at the internal
boundaries of a substructure must be Included in the set of master DOF.
However, the set need not be |imited to the DOF on fthe internal boundary
of the substructure. Other substructure DOF are possible candidates for
‘refenflon.

Henshell and Ong [3.7] have suggested a simple method for
automating the process of selecting master DOF. The method Is based on
an assumption fundamental to the development of Guyan reduction; that
the mass terms corresponding to the slave DOF have a negligibie effect
on the mode shapes. This can be rephrased by saying that kSS/mSS Is
large relative +to kmm/mmm for any pair of slave and master DOF. Thus
the obvious candldates for master DOF, in addition to those on the sub-
structure internal boundary, are those with the Qmallesf ratios kii/mii;
1=1,2,...,n; n=number of substructure Internal DOF.

The method presented in Ref. [3.7] was oriented towards standard
finite element models., |ts extension to mul+tilevel substructuring re-
quires only the addition of the internal boundary DOF In the set of
master DOF.

The above decision criterion Is equivalent to preserving the lowest
vibration modes of the substructure. . The ratio kii/mii is interpreted
as the square of the vibration frequency associated with the "i" th DOF
while all other substructure DOF are held fixed. Retention of the DOF
with the smal lest values of kii/mii has shown to produce better accuracy

In the lower modes than random selection of master DOF.
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3.2.3 Ilmproved Displacement Recovery

The frequency dependent transformation from {u"} to {u°}, when cast
in a modified form, 1Is useful for improving recovery of substructure
mode shapes and displacements. The technique was initially presented by
Kidder [3.15] and was later relntroduced with the addition of some
'numerlcal results by Miller [3.20]. The technique is applled after the
structure equations have been reduced by standard Guyan reduction. The
frequency dependent transformation matrix resulting directly from

Eq. (3.2) is

[, = =C =20 + 1™ (WM™ - [T ). s
Expans!on of the Inverse term gives

(ﬁuFEMSS] + EKss])~1 = EKssJ-1 + wZEKssj-1EMssjEKss]n1+ e (3.15)

ignoring as small the terms containing w to powers greater than two, the

transformation becomes
[T, 7 = K557 =LK™ + WAOM™ - DvSSIkST7 K™, (3116

As with ETé], Eij can be evaluated by equation solving rather +than by
computing [xss7°t.

- The transformation Eij replaces ETGJ In recovering the substruc-
ture mode shapes and displacements during a transient analysis of the
uncoupied |inear equations of motion. Upon solution of the modal equa-

tlons at the highest level, mode shape recovery is achlieved via
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Wy = [ Ju"™n (3.17)

This transformation Is performed for each modal frequency considered so
as to yleld individual mode shapes within the substructure. Displace~
ment recovery follows the procedure outiined In Sec. 3.2.1 with the
total displacement vector equal to the sum of its modal components.

| The Improved displacement recovery technique has no effect on the
computed system frequencies and highest level structure mode shapes.
The argument for Its use Is that frequencles determined from substruc-
ture mass and stiffness matrices computed with [ﬁs] are generally
realistic. However, improvements are needed in +the substructure mode
shapes from which strains and stresses are derlived. |

Milier's numerical results demonstrated greatly improved mode shape
vectors over standard Guyan reduction for frame structures. However,
the effectiveness of the method is [imited to Thé lower fréquencies of
vibration, This 1Is because the size of the truncated terms of the
series In Eq. (3.15),'and thus the error in [ﬁu], grows with increasing
values of w.

In order to use Improved displacement recovery, the equations of
motion of the highest level structure must be solved In their uncoupled
form so that modal vibration frequencies can be computed. When a tran-
sient analysis of coupled equations is performed, as In noniinear
analysis, the displacements are computed directly and thus, this method

Is not applicable.
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3.2.4 Evaluation of Guvan Reduction Techniques

Guyan reduction techniques have yet to be applied to multilevel
substructured models. Therefore, their performance in such an applica-
+ion remains unknown. Nevertheless, Guyan reduction has some Important
advantages that could make it an attractive approach to dynamic reduc-
'ron in particular cases. Flirst, its development is taken directly from
the static condensation approach. Thls al lows the reduction scheme to
be readily added to existing software which 1Is currently capable of
handl ing multilevel substructured models for static analysis. Secondly,
reasonably good numerical results have been achieved with Guyan reduc-
tion in computing system frequencies for smali models. This feature
makes the technique attractive for preliminary vibration analysis.
Lastly, Guyan reduction is the least expensive of all dynamic reduction
techniques.

Some drawbacks of Guyan reduction are evident and must be con-
sidered., The success of the method is highly dependent upon the choice
of master DOF. This is further complicated by the need to include Iin-
ternal boundary DOF in the set of master DOF for substructured models.
The result is likely fo be a decrease in the degree of reduction capable
for large, muitilevel substructured models. Another problem Is the
qual ity of the mode shapes. Accurate prediction of stralns and stresses
requires that displacement vectors and mode shapes be well formed. The
ability to achieve this goal with Guyan reduction 1Is still in doubt.
However, there are circumstances in which it Is not necessary +o recover
strains and stresses within a condensed subsiructure. In such cases,

i.e. when the response of only the highest level structure is of major
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concern, Guyan reduction may perform quite well,

Guyan reduction techniques provide an Important first step 1In the
development of more sophisticated dynamic reduction methods. As will be
seen later, the procedures derived above actually represent a
degenerated case of modal synthesis. Guyan reduction does not appear
‘adequate for general application to dynamic analysls of multilevel sub=
structured models. However, with automatic selection of master DOF and
Improved displacement recovery, it does hold potential as an economical

approach to dynémic reduction of certain models.
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3.3 Modal Synthesis

3.3,1 introduction

Modal synthesis was developed expressly for use with substructured
models. Although this discussion [s limited to reduction of finite ele~
-ment models, the +techniques have also been applied to distributed
systems. All modal synthesls transformations are based on Raylelgh-Ritz
arguments. The procedure Involves the derivation of a +tfransformation
matrix composed of a truncated set of mode shape vectors that adequately
describe the dynamic characteristics of the substructure. This set Is
fewer in number than the number of Independent DOF contalned in the sub=
structure. With the transformation matrix, individual substructure mass
and stiffness matrices are converted from geometric coordinates into a
reduced set of generalized coordinates. The general ized mass and stiff=
ness matrices for each substructure are then synthesized while main=
talning geometric compatibility along Internal boundaries +o form
similar matrices for the next higher level structure. In a multilevel
substructured environment the transformation and assembly processes are
performed recursively at each level.

There are two baslc operations that must be performed with any ap-
plication of modal syntheslis. First, an approach must be chosen for
selecting the set of substructure mode shapes from which +the ~reduced
substructure matrices are computed. Second, a procedure is needed to
enforce geometric compatibility along substructure internal boundaries.
The numerous modal synthesis ftechniques proposed in the |iterature vary

in how these concepts are Implemented.
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The initial formulation of modal synthesis, accredifed fo Hurty
[3.11, 3.12], has been extensively modified and enhanced. The following
section presents Hurty's formulation, commonly referred to as the fixed-
Interface method, while the later sections describe suggested improve-

ments or alternatives to the method.

3.3.2 Eixed-Interface Method

The origin of modal synthesis techniques lies In Hurty's fixed-
interface method. ‘However, details of the procedure presented here
parallel the development by Craig and Bampton [3.3]. Hurty's develop~
ment required a distinction between "statically determinate" and "redun-
dant" constraints. Statically determinate and redundant constraints are
artificlal constraints applled at all master DOF. They are Imposed i(n-
dependently of any actual physical constraints that may aiready exist on
the substructure at slave DOF. The set of statically determinate con-
straints serve to restrain any rigld-body motion that may be possible.
Redundant constraints are those applied to the remaining master DOF.
Figure 3.2 1llustrates the application of these constraints to a simple
two~dimensional plate. Three statically determinate constralnts are
needed to restralin translation and rotation. The five remaining master
DOF have redundant constraints applied. Craig and Bampton treat the fwo
sets of constraints simply as boundary constraints.

Consider again the undamped, free vibration equation for an
isolated substructure composed of simple elements and partitioned to

separate master and slave DOF
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----- i R e A T e e IR e SRR G B (3.18)

As In Guyan reduction, a static transformation from the master +to the

slave DOF can be written
{u®} = o7} (3.19)

As with simple Guyan reduction, the set of master DOF in modal synthesis

-—methods Is not |imited to those DOF on internal! boundaries. DOF-in.the-—.

InTéFior of the substructure may be retained as well and may possibly
Improve the solution. Inspection of Eq. (3.2-3.4) reveals that [¢C] s
idenTlcal to [TG], the static constraint modes., For consistency in the
following development, [¢C] Is used to represeqf the static constralnt
modes,

If the set of master DOF Is. restrained from displacement,

Eq, (3.18) reduces to
[K5S1{us} - aftmssj{us} = {0}. (3.20)

The solution of this elgenvalue problem yields the matrix of fixed-fixed
normal modes of vibration, [¢"], having the same order as [K°°] and
[M35]. The computed vibration frequenciles, ai , are those of the
Isolated substructure.

To reduce the substructure mass and stiffness matrices, a transfor-
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mation to general ized coordinates, {q}, Is defined as

) o)

- q
"lU,?L = ————g = [TE]{q} = ETF] __E_i (3.21)

S
u

The fixed=interface transformation, [TF], is derived from +the static

constraint and the normal modes as

I 10

|

[TF] = __Eﬂ_:;_ , (3.22)
¢ | ¢

in which [3"] is a rectangular matrix of retained modes from T, In

general, the modes corresponding to the lowest natural frequencles, &i’
are retained in [¢"]. The slave displacements, {u°}, are now dependent
on both the static constraint modes and the retained normal modes of the
Isolated substructure.

Two observations regarding Eq. (3.21) are noteworthy. First, the
general ized coordinate subvector, {qm}, corresponds precisely to the
master set of geometric coordinates, {u"}.  This proves useful in
guaranteeing geometric compatibility wlth adjacent substructures.
Secondly, as the number of mode shapes in [3"] is reduced, the transfor-
mation shrinks fo just the static constraint modes and thus, the fixed-
Interface method degenerates to Guyan reduction.

The reduced stiffness and mass matrices in generalized coordinates

are obtained by maintaining equivalence of kinetic and potential ener-
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gies between the two coordinate systems. The resulting forms are

_ - kg1 0
[KF"] = ETF] [K][TF] R et '{—:i- , and (3.23)
0 'w )
| n
e Rl i L
M l
R c | [o°1' M5 08"
P S (e U T K (3.24)
| L]
+ [3"'Tv"]
— ——d
For a lumped mass formulation of the substructure
] (RS Ui il
I B e . (3.25)
Lo 3 M I0e7T Ci]

[KG] and [MG] are the Guyan reduced stiffness and mass matrices. The
fdentity submatrix In [M_] and the submatrix [&i] In [KF] result from
the orthonormal ity of [3"J. [5i] is a dlagonal matrix of natural fre-
quencies corresponding to the modes retained In 3.

Reduction of substructure loads, {P}, follows the same virtual work
argument wused in Guyan reduction. The resulting generalized force vec-

tor, {F}, is

(F} = 71" ¢P2 (3.26)
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Before proceeding, a simplified notation is introduced. Let
=mm !
K : 0
[KF:] = _"-_F'—HE > (2 ‘/_/a,b)
0O !
|

with the relationships to Eq. (3.23) and Eq. (3.24) established by In-
-spection.

Although assembly of the reduced substructure stiffness and mass

matrices 1Is routine, an i{llustration of +heir form is useful. For an
assembly of "r" substructures with the master DOF entered last
R?” 0 0 0 I 0 0 M?m
0 K 0 0o I o "
% . . % . (3.28a)
(K] = : ; M1 = .
0 R:n 0 0 0 | M:m (3.28b)
0. 0 ;mm Fmn gmn mn @mm
L._ ] 2 r

Since the master DOF do not participate in the normal modes, no coupling
* *
between substructures exists outside the submatrices [K™"] and [M""1,

which are the assembied Guyan stiffness and mass. From a data storage

' * *
and computational viewpoint, these forms for [K] and [M] are ideally
suited to hypermatrix methods.

The synthesis process for one level of substructuring Is now com=

plete. I f Eﬁ] and [ﬁ] are the stiffness and mass matrices for the

highest level structure, the differential equation of motion can be

written and solution for displacements can proceed. If the highestT

¥ *
level structure has not yet been reached, [K] and [M] are reduced just

| ike any other substructure.
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In summary, the fixed=-Interface method employs static constraint
modes and a truncated set of fixed-fixed normal modes to achieve a
reduction in the number of Independent substructure DOF. Geometric
coordinates at internal boundaries are retalned in +the set of
general ized coordinates to assure displacement compatibility between
‘'substructures during assembly. This mixture of geomefric and
general ized coordinates in the substructure equations has resulted in no

reports of numerical difficulties and none are expected.

3.3.3 Eree-Interface Method with Interface Loading

In the free-interface method of modal synthesis [3.5, 3.10], the
transformation +to a reduced set of generalized coordinates relles on a
truncated set of free-free normal modes. These mode shapes are computed
for the Isolated substructure with geometric constraints applied only as
they occur In the actual structure. Internal boundary (master) DOF are
not arbitrarily Identifled and fixed. This approach allows rigid=body
modes to appear In the set of substructure normal modes unless suf=-
ficient physical constraints actually exist. The transformation to
general ized coordinates also neglects the static constraint modes common
to both Guyan reduction and the fixed~interface method. The transforma-

tion is simply

{u} = [¢ Haq (3.29)

where [3"] contains the truncated set of free-free normal modes cor=

responding to the lowest substructure natural frequencles.
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The development by Goldman [3.5] includes a distinction between
rigid-body modes and free-free elastic modes which [s not required in
Hou's method [3.10]. These two authors use similar approachs to sub-
structure assembly. Geometric compatibility between substructures is
enforced by writing equations of constraint in modal coordinates for in-
‘ternal boundary DOF. These constralnt equations are used to combine the
general ized displacement vectors for all Isolated substructures intfo a
single generalized displacement vector for the final structure. The
corresponding reduced stiffness and mass matrices are thus generated.

A significant difficulty arises with the extension of the free-
Intferface method +to multilevel substructuring. In achieving one level
of subsfrucTurIng, all geometric coordinates are transformed 1o
general lzed coordinates. Further substructuring Is complicated by the
absence of geometric coordinates which are useful In assuring continuity
of displacements at substructure internal boundaries. Beyond the lowest
level, I+ will be necessary to modify the process of developing con=
straint equations to |Ink together the substructures. Rather than
defining the constraints in terms of the generalized coordinates at the
level being assembled, +they must be written in terms of the geometric
coordinates at the lowest level. Such a task has yet to be Investigated
and the requirements for Its implementation remain unknown.

The mode shapes of a substructure with free (or fixed) boundaries
are not totally representative of the substructure's response In the as-
sembled structure. This follows because the stiffness and Iinertia ef-
fects of the adjoining substructures have not been included in computing

the dynamic modes of the isolated substructure. Interface loading [3.2,
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3.9] 1is a technique which Incorporates some of these effects in an at-
tempt to make the Isolated substructure modes more |ike the modes for
the entire structural system when the free-interface method Is used.
The approach Is to modify the stiffness and mass of each substructure
prior to extracting Its free-free normal modes.

Let the DOF of the substructure under consideration reside In set A
and let all remaining DOF in the structure reside in set B. In general,
set B may contaln more than one substructure. Upon assembly, set A will
infersect set B over the subset AB. Conslder subset AB as the master
DOF for both sets A and B. Figure 3,3 illustrates this approach as ap-
plied to the shallow shell example of Chapter 2. The substructure under
consideration Is the |linear zone and it forms set A, The remainder of
the structure, the nonlinear zone, falls in set B. Subset AB is the In-
terface between the two sets. |

By the same transformation as used In Guyan reduction, +the
displacements of DOF in set B can be written In terms of those 1n subset
AB. Recognizing that subset AB also defines the master DOF of set A,
the displacements of DOF in set B are effectively expressed in terms of
the master DOF of set A. From these relationships, the interface loaded
stiffness and mass for set A are derived. The effect of the Interface
loading Is to add the Guyan reduced stiffness and mass of set B to +the
internal boundary terms (master DOF) of A's stiffness and mass.

The free~free normal modes of the substructure In set A are com-
puted using the modified stiffness and mass matrices. Each substructure
that wiil be reduced is ldentified as set A with the remaining substruc-

tures lumped Into set B. A new interface loading effect is computed and
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Set A\ . \ -
i (Linear Substructure) X~ \ —
| | [T~ [ttt
Subset AB——"  SetB’

{Interface of A and B) (Nonlinear Zone)

Figure 3.3 -- DOF Sets for Interface Loading of the Linear Substructure

from the Chapter 2 Shell Example
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the free-free analysis performed. Actual geometric constraints are ap-
plied as they occur In elther set. After solution for the normal modes
of each substructure Is complete, the substructures are assembled using
the truncated mode sets and the original, unmodified substructure stiff-

ness and mass mairices., The Interface loaded stiffness and mass are not

‘used In the assembly process. Their use Is |Imited fo computing free-

free normal modes for the substructures.

 3.3.4 Branch Mode Analysis

Branch mode analysis [3.4, 3.9] Is a hybrid method of modal syn=-

thesis which Incorporates features of both the fixed-interface and the

free-interface methods., The following procedure is one of several that

fall under the class of branch mode analysis [3.13].

In branch mode analysis, one substructure Is selected as +the main

body and all adjacient substructures are deslgnated as branches. The
-analysis starts with a determination of the free-free component-modes of

the main body. Interface loading may be employed prior to computing the

free-free modes. The topology of the main body is then expanded to In-

clude all substructures on Its boundaries. This Is done by writing the

'dléplacemenfs for the main body and Its adjacent branches 1in terms of

the free~free modes of the main body and the fixed-fixed normal modes
from each branch. Using the transformation to modal coordinates In the
structure kinetic and potential energy equations, the reduced branch

stiffness and mass matrices are computed,
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When substructures are remote from the fnitlally chosen main body,
a number of solution schemes may be used., One approach is to Identify
one main body and its branches and perform +the foregoing reduction.
This reduced substructure group Is then treated as a branch to a newly
selected main body. Two more eigenproblems are solved and the process

'I's repeated until each substructure has been Joined.
3.3.5 Dynamic Stiffness Matrix

An iterative method for obtaining an exact solution to the frequen=
cy dependent dynamic reduction problem has been developed by Leung
[3.17]. The method Is closely related to the fixed=interface method but
Includes the frequency dependence in the transformation to the reduced
set of coordinates. The first step of the method is +to partition the
stiffness and mass of each substructure and cohpufe the Guyan reduced
matrices [KG] and [MG]. With the internal boundary DOF identified as
master DOF, the fixed=fixed normal modes, {¢”}, and assoclated frequen~
cies, 5?, are computed for each substructure. The exact substructure

dynamic stiffness matrix, [D], can then be derived as

(0] = K1 - 92041 - 92C6ICMICe]’ | (3.30)

where 92 an unknown system frequency

[6] = [M™I06"] = [K"*ICe" 0w 1"
[&?] = a diagonal matrix of substructure frequencies
2
[A] = a diagonal matrix of elements :E—QL—Q
w -

With no effect on the order of [DJ], all normal modes In [4"] may be used

or the set may be truncated to include only those associated with the
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lowest frequencies.
Using a theorem stating that the dynamic mass matrix, [M(w)],
equals the partial derivative of [D] with respect to &2, the substruc-

ture reduced mass Is given by

[ ] = M + [6I0QIL61" (3.31)
-4
where [Q] = a diagonal matrix of elements { - ————
(w:; - Q7)

|

The matrices [KG] and [M(w)] for each substructure at the same
level are assembled by the method used In Guyan reduction o obtain syn=-
thesized stiffness and mass matrices for the next higher level. The
process s then repeé*ed until the highest level structure is reached.

The solution process for this formulation requires f(teration at
each level of substructures. The unknown system frequency, £, must be
Initially estimated and then iteratively Improved until convergence Is
attained. One Iteration involves bullding [M(2)] and [D] for each sub-

structure until| the highest level structure Is reached. Then the eigen-

~problem at the highest level Is solved,
(01{y} = {0}. (3.32)

From this solution, the next value of Q is chosen for use In the fol=~
lowling fIteration., Although the fixed-fixed normal modes need be com-

puted only once for each substructure, each iteration requires that +the

mass matrix for the Intermediate leve! substructures be recondensed.
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It Is stated that a partial vibration case results when Q = &i for
a substructure and thus drives the dynamic mass to infinity. However,
there are no clear guldelines given for handling +this potential In-
stabiiity In the method.

The method is shown to yield good accuracy in computing system fre-
‘quencies but results for mode shapes are not glven. Also, no comparison
of computational efficliency Is made with the more standard methods of

modal synthesis.

3.3.6 Afttachment Modes and Interface Mode Sets

Bamford, Wada, Garba, and Chishoim [3.1] introduced the concept of
attachment modes as an additional set of static modes used In modal syn-
thesis., An attachment mode defines the response of the substructure to
a unit force applied at an internal boundary DOF while al! other inter-
nal boundary DOF remain free. The motivation for using attachment modes
fs +that +helr use can be expected to reduce the number of normal modes
necessary to accurately describe the displacement behavior of the sub-
structure.

in the transformation from general ized to geometric coordinates for
the substructure, attachment modes are combined with static constraint
and normal modes. The normal modes may be computed with internal boun=
dary DOF fixed, free, or a combination of the two. Bamford's transfor-
mation matrix Includes a set of rigid-body modes, however I+ Is noted
that no distinction between rigid-body modes and static constraint modes
Is required. A drawback In the use of attachment modes is that they are

not always |linearly independent of the static constraint and normal
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modes.

In an effort to establish a more rational approach to substructure
synthesls, Hintz [3.8] grouped combinations of the four mode classes:
rigid-body, static constraint, normal, and attachment, into five dIf=-
ferent Interface mode sets. The four mode classes are illustrated in
‘Flgure 3.4 as they apply to the FIN substructure of Chapter 2. Each of
the flve sets Is claimed to be complete In that It precisely represents
the original finite element mode!l for static and dynamic response. Im—-
plications of +runcating a selected interface mode set are considered
and thus guidelines are developed for retalning accuracy with a reduced
size model. Since each of the five mode sets represents the substruc-
ture differently, fruncation of each set has varying Impacts on the sub-
structure model. The guldelines are directed toward establishing a mode
set that will aliow maximum +runcation of the normal modes while
retalning the detail of the original finite element model with respect
to statically imposed interface forces and displacements.

In numerical results presented by Hintz, the fixed-Interface method
(defined by one of the five interface mode sets) gave good results over
a broader range of frequencies than did those methods using attachment
modes. However, use of attachment modes did produce more accurate

vibration frequencies in the low frequency range.
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3.3.7 Improved Displacement Recovery in Modal Synthesls

The frequency dependent fransformation previously discussed with
regard to Guyan reduction, Eq. (3.14), has been applied In a |Imited
fashion to modal synthesis by Kuhar and Stahle [3.16]. The method con-
'sisfs of reducing the order of the eigenvalue problem for the highest
level structure after modal synthesis has been performed. If Q@ Is a
frequency about which the elgenproblem for the highest level Is to be

reduced, the synthesized matrices can be reduced with the fransformation
[T] = =([KSST - M N[k - %M. (3.33)

The reduced matrices form an eligenvalue problem of smaller size than
that defined by the synthesized matrices.

As with Guyan reduction, the eigenproblem 1Is evaluated more ac~
curately at the frequencies near the reduction value, 2. (lIn Guyan
reduction, the reduction frequency Is Q = 0,) Thus, the choice of master
DOF  for the highest level structure should be directed towards
preserving the frequency content of the model around (i, Although selec~
tion of the master DOF is initially a matter of judgement, It can be Im-
proved In the second and later iterations If necessary. |f the frequen-
cy range of Interest Is broad, It may be advantageous to re-soive the
probiem for different values of Q.

Upon solution of the reduced eigenproblem at the highest level, the
set of mode shapes, [¢m], will be in terms of the master DOF., I[If a com-

puted frequency w; {s equal to the reduction frequency {, then the cor-
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responding mode shape Is obtained exactly by

r

6.} = L-l- o™ | (3.34)
! ‘ T i

Likewise, the full set of mode shapes Is obtained from

f

(6] = |-—-| Co™1. (3.35)
T

but the vectors in [¢] are oniy approximate. Based on the coefficients

in the mode shape vectors corresponding to frequencies within the range

of interest, new master DOF can be identiflied to improve the accuracy of

the reduction.

3.3.8 Reslidual Mass and Resldual Flexibility

A hybrid method of substructure reduction with +the capabiiity of
model ing a more general condition of internal boundary constraint was
developed by MacNeal [3.18] and Implemented to a Iimited extent In
NASTRAN.  The normal modes of the substructure are computed with Inter=
nal boundary DOF free, fixed, or a combination of the two. The decision
regarding boundary DOF fixity 1is based on the nature of the adjacent
substructures In the model. |f an Interface DOF in one substructure Iis

held fixed, the corresponding DOF 1in the adjacent substructure must

remain free In order to avoid an overconstraint problem at +the Iinter-
face. This procedure requires that information on the topology of the

substructures be provided by the analyst prior to modal analysis of any
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individual substructure. MacNeal's formulation also requires that the
mass at fixed boundary DOF be distributed to free DOF in +the substruc-
ture since fixed DOF do not participate In the vibration response.

The representation of the substructure can be Improved by including
static approximations to the effects of the truncated higher modes. The
"Improvement Is In the form of a residual mass matrix for the synthesis
Involving fixed-fixed normal modes and a residual flexibility matrix
when free-free normal modes are used. For the case of hybrid modes
(some Internal boundary DOF flixed, others free), both matrices are for-
mulated. Since these matrices are obtalned by a static derivation
(w=0), they are valld only at vibration frequencies that are low com=
pared to the lowest mode of the substructure.

Rubin [3.21] proposed an Improvement to MacNeal's residual flex-
ibility for substructures with free~free normal modes only. The ap-
proach Is shown to have better convergence than the methods of MacNeal
and Hurty but |ike MacNeal's, its application is strictly limited to the
low frequency range. Rubin's method Is further restricted to the use of
free-interface normal modes and rigid-body modes. Thus, MacNeal's

residual mass Is not Included in the development.
3.5.9 Low-QOrder Polynomial Transformations

One of the primary differences among the reduction technlques
discussed thus far |lies in the definition of the transformation to
general fzed coordinates. Each method that has been reviewed uses some
combination of static constraint and substructure normal modes.

Melrovitch and Hale [3.19] have recognized that I+ is not necessary ‘o
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consider only substructure modes for use In the fransformation. They
have shown that it is sufficient for substructures to be represented by
admissible functions that are from any complete set. One such set con-
sidered useful for continuous systems Is a set of low-order polynomials.,
As applied to finite element models, the polynomials are defined over
the domain of the substructure and satisfy the geometric boundary condi-
tions. The shape vectors are then built by sampling the polynomials at
the spatial coordinates of each substructure DOF.

The transformation to generalized coordinates Is
{u} = [T, Ma}, - (3.36)

where [TP] is the set of shape vectors derived from +he low-order
polynomlials. As with +the free~interface method, the generalized
coordinates, {q}, contain no geometric equivalents for substructure as-
sembly. Compatibility between substructures is enforced by a weighted
residual method using spatial Dirac delta functions for continuous
models or equivalently, unit vectors for discrete models. For a finite
element model, the effect is achieved by writing equations of consfrainf
matching the displacement at +the point shared by two substructures.
Using the constraint equations, a constraint matrix is produced which Is
used to |ink together the otherwise [solated substructures. From this
operation Is obtained the synthesized stiffness and mass matrices In

general Ized coordinates.
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A difficulty lies In development of the constraint matrix. In the
elementary example problems presenfed, the matrix was built by Inspec-
tion., This is not an acceptable procedure for general application, As
observed by the authors, an alternative formulation can be defined which
relieves the problem of constructing +he constraint matrix. The ap=-
proach Is simply to use the same transformation matrix as used in the
fixed-interface method but with fixed=fixed normal modes replaced by

low-order polynomial shapes. Thus

g [ PR S (3.37)
i
|

where [¢"] Is the set of low-order polynomials. For +this approach,
pdlynomials which have zero values at the internal boundéry nodes must
be chosen to simulate the fixed~fixed boundary conditions. Geometric
compatibility Is enforced by the presence of the static constralint modes
[4%] and retained internal boundary nodes In geometric coordinates.

There are two trade-offs that must be made in using the transforma-
tion of Eq. (3.37) instead of That In Eq. (3.36). The static constraint
modes must be evaluated causing some additional computational expense.
Also, the size of the set of admissible polynomial functions s reduced
by the requirement that the functions be zero-valued at substructure in-
ternal boundaries.

In contrast to Individual finite elements, the geometry of sub-
structures 1Is not of a nature that can be easily classified. Thus,
selection of the appropriate polynomlials Is a matter of experience and

judgement. Because no automated selection method has yet been devised,
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this approach to moda! synthesis Is currently not capable of performing
dynamic reduction in a general finite element system. However, the
procedure remalns one of the more actively pursued techniques and does

hold potential.

3.3.10 Evaluation of Modal Synthesls Techniques

In the study of modal synthesis techniques, several advantageous
characteristics of an ideal method can be identified. A discussion of
these characteristics as evaluation criteria will be useful In comparing

the various methods presented.

1. Efficiency of the Reduction Method

The efficiency of a dynamic reduction method Is In-
fluenced by a number of factors. First, the method must
result In an accurate reduction of the substructure stiffness
and mass. An efficient method will yield synthesized stiff-
ness and mass matrices that accurately maintain the dynamic
characteristics of the substructure with the minimum number of
DOF. Second, the degree of analyst participation should be
fimited to simply the definition of the model and specifica-
tion of the solution type. A method should be automatic once
the solution process begins, hence eliminating the need for
the analyst to Interpret intermediate results and restart the
process. This 1Is not to Imply that the analyst should sur=
render control of the solution process. Instead, he should be
relieved of the burdensome task of supervising the com=
putational process. Third, the synthesis method should be ef-
ficient In Its use of the computer., Given the probiem size,
algori{thms should be chosen that minimize +the required com=
puter resources, including CPU time and [/0. The number of
arithmetic operations performed should be predictable rather
than dependent upon an arbitrary test for convergence of an
iterative process.

2. Applicabiilty 1o General Problems

A wide variety of dynamics problems exists for which
modal synthesis 1Is needed +o achieve an economical and ac=
curate solution. A synthesis method used In a general purpose
FEM system should be capable of representing substructures
over a broad range of geomeiries and with various types of
boundary constraint. Also helpful would be the ablility to In=
corporate experimental data, such as mode shapes and natural
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frequencies, into the substructure model.

By necessity, finite element analyses of nonlinear struc-
tures are performed Incrementally. As the effects of non-
| Inear materlals and geometry occur, the model must be refor-
mulated to accurately track the true response of the struc-
ture. Therefore, dynamic reduction methods must lend them-
selves to this incremental solution process.

Independence of Individual Substructures

Often times the analysis and design responsibilities of
the various components of a structure are distributed among
different organizational groups. This separation of respon-
sibiltties has many advantages and should not be encumbered by
the synthesis method. Therefore, the method used should con-
slder each substructure as an Isolated entity in evaluating
1ts dynamic response prior to system synthesis. Topology of
the substructures should not be considered unti! the equations
at the next higher level are ready for assembly.

Ease of Reanalysis

The most relliable test for convergence of a dynamic
reduction method Is to re~solve the probiem with a more highly
refined model (more independent DOF). The addifion of more
DOF to the model can be a relatively simple task, achleved at
little expense, or it could be as difficult and expensive as a
complete reanalysis of each substructure. The Ideal approach
allows simply the addition of previously neglected terms to
improve the accuracy of the reduction. These terms generally
take the form of truncated substructure normal modes.

Accuracy and Stabilify

Accuracy of results Is important in two respects. Well
defined modal response data Is needed to accurately syntheslize
the higher level structures for frequency and transient
analysis. Also, In returning to the lower levels for recovery
of strains and stresses, the quallty of the displacement vec-
tors Is critical. Accurate stresses require that displacement
gradients be well formed, intimately +led to accuracy of
results 1is +the numerical precision with which computations
must be performed. Operations such as triangulation In equa=
tion solving can have a significant Impact on final accuracy
and the need for such operations should be considered in
selecting the reduction method.

The potential for problems with the stabllity of opera-
tions in the reduction methods can often be identiflied by
close examination of the development of the methods. Typical
problem areas are |inear dependence of the vectors comprising
a transformation matrix and the divide-by-zero singularity.
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With the -criterlia established, each synthesis method cén be
evaluated. The goal of this evaluation Is to isclate one or two methods
of modal synthesis that will be most useful in the general purpose FEM
system,

The fixed-interface method successfully satisfies four of the above
‘five criteria. The method is simple to apply and results in a sig-
nificant size reduction of properly substructured models. It  does not
require consideration of substructure topology prior to assembly thus
preserving substructure Independence. Repetitive tests for éonvergence
are straightforward, requiring simply the addition of more normal modes
In selected substructures., The entire probiem need not be re-solved +to
Incorporate the additional modes. Thus the cost of convergence tests Is
low and predictable. Orthogonality of the transformation matrices en-
sures stabllity of the method and accuracy has proven favorable for many
problems. One drawback of the method is its |imited capability to use
experimental data. Since all master DOF are fixed during the computa-
tion of normal modes, the structural components must be tested In a |lke
fashion,

Interface loading has proven necessary to the use of the free~
interface method. The approximate Inertial effects of adjacent sub-
structures serve to Improve the displacement gradients at+ the internal
boundaries, thus ylelding more accurate strains and stresses [3.14].
Although interface loading Is helpful In computing accurate stresses,
its use elimlnates the ability to maintain substructure independence.
As previously mentioned, extension of the free~Interface method to mul-

tilevel substructuring might be a difficult ftask to accomplish.
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Branch mode analysis was originally developed for chaln-type struc-
tures, e.g. piping networks. As such, its application to analysis of
more general structures is cumbersome. The method requires solution of
twice as many elgenproblems as the fixed-interface method and it Is In~
timately dependent upon substructure +topology. Convergence testing
‘'using a more refined model becomes impractical as complete reanalysis is
necessary.

Leung's iterative method appears |imited to eigenvalue extraction
over a narrow band of frequencies or analysis of fransient response fo
harmonic forcing functions, This Is because the system equations must
be synthesized for each modal frequency considered. For multilevel sub-
structured models, the need for repetitive condensations is expected to
make the method prohibitively expensive when the frequency range of In-
terest Is broad. As mentloned In the development of the method, some
special precautions would also be necessary to malntain stability when
the system frequency is very close or equal to a substructure modal fre-
quency.

Although attachment modes are useful 1In reducing the number of
retained substructure normal modes, their potential failings are not
well Tllustrated in the |iterature. It Is noted that attachment modes
may  cause ill=conditioning in +the +ransformation +o generalized
coordinates [3.1]. What must be recognized Is the difflculty with which
ITnearly Independent attachment modes are chosen. The selection of at-
tachment DOF for a substructure Is by no means an Intultive process., It
Is expected that even the experienced analyst will require a trial-and-

error approach to thelr selection.
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Efficient methods for extracting a |imited number of eigenpalrs In
large systems effectively make +the highest level structure reduction
proposed by Kuhar and Stahle unnecessary. Their process ylelds a
reduced size equation of motion via an iterative procedure, The same
results can easily be achieved by solving for selected modes of the un-
‘reduced synthesized equations and then formulating a transformation with
these modes and appropriate static modes. This transformation can then
be used to reduce the size of the synthesized equations.

MacNeal's residual mass and flexibility method provides an
automatic approach to modal synthesis which Includes general boundary
constraint capabllities. However, the method does have some |imita-
tions. I+ is correctly argued that fixed coordinates do not participate
in the vibration behavior of the substructure. What is not considered
Is +that in a multilevel substructured model, the coordinates held fixed
at level "i+1" may be considered free at level "i", |f the mass compo=
nents of the constrained DOF are redistributed as suggested, the Inertia
characteristics of those DOF will not be accurately preserved. Also,
the need to define substructure fopology and properties prior to as-
signing internal boundary constraints hampers the effort to retain In-
dependence in computing individual substructure response. Another draw-
back is the potential 1I1lli=-conditioning of +the residual flexibillity
matrix when many modes are retained in the transformation. The advan-
tages of using residual mass and flexibility matrices appear marginal In
that they improve only the low frequency response and that residual mass

Is impliclitly contained in Hurty's method [3.18].
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Polynomial transformation techniques hold tremendous potential as
dynamic reduction methods. A great savings in computational effort Is
possible by evaluating low-order polynomials rather than cowpufing sub=
structure vibration modes. Unfortunately +though, the approach +o
selecting the polynomials has not yet been standardized. As such, the
'fechniques are not Immediately useful for general application In FEM

software.

3.4 Selection of Methods for Dynamic Reduction

In view of the above discussion, selection of dynamic reduction
schemes becomes simple. The two broad types of structural models, those
with and without substructuring, exemplify the need for +two distinct
methods for dynamic reduction. The two methods considered most suitable
are Guyan reduction and the fixed-Interface method of modal synthesis.
Perhaps the greatest advantage of both of these methods Is thelr concep-
tual simplicity. This point cannot be overemphasized. |f Is imperative
that +he analyst have a complete understanding of the analysis methods
he uses. Without this understanding the chances of achieving a meaning-
ful dynamic analysis are remote. The obvious disadvantage of this
philosophy is the sacrifice 1in sophistication that +he experienced
analyst makes If he Is to use the general system. One might expect,
however, that special purpose FEM systems could be used when the need

for more refined techniques Is not satisfied elsewhere.
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CHAPTER 4
COMPUTAT IONAL ALGORITHMS FOR DYNAMIC ANALYSIS

4.1 Geperal

The solution of structural dynamics problems by +the FEM requires
computational capabllities which are not neéessary in static analysis.
The two most important of these, In terms of computational efficiency,
are elgenproblem solution and transient response analysis. These two
operations form the core of the dynamic analysis process. Their proper
implementation and use Is essential to the success of the dynamic
analysis. Other less Important features include mass matrix and damping
matrix formulation and the use of experimental data. LitfTle com=
putational effort is expended on these operations but +their use adds
general Ity and completeness to the solution strategy.

Eigenproblem solution is the single most expensive operation in the
modal synthesis process, While +the approach to modal synthesis will
control the quality of the solution, eigenvalue analysis can be expected
to control the cost. An understanding of the various methods for eigen-
value analysis Is, therefore, necessary If the analyst Is to achieve an
economical and accurate solution,

Solution of the differential equations of motion ylelds +the com=
plete structural response to the transient loading. This solution can
be obtained by elther of ftwo approaches: mode superposition for |inear
systems and time~history Iintegration for both |inear and nonliinear

systems.
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The remainder of this chapter Is dTvIded into three sections. The
first presents a review of elgenproblem solution techniques. The
methods are evaluated and a selection is made of those methods deemed
necessary for incorporation in The general FEM system that employs modal
synthesis for substructure reduction. The second section discusses tThe
‘methods used to solve the differential equations of motion. Emphasis Is
placed on the effects that nonlinear structural response and multilevel
substructured modeling have on the solution processes. The final sec-
tion briefly discusses mass matrix formulation, damping, and the use ot

experimental data.
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4.2 Elgenproblem Solution
4.2.1 Effects of Multilevel Subsiructuring

The introduction of multilevel substructuring Into the FEM has
added significantly to the requirements for a versatile elgenproblem
‘solution package In the general FEM system. The Importance of accuracy
in computing substructure modes and the frequency with which the eigen-
problem must be solved become major considerations in the selection of a
solution process. Accurate synthesis of the highest level structure
stiffness and mass is dependent upoﬁ the qual ity of the retalned modes
from each substructure. In a model with muitilevel substructuring, the
stlffness and mass maitrices at the highest level are synthesized usling
vibration modes from the lower levels. As each higher level substruc-
ture Is assembled from the lower levels, repeafed vibration analysis ot
synthesized substructures is performed. This process will tend to com=
pound any errors that may exist in the vibration modes. Eventual
degradation of the highest level stiffness and mass can be avolded by
maintaining good accuracy in the computed mode shapes at each level. In
the modal synthesis process, a free vibration analysis is performed on
each substructure. In noniinear problems, the vibration analysis of
noniinear substructures Is repeated with each update of system proper-
ties. For large substructures these requirements for frequent vibration
analyses could become prohibitively expensive unless very efficient

solution methdds are used.
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In the evaluation of elgenprobiem solution methods, one must con~
slder more +than the computational efficiency with which a solution Is
achieved. Also of prime concern Is the stability of the method for a
particular problem, given the form of the matrices involved. I[f the
solution method Is inappropriate for the glven problem, convergence to
‘the wrong solution or divergence can occur, This stability Is of par-
ticular interest for finite element models using multilevel substruc-
turing. As the synthesis progresses upward through the various levels
of substructuring, the nature of the eligenproblem changes as outllned
below. Thus the analyst must have the capabifity to select the solution
method that most closely matches the characteristics of the new problem.

The changes In the nature of the eigenprobiem Include variations in
the characteristics of the substructure stiffness and mass matrices and
in the number of eigenpairs needed. For lowest level substructures, the
mass matrix may be dlagonal or banded, positive definite or semi-
definite, well formed or ill=conditioned. Although the stiffness matrix
is normally banded, 1+ may be singular, such as when rigid-body modes
are included. Further complications arise when static condensation Is
used to el Iminate massless degrees of freedom. This may cause a loss of
bandform for both the stiffness and the mass. At the lowest substruc-
ture level, wusually only the lowest frequencies and mode shapes are
necessary to progress with the synthesis process. However, depending
upon the eigenproblem solution method used, this requirement may involve

finding all elgenpalrs of a reduced system.
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When a structure's stiffness and mass are assembled from lower
level substructures, the resulting matrices can take on a special form.
If Guyan reduction Is used at the lowest level, the structure matrices
are generally full or widely banded. |f modal synthesis Is used, the
stiffness matrix will be In block diagonal form and the mass matrix will
‘be block diagonal and border banded; see Eq. (3.25) and (3.26). |IT is
most desirable to have eigenproblem solution methods that can deal ef=-
fectively with these special forms when +the total number of DOF is
large.

No singie elgenvalue solution method has been developed which is
most efficient for all of the expected forms taken by the elgenproblem.
Within a particular class of problems (e.g. all eigenpalrs are required
and the system matrices are narrowly banded) superior solution methods
can be Identifled. An adequate selection of these methods must be
available In a general FEM system, thus permitting the analyst to tailor

the solution to the particular characteristics of his problem,

4.2.2 Solution Methods

For discussion purposes, elgenproblem solution methods are
seperated Into three categories. These are simultaneous iteration,
transformation, and polynomial/vector Iteration mefhods.' Solution tech=
niques within each of these categories rely on one or more of the fun=
damental properties of eigenpalrs. Some of these properties are ex-
pressed In equation form as

1. [kJ{¢} = A[MI{s}. : (4.1)
This form suggests an iterative solution by assuming a mode

shape and successively Improving the approximation unti! con-
vergence to the true mode shape Is attained.
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2. [61KI0] = 0] and (4.2)
Cod'TMICeT = [13. (4.3)

This form suggests that, since the vectors In [o] are unique
within a scalar mul+iple of themselves, successive fransforma-
tions of [K] and [M] to bring them o diagonal form wiil yield
the matrices [¢] and [A].

3. det(K - AM) = 0. (4.4)

This form shows that the roots of the characteristic polyno-
mial define the elgenvalues of the problem [K1{¢} = A[MI{¢}.

4, My GmHt) xfm) <) mE) s (m) (4.5)
i = -2 -2 - = n-=m-1 <~ "n-m
(m) (m+1)
where A, and ki define the elgenvalues of the "m" +h and
the "m+{" +h constraint problem for mode "i". This elgenvalue

separation property states that the characteristic polynomials
p(k(m ); m=1,2,...,(n=1) form a Sturm sequence,

Details regarding these properties may be found in the references [4.2,

4.25, & 4.27].

4,2,2.1 Simultanpeous lteration

Simuitaneous Iteration methods involve successive Improvement of a
set of orthogonal vectors chosen to approximate the mode shapes. Each

of the methods uses one of the basic forms of inverse i[teration:
[x. .1 =[Ax], or (4.6)
J+1 J

In these forms [K] is +he (nxn) sfrucfure stiffness, [M] Is +the (nxn)
structure mass matrix, [xj] Is the (nxq) mairix of assumed mode shapes

for iteration "j" and In symbolic form:

[A] = [L]'1tmj[L]'T, where (4.8)
[k] = CLCed’s (4.9)
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The differences Iin the methods Ile In the processes used to or-
thogonal ize E;j+1] and to accelerate convergence.

Most of the simultaneous [teration methods reviewed use the stan-
dard form of +the eigenvalue problem, Eqg. (4.6). Jennings [4.12]
presented the flirst such practical method in which +the coupling among
‘the vectors of [xJ] Is evaluated and reduced by an Interaction analysls.

The process involves examining the off-diagonal terms of the product
= Trs

then decoupling the vectors in E§j+1] and reorthogonal izing prior to the
next iteration.

Rutishauser [4.23] introduced a procedure In which the matrix of
modal vectors 1Is Improved by solving the reduced (qxq) eigenproblem

using the matrix

[6] =[x.. 1TC%. 1. (4.11)

J* J+
No explicit orthogonalization is then required. The remaining varia-
tions of these methods, primarily attributable to Jennings and his col=
leagues [4.5, 4.7, & 4.13], represent modifications to enhance conver-
gence or to improve the orthogonal ization process.

Dong [4.8] and Bathe [4.2] presented independent developments of
the method most commonly known as subspace iteration. This method uses
the form of Eq. (4.7) and relles on the solution of & reduced elgen-
problem similar +to that of Rutishauser. This method has a significant

advantage In that 1t does not require conversion of the eigenproblem to

the standard form of Eq. (4.6). This feature affords the potential to
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solve a wider range of problems ([KJ] and/or [M] ill-conditioned) than
was previously feaslible, Several methods have been proposed to ac-
celerate the convergence of the subspace Iteration process [4.1, &
4.28]. These Include shifting, overrelaxation, and the use of Chebyshev
pclynomials. An improved method for selecting starting vectors is also
‘available. Although these techniques were Introduced for app!ication to
subspace iteration, they are appllicable to other simultaneous I[teration

methods,

4,2.2.2 Transformation Methods

Transformation methods are based on the orthogonality property of
elgenvectors, The approach Is to generate a sequence of orthogonal
transformation matrices, [Pi], of order (nxn), that drive the symmetric
matrix, [A], also of order (nxn), to diagonal form. For a case re-
quiring "k" iterations to achieve convergence, the operation +takes +the

form
P J'CP,_,1"...CP,1'[P, 1" CAICP, JCP, 3. [P, T = [AD. (4.12)

The diagonal matrix [A] contains the complete set of elgenvalues. The

corresponding eigenvectors are computed by

Lol = EP1]EP2] .o [P (4.13)

The elgenpalrs are not ordered as In the case of simultaneous [teration.
Further, since the complete eigensystem 1Is solved, the resulting
diagonal matrix and the product in Eq. (4.13) are unique. This unique-

ness exists only when the transformation matrices are of order (nxn).
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The generalized Jacobl method is recognized to be +the most ef-
ficlent, truely lterative, transformation method for solving the general

elgenproblem

CKJ{¢} = ALMI{¢}. (4.14)

‘Each transformation matrix, [Pi], performs a rotation which zeros cor-
responding off-diagonal terms in [K] and [M]. One sweep is completed
when each off-diagonal term in [K] and [M] has been individually zeroced.
Since zeroing one off-diagonal term tends to make a previously zeroed
term nonzero, multiple sweeps are required to achieve convergence.

If the eigenproblem can be transformed to standard form:

CAd{s} = x{¢}, (4.15)

where [A] Is defined by Eq. (4.8), transformation of [A] to +tridiagonal
form can be performed without iteration. Givens Infroduced a method of
plane rotations [4.25] in which, for step "j", zeros are Introduced in
row "j" and column "j" without destroying the zeros from previous steps.
The elgenpalrs of the resulting tridiagonal matrix can +then be found
with relative ease. Householder developed an Improved approach to
tridiagonal ization using reflection matrices to perform the +ransforma-
+ion. Like that of Givens, Householder's method requires (n-2) steps to
complete the reduction but each step of Householder's method [nvolves

roughly half as many multiplications.
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A third method for tridiagonalization is avallable and can be ap-
plied to the general elgenvalue problem of Eq. (4.14). The generalized
Lanczos method [4.24] is applicable to problems when [K] and [M] are
symmetric, equally banded, and at least one is positive definite. In
the method, a single orthogonal +transformation matrix 1is bullt one
‘column at a time. With the evaluation of each new column, {ri}, reof=
thogonal ization to all previous columns, {r1} to {ri_1}, s required +to
ensure stability.

Solution for the elgenpairs of a tridiagonal matrix Is effectively
attained by using QR [teration to find the eigenvalues and inverse vec-
tor iteration to find the elgenvectors., A discussion of Inverse vector
iteration follows In the next section.

QR Iteration [4.2] Is simply a factorization of the tridiagonal
matrix, [$], Into the product of an orthogonal matrix, [Q], and an upper

triangular matrix, [R].
[s] = EQJtR] (4.16)
Pre- and post-multiplying Eq. (4.16) by [Q] and [[Q] respectively gives
[o1'Cs0QT = [RILQT (4.17)

where the product on the right-hand side Is +the diagonal matrix of
elgenvalues. Jacobi rotation matrices are often used to reduce [S] +o
uppertriangular form of [R], with [Q] being the product of those rota-
tion matrices. A shlfting strategy, discussed below, can be used with

QR iteration to accelerate convergence.
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4.2,2,3 Polynomial/Vector lteration

Polynomial 1teration techniques involve an iterative solution of

the characteristic polynomial
p(A) = det([K] = A[M]) = 0. (4.18)

In practice the polynomial Is never explicitly evaluated. Instead an
estimate of the exact elgenvalue Is made and then the determinant is
evaluated using Gauss or Choleski factorization. From this evaluation,
the estimate of the eigenvalue Is improved and the process is repeated.
Two popular'procedures ald In this evaluation: accelerated secant
iteration and blsection. Accelerated secant iteration is a superlinear
interpolation method from which an improved estimate of the elgenvalue,

A Is determined using two previous estimates, Ak~1 and Ak’ The im=

k+1?
proved estimate Is

PA A, = AL _)
A= -k kL) (4.19)

ko Mk _
P = PO )

where o Is an acceleration constant. The polynomial Is evaluated at

Ak+1 and 1if requiréd, another [teration is performed. Bisection is an

iterative process In which the interval between the previously defer-
mined upper and lower bounds of kk Is halved and the sign of the polyno-
mlal at that midpoint evaluated. On the basis of the evaluation, the

new Interval containing A s ldentifled and the process repeated until

k

convergence is achleved.
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Vector Iteration Is a special version of simultaneous iteration in
which only one eigenpair Is computed at a time. The [teration sequence

takes the form:
[K]{xj+1} = [M]{xj}. (4.20)

f convergence of the eigenvector Is galned In Iteration "k", the eigen-

vatue can be computed from Rayleigh's quotient:

(3,3 TR, )
A= = . (4.21)
{Xk} [M]{xk}
The above form of vector iteration, termed Inverse iteration, will Ini-

tially converge to the most dominant eigenpair (smallest eigenvalue).

To force convergence to a subdominant elgenpair, the (Influence of
the previously computed eigenvectors must be el iminated. [f an estimate
of the eigenvalue Is known, shifting can be used to make the unknown
elgenpalr dominant. Letting 'u be the value of the shift, a modifled

elgenproblem is defined
(K = umI{¢} = v[M]{o} (4.22)

where v = X - u, Inverse Iteration applied to this problem produces the
eigenpair closest to the shift u. When a good estimate to the desired
elgenvalue is unavallable, shifting Is not effective. The Iteration
vector must be chosen to be orthogonal to the previously computed eigen-
vectors. When eigenvalues are multiple or clustered, it Is necessary to
reorthogonal ize the iteration vector to avold convergence to mode shapes

which have already been computed.
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Effective elgenproblem solution techniques using a combination of
polynomial fteration and vector Iiteration have been developed for
I Imited app!ications. In Gupta's method [4.10] the Individual Intervals
containing each eigenvalue are defined using Sturm sequence properties
and bisection. A shiff is made to the middie of each interval and then
‘the elgenpair is determined by inverse Iteration and Rayleigh's
quotient. The upper bound on the Interval for Ai Is used as the lower

bound for A, Bathe and Wilson presented a method called determinant

P+1°
search [4.2] In which accelerated secant iteration is used to accurately
determine the elgenvalue. Inverse iteration with shifts is then used to
find the eigenvector. |f the eigenvalue 1Is accurately evaluated, a
shift +to that value will result in the elgenvector being found In no
more than two vector [terations., An advantage of these combined tech~
niques Is +that when elgenvalues are not multiple or clustered, each
eigenpalr is Independently evaluated with no need for orthogonal ization.

Robinson and Harris [4.227] introduced a Newton-Raphson Iterative
approach to vector iteration. For iteration "i%, the process involves

choosing a vector Increment, {Axi}, and a frequency increment, A),,

which will el iminate the residual vector
{ri} = EK]{xi} - XEEM]{xi}, (4.23)

and thus force convergence to a true eigenpair. As an additional side
condition, -the vector Iincrement, {Axi}y must be orthogonal to the ap-

proximate elgenvector, {Xi}’ with respect to [M], f.e.

{1 IMliax. } = 0. : (4.24)



For [K] and [M] of order (nxn), a set of (n+1) simultaneous equations is
+hen solved for {Axi} and AAIQ The process Is repeated until some con-
vergence criterion is satisfied. Upon convergence, estimates of a dif-
ferent eigenpair are taken and the process Is restarted. Initial
estimates to the elgenpalrs are taken from another source, such as sub-
‘'space [teration.

The above method requires a complete tfriangulation of an (n+1)
order set of linear equations for each iteration. Lee and Robinson
[4.17] presented an alternative method which requires only one
triangulation for each eigenpair. Although the convergence rate Is less
than for the Robinson-Harris method, the overall computational efficlen-
cy 1Is improved. When eigenvalues are multiple or clustered, all eigen-
pairs in the group are found simultaneously by a method using Lagrange
multipliers and the stationary property of the Raylelgh quotient. 1=
lustrative examples show the Lee-Roblinson method to require between 36%
and 60% as many operations as needed by subspace iteration, Comparison
of operation counts indicates that the method Is also more efficient

+han determinant search.

4.2.3 Evaluation of Elgenproblem Solution Methods

As with the evaluation of modal synthesis, it 1Is useful +to
establish criteria for the evaluation of eigenprobiem solution methods.
Although the categories listed below are similar to +those previously

discussed, they differ in the application to eigenproblems.
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Computational Effort

The computational effort required by a solution algorithm
is most effectively measured by the number of arithmetic
operations performed. For eigenproblem solutions, this number
Is dependent upon the order and bandwidth of the matrices and
the number of eligenpalrs computed. For large problems, in-
core solutions are not always possible. Therefore, efficiency
Is further measured by the «capability to solve the eigen=
problem with the use of out-of-core data storage. Controlling
parameters are the number of data blocks required to simul=
taneously reslide In core and the frequency with which these
biocks must be replaced,

Applicabllity to General Problems

General ity of eigenproblem solution methods Implies the
ability to solve problems of the form glven by Eq. (4.14).
Often the fransformation to standard form, Eq. (4.15), Is
Ineffective because of an ili=conditioned mass matrix. Such a
situation Is common with a lumped mass formulation in which
rotational DOF are assigned zero inertia. This Iimitation is
avoided when an eigenproblem solution method is available that
can solve the general probiem. Generality further applies to
dealing with the various forms taken by the stiffness and mass
matrices. As shown 1in Chapter 3, the dynamic reduction
process can lead to coefficlent matrices that are diagonal,
banded, full, block~-diagonal, or block-=diagonal and border
banded.

Ease of Reanalysis

The need for reanalysis of an eigenproblem arises In two
instances, First, the analysis may need to be continued with
a tighter convergence |imit to attain greater precision In the
frequencies and mode shapes. Secondly, as the physical
characteristics of the model change during nonlinear response,
the vibration characteristics also change. When a previous
efgensolution Is available, significant cost savings are
realfzed If the method takes advantage of this information in
reanalysis,

Accuracy and Stability

As with modal synthesis, stability of the operations and
accuracy of results of the eigenproblem solution methods are
vital. Stability problems tend to be caused by mode shape
vectors that are not orthogonal while accuracy [s controlled
by the convergence criteria.
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The superlor elgenproblem solution methods from each of +the +three
categories are ldentified below. The use of these methods and their In-
terdependencies will be discussed In the next section.

Subspace Iteration emerges as the superior process In the category
of simultaneous interation. The primary advantage over the Jennings and
'‘Rutshauser approaches Is its applicability to the general problem form.
The potentially 1ll-conditioned transformation +o standard form Is
avoided, thus making the method generally more stable. Other advan-
tages, which are common +to all methods in this category, include the
abillty o use previous modal information in reanalysis and the ease
with which acceleration schemes are Incorporated.

The most efficient solution process of the +*ransformation methods
category Is that employing the Householder transformation +o tridiagonal
form followed by QR I1teration (the HQR| method). This method is effec—
tive only when the eigenproblem can be written In standard form and when
all elgenpairs must be calculated. Although the method does not take
advantage of the bandform of the equations, this Is not necessarlly a
drawback since the conversion to standard form often results in a fully
populated coefficient matrix. Such is the case when a consistent or a
synthesized mass matrix is used.

When the above conversion cannot be made, generalized Jacobl Itera-
tlon makes an attractive alternative +to the HQRI process. Although
Jacobl 1teration Is not as computationally efflclent as other transfor-
mation methods, it has +wo distinct advantages. First, as the off-
diagonal terms become smal ler, the process becomes more efficient, I.e.

convergence Is more rapid on systems that are almost diagonal.
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Secondly, Jacobl Iteration is the only transformation method which ef-
fectively wutilizes a previous solution in reanalysis. Rather than
starting the process with a standard rotation matrix to =zero an off-
diagonal element, the previous mode shape set Is used to rotate the
coefficient matrices close to diagonal form.

In general, as the order of +he eigenproblem and/or 1its bandwidth
Increases, polynomial/vector Iteration methods become less economical
because of their reliance on computing the determinant in Eq. (4.4). An
exception 1Is the method presented by Lee and Robinson [4.17]. In this
method only one complete triangulation is performed for each elgenpair
that Is evaluated. The required starting solution, In the form of a
prior modal analysis, can be used to advantage in reanalysis.

As mentioned previously, operation counts provide the best evidence
regarding the efficiency of a solution algorithm. For comparison pur=
poses, Table 4.1 lists the operation counts for the methods discussed
above, I+ s assumed that no computational penaity is pald by im

plementing the methods with hypermatrix data structures.



Table 4.1

OPERAT ION COUNTS FOR EIGENPROBLEM SOLUT ION

Method
. 1)
Subspace iteration. . .

HQRISZ? .

Generalized Jacobi»lTeraTionfsz? .

Lee-Robinson Vector lteration .

Number of operations required [4.2, 4.17]

nm2 + nm(4 + 2p) + 4np + 20nq(Zm + g + 1.5)

O.67n3 + 10.5n2 + pn2 + 9pn

3 2
3nT + 6n

2
0.5np(m  + 5m + 2) + nT(7m + 6)

Notes

(1) Assumes 10 iterations required
(2) Assumes fully populated [KJ] and [M]

(3) Total for one sweep only

Notation

n = order of [K] and [M]

m = half-bandwidth of [K] and [M]
p = number of eigenpairs computed
g = min(2p, p + 8)

T = number of iterations required

7G|
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4.2.4 Choice of Eigenproblem Solution Methods

It has been demonstrated that a wide variety of elgenproblems can
arise 1In dynamic analysis by the FEM. As mentioned earlier, nc single
method can be effectively applied to the solution of each of these
problems. Therefore, a selection of methods must be available that per-
'mifs the analyst to choose the one most suited to his problem. The
three controlling variables in making the cholce are the number of DOF
In the mode!l, the bandwidth of the matrices, and the vnumber of elgen-
pairs to be computed.

In general solution methods from the three catagories are most ef-
ficlent when applied to a particular class of problem. When all eigen-
pairs are required of large, fully populated matrices, a transformation
method should be used. When only a few frequencles énd mode shapes are
needed and the equations are narrowly banded, polynomial/vector itera-
tion methods are most efficient. Simuntaneous iteration exhibits Its
superiority in the range of problems between the two mentioned above.

To fulfill the selection requirements, [t 1Is proposed that the
superlor methods identifled in the preceding section be Incorporated in-
to the general purpose FEM system. These methods are: subspace Itera-
tion, HQRI, generalized Jacobl iteration, and the Lee=Robinson vector
iteration. Convenlently, several of these methods can be used in con=
cert, That Is, a starting solution for Lee-Robinson vector Iteration
may be obtained from subspace iteration. Also, subspace Iiteration ef-
fectively wutilizes generallzed Jacobi iteration in the solution of the
reduced elgenproblem, When the transformation to standard form, re=-

quired by the HQRI approach, Is not effective, generalized Jacobl [tera=
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tion becomes the next best alternative.

Although operation counts provide useful Information in choosing a
solution method, other factors must be included. The avallablility of a
starting or Initial solution may significantly Increase the efficiency
of some methods. Also, +the number of Iterations required by some
‘methods Is highly dependent on the convergence tolerance that Is
established., These factors force selection of the appropriate eigen=
problem solution method to be made more on the basis of the analyst's

experience and judgement rather than on published operation counts.
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4.3 Solution of the Equations of Motion
4,3.1 Introduction

Consider the form of the differential equation of motion for a

damped finite element system:
MBI + [eeh It + [k(H ) = (P}, (4.25)

For many problems the coefficient matrices of Eq. (4.25) are constant
with respect to time, resulting In a set of coupled |inear differential
equations. When material and/or geometric nonlinearities do arise, they
are most often |imited to the stiffness matrix, [K(+)]. The mass of the
structure seldom varies with +ime and the damping characteristics
generally are not sufficiently well understood to warrant any time
dependent change in the modal damping ratios.

When multilevel substructured models are used and the coefficient
matrices are derlved by modal synthesis, the mass and damping matrices
can also become time dependent. These dependencies enter the syn=
thesized mass through the coordinate fransformations performed on each
condensed nonl inear substructure. Likewise, the relationship between
damping and the structure mass (see Section 4.4) causes a corresponding
variation in the damping matrix. Therefore, in its most general form
Eq. (4.25) has all three of its coefficient matrices varying with time.

The transient response of a substructured model is described by the
displacements {u}, velocities {u}, and accelerations {ii} for the DOF in
the highest level structure. Two general strategies are available for

obtaining this solution. They are mode superposition and time-history
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Integration. Both strategies are fundamenfal to the dynamic analysis of
structures and as such are familiar to most analysts.,

The selection of a particular solution strategy is highly problem
dependent. The decision varlables include the degree of nonlinearity
(1f any), the number of modes participating in the response, the length
‘of the time interval over which the response must be evaluated, and the
nature of the transient load. A discussion of these variables and of
the effects of multilevel substructured modeling on the solution

procedures is presented in the fol lowing sections.

4.3.2 Mode Superpositlion

Mode superposition is an economical approach to soclving the equa-
tions of motion when the structural response is linear and is |imited to
the lower modes of the frequency spectrum. For linear systems, the
basic approach is to uncouple the equations by a transformation to modal
coordinates. The resulting set of equations describe the dynamic
response of the structure in each mode when excited by the corresponding
modal component of the applied load. These modal equations are solved
individually by a direct integration method and then the total response
Is computed as the sum of the modal responses.

A computational advantage with modal superposition over time~
history integration methods (see Section 4.3.3) is realized when the
dominant portion of the structural response is contained In +the Ilower
modes. This characteristic 1is evident when the loading function has
very |ittle high frequency content. Examples of such loading types

might include earthquake excitation and mechanical vibrations. The
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number of modes that participate In the response and thus must be in-
cluded In the modal analysis 1Is easily estimated by examining the
loading function after It has been transformed to modal coordinates.
Loadings that typically have more high frequency content Include blast
or shock loading and Impact., These later examples are more economically
.analysed by time=history Integration of Eq. (4.25).

The extension of mode superposition to nonllinear systems has
received only limited attention Invfhe |iterature. Morris [4.18] has
applied the concept to cable systems and framed structures. His results
are not particularly encouraging. The method performed poorly when ap-
plied to sfructures experiencing more +than Just mild nonlinearities.
Nickell [4.21] presented a more complete development of nonlinear mode
superposition, Although mode superposition performed very well 1In his
example problems, it showed no particular numerical advantage over
direct integration schemes, Nickell does note that some physical in=
sight 1into the behavior of +the structure is gained by observing the
changes in the modal spectrum as deformation proceeds.

The procedure for solving Eq. (4.25) by mode superposition remains
unchanged when multilevel substructured models are introduced. The
transformations performed on the coefficient matrices are independent of
the methods used to bufld those matrices. Although both geometric and
modal DOF from the condensed substructures may exist in +the structure
stiffness, damping, and mass matrices, no complication is expected in
making further +transformations to uncouple the equations of motion. In
fact, the transformations performed In mode superposition are quite

similar to those used in modal synthesis. However, no studies have been
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located that document the effects of substructuring on the mode super-

pcsition solution strategy.

4.3,3 Time-History Int ation

When the dynamic loading on a structure excites many modes ot
.vibration, +Ime~history Integration, also known as temporal or direct
Integration, is often a more economical solution procedure +than mode
superposition. The Integration operators work directly on the coupled
equations of moftion without regard for +the modal content of the
response.

Operators for time-history integration vary 1In +the relationshlips
between the known and the unknown solution varlables. These variables
are the displacements, veloclitles, and accelerations of the structure
DOF at varlous polnts in time throughout the response period., The as-
sumed relationship between the known and unknown solution variables
defines whether +the operator Is explicit or implicit. In explicit
methods [4.2 |, the displacements at the end of +the Interval, {u++A+},
are based on +the equilibrium conditions at the start of the Interval:
Eq. (4.25) evaluated at ftime +. After a starting solution has been
established, [t 1Is possible ‘o progress through the solution without
solving a set of simultaneous equations. This feature of explicit
methods presents an advantage in computational efficiency over the im-
piicit methods discussed below. However, since expilicit methods are ex~
trapolatory In +“erms of the satisfying equilibrium, they are only con-
ditionally stable [4.15] at best. A stable integration operator Is one

for which the error introduced 1in each time step is bounded for the
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chosen step size and thus the total error does not grow without bound as
the solution progresses. A conditionally stable operator [s one which
remains stable for only a limited time step size., The central dif=
ference method [4.9], when used with a dlagonal mass matrix, Is con-
sldered to be an accurate and economical explicit soluftion method
.[4.16].

Implicit operators rely on the solution of Eq. (4.25) at +time

+ + A o 'obfain the solution {u }« Two signiflcant consequences

Tt
result. First, a set of |inear equations must be solved at each Incre-
ment in +ime considered in the solution., Secondly, it is possible to
develop Implicit operators that are unconditionally stable (stabie for
any size of time step At). The fwo most popular Implicit operators are
the Newmark—-R method [4.19] and the Wilson=6 method [4026]o

The Implicit operators which exhibit unconditional stability when
used on [inear problems may not always maintain this feature when
general nonlinear response occurs. Proofs of unconditional stability of
the Newmark=8 operator, when applied to nonlinear probiems, have been
presented [4.4 & 4.7] but contradictory evidence has also been
documented [4.20]. The question of unconditional stability is not
necessarily a drawback +to +the use of Implicit (or even explicit)
operators. For nonlinear analysis relatively small time steps (which
lead to small displacement changes) must be taken to accurately detect
and TIncorporate nonllinear behavior. As a result, frequent equilibrium
iterations with updates of the coefficient matrices will be required ‘o

maintain accuracy, regardless of which integration operator is employed.

This process can succeed In arresting any instability tThat may develop
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from using a particular Integration operator [4.207.

Explticit Integration of the equations of moticon has proven to be
effective for nonlinear problems +that do not involve substructured
models., Since the frequent equilibrium iterations prevent Instability
In the solution, an implicit operator that may be unconditionally stable
“will not show any advantage over explicit operators, Further, It Is not
always necessary to use the structure stiffness matrix with explicit
operators to compute the Internal nodal forces. Computation of the
elastic force vector can be performed directly by integration of the

following expression for each element in the structure [4.3]:
n T T
(r,} = 3007 a1 oy oy, (4.26)
1

structure elastic force vector,

in which {Fe}

[L] = connectivity matrix for the element,
[B] = strain-displacement relation,
{0} = element stress vector,

V = volume of the element, and

n = number of elements in the structure.

In substructured models the element stress vector is not avallable
for condensed lower level substructures. As a result, computation of
the elastic force vector must incorporate at least a portion of the

structure stiffness matrix. The resulting elastic forces are
{F} = {F ), + [K]_{u}_ (4.27)

where {Fe} = gtructure elastic force vector,

{Fe}H = Internal forces for uncondensed elements at the



highest level, computed by Eq. (4.26),

[K]C = stiffness matrix for the adjoining condensed
substructures, and
'{u}c = condensed DOF displacement vector,

Computation of elastic forces by Eq. (4.27) requires that the stiffness
‘maTrix for +the condensed substructures be brought Intc memory during
each time step. |t Is yet unknown whether this requirement will reduce
the computational effectliveness of expliclt Integration of the noniinear
equations of motion.

Since implicit methods require equation solving with the full
structure stiffness matrix, no complications in the algorithms due to

the use of substructured models are anticipated.

4.4 Additional Computational Considerations

Several minor computational detalls regarding the dynamic analysis
of structures are complicated by the use of substructured finite element
models. Detalls considered in this study include mass matrix formula-
t+ion, damping, and the use of experimental data.

Two approaches are used to assembie the mass matrix of a substruc-
ture containing only simple elements [4.6]. The most elementary ap-
proach is the lumped mass formulation. With this approach, the mass ot
each element Is lumped at the nodal points. Upon assembly, a dlagonal
substructure mass matrix Is achieved. This form has many computational
advantages as previously noted. The altfernate approach is fhe consis=
tent mass formuiation, In this approach, accelerations within the ele=

ment are Interpolated by the same shape functions used to describe the
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element displacements, Thus, the assembled substructure mass matrix has
the same banded nature as the substructure stiffness. Regardless of
initial formulation, when multilevel substructuring is Introduced, +the
resulting structure mass matrix Is of banded form. |t is anticipated
t+hat as the number of levels of substructuring Iincreases, +the dif-
. ferences between the lumped and consistent formulations wfll diminish,
The reduction process used, through the various transformations per-
formed, 1Is expected to mask the original mass matrix formulation and
thus make the two formulations indistinguishable.

Structural damping Is a phenomenon which Is not easily modelled by
analysts. Usually, damping can only be evaluated by experimental
testing thus making I+s specification for a general finite element model
difficult. However, there are procedures designed to include the ef-
fects of damping in a computationally efficient manner [4.6]. Normally,
modal damping ratios are known (or selected) and used directly in com-
puting structural response in modal coordinates. If It is desirable +to
have an explicit damping matrix in geometric coordinates, one can be
formulated which 1Is proportional to both the stiffness and mass
matrices. In +his form, termed Rayleigh damping, the system vibration
mode shapes are orthogonal to the damping as well as the mass and stiff-
ness matrices. In substructured models, application of damping is
delayed until the equations of motion for the highest level structure
are formulated. The methods of Guyan reduction and modal synthesis do

not provide for damping at the substructure level,
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Pre-existing experimental data regarding the free vibration charac-
teristics of a substructure could be useful for reducing the com
putational expenses of a finite element analysis., It Is a simple matter
to adapt input translators to accept this data and thus eliminate un-
necessary vibration analyses. An Important consideration in using ex-
. perimental data is tThe consistency in boundary restraint between the

test fixture and the finite element model.
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CHAPTER 5

MATRIX FORM OF NONLINEAR CONTINUUM MECHANICS

5.1 Introduction

The dynamic solution procedures described in the preceeding chap-
ters are independent of the continuum theory used to derive the govern-
ing nonlinear equations of motion. This chapter focuses on the essen-
tial aspects of nonlinear continuum theories. This information is in-
cluded in the report for three reasons: (1) the formulations are not
readily available in matrix notation familiar to finite element workers,
(2) the exact transformations in matrix form will be required during the
Iimplementation phase, and (3) a relative assessment of efficiency of the
formulations is desired. The finite element formulations are developed
and contrasted as to their suitability for sgbsfrucfured dynamic analy=-
sis in the next chapter.

Initial work on a matrix formulation for nonlinear confiﬁuum theory
was conducted by Nayak [(5.1]. Zienkiewicz [5.2] has been the primary
advocate of this approach which has been adopted by most researchers at
Swansea University. This chapter summarizes their work and presents an
extension of the approach to include an Updated Lagrangian formulation.

Non!inear behavior includes that due to constitutive relationships
(material nonlinearity) and strain-displacement relationships (geometric
noniinearity}. To achieve maximum generality in the discussion, struc-
tures are assumed to exhibit both types of nonlinearity simultaneous-
lye The discussion of material nonlinearity is directed towards metal

plasticity at both infinitesimal and finite strain magnitudes. While it
169
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is recognized that strain-rate dependent behavfor may be of Iimportance
in dynamic analysis, these effects are not considered in this discus=
sion. Few procedures in the literature include strain-rate dependen-
cies, creep and therma! dependencies of material properties. Most
often, rate effects are incorporated into the basic concepts of incre-
mental plasticity and thus do not affect the comparison of nonlinear
formulations.

The dynamic analysis of structures in which nonlinearity is limited
to the material stress-strain behavior presents no complications in for=-
mulating the equations of motion. This follows as all quantities are
referred to the initial configuration of the structure, with displace~
ments and rotations assumed to be infinitesimal. The challenge is de-
veloping realistic constitutive models for the material behavior under
cyclic loading, Geometric nonlinear effects are important when the
structure undergoes large rotations and/or ffnife strain magnitudes.
This occurs, for example, in the following situations: crashworthiness
of aircraft structures and components, metal forming processes, necking
of structural components subjected to Tensile overloads, geometry
changes under service loading that affect performance (e.g., turbine
blades) and the localized deformation of material in the vicinity of
stress concentrations -- especially notches and cracks.

The governing equations of nonlinear solid mechanics are summarized
in the following sections in terms of Cartesian reference axes. The
notation adopted here is a modification of that first used by Bathe
[5.3]. Each quantity retains the same symbol throughout the deformation
process. Superscripts and subscripts are used to indicate the config-

uration of the structure in which the variable occurs and to which con-
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figuration it is referenced, respectively. A single left subscript
implies an increment of the variable over time At with the subscript
indicating the reference configuration. A summary of the notation is
presented in Section 5.9.

All equations are derived using matrix, rather than tensor, nota-
tion. The theory of finite deformation is elegantly expressed in tensor
notation. However, all tensor operations require transformation to
equivalent matrix form for computer implementation. This, combined with
+the exclusive use of matrix notation in finite element research, encour-
ages the adoption of matrices at the start. The reader already familiar
with tensor notation will readily recognize the appearance of symmetfric
strain and stress "matrices."

The following Secfions contain discussions of coordinate systems,
strain=displacement relations, stress definitions, and virtual displace=
ments for finite deformations. Particular emphasis is placed on the
finite deformation strain and stress rates that are required for virtual
work arguments. Two nonlinear formulations arise in the discussion.
These are termed Tota! Lagrangian (T. L.) and Updated Lagrangian (U.
Lede In the T. L. formulation all quantities are referenced to the con-
figuration at time +=0. The difficulty arises with constitutive
relations for the material which are naturally expressed in terms of the
deformed configuration, e.g., frue stress and true strain. The correct
transformations of strain, stress, strain rates, stress rates, and
incremental constitutive relationships between the initial and
instantaneous configurations are derived in this chapter. The U. L.
formulation refers all quantities at time f+At fo the configuration at

time t. Numerous attempts have been made to derive an U. L. formulation
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for finite element analysis. Unfortunately, very few have followed the
rigorous equations of continuum mechanics; most formulations are derived
by assuming certain nonlinear terms are small during the motion from t
to t+AtT. This has led to considerabie misunderstanding in the |iter-
ature. The exact U. L. formulation is rigorously derived in this
chapter. Only then are several commonly used simplifying assumptions
described.

An extensive discussion of constifutive models for finite defor-
mation elasto-plasticity is included in this chapter. The various
strain and stress rate definitions and their transformations are
presented in matrix notation. This material will enable the realistic
modeling of large deformation effects that occur near impact zones. I+
is anticipated that the use of substructuring prior to a transient anal-
ysis will show a significant computational advantage in such problems.

The chapter concludes with a qualitative aésessmenf of the computa-

tion efficiency of the two major formulations.

5.2 Coordinate Systems and Transformations

The configuration of fthe body is considered at three times; namely,
0, +, and t+At, For static analysis, the parameter t may be associated
with a loading state rather than time. Motion of the body is described
with respect to fixed Carfesian. axes having unit vectors {i}. The
position vector of any material point at the +three times is denoted
C){x}, T{x}, and 1'+M'{><}, Coordinates o{x} remain fixed for a particular
material point and thus are convected in the present usage. No

subscripts are necessary for the position vectors and their

corresponding differentials.
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Let O{dx} represent the components of an initial line
segmenf,ods, which deforms into line segment Tds at time *. Compo-

nents 1-{d><} then are given by
Taxy = Tro1 Otax (5.1)
in which g[J] is the deformation Jacobian with terms defined by

o= Mo (5.2)

The subscript outside the ( ) explicitly indicates the reference
configuration for differentiation. The deformation Jacobian fully
characterizes motion in the differential neighborhood of a point fthat is
displaced from % +to TP, | Geometric considerations [5.1] show that

differential volume and area changes may be expressed as
Tav = Ty Cav ‘ (5.3)
Teaar = 11 D™ Pt (5.4)

in which ©dV is a differential volume and O{dA} is the vector of
components for a differential area °dA, both at t=0. Vertical bars are
used to indicate a determinant,

The position vector T{x} is written in terms of a displacement

vecTor.f{u} with components referred to base vectors {i} as
Tixt = %0 + T (5.5)
The deformation Jacobian may then be written in the form

+ T
ST = 11+ (] . (5.6)
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where Z[j] is termed the displacement Jacobian and [I] is an identity

matrix. Terms of Z[J] are defined by

t. A -
OJi,j = o( ui,j> (5.7

Equations (5.1) = (5.7) provide fhe basis of strain-stress
. transformations required in the T. L. formulation.

The finite magnitude changes in volume and area of differential
elements that occur during the motion from t to t+At may be measured
with respect to the configuration at time 0 or t. First, the config-
uration az t+At is expressed in terms of the configuration at t and the

displacement increment (deformation plus rotation). No restrictions are

imposed on the magnitude of the displacement increment during At. In

analogy with (5.1) an expression of the form

+ + :

M = ™01 e (5.8)
. s . t+At . . . 5
is sought in which T[J] is the increment of the deformation Jacobian

over At but measured with respect to the configuration at +ime +. The

terms of the Jacobian increment are given by

++A+J - (++ATX

91y %+ i,j) (5.9)

Let 1-{Au} represent the incremental displacement vector: T{Au}T =

[iéu, +Av, TA;] during motion from * o ++At. Then

At U t
O R I LA U (5.10)

More simply, (5.10) may be written

At t+at

LT =01+ T ) (5.11)
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in which T M'[v] represents the mean displacement gradient with respect
to the current (f) configuration (or equivalently the mean velocity
gradient if divided by Af). Increments of differential volumes and
areas from t to T+AT may be simitarly expressed in analogy with (5.3)

and (5.4) as

AT T+ATIJI (5.12)

++Af

At J| Trday (5.13)

(dA} = ++A+|

Equations (5.8) = (5.13) provide the basis for transformations required
in the Us L. formulation as first presénfed by Yaghmai and Popov
[5.4]. The U. L. formulation is generally attributed to Bathe [5.3,
5.5] due to the numerous papers he has published on the formulation.
Variables for the configuration at t+At may also be related to that
at t=0 through a sequence of tfransformations -~ first from t+At to t,

then from t+ to *=0. Consider first that at t+At,

THT ax) = H’AZ[J] ©dx} (5.14)

Subtraction of (5.1) from the above expression yields

W - Tt = 0 a0 = [ M- T 1P sas)

++AT
in which O[AJ] is the incrementa! deformation Jacobian but referred to

the configuration at +=0. In (5.8), ++AI[J] is the incremental defor-

mation Jacobian referred to the configuration at time t. Using the

incremental displacement vector 1“{Au} over the time increment At, the

terms of o[AJ] are

(Ad. ) = Ofrxi " TAu.',). - Te (5.16)



or, more simply

(. ) = . (5.17)
o "] o i,

Using the chain rule, the derivatives in (5.17) with respect to ©ix} are
transformed to those with respect to f{x}. The operations readily show

- that the result may be written as

teat ot

O[AJ] = 1_[v] OIJ] (5.18)

Substitution of (5.18) into (5.15) shows that

T+t t+at

1.

.1.

fdx} = [ 111 + tvi ] T1d1 C(dx} (5.19)

and since 1‘{d><} = ;[J] O{dx}, the above expression simplifies to

+ +
Mg = T Tee (5.20)
which is the same result obtained in (5.8)., This procedure illustrates

the multiplicative decomposition of deformation that parallels simple
coordinate transformation (which must be the case when the displacement
gradients represent a rigid rotation).

Consider now the Imposition of virtual, rather than finite, dis-
placement Iincrements on the configuration at time t. Corresponding
virtual changes in differential areas and volumes are desired. Given
the differential volumes and areas at time t, the expressions previously
derived for finite changes during At are re-examined for the limiting
case as At + 0, i.e., the virtual displacement occurs during a vanish-
ing increment of the time (or loading) parameter. Introducing the first

variational operator, §, the variation of line segments is given by

sTidxy = ZISJ] ¢ dx} ' (5.21)
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in which terms of the variation of the deformation Jacobian appearing

above are defined by
§d,. = (6x, .) = (8u, .) (5.22)

since the variation of the initial coordinates, O{x}, is zero under the
imposed virtual disptacement. [If the virtual displacements, T{Gu}, are
interpreted as occurring over a time dt, the derivatives in (5.22) may
be considered virtual velocity gradients. Using the chain rule, the
virtual displacement gradients are referred to the configuration at time

t with the resulting form

+
(o}

_Treoy T
[841 = L16v1 _[J] (5.23)

In which the variational form of +the displacement gradient matrix
defined in (5.17) and (5.18) 1is used, Substitution of (5.23) into
(5.21) provides the variation of the deformation Jacobian with respect

to the current configuration in analogy with (5.8)

sT{axy = i[svz ZEJI °{dx} (5.24)
but Z[J] o{dx} is simply 1“{dx}, thus the above simplifies To

6*{dx} = :[Svl f{dx} (5.25)
which implies that

1181 = isvi (5.26)

Using Euifer's theorem for homogeneous functions, it is shown that the

variation of the deformation Jacobian determinant is given by

+ .t t
016J| = Tr( (8v]) OIJI (5.27)
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in which Tr( ) denotes the trace of the matrix. It is customary to
express the virtual! displacement gradient matrix, i[SVI, as the sum of a

symmetric deformation matrix, T[Ge], and an anti-symmetric spin matrix,
+ 4

Iléw], as

+ _t t

#[8v1 = (18e] + (6wl (5.28)
in which

+ 1t T

fl8el == L[ [evl + [sv] ] (5.29)
and

+ 1t T

flowl == L[ (evl - [sv' ] (5.30)

Both the deformation and spin componenfs.are linear in the virtual dis-
placement derivatives. Biot [5.6] has demonstrated that I[sw]

represents the rotation of rigid-convected axeé attached to point 1.F>

during the small (infinitesimal) virtual displacement. Similarly,
I[Ge] is shown to constitute the pure deformation caused by the virtual
displacements. A null deformation matrix Is therefore a necessary and
sufficient condition for a rigid virtual displacement. The 6 x 1 vector
representation of the symmetric deformation matrix Is denoted :{Ge}

(shear terms are doubled to form the vector representation).

Using the above procedure, the following relationships are derived

for the U. L. formulation.

sTHT 4y = T+Aitsu*{dx} (5.31)
FHAT, . PRAT, . TEAT
Ttsgr = Ti¥tevt T (5.32)
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These relationships are anatogous to (5.21) and (5.23)., The virtual

displacement gradients at time T+At may again be expressed as the sum of

a symmetric deformation matrix, i:iilse], and an anti-symmetric spin

, ., T+At s
matrix, ++A+[GWI’ as in (5.28-5,30).

5.3 Strain-Displacement Relations

Strain measures valid for arbitrarily large deformations are pre-
sented in this section. Corresponding expressions for the variations of
these measures are derived for subsequent use in virtual work equa-
tions. The strain measures and variations are written in fterms of the
configuration at times 0 and t corresponding to the T. L. and U. L.
approaches.

The measure of finite deformation is taken as the difference in the
squared lengths before and after deformation of a |ine segment (ds) in

the Infinitesimal neighborhocod of a point.

deformation = 1'dsz - Ods2 = T{dx}T T{dx} - o{dx}T O{dx} (5.33)

The deformation may be written in terms of the initial line segment com-

ponents, o{dx}, using the deformation Jacobian to yield

Tas? = %4s? = 2 Odx}’ :[e] ©dx} (5.34)

The symmetric, Green strain matrix, Z[e], appearing above is defined by

t 1 T _
O[el =5 (OIJ] o[J] tn (5.35)
Alternatively, the strain may be referred to the final Iine segment

components, 1-{dx}, using the inverse deformation Jacobian in the form

Tas? - %4s® = 2 Traxy’ :[E] T rax} (5.36)
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The symmetric Almansi strain matrix f[e], appearing above is defined by

't
T .1 _ 01 0
1_[e:] =3 ¢ (1] +[J] +[J] ) (5.37)
in which
o ot -1
1_[J] = o[J] (5.38)

Finally, it 1is verified by direct substitution that the Green and

Almansi strains are related by

Tt t

to ot
Jlel = W (el (4] (5.39)

The Almansi strain matrix is often referred to as the "frue" finite
strain measure since the deformed configuration provides the reference
state. When Z[J] represents a rigid rotation, the transformation in
(5.39) Is recognized as a simpl!e change of reference axes.

The symmetric strain matrix may be written in 6x1 vector form
as g{e} and I{e} for the Green and Almansi definitions respectively.
Shear strains from the matrix definition are doubled in the vector
representation. The Almansi to Green strain transformation in (5.39) is

written in vector form as

to o _ oo, t
o{e} = o[T] 1,{e} (5.40)

in which the terms of the transformation matrix ;[T] are given in the
appendix to this chapter (Section 5.9).

Both the Green and Almansi strain components correctly describe the
finite deformation due to a nonhomogeneous displacement field within the
infinitesimal neighborhood of a point 9P that displaces to P during the

motion. The Green strain components are employed in both the T. L. and
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U. L. formulations. The incremental form of the Almansi strain is used
to develop the material constitutive models.
I+ is useful to separate the Almansi strain into linear and non-

| inear components by first writing

o - T,

1,[J] =[] - 1,[J] (5.41)
- in which

+, . _ T ,

+(Jij) = T( ui,j) (5.42)

Substitution of (5.41) into (5.37) yields

.to
.fn

t to Tt Tt

i . . .
fel > ( 1_[J] + 1‘,[Jl - f[J]' T[J] ) (5.43)

The linear displacement gradient terms are now obvious and are denoted

by

+ T T

flel =5 [ g+ i ] (5.44)
The matrix f[e] is often termed +the finear "true" strain. The

.r
similarity of the above expression with (5.29) is noted. If a virtual

Almansi strain is derived from a virtual displacement field, the |inear
term of 1[63] is simply I[Ge], the virtual deformation matrix.

In the U, L. formulation [t is necessary to define the strain at
time t+At with respect to the configuration at time t. By the same

procedure used to develop (5.33), the deformation increment is given as

that, 2t 2 teat, o At

ds {dx} {dx} - T{ax} T{dx} (5.45)

. teAt

Substitution of (5.8) fo {dx} in tferms of the incremental

deformation Jacobian yields
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T2 L T4e2 - 2 gyt ++Ai[e] T raxy (5.46)
in which
AT 1 tRAt T A L
1L[el =5 ( T[J] T[J] tn (5.47)

represents the symmeTric Green strain matrix during the motion from t
to t+At but referred to the configuration at time t. The 6x1 vector

1-M:{e}. This expression Is exact; no

form of this strain is denoted
restrictions are placed on the magnitude of the displacement increment
T{Au}.

The strain defined in (5.47) cannot be added to that defined In

(5.35) to determine the Green strain at t+At referred to +time O.

However, using (5.8) it is easily shown that

H+AT _ 7t +. . T t+At + ‘
O[el = O[e] + o[Jl T[el o[J] (5.48)
or in vector form
++AT _t + ++A+
O{S} = O{s} + o[T] +{E} (5.49)

This transformation implies that, relative to the initial configuration,
the strain increment employed in Ue Lo is In actuality an Almanéi strain
increment referred to the configuration at t.

When the body is subjected to a virtual displacement field, a
corresponding virtual strain field Is produced. Application of the
first variational operator, 8§, on the Green strain matrix of (5.35)

yields

to T f tooTt
C W1 (831 + (891 (31 ) (5.50)

N —

Troel =
o)
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Substitution of the variation of the deformation Jacobian from (5.23)

permits the above equation to be written in the form

t 4t t T T t.,,T T Tt

OIGSI =5 o[J] 1,[’o‘v] O[Jl + O[J] 1_[cSv] O[J] ) (5.51)
which may be simplified using (5.28) to provide

t _t, Tt +

O[Sel = O[J] T[<Se] o[J] (5.52)

The Green strain rate matrix measured with respect to the initial
configuration, is symmetric and is given by the transformed, symmefric
I[Se] (which is the linear portion of the virtual

Almansi strain). Since I[Gej vanishes under a rigid virtual displace-

deformation matrix

ment, the virtual Green strain also vanishes. Using vector forms of the

virtual quantities, the above transformation is written as
+ + + '
O{Gs} =Tl 1.,{Se} (5.53)

Inverting *the above relationship vyields an expression for the

deformation vector
+ + .-t
1,{Ge} = o[T] 0{58} (5.54)

Using a differential operator matrix which acts on the virtual
displacement vector, the virtual Green strain vector is easily evaluated

as
t _teay t
Jlser = (Bl {su} (5.55)

The terms of +this operator matrix are defined in the appendix to this

chapter.
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For the U. L. formulation, the virtual strain at time t+At referred
to the configuration at time t is required. Application of the varia-
tional operator on (5.47) followed by a substitufion for the variation

of the incremental deformation Jacablan from (5.32) yields

THAT _ et

T teat, . tHAT
1_[cSr-:l = ¥ [8el

NI tiat t

(J1 (5.56)

Use of the vector form of the deformation and strain matrices permits

the above transformation to be written as

t+at tHAt . THAT

T{Ge} = 4#(T1 1__!_M,{cSe} (5.57)
t+AT . \ .
in which 1_[T] is defined In the appendix. An expression analagous tTo

(5.55) for U. L. is described in Chapter 6.

5.4 Stress Measures and Rates

The most common stress measures employed in finite deformation
theory and their corresponding rates are described in this section. In
the deformed configuration, the "frue" or Cauchy stress components
provide the natural measure. As in classical elasticity theory, these
components are defined by considering the equilibrium of a differential
tetrahedron extracted from the body at any time + and acted upon by the
differential force vector T{dF}_ The tetrahedron has three surfaces
parallel to the fixed reference axes. The resulting stress matrix,
denoted 1‘l(c], is symmetric In the absence of body couples due to the
orthogonal ity of the reference planes.

Alternatively, stresses acting on the undeformed areas °LdA} may

be defined as those resisting the same differential force vector T{dF}°
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Using (5.4), the stresses can be transformed from deformed to undeformed

areas such that of the

.t.

t te oot t to-T
{dF} = Jfo] "(dA} = _[J| Clo] J11T °(dA} (5.58)

in which Z[c] is the 1st Piola-Kirchoff or Lagrange stress. This matrix
is In general nonsymmetric since the reference areas on which the
stresses act are not orthogonal. A symmefric sfress matrix is obtained
if the actual force vector, T{dF}, is considered fto be defined by a
transformed pseudo force vector O{dF}. Force O{dF} is assigned a trans-
formation to T{dF} in the same manner that T{dx} transforms to

°ldx}, T.e.,
Teary = T1 Ogary (5.59)

Substitution of the transformed force vector into (5.58) yields

t _teey T bty toa-t ST
{dF} = _[S1 "{dA} = OIJI o1 (ol JUJ1 {dA} (5.60)

in which ;[SI represents the 2nd Piola=Kirchoff (2nd P-K) or 'pseudo
stress referred to areas at 1=0. The above *transformation shows that
this stress matrix is symmetric; however, it cannot be physically inter-
preted as stress in fhé usual manner since it resists a transformed
force vector and does not act on deformed areas. Defining 6x1 stress
vactors, f{a} and 2{5}, and noting the similarity of +the above
equations with (5.39), the transformation in (5.60) may be written In

vector form as

trer -ty toey=T F
S8t = Ll Il {c} (5.61)
te . oty =1t Tt

{o} = 4]~ 1T (8} (5.62)
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in which matrix Z[Tl was infroduced in (5.39).
Now consider the configuration at +time t+AT In which Cauchy
stresses 1-+M-{o} act. These stresses may be referred to corresponding

areas at t=0 or altfernatively at tTime 1 as follows

FiTisy = T T T PTG (5.63)
+ -
THTsy = THT ) THT T Tt (5.64)
t + t
in which 1—+AI[T] was introduced in (5.57).

Stress rates and increments are employed in the development of path
dependent, Incremental constitutive models. The 2nd P-K rate Iis
obtained by differentiating (5.60) with respect to time (or the pseudo
load parameter). The formal stress increment is obtained by multiplying
the rate by the time increment. The differentiation process parallels
that used in (5.50) for the variational operator. Denoting a rate (as
distinguished from a variation) by a dot superscipt, and using (5.26-
5.30) with a dot replacing the variational operator, the 2nd P-K stress

rate Is given, after some manipulation, by

toar _ty gy =l te =T

M8 =T Tt Ten T (5.65)
in which

Torr =T - Mo ™ - 1 Mol (5.66)

- Tior te1” - a1t te1 + Traely Tio

In (5.66), [w] and le] are at time *+. The term T[é] is the actual
Cauchy siress rate. The combined terms In (5.66), denoted I[ST], are

referred to as the Truesdel!l stress rate in the literature. Because the



{87

an P-K stress and, therefore, its rate are symmetric, the Truesdell
rate Is symmetric by virtue of the symmetric transformation in (5.65).
In addition, the Truesdeil!l stress rate transforms to an eguivalent 2nd
P-K rate In the same way that the Cauchy stress transforms to 2nd P-K
stress, see (5.60). Under a rigid rotation, Z[é] must vanish since no
change of the basis unit vectors occurs. The 2nd P-K stresses are thus

invariant under a rigid rotation. This requirement necessarily implies

that i[&Tl must vanish under a rigid rotation, i.e.,
o1 = Tt51 - Ttor 1" - a1 Tro (5.67)

Jaumann [5.7] adopted the above terms within the Truesdell stress rate
as a suitabla spin~invariant stress rate for use in constitutive laws at

finite deformation, if.e.,

e ® ® o T o T
16,1 = Ter - T - o | (5.68)
In the case of a pure deformation Increment, [w] = 0 and the Jaumann
rate Is +the actual Cauchy rate. The Jaumann stress rate is also

symmetric. In vector form, the above expressions may be written

tray _ ty gt =T oo

S8 = ) mT e (5.69)
T, oo totoe

1.{cs’T} = 1,{ch} - T[Q] T,{e} (5.70)

Matrix :[Q] is defined in the appendix to this chapter. The Jaumann
stress rate finds use in finite strain plasticity as the quantity that
is linearly related to the rate of the deformation matrix. As discussed
by Hill [5.8], this is equivalent to a true stress vs. logarithimic

strain relationship in simple tension. Use of the Jaumann stress rate
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as The resultant of the constitufive model yields a zero Treusdell and
2nd P-K rate under rigid rotation.

In the course of finite element computations, the equilibrium
configuration at time t+At Is sought using the equilibrium configuration
at time T as the initial condition. Increments of the computed stress
. components are accumulated as the iterative solution converges toward
the correct equilibrium configuration at t+At. In the T. L. approach,

this process may be written as

Tt _ t
SISt = {sh+z1 {as} (5.71)

As prevously noted, formal stress increments, {AS}, are obtained from
the cofresponding stress rate multiplied by the time increment, At. In
actual computations, the stress Increments are determined from strain
increments which are induced by a displacement increment {Au}. The
displacement increment can be thought of as a velocity multiplied by the
time increment.

The total! Cauchy stress at +time ++At may be computed using the
transformation in (5.62). The incremental decomposition of stress above
implies that material constitutive models produce increments of 2nd P-K
stress. However, 2nd P-K stresses are general ly unsuitable for maferia{
constitutive relaffonshfps which are naturally cast in terms of *frue
stress—logarithmic strain. Use of a T. L. formulation necessitates some
additional strain-stress transformations to obtain the o{AS} needed in
(5.71). These transformations are described in Section 5.6.

Equation (5.71) also serves as the starting point in developing an
appropriate Incremental stress decomposition for use with the U. L.

approach. Both sides of (5.71) are multiplied by Z[J[m1 Z[T]T to yield
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AT

T{S} = T{c} + I T{AS} (5.72)

in which *{S} are 2nd P-K stresses at time t+At referred to the con-
figuration at time t. The Truesdel!l stress increments (f{AS} ) appear
naturally in this transformation. The inverse of (5.64) is applied to
obtain the Cauchy stresses at time t+At from (5.72). Thé above rela-
tionship is appealing from a physical viewpoint if the motion from *t
to t+At+ is a simpie rigid rotation. In such a case, the accumulated
Truesdel!l increments in (5.72) are zero. The Cauchy stress
at t+At, obtained using the Inverse of (5.64), becomes +{o} +ransformed
through the rigid rotation, i.e., [Tl is formed from an orthogonal

deformation Jacobian.

5.5 Principle_gi_VirTual Displacements

The principle of virtual displacements ié applied to derive the
equilibrium conditions for a body undergoing arbitrarily large displace~
ments. The basis of the argument Is that, for an imposed virtual
displacement field, the vir+uai work remains Iinvariant with respect to
the configuration in which the variables are measured [5.91].

HHAT

Consider a body at time T+At which occuplies a volume Vv and Is

bounded by the surface area T+Aon Let the body be in equilibrium under
a set of body forces {p} and surface tractions {q}. For dynamic
analysis, the Inertia effects are included in The body forces according
to DYAlembert!s principle. If a virtual displacement field {8u}

consistent with the kinematic boundary conditions is applied to the

body, the virtual work done is given by (ignoring Thermodynamié effects)
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q
oAt reat, At
(5.73)

and must be zero. The mass density is denoted by p. The body forces
are in terms of unit mass; tThe surface fractions are in terms of the
force per unit area at time t+A+. The applied surface tractions {q} are
~written in terms of the equilibrating Cauchy stresses. The classical
procedure [5.9] is then employed to convert these integrals to the

virtual! work form using Gauss' theorem. The result is

THatoy = THAT f M =0 (5.74)

6wexf int

in which the external virtual work is given by

At

su T t+At, o teat

LACLPRF ! {p} dv (5.75)
v ° ,

T teat
¥ f++AfA {8ul yipplal dA

ext = Jraar

The internal virtual work is given by

t4At

sw teat,  teAT t+at

it =T IT+A+V Tr( (o] (el ) dv (5.76)

The internal virtual work measured from the instantaneous configuration
fnvolves the Cauchy stress and the variation of the deformation matrix
{(which is the linear part of the Almansi strain variation). The above
expression may be simplified using vector fqrms of the strain and stress

to yield

tHaty PRAT (g oy T THAT g That

W e} } dv (5.77)

int © 7 f++A+V

To apply this equation, the terms must be expressed as functions of

variables in a known equilibrium configuration. The obvious choices are
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the configuration at time 0 (T. L.) and time + (U. L.}. To develop
virtual work expressions for tThe Total Lagrangian formulation, all
variables are referred to the undeformed configuration. Use is made of

the following transformations previously derived

1‘+A+{G} = 19+A+IJ"‘1 1“+AT[T]T T+A1‘{S} (5°78)
(e} (o] Q

F4Tser = AT Tl T rse (5.79)

P8y = P11 Cay (5.80)

Upon direct substitution of these transformations into (5.76), +the

internal virtual! work becomes

T t+At

Tt S A 115} Cav (5.81)

6winf y 0{63}

The internal virtual work is In terms of the 2Znd.Plola=Kirchoff stresses
and the variation of the Green strain. In [5.9]1 the above internal
virtual work expression 1Is derived by direct ftfransformation of the
integrals in (5.76) to time O before Gauss's theorem is applied.

To obtain the U. L. formulation, the terms in (5.76) are written as
functions of the known equilibrium configuration at time t+. The pre-

viously derived transformations are

+ + -1 t+ +
Ty = THT 7T Tt T PTGy (5.82)
¥ + ¥
+ -1
1qﬁ“f&e} =T Ai[Ti Pt Ai{ée} (5.83)
Fifay = TR Ta (5.84)

Upon substitution of these transformations into (5.76), the internal

virtual work expression becomes
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At . FRAE, T HRAE, o t
oW, = f*v Tse} 15y Tav (5.85)

which is analogous to (5.81) except that integration is performed over
the configuration at time T rather than time O.

Transformation of the external virtual work integrals (5.75) +to
either T. L. or U. L. forms introduces another ltevel of complexity. How=
ever, the volume integral for the body forces presents no difficulties

and is readily transformed to

t+at  BF o T ++At, | ©
SW_, .= fov o {8u} {p} ~dv (5.86)
for T L. and to
TATew BF = 1 To gt T Tav (5.87)
ext +
v

for U. L. These transformations are particularly simple since the di-
rections of the body force components are not altered under the differ-
ential volume conversions. Body forces are conservative by defini-
tion. Inertia effects are simple to incorporate in (5.86) by the sub-
stitution of {—:} for {p}. Similarly, for U. L., inertia effects are
incorporated by fransforming the integral in (5.87) to time O by noting
+hat 1}:)Td\/ = OpOdV (conservation of mass) and letting {p} = {—G}. The
transformed integral is identical to (5.86). This is of major practical

consequence as the mass matrix for the U. L. formulation is identical fo

that for 7. L. and remains constant for all +times throughout the

response.

The transformation of external virtual work for the applied surface
tractions in (5.75) is more complex due to the different orientation
of 1."'M-d/\ when referred to times 0 and t. This dependence of external

work on the displacements leads to non=-conservative loading. An
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intferesting case of applied surface ftractions is a normal pressure

loading as considered by Oden [5.10], Nayak [{5.1}, and Mackay [(5.11].

Thus,
THAT, CHRAT L PRAT AT HRAT
++Af{q} dA = a, {n} dA (5.88)
t+At . .
where {n} contains the components of a unit outward normal to the
deformed area 1-MTdA and ++qun is the intensity of the applied normal

pressure (suction is positive). Transforming (5.88) fo time 0 using

(5.4) yields

tAt

+ + + + +
IR L L P '

-T o o]
n 0 o {J1 {n} “dA (5.89)

J]

where ®{n} is the unit outward normal at the same material point on the

undeformed element surface. The surface traction integral of (5.75)

becomes
At ST T t+at, =T o, ., T+AT o)

SW_ 4 = foA {su} SJHT THa*r T 1] TdA (5.90)
in which o{q*} has been substituted for 1”+Mﬂqn °{n}. The analogous
expression for Updated Lagrangian is

t+at, ST T t+at, =T e tHAT, T

AW = I*A {6u} T L La*y ] dA (5.91)

with f{q*} = ++A+qn f{n}o When the displacements represent large rota-

tions and/or finite geometry changes, the use of (5.90) or (5.91) is
essential to correctly generate residual loads in finite element
computations. When only concentrated (non-follower) forces and body
forces are applied, the surface integral! above vanishes. Similarly, if
the pressure loading 1Is applied on a surface that undergoes

infinitesimal displacements, equation (5.91) degenerates to (5.90) in
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mechanics type problems with loading far removed from the intensely

deformed plastic zone near the crack tip.

5.6 Constitutive Models for Finite Deformation Elasto-Plasticity

Constitutive models provide a connection between incremental strain
. 'and stress changes. There exist no generally applicable constitutive
relations for materials subjected to finite strain magnitudes. However;
two speclial cases have received considerable aftention by finite element
researchers and have resulted in reasonable engineering approximations for
material behavior,

Oden {5.10] has reviewed formulations for nonlinear elastic (hyper=
elastic) materials similar to rubber. For such materials, 1t may be
possible to develop an elastic energy function in terms of the total Green
strain components. The 2nd P-K stress Is obtained by partial differentia-

tion of the energy function with respect to strain. Thus,

W=W (O{x}, Z{e}, material constants) (5.92)

oW

(5.93)
82{5}

1.
sy =

The relationship between increments of strain and stress is obtained by

again differentiating (5.93) which yields

t t t
d O{S} = O[D] d 0{8} (5.94)
in which
2
"o = Gl (5.95)

o (e} 2 (e}
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The matrix 2[D] contains the tangent elastic moduli. When the material is
isotropic, the function W may be simplified through the use of strain in-
variants. The commonly used Mooney-Riv!in mode! for rubber assumes incom-
pressible behavior with an energy function defined by the first and second
strain invariants and two material constants.

The hyper-elastic material models are of little use for most en=
gineering materials which experience permanent deformation when subjected
to stress states outside an elastic domain. The remainder of this section
focuses on an apprbximafe theory for finite deformation, elasto-
plasticity. This theory has been adopted by a number of finite element
researchers, especially for applications involving the elastic-plastic
fracture of metals. The fundamental assumptions of this theory are:

1. the matertal is Initially isotropic;

2. the material work hardens isotropically;

3., there wexists a Ilinear relation between stress and strain

increments;

4. additive decomposition of strain Iincrements into elastic and

plastic parts is valid;

5. recoverable elastic strains are infinitesimal;

6. . the stress increment is independent of the rate of rigid body

rotation.

The basis for this material modeling theory is provided in Hill's
work [5.8]. More recently, Nemat-Nasser [5.12] reviewed the status of
developments of finite deformation plasticity and provided additional
arguments in support of assumption (4). His argument 1is +that
infinitesimal incremental deformations within a crystalline solid
occurring from a finitely deformed configuration must satisfy additivity
as in the infinitesimal deformation case. He further argued that the

symmetric part of the velocity gradients (the deformation vector :{é}) may

be decomposed into elastic and plastic components.
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Given the above restrictions, the Prandtl-Reuss equations are adopted
as usual, but in terms of True stress and true strain. Strain rate ef-
fects, creep, and thermal dependent material constants may be incorporated
in this theory following the same techniques wused iIn smaltl strain
plasticity, although little of +this work has been reported in the

. Viterature.

Following Hill [5.8], Nemat-Nasser {5.12] and Hibbitf, et al. [5.13],
the Jaumann stress increment and the increment of the deformation vector
provide appropriate stress and strain increments which vanish under rigid

body motion. The incremental relation becomes

t _ T T
in which T[D ] is formed exactly as in the case of infinitesimal strain

T

plasticity [5.14], but using true, Cauchy stresses. The above relation=-
ship is strictly valid for differential changes of the deformation vector.
The von Mises yield criterion and associated flow rule are adopted for
metals. For stress states Inside the yield surface, the tangential con-

stitutive matrix, I[ 1, Is composed of simple elastic constants. For an

Dy
elastic-plastic state, the terms of IID] are derived from the elastic con=
stants, the current stress state, the material strain hardening character=-
istics, and the history of Cauchy stresses. For uniaxial tension, it is
simple to show that (5.96) represents a true stress vs. logarithmic strain
relationship. Numerical refinements, such as the sublincrement method,
used in small strain plasticity are equally applicable in (5.96) to assure
satisfaction of the flow rule.

The incremental relation in (5.96) is adopted in both U. L. and T. L.

formulations through appropriate transformation of the terms to the re-
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quired reference configuraiton. Considering first the T. L. formulation,
the deformation  increment Iis obtained from the Green strain Increment

using (5.54).
t [ PSR B
*{Ae} = O[T] O{Ae} (5097)

. The assumption here is that the Green strain Increment, Z{Ae}, is actually
of differential, not finite, magnitude (see equations 5.50 - 5.55). The

resulting Jaumann stress increments obtained from (5.96) are transformed

to Truesdell Increments with (5.70).

+ _t + +

1_,{on.r} = 1,*[A(JJ} f[Ql 1,{Ae} (5.98)
The Truesdel! increment is transformed to the required 2nd P-K increment

with (5.69).

ty g Teeq=T t
9]

+ ) .
O{AS} =5 O[T] 1_{AO’T} (5.99)

To compute a tangential stiffness, matrix, it is necessary to have a
direct relationship between increments of 2nd P-K stress and Green strain

in the form

1-

+ _ +
O{AS} = OIDTI O{Ae} (5.100)

Combining (5.96-5.99), the Tangenf'maferial matrix is given by

+ _ 1 + + tooy=1
oID51 | #1071 = 101 ] (Tl (5.101)

+ T
T "o |

J] JIT!

However, because :[Q] is not symmetric, the resulting constitutive rela-
tion is non-symmetric which leads fto an undesirablie non-symmetric stiff-
ness matrix. Osias [5.15] arrived at this same relationship (5.101) and

retained the non=symmetric terms. Upon examination of The [Q] matrix, the
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non-symmetric terms are found to arise from the trace of the deformation
matrix which represnts the incremental volume change, see Eq. (5.66). I[f
these fTerms are neglected, then 1[Q] becomes symmetric. Recalling
assumption (5), the rationale to neglect these terms is that: (1) under
elastic conditions, the volume change multiplied by the stresses is a very
small Term comparedvfo the etlastic moduli, and (2) under perfect plas-
ticity conditions the Incompressibility constraint forces a zero volume
change. McMeeking and Rice [5.16] omitted the trace term as did Nagtegaal
and de Jong [5.17], although neither group noted this assumption. Further
compl ications arise.whén the material has a very low hardening modulus (in

terms of +true stress-logarithmic strain). The intermediate result,

.!n
-t-.

strains. One possible remedy is to simply omit I[Q] in (5.101) when

[DT] - I[Q], may develop negative terms on the diagonal for large tensile

forming a suitable constitutive relation for use in computing a tangent
stiffness. The writers have demonsfrafedA that +this fechnique is
acceptable provided the exact stress increment is computed using (5.96-
5.99),

Consider now constitutive relations for use with the U. L. formula-
tion. The deformation increment at time t+At for use in (5.96) is com-
puted from the Green strain increment referred to the configuration at

time t using (5.57).

t+at teAt =1 At
.t._*_A,r{Ae} = 1_[T] _'_{As} (50102)
AT

Again, it is Implied that ~t_{Az—:} is actually of differential magnitude.

The Jaumann stress increment is obtained from (5.96) and transformed to a

Truesdell increment by
tHAt _ that THAT, o tHAT
peapldopd = L {Ao b = 101 ) {Ae] (5.103)



199

The Truesdel!l increment is transformed to an increment of 2nd P-K stress
referred to the configuration at time + (which is Jjust the Truesdell

stress transformed fo time t)

T t+at
t+at

AT

trAt) AT
+ N Rl

{AS} = ¥ Tl {Ac. } (5.104)

T

In U. L., the tangent stiffness matrix is formed for the configuration at
time t and generally held constant during the increment At. Thus, the

material tangent matrix is given by
traxe 1 o T _t :
1~[D TI = 1_[D.[.l T[Ql (5.105)

In which both matrices on the right side are generated in terms of actual
.1‘

Cauchy stresses at time +. The 1_,[D*l above relates increments of Green
strain and Truesdel! stress at time +. If the stiffness is deafed
between t+ and t+At (to accelerate convergence) the new constitutive matrix
is evaluated as in (5.105) wusing the most current values of Cauchy
stress. The same difficulty that arises due to the non-symmetry of [Q]
for T. L. also occurs here for U. L.

Approximating assumptions for (5.96-5.105) have been introduced by

varfous Investigators as summarized below. Alturi, eft. al. [5.18]

employed an U. L. approach with the approximation

tedt, o PRAT o PHAT
+LaS} = L 10-1 T (A} (5.106)

which neglects changes in the structural configuration over the inter=-
val At In forming the constitutive matrix, [Q] was simply ignored.
Hibbitt, Marcal, and Rice [5.13] fully developed the T. L. equations
(5.96-5.101) but implemented a simplified form valid only for small

strains by neglecting [Q] in all equations. The determinant of the

o
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deformation Jacobian was also assumed to remain unity wh]ch effectively
reduces [T] to a rotational transformation. Based on these assumptions,
they claim that the implemented formulation is valid for the case of large
rotations but infinitesimal strains. McMeeking and Rice [5.16] developed
an U. L. approach in which the configuration is continuously updated.
Under such a procedure, the transformation in (5.102) is unnecessary,
fee., I[T] is an identity matrix. In addition, the transformation of
Truesdel! stress in (5.104) becomes unnecessary. Bathe, et al. [5.5]
presented both T. L. and U. L. formulations. For T. L., the material
constitutive relation in (5.100) was formulated using classical plasticity
theory but in tferms of ftfotal 2nd P-K stresses. The proposed U. L.
constitutive model (5.106) is that adopted by Alturi, et al. (5.18].

With exception of the Jaumann to Truesdel!l transformation in (5.98),
differences in the various U. L. approaches vanish for sufficiently small
motion over the interval At. However, the cﬁoice of a "sufficiently"
small At cannot be assured for complex structures undergoing large dis-
placements; thus, the more exact transformation In (5.104) is preferred.
With this approach, the T. L. formulation Is recovered as the Iimiting
case when no updates of the deformed configuration are performed. The use
of (5.100) with :[DT] formed in terms of 2nd P-K stresses, as proposed in
[5.5]1, is clearly unacceptable for general applications.

There continues to exist some question as to the need for the [Q]
terms appearing in The various transformations. These terms arise from
the Jaumann to Truesdel | sTreé Increment transformation. In the elastic
range, these terms are on the order of stress, which when multiplied by a
strain increment are clearly negligible compared with elastic moduli. In

the plastic range, the terms of [Q] become more comparable in magnitude to



201

the plastic moduli (which may be on the same order as the stress) unless
the deformation increment is truly of differential magnitude. Hibbitt, et
al. [5.13] acknowl!edges the role of [Q] then chose to ignore It under the
restructions of small strain-large rotation. McMeeking and Rice [5.16]
include [Q] in their confinuouély updated formulation as an inftial stress
. matrix and do not report any numerical difficulties. They conclude that
whenever the slope of the Cauchy (frue) stress vs. logarithmic strain
curve has a magnitude comparable to the current stress level, the
predicted tangent stiffness cannot be accurate. Both [5.13] and [5.16]
conclude that the relative importance of [Q] terms iIs not fully known and

requires further study.

5.7 Summary and Comparisons of the U.L. and T.L. Formulations

Using matrix notation, the equations of nonlinear continuum mechanics
that provide a rational basis for finite element analysis have been
presented in this chapter. Two formulations are described in detail:
namely, the Total Lagrangian (T. L.} and Updated Lagrangian (U. L.) The
initial configuration of the body at time *+=0 serves as the reference
state for all variables in the T. L. formulation. The configuration at
time t serves as the reference state to describe all variables at time
++At in the U. L. formulation. Full details of the stress measures,
rates, fransformations and nonlinear constitutive models have been
described that enable analyses Involving both infinitesimal and finite
sfréin magnitudes. Finite magnitude strains commonly appear in structures
that experience transient response éfTer being subjected to localized

blast or impact loadings.
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The two nonlinear formulations, T. L. and U. L., are shown to derive
from a common definition of the rate of work per unit mass which leads to
equivalent virtual work expressions when the corresponding reference
states are introduced. Analyses derived from each formulation are iden-
tical tTo within truncation errors introduced in the numerical proce-
dures. However, as noted throughout this chapter, various investigators
have introduced simplifying approximations into the formulations that
limit their applicability to the most general class of problems. The U.
Le formulaffon offers the most temptation to simplify the equations since
one might argue that the difference in configuration between time step *
and T+A+:is sufficiently small that all second order nonlinear terms may
be discarded. Stress rates and fransformations in the corresponding
constitutive models are simplified similarly. No approximations of any
Type are permissible in the T. L. formulation since the deformed and
reference configuration are seldom similar.

The differences in computational efficiency of the two formulations
|fes in the stress rate transformations and the strain-displacement rela-
tions. The mass representation is identical in both formulations and thus
does not enter into the discussion. Simifarly, computations associated
with a nonlinear constitutive mode! are identical as the computed results
required by the model are identical In bofh‘formulaTIons. As shown 1in
Section 5.6, the same number and type of transformations to account for
stress rates are required In each formulation. The U. L. approach appears
to gain a computational advantage if the simplifying approximation is
employed that eliminates the Truesdel! to 2nd P-K stress transformation.
However, this advantage is offset by two factors: (1) the number of time

steps to assure that the change in configuration over a single time step
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is "small" remains unknown, and (2) the stresses at the beginning of the
step and the increments that occur during the step must be transformed to
the configuration at the end of the s%ep. This last process is unneces-
sary for the T. L. formulation in which all stress increments are frans-
formed to the initial configuration as computed. The stress increments
. are simply added to the existing stress state. Therefore, in terms of
stress computation, the T. L. approach actually has a slight efficiency
advantage over the exact U. L. formulation.

The computation of an increment of the deformation vector is accom-
plished in the same symbolic form (5.53 and 5.57) for both formulations.
The differences l|ie in the effort required to construct the [T] matrix in
each case. For U, L., the formulation of derivatives in [T] requires that
updated coordinates be available, whereas in T. L., derivatives are always
formed with respect to the Initial configuration. These derivatives could
be computed once and saved for re-use. Some effort Is necessary to
continuously update the coordinates. More importantly, the strain Incre-
ments produced by U. L. cannot be simply accumulated to form the total
strain, as shown in (5.48). This transformation to a common reference
configuration requires additional computational effort that is unnecessary
in the To L. formulation.

In summary, an examination of the computational efficiency of the
transformations necessary in each approach, reveals that T. L. appears to
have a slight advantage over U. L. This does not include any factors that
are Introduced when the governing equations are cast into a form suitable
for finite element analysis. In a practical sense, the advantages of

either the U. L. or T. L. continuum theory appear computationally



204

insignificant given other costs of computation, for example, equation

solving and massive data transfers between memory and disk.
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ndix -—- Notation

The

following convention for vector and matrix subscripts and super-

scripts is used:

Te

a left superscript indicates the discrete time configuration in

which the variable occurs,

2. a left subscript in conjunction with a left superscript indi-
cates the discrete time configuration with respect to which the
variable is measured,

3, a left subscript by Itself indicates an Increment from time t
to t+At referred to the configuration at the specified time,

4, a dot over a symbol denotes a rate quantity. Left subscripts
and superscripts indicate the time and reference configuration,

5. - a "§" symbol denotes a variation of The quantity. Left sub-
scripts and superscripts indicafel the time and reference
configuration.

[ Square brackets denote a matrix
{ 1} Curly braces denote a column vector
[ ]T, { }T Right superscript "T" denotes the transpose
O{X}, f{x}, ++A1={x} Cartesian coordinates at time 0, t, and ++At
{i} unit vectors
;[J] Deformation Jacobian matrix
1“{u},ﬁ MAul”{u} Vectors of displacements from 0 to t and from 0
to t+At
O{n}, f{n} Vector components of the surface normal at times
o, t
%, T Mass density at times 0, t
%4, T Area at times 0, t
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Volume at time 0 and t
Vectors of surface force components at time T per
unit area at 0 andd T

Vector of body force components per unit mass at
time t referenced to configuration at 0

Cauchy stress vector and matrix at time t+At,

(Note that "4T(g) = THAT

2nd Piola~Kirchoff stress vector and matrix at

(al).

time 1t referenced to the configuration at 0

2nd Piola=Kirchoff stress vector and matrix at
time t+At+, referred to configuration at +
Truesdel! stress vector and matrix at +ime +
referred to the configuration at t

Rates of Jaumann stress. vector and matrix at time
t referred to the configuration at t

Almansi strain vector and matrix at time ++At
(note that THF (¢ - {:ﬁ:

Green strain vector and matrix at +time t+AY

el

referenced to configuration at 0

Incremental displacement gradient matrix at +
referenced fto configuration *t

Deformation matrix at t referred to confliguration

T (symmetric part of 1-[v])

t
Spin matrix at t referred to configuration +
(anti~symmetric part of I[v])

Transformation matrix to convert Almansi strains

at time t to Green strains



—+

Tr

-'.

W

(jl

(Bl

(

(Q1

ar
JID]

209

Displacement Jacobian at time t+ referred to
configuration at 0

Differential operator +to vyield Green strain
increments from displacement increments

Denotes the +race of a square matrix (sum of
diagonal terms)

Transformation matrix that converts Jaumann stress
increments at time + to Truesdell stress
increments at time T

Virtual work quality

Elastic energy density function

Elasticity matrix at +ime + referred ‘o
configuration at 0

Elastic=plastic matrix at +ime t+ referred to

configuration at t
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CHAPTER 6
NONLINEAR FINITE ELEMENT EQUATIONS

6.1 General

The finite element concept of discretization is combined with the
continuum mechanics theory in matrix form in this chapter. With the
addition of solution procedures for nonlinear transient equations, a
very general analysis capability results, The form of the finite
element equations of motion are first expressed without regard to a
particular choice of reference configuration. The use of such a general
form makes the detailed discussion of nonlinear +transient solution
procedures equally applicable for an arbitrary reference
configuration. Specific forms of the element’ stiffness matrices and
internal resisting force vectors are derived for the Tota! and Updated
Lagrangian approaches. The relative computational effort required for
each approach and The.implicafions of a substructured modeling procedure
are also examined. Recommendations are made for appropriate
formulations and solution procedures necessary to support the analysis
of a broad class of problems.

A number of investigators have contributed to the current state of
rigorous finite element formulations derived from the continuum theory
of the previous chapter. Three approaches appeared almost
simultaneously in the l|iterature of the early 1970's. Hibbitt, Marcal,
and Rice [6.1] first presented .a comprehensive formulation using the

configuration at time 1=0 as the reference state (Total Lagrangian).
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Matrices required for finite element analysis, Iincluding the non-~
symmetric stiffness for displacement dependent loading, were
described. Using matrix notation throughout, Nayak [6.2] independently
derived the same element matrices. Both of these studies addressed only
static analysis and employed the symmetric 2nd P-K stress and Green
strain as conjugate measures in the configuration at time t=0, Nemat-
Nasser and Shatoff [6.3] used a combihaTion of current (time *t) and
initial reference configurations with Tthe non-symmetric 1st P-K stress
measure.

Investigators advocating +the use of the current configuration
(convected coordinates) for the reference state included Hartzman and
Hutchinson [6.4], Belytschko and Hsieh [6.5], and Key [6.6]. In each
of these studies, the motion of The body over At was decomposed into a
rigid motion and a pure deformation. The procedures worked wel! in each
case even though different schemes were devised for the decomposition
procedure. Only Key [6.6] focused on the finite strain case; the other
two studies were concerned primarily with tlarge rotation effects.
Interestingly, each of these studies addressed the problem of nonlinear
wave propagation using explicit integration procedures. McMeeking and
Rice [6.7] presented a rigorous formulation based on a continuously
updated reference configuration applicable for finite deformation and
rotation.

Yaghmai and Popov [6.8] were the first +to describe an Updated
Lagrangian approach which attempts to combine the Total Lagrangian and
the updated coordinate approaches. This was done by adopting the
configuration at any time t prior to t++At as a reference state. The

existing Green strains and 2nd P-K stresses in the reference
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configuration are simply treated as initial strains and stresses to
which are added increments of 2nd P-K stress and Green strain. This
approach captures the spirit of a convected coordinate approach but is
morevappealingvfor four reasons: (1) the reference configuration does
not need to be continuously updated, (2) the decomposition of motion
info deformation and rotation follows Lagrangian mechanics, (3) the
‘Total Lagrangian approach 1Is recovered exactly if +the reference
configuration is not updated, and (4) no limits on the deformation
magnitude over At are implied due to linearization if the exact U. L.
equations of the previous chapter are utilized. Nagarajan and Popov
{6.9] subsequently used +the U. L. approach +to study viscoplastic
response of *Thin sheil structures. Bathe, et. al. [6.10, 6.11]
formalized the U. L. procedure for general *Fransient analysls and

pubiished a large number of papers using the procedure.

6.2 Nonlinear Equations of Motion

The virtual work principles derived in Section 5.4 provide the basis
to generate approximate equations of motion using finite element con-
cepts. Considering the motion of tThe body over the interval from t to
++A+, and without regard to a particular reference coordinate system,

the principal of virtual work provides that at t+At (see 5.74-5.76)

= 4= = ©
oW 6wex+ swinf 0 (6.1)

where the *+At left superscript has been dropped in this section for

brevity. All quantities are at time t+At unless otherwise noted.
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The internal and external virtual work fterms are given symbolically

by

§ - T o} (6.2)
Woog = 'f*v «(8e} (o} dv .

T, . * T *
Mo = [y w0 {8UF 1Y dV + [ {8u} )} dn (6.3)

The asterik (*) is adopted to indicate an unspecified reference
configuration for the variables. As shown in Section (5.4), the general
forms of the virtual work equations for both T. L. and U. L. are
fdentical. The differences derive from the choice of reference system
(*) and the requirement of conjugate strain and stress definitions.
This notation perhffs a completely general discussion of the finite
element process and solution techniques prior to introducing specific
matrices for the T. L. and U. L. approaches.

The finite element concept is invoked at this point to provide a
spatial discretization of the structure. Individua! elements are
connected at discrete points termed nodes. At time t+At, the continuous
displacement field, {u}, within each element is approximated by a set
of interpolation functions, [NT, which act on the nodal

displacements {ae}, Thus,
{u} = IN] (&%) | (6.4)

In 2-D problems, {u} is a 2 x 1 vector containing u and v displacement
components as a function of position within the element. Vec-
tor {ae} then contains (2 ¥ number of element nodes) terms. Terms of
[N] are usually simple functions of position within the element and do

not depend on its deformed shape or time.
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To facilitate The development of elements with initially curved
edges and faces, the shape functions are expressed in terms of an
intrinsic, convected coordinate system. A one~to-one mapping from the
parent configuration (usually square) to +the actual shape in the
structure is provided by a set of interpoiating functions and the
Cartesian coordinates of the element nodes. As will be shown, the use
.of Initial or updated Cartesian coordinates for this mapping plays a
major role in the differences between T. L. and u. L. When
interpolation functions for the element mapping and Those for the
displacement interpolation are identical (6.4), the popular
Isoparametric element family is obtained. Fortunately, the details of
transformations between +the Intrinsic isoparametric coordinate and
global Cartesian coordinates do not affect the basic finite element
solution procedure.

At time A+ virtual displacements; {Saé}, consistent with the
kinematic constraints are Iimposed on the nodes. Corresponding

variations of the element displacement field, {8u}, are given by
{su} = IN] {8a"} (6.5)

Virtual strains caused by the virtual displacement field are denoted
x8€}, in which *the definition of strain appropriate for the selected
reference configuration is ’impl'iedo However, it is completely general

to express the virtual strains as

£18e} = LIL] {8u} (6.6)
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in which [L] is a differential operator matrix that may be a nonlinear
function of the deformed element configuration at time t+At. Combining

(6.5) and (6.6) yields
L {8e} = LIL1 (NI {8a%} = IB] {8a%} (6.7)

in which the conventional notation (Bl of the virtual strain-nodal dis-
‘placemenf retationship is introduced. The general form of the internal

virtual work for an element Is written

e PN T * T - P
Wiy =m0} [ BT lo} dV = ~{8a7} {FT) (6.8)

in which the notation {Fe} is introduced to denote equivalent nodal
forces induced by the deformed element. The (*) left subscript is not
required on such terms since these forces are directed along global
coordinate axes.

Consider now the virtual work of body forces within an etement,
e _ T, ¥
SWoe = f*v x0 {8u} {p} dv (6.9)

in which 4o Is the mass density and {p} are the Cartesian components of
body force per unit mass. Two types of body forces are considered: (1)
self=welight and centrifugal, in which the body force intensity is
written in terms of current density as ,{F}; (2) inertia effects using
D'Alembert's principle with {G} defining the element acce!erafion
fielde Using (6.4), the body force virtual! work may be written in the

form

e e,T T * e, T To*
SWoe = (827} I*V[Nl #(F} dv, - {82} f*v*p[Nl {u} av, (6.10)
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To simplify this expression, let {(8F%} represent the first integral
(equivalent noda! loads due *to body force). Again the (*) left
subscript can be omitted. The second integral is simplified by noting

that in analogy with (6.4)
= IN {a%) - (6.11)

and that the second integral of (6.10) must be invariant with the
deformed configuration (conservation of mass--see Section 5.4). The

virtual work of element inertia forces may thus be written in the form

oW = ~(62% T (M®] (2%} (6.12)
in which
e T 00
M71 = [ INT INI"p dV (6.13)
(o]

Matrix [Me] is wusually termed the consistent .element mass; it is
computed once at +the beginning of the solution for +the Initial
configuration and recalled from secondary storage whenever needed.

In a similar manner, the virtual work of external tractions app!ied

over the element surfaces may be written in the form '
%*
suS = (6211 (IN1'{q} dA = {8a°} {TF®} (6. 14)
ST %A
The total virtual work for an element is thus written
sw° = {Sae}Tif{Fe} + (8F%} + {(TF°%} - [Mel{aeﬁv (6.15)

Virtual work for the complete structure is obtained by summing the
contributions from each element. Element nodal displacements are

related to the structural nodal displacement vector through a simple
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Boolean connectivity matrix, which accomplishes the symbolic assembly
process. The resulting virtual work expression is analogous to (6.15)

except that vectors are of structural, rather than elemental, size.
S =0 = (s} {-{F} + (8F} + (TF) - M1 (o) (6.16)

The choice of nodal virtual displacements is arbitrary; thus the summed
terms In { } must vanish for dynamic equilibrium at time t++At, The
result is a set of nonlinear, simultaneous equations in the nodal

displacements and accelerations which may be written in the form
{R} = {P} - {F} - M] {a} = {0} . (6.17)

Vectors {F} and {P} are Implicit functions of the nodal displacements
and generally cannot be written as a matrix multiplied into the current
displacement vector. For simplicity, the external applied load effects
are combined into {P}. Likewise, damping effects have been neglected;
however they could be included by a term of the form (c1{a} analagous to
the Inertia term.

At this point it is instructive to review +the sources of

nonlinearity in the dynamic equations of motion (6.17):

1) the change in surface orientation and magnitude under loading
causes {P} to become a function of the displacements;

2) the Internal resisting force vector, {F}, may be non!inear due
to the material constitutive relationship between total stress
and strain (,{o} and ,{e});

3) the internal resisting force vector may be nonlinear due 1o the

dependence of  [B] on the nodal displacements.

The following section considers general solution procedures.



22|

6.3 Transient Analysis with Substructuring

At any given time, 0, A+, 2At,.....T, t+At..... the nodal displace-
ments, velocities, and accelerations are sought such that the nonlinear
equilibfium equations represented by (6.17) are satisfied. A temporal
integration operator is employed for the time discretization. Both

'implicif and explicit operators are applicable. With explicit
operators, computations are performed directly on the vector form of the
dynamic equations in (6.17) with {R} +aken as zero. Component terms of
each vector are computed directiy from the integrals in (6.8, 6.10 and
6.12)s No stiffness matrices or mass matrices are ever assembled. The
advantage of an explicit procedure Is that i+ provides the computational
efficiency needed to render feasible the solution of wave propagation
problems (which require exceptionally small At). The computations over
each time step are relatively simple. The majér disadvantage is that
nonlinear effects due to the spatial variables cannot be "iterated" out
at constant dynamic load, .., no equilibrium fterations within a time
step are possible.

With implicit integration operators, the displacement increment over
At 1s used to predict the accelerations at tT+At, The displacement
increment is obtained by using an effective stiffness matrix to form a
set of simultaneous equations. The advantage of an implicit approach
lies in the capability to completely correct for nonlinear effects in
the spatial variables that occur over At through equilibrium
iterations. In addition, corrections in the estimated displacement
increment over At during fiterations are wutilized to Improve the
predicted acceleration at ++At. At ++At, the dynamic equilibrium

equations can be satisfied to within a specified folerance with an
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implicit procedure. The major disadvantage of the implicit scheme is
the Increased computational effort required fo assemble and triangulate
the effective stiffness matrix., Thus, a solution procedure based on an
“implicit scheme Iis more appropriate for problems in which wave
propogation is not as important as gross inertia effects. Much larger
time steps are permitted thus reducing computational costs. [ f
necessary, the implicit scheme can be used to compute wave propagation
effects.

The implicit solution scheme is adopted for detailed discussion here
and will be adopted in the software. The implicit scheme builds upon
the experlience gained in the solution of static nonlinear problems.
Static analysis is recovered as the degenerate case when the mass matrix
is zero.

The nonlinear equations of motion (6.17) are solved iteratively to
determine displacements and accelerations at T+At beginning with a known
solution for time t. Suppose that 'm!' such iterations have been

performed and the current estimate of the total! nodal displacement field

is 1'+M{am} and the  nodal acceleration field is 1'di.M{;l.m}v
¢ ++A+{Rm} computed using (6.17) vanishes for these displacements and

accelerations, the solution has converged. Computations for the next

¢ tHAT

time step are begun. {Rm} does not vanish, a generalized force

imbalance exists at the nodes and is given by the terms Iin 1-+M{Rm}..

These are usually termed the residual loads; they must be eliminated by
suftable changes of nodal displacements and accelerations during the mt!
Iteration. Let {ARm} represent +the change of the residual loads
necessary 1o remove 1-+M-{Rm}; then the following equation is to be

solved
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At tAt

{Rm} + {ARm} = {0} (6.18)

The increment of the residual load vector is simply determined by

~summing the increment of each vector in (6.17),

tA+ t+at

; _ At o PR
{ar } = "0T{aP } {aF } ~ M177" {Aa } (6.19)

.in which {P} and {F} are implicit functions of the nodal
displacements. Corrections in the nodal acceleranons, {A;m}’ are
coupled indirectly to the nodal displacement corrections through the
integration operator. The finite size corrections implied in (6.19) are
also nonlinear functions of the spatial variables. By assuming that an

approximate correction can be obtained using the differential of {R},

tAt t+At

{ARm} ~ {dRm}, (6.20)

a one term Taylor series about the configuration {am} yields a set of
linearized correction terms for use in (6.19)

dP

e [agm]{am} = lgglm{am} (6.21)

tat

{APm} = {de}

dF
++At ++4+ o m
{aF } = ldF } = [da ]{am}

i}

IKTI{am} (6.22)

Vector {am} denotes an increment of nodal displacement. The symbolic
differentiations inside +the { | lead to the initial load stiffness,
[$l!’ and the conventional “tangent stiffness, [KT]o These two
matrices are the Jacobians of the functions {P} and {F}, which are
nonlinear in the nodal displacements. Explicit forms of [KT] for the T.
L. and U. L. formulations are provided in following sections. The ‘'m’

right subscript outside the [ ] denotes the nodal displacements at which

the stiffnesses are evaluated. The influence of {Aam} on {ARm} is

rrrrr
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simply a function of the integration operator and need not be considered

in (6.21) or (6.22). As discussed in Section 5.4, the [K,] matrix

2
arises due to non-conservative loading. It is generally non-symmetfric
and thus ignored In forming {ARm}. Corrections in the effective

loading, {P}, due to geometry changes are incorporated by occasionally
recomputing {P} using the current geometry. Symmetric forms of [KT] may
be derivedvfor both T. L. and U. L. formulations as shown in subsequent
sections.

Substitution of (6.22) and (6.20) info (6.18) and then into (6.17)

yields the Incremental-iterative equations of motion

Tt 3 _ TRt TG (6.23)

[KT]{am} = m m m

which can be solved for {am} using linear equation solving techniques.

++AT{am} ferm. Each

th

The integration opefafor enters (6.23) through the
vector on the right hand side of (6.23) is computed for the m
iteration estimate of t+he nodal displacements at *++At using (6.8),
(6.10), (6.14) at the element level and (6.16) at the structure level,

The improved estimate of nodal displacements for T+At is

++At _ tHAt

{a .} = {a } + {a} o (6.24)

m+1

. tat .
Corresponding accelerations {am+1} are computed using the
integration operator. The right side of (6.23) is then evaluated for
the improved displacements and accelerations (the R.H.S. is

1-+AT{R}). If this vanishes, the solution has converged;

simply
otherwise a new correction {am} is computed and the process repeated.
Simplifications in solving (6.23) involve the use of various forms

of the Newton-Raphson procedure. It is not necessary to recompute and

triangulate [KTI during each iteration. Any previously computed [KTl,
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inctuding the linear elastic [K], may be employed. The convergence rate
of the iterative procedure will be affected accordingly. Over-
relaxation techniques used in static analysis may also be used here to
enhance the convergence characteristics.

In a multilevel substructure model, (6.23) is applied only at the
highest level structure which contains the synthesized 1inear substruc-
tures and nonlinear finite elements. The effects of substructuring are
reflected in esach term of (6.23). Modal synthesis techniques discussed
in previous chapters provide procedures to formulate {M] and [K] at the
outset of the transient response computation. The external dynamic

loading THat

{Pm} is generally independent of the nodal displacements
(conservative loading) but not independent of time. Thus, if time
dependent loads are applied inside a synthesized substructure, the
equivalent dynamic loads on the nodes (and modes) remaining after
synthesis must be recomputed each time step. A simplification occurs
when the spatial loading pattern applied inside the substructure is
synthesized once, then a specified time function is applied to the
equivalent loads to yield the variation with time. The internal
resisting forces, 1qﬁMﬁ{F’}, are the sum of contributions from the
individual nonlinear elements and from the synthesized substructures
that appear in the highest level structure. Nonlinear element
contributions are given by (6.8); synthesized substructure contributions
are obtalned from the product of their stiffness matrix with
the mfh estimate of the +total nodal displacements f+A+{am}° This
computation requires the retrieval of each synthesized stiffness matrix

from secondary storage during every equilibrium iteration. The major

computational savings derive from the greatly reduced size



226

Initial Calculations

|. For each linear substructure (repeat at each level for nested

substructures):

a. Form [K] using standard techniques,
b. Form [M] as consistent or lumped.
c. Reduce [K] and [M] using any of the dynamic reduction techniques

described in Chapter 3.

2. Form the synthesized stiffness, [K], and mass, [M], for the highest

level structure.
3. Set initial displacemenfse{a}, and velocities, °fal.

4., Compute initial accelerations, O{;}, from equilibrium equation:

M1 °{a} + [KJ °{a} = °{P}.

5. Define constants for the specific integration operator, e.g.,

Wilson-6, Newmark-8. Denote these constants ai, aj, o, , etc.

k

6. Compute the contribution of the mass fto the effective stiffness for
the highest level structure: [KJ = o, [M].

7. Triangulate effective stiffness, [KE] = [K] + [K], of the highest
leve! structure, using Choleski decomposition: [KE] = [L][L]T.

Table 6.1 -- Procedure for Transient Analysis with Substructuring

———

(Damping Neglected)
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For Each Time Step t -+ t+At:

. If specified by the user, update the tangent stiffness, [KT], of the
highest level structure. Only elements that are currently nonlinear
are updated. Condensed substructure stiffnesses are re-used.
Triangulate the new EKT] = [L][L]T°

2. Compute the effective load increment vector. Place it in *+A*{R}.

MR = TRy - TRy - Do, T + o TG .

This expression is derived by sub+ﬁacfing (6.17) evaluated at time t

from the same equations at time At as follows:

o] TGy« TR - Ty - ey = TR - e

it AT ()

Now substitute [KT]{Aa} = } - *{F} and a} =

ai{Aa} + uj+{é} + ak*{g} from the integration operator to yield

€ Okpd + oy Dud > (sad = 0Py - TRy + Il o T8Y + 0, T )

The right hand side is simply THAty

R}. It is not necessary to include
any remaining residual toad, *{R}, in the effective load vector for
the new step if equilibrium iterations will be performed. Otherwise
T{R} should be added to the ' AT{R} derived above.

3. Solve for the displacement increment vector [Lj[LjT{a 1= T+A+{R}E

4. Proceed to .step 5 if no equilibrium iterations are specified to correct

the acceleration or to eliminate residual loads due o nontinear

response in the spatial variables.

Table 6.1 == (continued)
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4., (continued) Otherwise, begin equilibrium iterations:

Set m = |

" b. Compute improved estimates of the total nodal displacements and

o]

accelerations given values at time t and the most recent estimates

of change over the step.
T+AT = T L tEAE L, AT P 5L T i
{a } = {a} + {a }; {a }=q {a } o {a} - a, {al.
c. For the impfoved total displacements and acceterations, compute The

) . * . + "
total residual load vec+or?+ATRm} = 1.+A+{Pm} - ++AT{Fm} - [M] f Af{am}.

d. Solve for a correction to the displacement change over the step:
+
[0 (8a} = 747G 3.

e. Update the esTima+ed change in nodal displacements for the time
step: {am+,} = {am} + {Aa}.

f. Perform checks on convergence using ++AT{Rm},'{Aa}, ++A+{am}. I f
converged, jump to step 5. f not converged and iteration number
m is less than the maximum allowed, increment m and go to g; other-
wise, terminate analysis as a nonconvergent system exists.

g. |If specified by the user, update [KT] and triangulate. Go to b.

5. Compute new accelerations, velocities, and displacements for ++At to

serve as initial conditions for the next step:
T 2y = aif{a} + aj*{é} + ukf{;},
MY = TGy ¢ o Tte) + 0 TG,

Y = Ta) + {al.

Stresses, strains, reactions, eftc. can be computed for the highest tevel

structure. Simiiar results may be recovered for condensed substructures.

Table 6.1 -~ (continued)
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of [KT] possible with substructuring. The frequent triangulations
of [KT] required fo enhance convergence each consume much less time than
does the reduction of a [KT] representing an equivalent unsubstructured
model o

Table 6.1 provides a detailed flow of the transient response compu=
tation for a multilevel substructured model based on an implicit

integration operator.

6.4 Total Lagrangian Stiffness

Specific forms of the elemental stiffnesses for the T. L. approach
are described in this section. Once element stiffnesses are generated,
a substructure stiffness Is assembled using standard, well documented
techniques [6.121.

The approach adopted here derives from the work of Nayak [6.2],
McKay [6.131, and Dodds [6.14]1. As shown in (6.8), the element nodal

force vector due to Internal stress and strain is given by
e P
{F7} = f*v x[Bly{o} dv (6.25)

in which the above integral may be evaluated at any time t. With the
configuration at +ime t known, an approximation for {Fe} at t+at is

given by

ATy W T+ dTF®) = TS 4 Z[K?]d{a} (6.26)

in which d{a} represents the change in element nodal displacements over
At.
For the T. L. approach, the (*) configuration in (6.25) is taken to

be that at time 0. The integrand is evaluated at time T but referred to
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the configuration at time 0 using the results derived in Chapter 5,
specifically (5.81). After substituting info (6.25) the differential,

internal force vector may be written as

..r

dT(F®y = d[f |, TieiT Tisroav] (6.27)
o]

Using the product rule, differentiation under The integral sign yields

tooey + Tt + T+, .0
d {F} = fov oBl d (s} + d 1Bl _{s}7dv (6.28)

L]

From (5.100), the increment of 2nd P-K stress is given by
t _t T
do{S} = o[DTldo{a} 7 (6.29)

with the tangent modulus matrix provided by (5.101). The differential

of the Green strain is given by (5.55) as
t _t .
d {e} = JiBld{a} (6.30)

in which the form for Z[B] is repeated in Table 6.2,

The differential of the Z[B] matrix in (6.28) with respect to the
element nodal displacements has been derived in a convenient form by
Nayak [6.2] and Dodds [6.14]. The Z[B] matrix is split into two
components, the first being independent of the nodal displacements which
vanishes under differentiation with respect to the  nodal
displacements. Differentiation of +the nonlinear terms ylelds an

expression of the form

T+

trortrar o T t
d_1BI_{S} = (61" (MI_(G] d{a} (6.31)

following rather lengthy but straightforward differentiation of +the

summations. Complete details of the process are given by Dodds
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[6.14]1. Matrix g[G] simply contains derivatives of the element shape
functions with respect to ‘the Initial, O{x}, coordinate system,
The z[M] matrix contains a regular arrangement of the 2nd P-K stress
componénfs, Z{S}. Details of the [G] and [M] matrices for the 2-D cases
are given In Table 6.2.

The complete element tangent stiffness s obtained by combining the

effects of (6.28-6.31) as

oo, Ut _rt +
{aF7} = JikiH{Aa} = [JIK 1+ (K _1]{sa} (6.32)

in which finite increments of the nodal displacements, {Aa}, are used
during computation to replace the differential values.
The initial stress stiffness, [Kd], is given by (6.31). The

nonlinear stiffness, [K, 1, is given by

NL
+ _ + . Tt t.,.,0,,© ,
oKy ! = IOV o!B1 1D 1 [BI7aV (6.33)
and contains the usual linear stiffness, in addition to displacement
dependent contributions, i.e., if +the  nodal displacements are

zero, ;[B] simplifies to the standard 1inear strain-displacement rela-

+ions.

6.5 Updated lLagrangian Stiffness

The procedures adopted in the previous section also enable the
derivation of stiffness matrices for the U. L. formulation. The
resulting stiffness matrices for U. L. have a form very similar to that
for T. L. which simplifies the associated programming when both

approaches are implemented.
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The Green strain increments in 2-D are:

traq o tp g
O{Ge} = O[B]{Ga}, do{s} = o[B] d{a}
Z{E}T = L_:ex ; Zs” ; ;Yx -1 {Sa}T = L_éu ; 6v-1; variation of total
Y 4 displacements
1-

1—8 =+U + 0.5 Tu2++V2 1 ><=ox; Tu =.3_..l_‘l.
oX OX ‘ox O X O X N0

+ 2 - o
t _t t2+ Vvl y="y
oSy = oYy + 0.5[ oy o
TN S U T

o'xy Oy OX OXO0y oXoYy¥

‘A virtual or differential change of the sTrain-Zex is given by

GTs = 6+u + +u S*u + 1.v 6+v with other terms derived similarly.
o X OX OXO0OX O0XO0X :
.: ]
aelup N 2
Ix | © X 8x
________ fm o e o —
toa ' 3
oly T : (1 + v ) =
dy \ dy
_i_ - - o— —a-—-—n—-———l—- —————————
o8] = |
t 9 | . 3
ouy — : (r+ oV ) —
ax ‘ X
+ : +
|
(1 + 'u y & ot
oy pooX oy
L ‘ —

Table 6.2 -- Summary of Total lLagrangian Matrices

—
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Substituting shape functions into the above, the corresponding matrices for
the Jth node are:

' b
aN | N
(1 + Tu )-¢L | Tv J
© X ’ O X ax
I
- __5; —————1e-- ‘
t J | oN
u, — + J
oy 3 | (1 + OV ) ——
Y [ Y oy
Z[BJ]_: _______ ..{l. ________
COON, | N
+u —J ] (f + Zv ) -
° Y ox ! Yo ax
+ , | + .
N | N
(1 + Zux) 2 | gvx 2 -
3\/ | By ‘mj
Frdm .1 t.2 t.n
OEGJ—EOG > OG P » G ]
B ' | c T
BN, ‘ Ny |
—~ b~ 0 jo
X | By | i
° | ban, ban,
o , 0 L
Ioax | oy
| i |
B ' | g -
Sxx ’ Sx | p 0
.,_.._:_..X_i_._,_.g_,_._
sxy | Sy ; o | 0
e R ol (el RIS
O 1 0 S Sxy ’
a | N
__r_-r__'_,
o ' o s Is
{ |
L \ ' XY VY_-

Table 6.2 -- (continued)
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The basic equation of the U. L. formulation defines the internal
virtua! work of an element at time t+At relative to the configuration at

time T as

teatg o V++A+ ++AT{S} 4 (6.34)

tnT

AT
T

tual strains from virtual nodal displacements, (6.34) may be written in

Defining a suitable differential operator matrix, (B, to yield vir-

t+he form of (6.8) as

tat ++A+ g T THAT e, T t+at e

SWS gy = ~l6a °1 Ty ! {S} dv = -{sa } {F°} (6.35)

in which 1'H‘H'{F-'e} in (6.35) has the Identical meaning as the same

quantity in (6.26).
The element resisting force vector at t+At is expressed in terms of

a known value for the configuration at time + plus a differential change

over At as

THT E% & T{Fe}.+ d"(F% (6.36)
in which ’

a1 = Tk e (6.37)

The difference between (6.36-37) and (6.26) is simply the reference
confliguration of the tangent stiffness. The .incremental force,dT{Fe},
and nodal displacement Increment, d{a}l, have the identical physical
interpretations in both T. L. and U. L. formulations.

The specific form of :[KT] Is 6b+ained by evaluating the
differential of (6.35) with respect to the displacements at the value of

nodal displacements corresponding to time t. Symbolically,
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toey _ t.o,T,t LU b PPV
d {F} = f*v +1B1 (S} + d [B] [{S} dV (6.38)
From Chapter 5, the following relationships are used to expand (6.38)

t _t

1_{S} = {o} (the Cauchy stress) (6.39)

troy o ot gt
di (st = ,{S} = (D 1d {e} (6.40)

The tangent modulus matrix, referred to the current (time *) configura-

T]’ was derived in Chapter 5. The differential strain,

measured from the current configuration, is

+ion, I[D

te .t
df{e} = 1_,[B]d{a} . (6.41)

in which I[Bl is simply 1._Mi[B] for a zero increment of displacement

(see Table 6.3). Notice that the resulting form is the conventional
| Tnear (B] mafrix‘confainfng derivafives'faken'wiTh respect fo total
displacements at time *+. Using (6.40) and (6.41), the first integrand
term of (6.38) becomes the "nonlinear" stiffness matrix I[KNL] and is

given by

too Tt

a! = e, 1B

8, 17dv (6.42)
y |

]+
T+ L
in which the "L" subscript Is used fo denote the simple, linear form

‘+aken by [Bl.

To obtain +he second integrand term of (6.38), an expression

teat
a‘n

respect to the nodal displacements, then evaluating the terms for a zero

ot
.‘=

with Z[B] in Table 6.2 shows a very similar form. The same operations

for d:[B] is required. This is found by differentiating [(B1, with

[B]l in Table 6.3

displacement increment, A comparison of

that yield dZ[BI, readily yield dl(B] as
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The Green strain increments in 2-D are:

At
118

THAT

1_[e}

(sa}’

= Y%

v.:—

£ = ¥ v

Tny = +u;

A virtual or differential change of the incremental strain +€

Spe, = Syug o qup Syug

(1 + ,u=) — '

Tx ox |

________ L

|

u- 2 '

Y = |

Y 5y |

L T it

Bl = '
u-——-—

Ty 3; |

+ |

5 I

(] + TU-) — |

L Iy

e}

T

M6l

= T{E}T = L_Tex

L_6+u ; STV

v2
t %

2
0.5[ TU; +

2 2
0.5[ +U9 + TV;

ARSIy

T+A*{é}

_
" = TEB] d{a}

d

b8y Tny—1

produce configuration at t+At.

o, u
: - .0 . - =
1 X = X U ous = "
X
1; v=C +v
MR At

‘Tabre 6.3 -~ Summary of Updated Lagrangian Matrices

; variation of incremental displacements that

is given by

; with other terms derived similarly.

oz SR
a -
Ve - Setting ,u=_v=20;
T x % _f
__________ I
S0
3 ax
(1 + TV;) -
3y e
Tttt e | o) X
3 T 3y
(+ v=) = Y
ax i B
' a3
V5 T oy 9%
oy - -



Substituting shape functions into the forgoing, the corresponding matrices

for the Jth node are:

N, | N ]
J o J
(I +TU-)——: I _1_V>"<'—-:-
X Ix ox —BN | -
et e A
BN , 3N, ax |
TU;; — | (r + ’I"V\-/') — ____,,__,l___,,,_
At » I A o
+[BJ] - _________:___.___‘; A 0 : -
oN oN oy
J . J [
Tu;-—: ' (1 +_i_V§I') —— .
ox Bx N, AN
+ ] + J I J
' | - | —=
N, N, % o
(1 +Jru-)——- | Vo= |
| 3y <oy - -
L y | Yy ]
+ I N B Ctan
TEGJ-[TG ,_1_G s 3 ® ° . ,_t_G :J
. ! | | -7
oN | Ny 5 0
VR VAL '
- _.af__i._?l’_J_._.,_.'_,___M
T[GJjT = : | |
T o 1 o N : M,
B } % By
o :r I o ' o0
X Xy |
e e e e
TXVLGY : 0 ' 0 .
+ e e o, = .0
M=o 1 0 1o e T
L c_l |—= XX | Xy
o ' o 't g
| LoXY Yy
I J—

Table 6.3 == (continued)
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Tt

too Tray o
dy[B1 ({8} = 161" I

(M] 1[@1 d{a} (6.43)

in which +the details of IIGI and I[M] are shown in Table 6.3.
Matrix 1[M] contains the Cauchy stresses at time t arranged in the iden-
tical form that the 2nd P-K stresses appear In Z[M]. Similarly, the
form of :[G] is identica! to that of Z[G] except that derivatives are
taken with respect to the displacements at time t rather than time 0.
The Integral of the product shown in (6.43) is again termed an initial
stress stiffness.

The complete element tangent stiffness is obtained by combining

(6.42) and (6.43) to yield

ey _t _rt +
{AF} = LK H{aa} = [LIKy 1+ (1K _1]{Aa} (6.44)

6.6 Comparison of Formulations

Detalls of a transient solution procedure based upon an implicit
integration scheme have been described in this chapfer. An implicit
scheme is recommended over an explicit scheme for three reasons. First,
the procedures for static linear and nonlinear analysis are recovered
from the Implicit scheme by simply omfffipg the mass matrix; the
degenerate case of an explicit scheme does not yield a formulation
suitable for static analysis. The capability to perform both static and
transient analyses with the same software is particularly attractive to
engineers since a static analysis invariably precedes a dynamic
analysis. The second reason to select an implicit scheme is the more
general class of structures that may be analyzed. An Implicit scheme
may be used to compute the details of localized wave propagation under

very high velocity Impact as well as the vibration characteristics of a
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massive structure subjected to time dependent loads. The explicit
scheme may be computationally more efficient for wave propagation
studies but not necessarily more efficient than an implicit approach for
the latter class of problems. Thirdly, the equilibrium imbalance due to
nonlinear response in the spatial variables can be "iterated out" ‘o
within a specified tolerance using the implicit scheme. Dynamic
équilibrium can thus be assured at the end of each time increment.

Complete details of the element tangent stiffness matrices have been
presented in the 2-D case for both the T. L. and U. L. formulations.
For both approaches, stiffness matrices have the identical symbolic
form, which is conveniently expressed as the sum of an initial stress
stiffness, IKd], and a nonlinear stiffness, [KNLI. Given the common
rate of work per unit mass expression from which each formulation is
derived, it Is expected that identical results for each solution would
be obtained (provided the ful! stress rate Transfﬁrmafions described in
Chapter 5 are utilized). Some computational evidence {6.10, 6.11] does
demonstrate the agreement of overall load-=deflection curves for static
and dynamic solutions which include plasticity effects. Unfortunately,
no comparisons are provided of the internal stress distributions, which
must be identical 1if equivalence of +he formulations is +to be
demonstrated. Global agreement of load-deflection does not imply
identical internal stress distributions.

The computational efficiency of each approach is addressed at *two
levels; namely, the effort required to compute the element matrices, and
the number of iterations required *to attain the equilibrium

configuration at *time ++A+, assuming At is +he same In  both

formulations.
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In each formulation the construction of [Ko] requires the same
number of operations if the expense of coordinate updating in U. L. is
neglected. In contrast, construction of the nonlinear stiffness,

{ 1, in Us L. requires the same number of ‘operations as required for

KNL
a conventiona! l|inear stiffness. The T. L. nonlinear stiffness requires
more operations due to the absence of zeroes in the [B] matrix (refer to

Table 6.2). The increase in the operation count depends on the element

type but easily exceeds by a factor of three the number of operations

required to form [KNL] in U. L. Evaluation of the internal resisting
force vector during Iterations requires the identical number of
t+A+

operations In each case; the U, L. matrix 1,[B] has the identical form
of 2[8] in T« L. {(no zero terms). The reduced operation count of U. L.
compared fto T. L. during element stiffness generation is an important
consideration only when all matrices associated with the analysis reside
In memory during execution. Once the swapping of element stiffnesses to
and from disk begins, it would appear that the 1/0 overhead overwheims
any advantage of one formulation over the other. Furthermore, the
timing results shown in Chapter 2 for several large |inear and nonlinear
analyses reveal that element stiffness generation times do not represent
a major portion of the total solution time. Thus, a reduction of
stiffness generation time obtained by the selection of UL over T. L.
does not yield an equa! percentage reduction in total analysis time.
Perhaps the most Important efficiency comparison between +the two
formulations 1is +the number of equilibrium Iiterations required for
converdence during each time step. Using a common program that has both
Uo L. and T. L. capabilitlies, a structure could be analyzed with each

formulation for identical time steps and with an identical convergence
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criterion based on total force equilibrium. The results of such a
comparison would demonstrate any inherent computational advantage of one
formulation over the other, a Ileast for a particular problem.
Unfortunately, no such comparisons have been found in the open
literature. A systematic study of several problem classes using this
approach is necessary to form the basis for any general efficiency
statements.

The distorting of elements has led to numerical problems In some
U. L. finite element analyses. For example, an element that Is square
at t=0 may become a badly distorted quadrilateral at time t+At. Element
response characteristics are known to degenerate rapidly as aspect
ratios Increase; this will influence the response in an U. L. approach
as shape function derivatives are dependent on the deformed shape at
time . In T Lo, all such effects are incorporated in the pre-
multiplier terms of shape function derivatives in the :[B] matrix, The
shape function derivatives in T. L. are always computed relative to the
configuration at *time +=0 and thus remain well-behaved if the aspect
ratfo at +=0 is acceptable. The interesting case that demonstrates the
problem with U. L. is an 8-node, 2-D {soparametric element which is
square at =0 but which at time t has the mid-side node displaced toward
a corresponding corner node. Any movement of the mid-side node toward
the corner produces a singular point in the corresponding shape function
when the derivative is evaluated with respect to the current element
shape. No such singularities are introduced in shape function
derivatives in T. L. if the mid-side node is properly positioned at +=0.

A final comparison of the two formulations considers their applica-

bility in a substructured modeling and solution procedure. At all times
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t, the stiffness matrix of a linear substructure and its synthesized
form remain unchanged from that at +ime +=0. The configuration of the
structure at t=0 provides the basis to which all strains and sfresses
are referred. The linear, strain-displacement relations and constitu-
tive matrix that Is independent of nodal displacements at time t are
utilized. Consider the common nodes along the boundary of a nonlinear
region that Is shared by an adjacent |inear substructure. In an U. L.
formulation, the coordinates of these common nodes are updated at time t
to reflect the incremental displacements over the previous increment
At. The tangent stiffness of the nonlinear region is regenéraTed to
reflect the new geometry. Thus, there exists a discontinuity of nodal
positions along the boundary. If the substructure stiffness is
recomputed and synthesized for the updated geometry along the boundary
(and the consequent internal repositioning of nodes) all the advantages
of a substructured model are lost. The alternative is fo assume that
nodes along the interface are sufficiently remote from any effects
causing nonlinear behavior that the response in nonlinear elements on
the boundary is actually linear, i.e., displacements and strains are
infinitesimal and the matrices involved at the element level revert to
the linear analysis form. [|f such an assumption is actually verified In
the analysis, the integrity of the results is assured.

In a substructured T. L. solution, discontinuities of nodal
positions along a boundary do not occur since nodal coordinates are
never updated for the displacement increments. However, the effects of
deformation and rotation in the nonlinear elements adjacent to the
boundary are implicitly incorporated in the tangent stiffness through

the displacement dependent terms In Z[BI. Thus, the same difficulties
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described above for U. L. appear to arise for T. L. However, the
maintenance of external! geometfric continuity Is more appealing than
allowing the discontinuities to develop. It could possibly be argued
that the T. L. formulation would introduce less disturbance In the
strain fleld across the boundary than U. L., but there exists no
computational evidence fo collaborate this speculation.

| In view of the considerations described above, a Total Lagrangian
approach Is recommended to form the basis of a general software system
having broad applicability. If computational evidence ‘in support of
Us L. as a more efficient approach should be forthcoming, only minor
changes in software fo support a T. L. formulation are required. In
fact, nearly all U. L. dependent computations can be isolated within
element dependent routines. The reverse situation of implementing a
To L. approach in a system designed only for Q° Lo is not nearly as

simples



244

6.7 References

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.11

6.12

Hibbitt, H., Marcal, P., and Rice, J., "A Finite Element
Formulation for Problems of Large Strain and Large
Displacement," int., J. Solids Structures, Vol. 6, 1970, pp.
1069~1086. '

Nayak, G., "Plasticity and Large Deformation Problems by the
Finite Element Method," unpublished Ph.D. Thesis, University
of Wales, Swansea, 1971, (C/PH/15/1971).

Nemat-Nasser, S. and Shatoff, H., "A Consistent Numerical
Method for the Solution of Nonlinear Elasticity Problems at
Finite Strains," SIM J. of Appl. Math, Vol. 20, 1971, pp.
462-481.

Hartzman, M. and Hutchinson, J., '"Nonlinear Dynamics of
Solids by the Finite Element Method," Computers of
Structures, Vol. 2, 1972, pp. 47-77.

Belytschko, T. and Hsieh, B., "Non=-Linear Transient Finite
Element Analysis with Convected Coordinates," .iInt. J. Num.
MeTho Engro' VO|. 7, 1973, ppo 255"2710

Key, SeW., "A Finite Element Procedure for +the Large
Deformation Dynamic Response of Axisymmetric Solids," Comp.
Meth. App. Mech. Engr., Vol. 4, 1974, pp. 195-218,

McMeeking, R. and Rice, J., "Finite Element Formulations for
Problems of Large Elastic-Plastic Deformation," Int. J.
Solids Structures, Vol. 11, 1975, pp. 601-616.

Yaghmai, S. and Popov, E., "incremental Analysis of Large
Deflections of Shells of Revolution," Int. J. Solids Struc-
tures, Vol. 7, 1971, ppe. 1375-1393.

Nagarajan, S. and Popov, E., "Plastic and Viscoplastic
Analysis of Axisymmetric Shells," Int. J. Solids Structures,
VOI. 11' 1975, ppo 1"19. ‘

Bathe, K, Ramm, E., and Wilson E., "Finite Element Formula-
tions for Large Deformation Dynamic Analysis," Int. J. Num.
MeTh- Engro, Vol. 9, ]975, ppo 353_386'

Bathe, K. and Ozdemir, H., "Elastic-Plastic Large
Deformation Static and Dynamic Analysis," Computers &
Structures, Vol. 6, 1976, pp. 81-92,

Cook, R.D., Concepts and Applications of Finite Element
Analysis, John Wiley & Sons, N.Y., N.Y., 1981, 2nd Ed.




245

McKay, D., "Finite Element Formulatlions for Large Strain
Plasticity Problems," unpublished M.S. Thesis, University of
Wales, Swansea, 1980, (C/M/146/80).

Dodds, R.H., "Numerical and Software. Requirements for
General Nonlinear Finite Element  Analysis,” Civil
Engineering Studies, Structural Research Series No. 454,

University of |llinois at Urbana-Champaign, 1978,



246



CHAPTER 7

USER INTERFACE =- [INPUT DESIGN

7.1 General

The most popular approach to user communication with structural
analysis software Is the problem oriented language (POL). Virtually all
successful soffware systems use the POL approach, either by Initial
design or by the use of pre-processors to translate POL input into fixed
format, card images. The POL approach provides the user with greater
flexibiiity by placing him in control of the process rather than forcing
him to conform to rigid formats and sequences. The sel f~documenting na-
ture of the input reduces the need for reference to manuals and provides
a concise description of the structural mode! foF other analysts. The
POL Is essentfal for Interactive processing where error recovery is
often necessary.,

Dynamic analysis with multilevel substructuring will be Implemented
as an extension of the present POLO=FINITE structural mechanics system.
The philosophy established during the development of POLO-FINITE was +o
maintaln as much Independence as possible among the various components
of a complete structural model. These components Include nonlinear
material model specification, geometric definition of structures,
parameters controlling the nonlinear algorithms, and requests for com=
putation and output. The primary reasons for choosing‘+his approach are
to provide maximum flexibility In using condensed substructures as ele-
ments In higher level structures and to minimize the effect of changes

247
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In the structural model throughout the analysis-design sequence.

Wherever possible, this philosophy Is maintained Iin +he extension
to dynamics. However, one area exists in which dynamic solution
parameters must be tied directly to the geometric definition of a sub-
structure. This Is the frequency analysis of a substructure that is to
" be condensed by modal synthesis. Since economical frequency analysis
depends upon the type of structure, the number of elgenpairs required,
and the solution method, it Is not appropriate to select just one solu-
tion algorithm for all substructures in a complex model. Various sub-
structures will have differing characteristics and may require an une-
qual number of retalined modes for condensation. It Is also possible
that one substructure could be condensed two or more times in differing
ways, with varying geometric and generalized DOF, for use In separate,
higher level structures. Thus, it Is necessary to tle the selection of
the eigenproblem solution method to the structure definition.

The capabilities selected for general purpose' dynamic analysls,
along with the various options and parameters that control the solution,
must be defined accurately and unambiguously by the POL. Sectlion 7.2
presents an explanation of +the capabilities to be Incorporated Into
POLO-FINITE. Section 7.3 lists the command structure for dynamics. Ex-

amples [llustrating the use of these commands are given In section 7.4,
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7.2 Description of the POL

Structure and Element Mass

The mass of a structure can be divided into two parts: primary and
secondary. Primary mass 1is the mass of the load-carrying components
(elements) of the structure. |Its definition 1s easlily added to +the
specification of an element +through two new element properties. The
first defines the type of mass formulation: LUMPED or CONSISTENT. The
second s the DENSITY of the material of which the element Is composed.
The element mass matrix can then be formed using existing shape func-
tlons. Assembly of primary mass for a structure will follow a procedure
identical to that used In stiffness assembly. The current FINITE system
accepts up to thirty DOF at each node of an element. These are the
displacement DOF: U, V, and W, plus their first and second derivatives:
UX, VX, WX, UY, etc. Depending upon the particular element formulation,
It Is possible for mass to be assigned to any or all of these DOF.

Secondary mass [s the mass of non«load»carryiﬁg components, such as
concentrated and distributed Ilive-loads, +hat are supported by the
" structure. Secondary mass is defined in a manner similar to the ap=-
plication of gravity loads. The secondary mass is resolved into equiva=
lent nodal masses via the appropriate shape functions. The result will
always be a lumped mass matrix which Is added to the primary mass of the

structure.
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There are three types of secondary mass: nodal, element, and pat-
tern. Nodal mass 1Is mass +that Is concentrated at a structure node.
Element mass 1s concentrated or distributed on the surface of and ele-
ment. As with primary mass, secondary mass may be assigned to any of
the thirty nodal DOF. The pattern mass is provided as a convenience o
" the user. I+ enables the definition of secondary mass In terms of a
previously defined loading condition, usually gravity loading. The user
need speclfy only the name of the loading condition to be used as the
pattern and a value for the acceleration of gravity fo support the ap-
propriate conversion from force o mass.

Substructure loads can be defined at the lower levels and then ap-
plied selectively at the higher levels of +the structure hierarchy
through the "EXTERNAL ELEMENT LOADS" facility. |+ would be advantageous
to have a similar capabillty with respect to substructure mass. The
analyst may wish to use several coples of a particular substructure,
each with a different mass distribution (described by secondary mass in-
put). This analogy to substructure loading implies the need for an "EX-
TERNAL ELEMENT MASS"™ facility. This Is not possible in dynamic analysis
" since the change In the mass of a substructure changes the natural fre-
quencles and mode shapes. Physically distinct substructures exist when
the mass distribution varies. FEach of these distinct substructures must
be uniquely defined at the lower levels of the hierarchy. The mass Is
then automatically carried through the hierarchy via the condensation or

synthesis process.
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The commands for computation (assembly) and output of the mass
matrix for a structure or stand-alone element fcllow directly from those

for the stiffness matrix.
Structure Damping

Since the dynamic reduction process recommended here does not in-
clude the substructure damping matrix, damping is defined only for the
highest level structure. Two methods are available for defining struc-
tural damplhg: modal and Raylelgh. Definition of modal damping re=-
quires Input of the modal damping ratio for each vibration mode under
consideration. Modal damping Is appilcable only to transient analysis
by mode superposition. Rayleigh damping involves the definition of two
damping ratios at two selected frequencies} the frequencies need not be
eigenvalues of the structure., Rayleigh damping fs applicable +fo tran-
sient analysis by elther mode superposition or time-history Integration.
Use of Rayleigh damping requires that a frequeﬁcy analysis be performed
in order ‘o compute the modal damplng ratios fof hode superposition or
to explicitly form the damping matrix for time-history integration.

Dependiﬁg upoﬁ the mé+hod uséd to 'definé damping, elither the

damping matrix or modal ratios can be output for the structure.

Erequency Apalysis

As previously mentioned, the parameters controlling the frequency
analysis (computation of natural frequencies and mode shapes) must be
defined explicitly for each structure for which the analysis 1is to be

performed. No default analysis method Is adopted. The syntax for
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specification of the solution method Is simllar to that for a nonlinear
materfal. That 1is, +the TYPE of solution procedure Is Identified fol-
lowed by a |isting of PROPERTIES unique to that type. When appropriate
the range of frequenclies and the maximum number of modes to consider are
specified at this time rather than in +he computation request. Solution
. method properties can be changed via analysis restart and the ACCESS
STRUCTURE... sequence. If a substructure Is to be condensed by Guyan
reduction, no frequency analysis specification is required.

In the request for computation the analyst may select a nonlinear
dynamic loading and time step at which the frequency analysis Is to be
performed. This allows the user to Interrupt a transient analysis after
some nonl inear behavliour has occured and compute natural frequencies and
mode shapes of the structure. Standard output Includes natural frequen-
cles and modes shapes.

Prior fo a transient analysis by mode superposition, the user may
examine the modal content of a particular dynamic loading condition. A
special output request facllitates selection of the modes +hat par-
ticipate In the dynamic response. After a frequency analysis the user
can request output of MODAL LOADS for the loading condition.  The fre=
quency = content of the loading can then be examined and the appropriate

modes selected for superposition.
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Dynamic Reduction

The procedure to request dynamic reduction parallels that for
static condensation. The reduction method Is defined at the inter-
medlate substructure level; l.e., the substructure with only one element
.of type: CONDENSED. Guyan reduction is the default method. Automatic
selection of master nodes, In addition to the Interface nodes, 1Is In-
cluded by specifying the number of additional nodes to be retained. The
fixed-interface method is invoked by specifying which substructure nor-
mal modes to retain. The modes specified must be within the range com=
puted in the frequency analysis of the Ilower=-level substructure. The
retalned modes need:nof be consecutively numbered. As an alternative to
using normal modes, user-supplied modes can be included in the synthesis
process. These modes could be derived from an experimental analysis or
some other source, such as low-order polynomials. Input data describing
these modes must be included with the definition of the structure to be
condensed.

Dynamic reduction can be explicitly invoked with a COMPUTE STIFF=
NESS... or COMPUTE MASS... command for the intermediate level substruc-
ture. Reduction s performed automatically when required to satisfy a

request at a higher level.
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Initial Conditions

Initial condfTIons can be deflined for a structure prior to tfran-
sient analyéls. They define a starting solufioﬁ, In terms of displace-
ments and velocitles, for the unconstrained physical DOF at time + =0,
. For all other ftimes the displacements and velocities from the previous
time step are used automatically.

The user can specify Initial conditions In one of two ways. First,
he caﬁ define numerical values for each DOF with non-zero dlsblacemenf
or velocity, The default initlal conditions are zero displacement and
velocify fof all unconstralned DOF. The second method uses the static
equillbrlum configuration from a previous |inear or nonlinear analysis.
This method aliows the structure to be released from scme deflected ini-
t+ial shape with zero Initial velocity. A dynamLc_foadlng can then be

optionally applied.
Dynamic Loadling

The dynamic loading function, P(x,y,z,t), Is defined such that It
has a spatially-varying component, F(x,y,z), and a ftime-varying compo-

nent, G(t):
P(x,y,z) = F(x,y,z) * G(t), (7.1)

Simply stated, the pattern of +the load Is fixed and i+s magnitude

changes with time.
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The load pattern, F(x,y,z), can be described as elther actual
forces applied to fthe structure or as support accelerations. The former
can be best defined as a static |inear loading condition, while the
tatter requires an additional loading type: NODAL ACCELERATIONS. No
special provisions are necessary for input of out-of-phase support ac-
- celerations. They can be recognized and handled automatically.

The time-varying component, G(t), is combined with other loading
data to form a dynamic loading condition. The G(+) vs. T relation may
be harmonic, Impulslive, or general. The dynamic loading condition must
also include +he loading pattern, F(x.y.z), which is to be used. More
than one static linear loading condition can be combined to form the
complete pattern of the dynamic load. Other necessary Input Includes
the values of time t at which displacements are to be computed (thus
defining the step size) and values of time T at which computed resuits
are to be retalned in the data base. This last item Is Important
because a fransient analysis of any significant duration could result in
more data than could be effectively stored. Also, it 1Is Ilkely +that
stresses and strains would be required at only a few of the many time

points for which displacements are computed.

Iransient Analysis

Transient analysis yields the response of the structure, In terms
of displacements and possibly velocities, when I+ is subjected to time-
varying loading or support accelerations. Two approaches are avalilable
- for performing transient analysis: mode superposition and time~history

Integration. Mode superposition requires that a frequency analysis be
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performed so the equations of motion can be uncoupled. This Implies
that an appropriate frequency analysis method must be selected prior to
requesting the transient analysis. The resulting set of independent
equations is easlly solved using one of the Lagrange interpolation for-
mulas.  Time-history Integration Is performed by any one of a number of
~explictt or Implicit operators. Specification of the transient analysis
method 1Is similar to that for frequency analysis; the TYPE of method Is
defined fol lowed by the PROPERTIES |Ist.

The request for computation includes the loading condition, Time
steps, and optionally Initial conditions and a mode |ist. The mode |ist
is used with mode superposition to specify which modes participate In
the response. Results available for output inciude displacements,

velocities, strains, and stresses.

Shock Spectrum Analysls -

The analysis of shock spectrum response is currently restricted +to
linear structures. The shock spectrum Is input by defining the func-
tional relationship between a spatial coordinate and a time coordinate.
The spatial coordinate can be chosen as displacement, velocity, or ac-
celeration, while the time coordinate can be either period or frequency.
The wuser Inputs discrete points from the spectrum and the remainder of
the curve Is constructed by l|inear Interpolation in four-way logarithmic -
coordinates. The direction of application of the shock Is defined using
direction cosines for the translational DOF (U, V, and W for 3-D struc-

tures). The nodes at which the shock is applied are also defined.



257

Prior to computing the spectral response, a frequency analysis of
the structure must be performed. Spectral response quantities are com-
puted only after +the corresponding output request has been made.
Results available for output include spectral displacements. spectral
velocities, spectral strains, and spectral stresses. These quantities
- can be output on a mode by mode basis or in some combined form. Methods
used to combine the modal quantities Iinclude SRSS (square root of the
sum of the squares) and PEAK_SRSS (peak response mode plus SRSS of the
remaining modes). PEAK_SRSS Is also known as the Naval sum. As a
measure of the portion of the total mass responding to the shock in each

mode, the modal PARTICIPATION_FACTORS can also be output.

Utility Commands

" The dynamic solution process can be monitored by Invoking the
TRACE,.. command° Messages listing the currently executing module and
elapsed CPU time are output at various checkpoints.

To eliminate unnecessary data from the data bases, +t+he DESTROY...

command s expanded to Include results from frequency, transient, and

spectral analyses.

,,,,,,
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7.3 POL Structure

7.3.1 Symbollic Convenilions of the Syntax

The following Is a description of the conventions used in this sec-
tion to 1llustrate the FINITE command syntax.

A descriptor Is used to identify the position and class of a data
Item 1in a particular FINITE command |ine. The descriptor is delimited

by the characters "< >." The command
NUMBER OF NODES <integer>

implies that the word NODES is to be followed by an (Integer. An ap~-

propriate example Is:
NUMBER OF NODES 100

The following are definitions of the descriptors used within the

POL.

<integer> -~ a series of diglts optionally preceded by a plus or

minus sign. Examples'are 121, +300, =-8.

- <real> -~ a representation of a fioating point number 1In -elther
decimal or exponential form. Real numbers must contain a
decimal points and may be optionally signed. Examples are

1 .0, '-3 05 9 5 .24E-080

<number> == elther an Integer or a real number can be Input. The

data Item is converted to a real number.
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<integer list> -~ a sequence of infegers. The sequence may be
listed explicitly or defined over a range of integers with a
constant increment. The default Increment is 1. Examples of

integer lists are: 1, 2, 4, 5, 8, 11; 1-10; 2 TO 20 BY 2.

<real |ist> == a sequence of real numbers. Real Iists have the
same form as (Integer |ists except that there is no default
Increment. Exampies are: 1.0, 1.5, 2.0, 3.0: 0.0-2.5 BY

0.25.

<number |ist> == either an Integer 1ist or a real I|ist Is Input.

The data is converted to real.

<label> =~ a series of letters and diglts beginning with a letter.

Examples are: PLANEFRAME, DEADLOAD10.

<string> == any text enclosed within single or double quotes. An

example is: "THIS IS A STRING",

In some Instances a description of the physical meaning of the data [tem
is added to the class in the syntax of a descriptor. This is helpful In

clarifying the use of the data item. For example a command of the form

STRUCTURE <structure name:label>

implies that the data Item following the word STRUCTURE fis & label

defining the name of the structure.
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It 1s not always necessary to completely spell| out every word on a

command line in order to have the command correctly translated. Many

words can be abbreviated and these are ldentifled in the command syntax

by under!ining. The underlined portions of words Identify the minimum

Input necessary for proper command franslation. Descriptors are not un-

"derlined but are replaced by an item of the specified class when ap-

plicable. If the command synfax'has the form:

NUMBER OF NODES <integer>

the followling is acceptable as input:
NUM OF NODE 10

When only one word from a group of words may be selected as input,

the cholces are |isted one above +the other and enclosed in braces,

"{ }". The command syntax

COMPUTE $STIFFNESS l

| D1spLACEMENTS

Impl fes that any of the following commands are acceptable:

COMPUTE STIFFNES
COMPUTE DISPLACEMENTS

COMPUTE DISPL
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When an entire word or phrase in the command Is optional, It Is en-

closed within parentheses. The command with the syntax
NUMBER (QF) NODES <integer>

can be written as
NUM NODES 100

When more than one word from a group of words may be selected, the

group is enclosed In brackets, " ", The command

QUTPUT | DI SPLACEMENTS

STRAINS
STRESSES

impl fes that the user may request
OQUTPUT DISPL STRAINS

Brackets. and braces are combined to allow more flexibility In

designing commands. The command syntax
<Integer> g X ) <number>
Y
§
impl fes that the user méy enter data of the form:

1 X0.0 YO0.0 Z5.0

2 X 1,0 : Z5.0
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Continuation of an input |ine onfo a second physical line Is accom-
plished by placing a comma at the end of the line to be continued.

Comments may be placed in the data by placing a C in column 1 and a
blank In column 2 of the comment line. |

One method for line termination is fto place a dollar sign "§" on
-the Iine. Space on the line following the "$" is ignored by the trans-

lator and and may be used for comments..
7.3.2 Command Syntax

Specification of Mass o
Example of the command to specify primary maSs:

ELEMENT 1 TYPE CSTRIANGLE CONSISTENT E 1 NU .3 DENSITY .00074
Example of the commands to specify secondary mass:

MASS

NODAL
2 UV W 20.0 THETAX THETAY 5.0

ELEMENT MASS FOR TYPE PLANEFRAME
3 LINEAR UV W FRACTIONAL LA 0.25 LB 0.75 WA 3.0 WB 8.0
1 CONCENTRATED UV W L 3.6 M 5.0
2 CONCENTRATED THETAZ L3.6M3.0

USE LOADING DEAD_LOAD G 386.4

Assembly command:

PSR

ELEMENT

A

COMPUTE MASS (FOR) {STRUCTURE} <label>

Output command:
OQUTPUT MASS (FOR) {STRUCTURE}' <label>
ELEMENT
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Specification of Dampling
Modal damping:

DAMPING MODAL {RATIOS } [<mode 11st> <number>]
PERCENTS

Rayleigh damping:
PERIOD

{RATIOS } <number> <number>
PERCENTS

DAMPING RAYLEIGH {FREQUENCIES} <number>  <number>

Qutput command:

RAT10S

OUTPUT DAMPING{MATRIX } ((FOR) STRUCTURE <label>) (,)
PERCENTS '

MODES <integer lisf>)

Units of seconds for time and rad/sec for frequencies will be required.

Definition of the frequency analysis method:

FREQUENCY ANALYSIS (TYPE) ( HORI

JACOBI
| SUBSPACE
NEWTON

©

L

[J

PROPERTIES <define properties unique to each type>

Computation request:

COMPUTE (NONL INEAR) [ (NATURAL) FREQUENCIES | ((FOR) STRUCTURE _(,)
(MODE) SHAPES

<label>) ((FOR) LOADING <label> (TIME) STEPS <integer |ist>)
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Standard output request:

QUTPUT (NONL INEAR)| (NATURAL) FREQUENCIES [((FOR) STRUCTURE <label> (,)
(MODE) SHAPES -

[fEQB) LOADING <label> (TIME) STEPS <integer |1s+i}

(FOR) MODES <integer list>

‘Modal loads output request:
OQUTPUT MODAL LOADS ((FOR) STRUCTURE <labei>) (,)

(FOR) LOADING <label>
(FOR) MODES <integer |lst>

Specification of u§§:r§unh11§n Mode Shapes

Command sequence:

ALTERNATE (MODES) <label> ((TITLE) <string>)
<specification of DOF order: UV W UX «..>
MODE <mode number:integer>

[<node number:integer> [<DOF value:number>]]

Specification of Dynamic Reduction

Element declaration for intermediate level structure:

ELEMENT 1 TYPE <structure name> CONDENSED (,)

RETAINED{MODES <Integer lis+>}
NODES <integer>

USE ALTERNATE (MODES) <label>
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Speciflcation of initial Conditions

Command sequence:

INITIAL CONDITIONS <label> ((TITLE) <string>)
P ~
DISPLACEMENTS

[<node I1st> <DOF Iist> = <number>]
VELOCITIES
< [<node 11st> <DOF Iist> = <number>]

USE (NONLINEAR) DISPLACEMENTS ((FOR) STRUCTURE <labei>) (,)

(FOR) LOADING <label> (STEP <integer>)

Specification of Dynamic Loading Condition
Input of support accelerations as F(x,y,z):
LOADING <label> ((TITLE) <string>)
(NODAL) ACCELERATIONS
[<node 11st> <DOF 1ist> <number>]

Definition of loading condition:
LOADING <|abel> ((TITLE) <string>)
[p_x_waic ]
NONL INEAR
Definition of G(t):

For a harmonic variation of G(t+):

HARMONIC PERIOD <number> (PHASE (ANGLE) <number>) (,)

(COMBINE) [ <label> (FACTOR) <number> (.) ]

For a general variation of G(+):

GENERAL (COMBINE) <label> {TIMES } <number [Ist>
FACTORS
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For an Impulsive variation of G(f):

IMPULSIVE (SHAPE) { HALF_SINE l DURATION <number> (,)
RECTANGULAR  \ =
POS_TRIANGULAR
NEG_TRIANGULAR

(COMBINE) [ <label> (FACTOR) <number> ]

Step slize definition:
C (TIME) STEPS <integer |ist> ((TITLE) <string>) <number Iist> (,)
(SECONDS) ]

Definition of results saved In the data base:

(SAVE (TIME) STEPS <integer Iist>)

Note that the last step computed is always saved, even If not in the
integer list or if the command is not given.

Specification of Jransient Analysis

Definition of the transient analysis method:

TRANSIENT ANALYSIS (TYPE) { MODE_SUPERPOSITION
| NEWMARK
CENTRAL_DI1FFERENCE

L4

PROPERTIES <define properties unlque to each type> )

Computation request:

DYNAMIC

COMPUTE [NONLiﬂEAR] DISPLACEMENTS ((FOR) STRUCTURE <label>)  (,)

LOADING <labe!> (TIME) STEPS <Integer |lst>
INITIAL CONDITIONS <label>

INCLUDE MODES <Integer |is+>
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Output request:

OUTPUT'[DYNAMIC ] DISPLACEMENTS | (<integer 1ist>)

NONL INEAR VELOCITIES
STRAINS
STRESSES
((FOR) STRUCTURE <label>) (,)

(,)

(FOR) LOADING <label> (TIME) STEPS <integer |ist>

Specification of Shock Spectrum Analyslis

Definition of the spectrum:

(SHOCK) SPECTRUM <label> ((TITLE) <string>)

| ( DISPLACEMENTS
VELOCITIES <number |ist>
ACCELERAT |ONS

{ PERIODS } <number |ist>
FREQUENCIES

.

e

DIRECTIONS (,)

<node |ist> [{

I=l<le

Output request:

;<direc+ion césine:number>]

OUTPUT DYNAMIC[ DISPLACEMENTS (<integer list>)

VELOCITIES

STRESSES
STRAINS
PARTICIPATION_FACTORS

((FOR) STRUCTURE <label>) (,)
(FOR) (SHOCK) SPECTURM <label>
(FOR) MODES |:<in+eger Hs+>j{

SRSS
PEAK_SRSS
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Specification of Utility Commands

Trace command:

TRACE [ NONL INEART]  (SOLUTION)
DYNAMIC

Destroy command:

DESTROY [ NONL INEAR] RESULTS (FOR) STRUCTURE <label> (,)
DYNAMIC

g(EQB) LOADING <ltabel> (TIME) STEPS <integer |ist>

l(EQB) (SHOCK) SPECTRUM <label>

(FOR) MODES <integer |ist>
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7.4 Sample Input

The following sections contaln example input data illustrating the
use of the foregoing commands for dynamic analysis of some simple plane
structures. Each example problem is |iberally commented to explain the
analysis process. The substructured nonlinear analysis of Section 7.4.5

deserves additional discussion and Is described In detall in +hat sec-

+ion.

7.4.1 Jtandard Linear Siructure - Vibration Analysis
*RUN FINITE

EXAMPLE [INPUT NO 1 FOR DYNAMIC ANALYSIS

EREIZDREIERNTRINRES

(REFERENCE FIGURE 7.1)

THIS EXAMPLE ILLUSTRATES THE INPUT NECESSARY TO DESCRIBE
A LINEAR, THREE ELEMENT, PLANE FRAME AND TO PERFORM

A FREQUENCY ANALYSIS OF THE STRUCTURE. IN ANTICIPATION
OF A TRANSIENT ANALYSIS BY MODE SUPERPOSITION. THE

LOADS ARE OUTPUT IN MODAL COORDINATES. THE PROBLEM IS
RESTARTED AND THE TRANSIENT ANALYSIS IS INVOKED WITH ONLY
SELECTED MODES INCLUDED. INITIAL CONDITIONS ARE ALSO
DEFINED AND INCORPORATED INTO THE TRANSIENT ANALYSIS.

124vAoEeReislolotoRoNoReoXoReoRoXo X

STRUCTURE FRAME
NUMBER OF ELEMENTS 3 NODES 4
ELEMENTS 1,3 TYPE PLANEFRAME LUMPED E 30000 G 12000 AX 20. ,
AY 5.877 1Z 724 DENSITY 0.00074
ELEMENT 2 TYPE PLANEFRAME CONSISTENT E 30000 G 12000 AX 14.4,
AY 3.4 |Z 273, DENSITY 0.00074

C
COORDINATES
1 0.0 0.0
2 0.0 96.0
3 9.0 96.0
4 96.0 0.0
C
INCIDENCES

1 1 2
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2 2 3
3 3 4

CONSTRAINTS
1,4 ALL =0.0

LOADING MOTOR
ELEMENT LOADS FOR TYPE PLANEFRAME
2 CONCENTRATED FORCE Y P 300.0 L 48.0

MASS
NODAL MASS
2,3 Uvw 1.0
ELEMENT MASS FOR TYPE PLANEFRAME
2 UNIFORM UV W W 0.05 $ THE SECOND W INDICATES AN INTENSITY
USE LOADING MOTOR G 386.4

STATIC LOADING PATTERN: F(X,Y,Z)

QOO0

LOADING PATTERN
ELEMENT LOADS FOR TYPE PLANEFRAME
1 LINEAR FORCE Y LA 0.0 LB 1.0 WA 0.0 wB 1.0

DYNAMIC LOADING CONDITION: G(T)

OO0

LOADING SHAKE

DYNAMIC
HARMONIC PERIOD 0.04 PHASE 0.0 COMBINE PATTERN 6.0
TIME STEPS 1-100 0.0 TO 10.0 BY 0.1 '
SAVE STEPS 10-100 BY 10

SPECIFY FREQUENCY ANALYS!S PARAMETERS

OO0

FREQUENCY ANALYSIS TYPE SUBSPACE
PROPERTIES
CONVERGENCE TOLERANCE 1.0E-08,
MAXIMUM [TERATIONS 13,
SHIFT EVERY 2 MODES,
MAX1MUM MODES 4,
RANGE MIN 0.0 MAX 50.0

REQUEST COMPUTATION OF FREQUENCIES AND MODES
COMPUTE NATURAL FREQUENCIES MODE SHAPES STRUCTURE FRAME -

(@ OO0

OUTPUT FREQUENCIES SHAPES STRUCTURE FRAME MODES 1-4
OUTPUT MODAL LOADS STRUCTURE FRAME LOADING SHAKE /MODES 1-4

STOP

OO0 (o]

RUN FINITE FILES = 20,,22,23

O %
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RESTART OF THE LINEAR PLANEFRAME TO PERFORM THE
TRANSIENT ANALYSIS AFTER EXAMINING THE MODAL LOADS.

ACCESS STRUCTURE FRAME

SPECIFY TRANSIENT ANALYS!S PARAMETERS
(USE DEFAULT PROPERTIES)

TRANSIENT ANALYS!S TYPE MODE_SUPERPOSITION

DEFINE INITIAL CONDITIONS FOR DISPLACEMENTS,
(VELOCITIES NOT REQUIRED SINCE WE HAVE NO DAMPING.)

INITIAL CONDITIONS DEAD_SHAPE
DISPLACEMENTS

2,3 U= 0.1
2  THETAZ = =0.085
3 THETAZ = 0.085

COMPUTE DYNAMIC DISPLACEMENTS STRUCTURE FRAME LOADING SHAKE,
TIME STEPS 1-25 INITIAL CONDITIONS DEAD_SHAPE INCLUDE,
MODES 1, 3, 4

OUTPUT DYNAMIC DISPLACEMENTS 2,3 STRUCTURE FRAME LOADING SHAKE,
STEPS 10, 20, 25 $ RECALL THAT STEP 25 IS SAVED EVEN THOUGH
I DIDN'T REQUEST IT.

OUTPUT WIDE BY ELEMENT DYNAMIC STRESSES STRAINS ALL STRUCTURE FRAME,
LOADING SHAKE STEPS 10, 20, 25

STOP
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o 4 Xg

3 - Node Number v

(@- Element Number ‘,
| NODAL DOF: (" s —y
6z

Figure 7.1 == Three Element, Plane Frame (Example Input #1-3)
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7.4.2 Standard Linear Siructure - Shock Spectrum Analysis

¥RUN FINITE

leXsRololoRolsNoRoNoNoRoloNeoNoNoNoNeNoXoNoRo o X!

EXAMPLE INPUT NO. 2 FO

R DYNAMIC ANALYSIS

e o e s s s o e At St it e o

(REFERENCE FIGURE 7.1)

THIS EXAMPLE ILLUSTRATES THE INPUT NECESSARY TO DESCRIBE
A LINEAR, THREE ELEMENT, PLANE FRAME AND TO PERFORM

A SHOCK SPECTRUM ANALYSIS OF THE STRUCTURE.

THE SHOCK

SPECTRUM CAN CONTAIN BOTH HOR!ZONTAL AND VERTICAL

COMPONENTS.

WE CAN GET THE PARTICIPATION FACTORS

(ALSO KNOWN AS EFFECTIVE MODAL MASS) PRIOR TO REQUESTING
THAT SPECTRAL DISPLACEMENTS, STRESSES, AND STRAINS BE

COMPUTED. TWO METHODS

SPECTRAL VALUES FOR EACH MODE:

ARE AVAILABLE FOR SUMMING THE
SRSS AND PEAK_SRSS.

SRSS IS THE SQUARE-RO0T=QF=THE=SUM-0F-THE~SQUARES METHOD.
PEAK_SRSS TAKES THE MODE WITH THE LARGEST PARTICIPATION
FACTOR AND ADDS TO THAT THE SRSS OF THE REMAINING MODES
THAT ARE INCLUDED IN THE ANALYSIS.

STRUCTURE FRAME
NUMBER OF ELEMENTS 3 NODES 4

ELEMENTS 1,3 TYPE PLANEFRAME LUMPED E 30000 G 12000 AX 20. ,

AY 5.877 1Z 724

DENSITY 0.00074

ELEMENT 2 TYPE PLANEFRAME CONSISTENT E 30000 G 12000 AX 14.4 ,

AY 3.4 1Z 273,

COORDINATES
1 0.0 0.0
2 0,0 96.0
3 9.0 9.0
4 96.0 0.0
INCIDENCES
1T 1 2
2 2 3
3 3 4
CONSTRAINTS
1,4 UV =0.0

LOADING MOTOR
ELEMENT LOADS FOR TYPE PLANEFRAME
2 CONCENTRATED FORCE Y P 300.

MASS

DENSITY 0.00074

0 L 48,0
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NODAL MASS
2,3 UV W 1.0
ELEMENT MASS FOR TYPE PLANEFRAME
2 UNIFORM U V W W 0.05
USE LOADING MOTOR G 386.4

QOO0 (@]

C
SHOCK SPECTRUM FAIL_SAFE "5 PERCENT DAMPING"
VELOCITIES 2 30 30 12
PERIODS .05 .60 4.5 10.
DIRECTIONS 1,4 U 0.866 V 0.5
SPECIFY FREQUENCY ANALYS!S PARAMETERS
FREQUENCY ANALYSIS TYPE SUBSPACE
PROPERTIES
CONVERGENCE TOLERANCE 1.0E-08,
MAXIMUM |TERATIONS 13,
SHIFT EVERY 2 MODES,
MAXIMUM MODES 4,
RANGE MIN 0.0 MAX 50.0
C
C REQUEST COMPUTATION OF FREQUENCIES AND MODES
C
COMPUTE NATURAL FREQUENCIES MODE SHAPES STRUCTURE FRAME
C
OUTPUT FREQUENCIES SHAPES STRUCTURE FRAME MODES 1-4
OUTPUT DYNAMIC PARTICIPATION FACTORS STRUCTURE FRAME SHOCK,
SPECTRUM FAIL_SAFE MODES ALL
C
STOP
C
c
C
¥RUN FINITE FILES = 20,,22,23
c :
C
C RESTART OF THE LINEAR PLANEFRAME TO PERFORM THE
- C SHOCK SPECTRUM ANALYSIS AND COMPUTE SPECTRAL STRESS
C AND STRAINS., AT THIS POINT, WE HAVE HAD AN OPPORTUNITY
Cc . TO EXAMINE THE PARTICIPATION FACTORS AND SEE THAT ONLY
C THREE OF THE MODES HAVE ANY SIGNIFICANT CONTRIBUTION TO
C THE SPECTRAL RESPONSE.
C
C
ACCESS STRUCTURE FRAME
C
C

QUTPUT DYNAMIC DISPLACEMENTS STRESSES STRAINS STRUCTURE FRAME,
SPECTRUM FAIL SAFE MODES 1-3 SRSS PEAK SRSS

STOP
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7.4.3 Standard Nonlinear Structure

¥RUN FINITE

isEeReviroNoloNoloNoRoNoNeXoNoNoNoNo N

EXAMPLE INPUT NO. 3 FOR DYNAMIC ANALYSIS

o o 8 e o s 4 e e e St s S e e e e 0 D S e O e

(REFERENCE FIGURE 7.1)

THIS EXAMPLE ILLUSTRATES THE INPUT NECESSARY TO DESCRIBE

A NONL INEAR, THREE ELEMENT, PLANE FRAME AND TO PERFORM

A TRANSIENT ANALYSIS OF THE STRUCTURE. AT SOME SELECTED
TIME STEP, THE TRANSIENT ANALYSIS IS SUSPENDED AND A
FREQUENCY ANALYSIS IS PERFORMED WITH THE CURRENT STRUCTURE
STIFFNESS AND MASS. THE GENERAL IZED NEWMARK OPERATOR IS
USED FOR THE TIME-HTORY INTEGRATION. THIS OPERATOR

CAN BE USED AS EITHER AN EXPLICIT OR IMPLICIT INTEGRATOR
AND HAS THE ABILITY TO CONTROL SPURIOUS DAMPING.

MATERIAL STEEL TYPE VON_MISES
PROPERTIES SIGNAL_YIELD
USE STRESS-STRAIN FUNCTION SEGMENTAL
PROPERTIES E 30000. NU 0.3 STRAIN_HARDENING TENSYI!ELD 30,

COMPYIELD 30. TENSION_SLOPE 3000, COMP_SLOPE 3000.

STRUCTURE FRAME
NUMBER OF ELEMENTS 3 NODES 4
ELEMENTS 1,3 TYPE PLANEFRAME LUMPED E 30000 G 12000 AX 20. ,

AY 5.877 1Z 724 DENSITY 0.00074

ELEMENT 2 TYPE PLANEFRAME CONSISTENT MATERIAL STEEL E 30000 ,
G 12000 AX 14.4 AY 3.4 1Z 273. DENSITY 0.00074

0.0

96.0
1 96.0
0.0

C
COORDINATES
1 0.0
2 0.0
3  96.0
4 96.0
C
INCIDENCES
1T 1 2
2 2 3
3 3 4
C
CONSTRAINTS
1.4 ALL = 0.0
C :

LOADING MOTOR
ELEMENT LOADS FOR TYPE PLANEFRAME
2 CONCENTRATED FORCE Y P 300.0 L 48.0
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MASS
NODAL MASS
2,3 UVWwW 1.0
ELEMENT MASS FOR TYPE PLANEFRAME
2 UNIFORM UV W W 0.05
USE LOADING MOTOR G 386.4

LOADING PATTERN
ELEMENT LOADS FOR TYPE PLANEFRAME
1 LINEAR FORCE Y LA 0.0 LB 1.0 WA 0.0 WB 1.0

LOADING SHAKE

NONL INEAR DYNAMIC
HARMONIC PERIOD 0.04 PHASE 0.0 COMBINE PATTERN 6.0
TIME STEPS 1-100 0.0 TO 10.0 BY 0.1
SAVE STEPS 10-100 BY 10

SPECIFICATION OF NONLINEAR SOLUTION PARAMETERS

eRoNe)

TRACE NONLINEAR SOLUTION

CONVERGENCE TEST NORM RESIDUAL LOADS TOLER 1.5 INCLUDE TOTAL,
REACT IONS

UPDATE STIFFNESS EVERY STEP

TERMINATE 1F NONCONVERGENT

SPECIFICATION OF TRANSIENT ANALYSIS SOLUTION PARAMETERS

QOO0

TRANSIENT ANALYSIS TYPE NEWMARK
PROPERTIES ALPHA 0.0 BETA 0.5 GAMMA 0.25

REQUESTS FOR COMPUTATION AND OUTPUT.

(eXoRe

COMPUTE NONL INEAR DYNAMIC DISPLACEMENTS STRUCTURE FRAME LOADING,
SHAKE TIME STEPS 1-30

C
OUTPUT DYNAMIC NONLINEAR STRESSES 2 STRUCTURE FRAME LOADING SHAKE,
STEPS 10,20,.30
C
sToP
C
c
C
*¥RUN FINITE FILES = 20,,22,23
C
C
C RESTART OF NONLINEAR PLANE FRAME TO PERFORM THE
C FREQUENCY ANALYSIS AND GET THE NATURAL FREQUENCIES
C AND MODE SHAPES.
C
C
ACCESS STRUCTURE FRAME
C
C
C SPECIFICATION OF FREQUENCY ANALYSIS
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OO0

FREQU
PROP
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ENCY ANALYSIS TYPE JACOBI
ERTIES

MAX_SWEEPS 15,
CONVERGENCE TOLERANCE 1.0E-08

REQUEST COMPUTATION AND OUTPUT OF FREQUENCIES AND MODES

COMPUTE NONL INEAR NATURAL FREQUENCIES MODE SHAPES STRUCTURE FRAME,

LOADING SHAKE TIME STEP 20

OUTPUT NONL INEAR FREQUENCIES SHAPES STRUCTURE FRAME MODES ALL,

STOP

LOADING SHAKE STEP 20

AT THIS POINT, WE CAN "ACCESS STRUCTURE..." AGAIN
AND CONTINUE WITH THE TRANSIENT ANALYSIS



278

7.4.4 §_u_t_)_s1'rué+ured Linear Analysis

¥RUN FINITE
EXAMPLE INPUT NO. 4 FOR DYNAMIC ANALYSIS
(REFERENCE FIGURE 7.2)
THIS EXAMPLE ILLUSTRATES THE INPUT NECESSARY TO DESCRIBE
A LINEAR, MULTILEVEL SUBSTRUCTURED MODEL AND TO PERFORM
A FREQUENCY ANALYSIS OF THE HIGHEST LEVEL STRUCTURE.
FEATURES OF DYNAMICS ILLUSTRATED ARE GUYAN REDUCTION AND
MODAL SYNTHESIS FOR CONDENSING THE SUBSTRUCTURES AND THE
METHOD FOR CARRYING FORWARD SUBSTRUCTURE MASS (IE. NO
SPECIAL CONSIDERATION IS GIVEN TO BRINGING UP MASS).
THE ENTIRE STRUCTURAL SYSTEM IS BUILT OUT OF ONE STAND-
ALONE ELEMENT, A PLANE FRAME ELEMENT.

leloReoloNoNoNooRoRoNoNoNoNo Yoo Xo Ko X e

ELEMENT BAR TYPE PLANEFRAME CONSISTENT E 30000. G 12000. AX 20.0,
AY 5.877 |Z 724 DENSITY 0.00074

C
COORDINATES
1 0.0 0.0
2 9.0 0.0
C
C DEFINE LOWEST LEVEL STRUCTURE, A TRUSS WITH THREE BAYS.
c

STRUCTURE THREE_BAY
NUMBER OF ELEMENTS 7 NODES 5
ELEMENTS ALL TYPE BAR
1, 6, 7 ROTATION SUPPRESSED
2, 4 ROTATION Z  60.
3.5 ROTATION Z =60.

C
INCIDENCES
T 12
2 31
3 14
4 42
5 25
6 34
7 45
C :
C ADD MASS TO ONE OF THE LOWER CHORDS.
C
MASS

ELEMENT MASS FOR TYPE PLANEFRAME
7 UNIFORM Uuvw W 0.0003



C
C
C

OOOO0

QOO0 OO0

OOOO0

C

QOOOOO0

CONDENSE OUT NODE 4 USING GUYAN REDUCTION
STRUCTURE THREE_CON
NUMBER OF ELEMENTS 1 NODES 4
ELEMENT 1 TYPE THREE_BAY CONDENSED
INCIDENCES
i 3152
STICK TWO OF THE FRAMES TOGETHER AND CLOSE THE GAP
AT THE TOP WITH A BAR ELEMENT,
STRUCTURE SPAN
NUMBER OF ELEMENTS 3 NODES 7
ELEMENTS
1, 3 TYPE THREE_CON ROTATION SUPPRESSED
2 TYPE BAR ROTATION SUPPRESSED
INCIDENCES
1 1234
2 45
53 3567
ADD A LITTLE MORE MASS TO SOME SELECTED NODES
MASS
NODAL MASS
4,5 UV W 0.5
DEFINE FREQUENCY ANALYSIS PARAMETERS FOR THIS STRUCTURE
SINCE IT WILL BE CONDENSED USING MODAL SYNTHESIS
FREQUENCY ANALYSIS TYPE SUBSPACE
PROPERTIES
CONVERGENCE TOLER 1.0E-08,
MAX ITERATIONS 10,
MAX MODES 5
CONDENSE SPAN VIA MODAL SYNTHESIS
STRUCTURE SPAN_CON
NUMBER OF ELEMENTS 1 NODES 2
ELEMENT 1 TYPE SPAN CONDENSED RETAINED MODES 5
INCIDENCES
1 16

BUILD THE TWO SPAN BRIDGE
NOTE THAT THE THETAZ DOF AT THE MIDDLE SUPPORT KEEPS
THIS STRUCTURE FROM BECOMING TWO SIMPLE SPANS.
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ALSO NOTE THAT ALTHOUGH THIS STRUCTURE ONLY HAS 3 NODES
WITH 3 GEOMETRIC DOF EACH, IT HAS 10 GENERALIZED DOF FROM
THE RETAINED NORMAL MODES FOR A TOTAL OF 19 DOF.

STRUCTURE TWO_SPAN '
NUMBER OF ELEMENTS 2 NODES 3
ELEMENTS ALL TYPE SPAN_CON ROTATION SUPPRESSED

INCIDENCES

1 1 2

2 2 3
CONSTRAINTS

1 UV =0.0

23 V=20.0

FREQUENCY ANALYSIS TYPE SUBSPACE
PROPERT IES
CONVERGENCE TOLER 1.0E-08,
MAX ITERATIONS 10,
MAX MODES 10

COMPUTE FREQUENCIES STRUCTURE TWO_SPAN
OUTPUT FREQUENCIES SHAPES STRUCTURE TWO_SPAN MODES ALL

STOP
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] » o 2

3 ® 4 () 5

Element Bar Structure Three - Bay

Structure Two-Span fv
4 - Node Number NODAL DOF: ( & co—te
(6)- Element Number T8y V

Figure 7.2 -- Two Span Bridge (Example Input #4)
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7.4.5 Substructured Nonlinear Analysis

The Input listing In this section describes a simple, two-span
bridge. Nonlinearity 1Is introduced into the example by addition of a
nonl Inear bar element over the center support. The example uses six
levels of substructures with the nonlinear element added at the highest
- level. To facilitate the description of the Input sequence, Iline
numbers are placed before each FINITE command |ine. The numbers are not
part of +he commands. They serve only as reference numbers. Comment
lines are not numbered. The structure is illustrated in Figure 7.3.

Lines 2-6 define a stand-alone element, which is used to construct
the majority of +the final structure. Lines 7-23 describe the lowest
level substructure called THREE_BAY. No frequency analyslis parameters
are defined since this structure will be condensed using Guyan reduc-
tlon. The condensed version of THREE_BAY is named structure PIECE. No
additional fInput Is required to Invoke the condensation process; Guyan
reduction is fthe default procedure adopted by the system.

Lines 29-48 describe structure HALF which contains +wo coplies of
substructure PIECE and one copy of stand-alone element BAR. To 1l-
lustrate its use In substructures, secondary mass is applied In lines
38-40. A frequency analysis method Is defined, |ines 44-48, so the
structure can be condensed by modal synthesis. Structure HALF_CON.
lines 49-56, Is the condensed version of structure HALF. It is neces~
sary to carry forward the loads from HALF but the mass Is automatically

included In the reduction process.



A nonlinear material mode!l Is defined in lines 57-61. This model
Is required for the nonlinear element used In structure BRIDGE. This

_highes+ level structure is composed of +two condensed substructures,

HALF_CON. and one simple element, TYPE PLANEFRAME (see |lnes 62-67).
Damping and dynamic loading are defined in {ines 78-88 with the tran-

" slent analysis specification and requests for computation and output in

| Ines 89~-96.

1 *RUN FINITE

RS REDNNRSNRINERNES

(REFERENCE FIGURE 7.3)
THIS EXAMPLE ILLUSTRATES THE INPUT NECESSARY TO DESCRIBE

TO A GENERAL DYNAMIC LOADING. THE NONLINEARITY 1S

THE GAP OVER THE CENTER SUPPORT CLOSED BY THE NONL INEAR
ELEMENT.

(oislvisRoloNoNoNoloNsNoNoNoRoXe N o]

2 ELEMENT BAR TYPE PLANEFRAME CONSISTENT E 30000. G 12000, AX 20.0,
3 AY 5.877 1Z 724 DENSITY 0.00074
C
4 COORDINATES
5 1 0.0 0.0
6 2 9.0 0.0

c
c DEFINE LOWEST LEVEL STRUCTURE, A TRUSS WITH THREE BAYS.
C

7 STRUCTURE THREE_BAY
8 NUMBER OF ELEMENTS 7 NODES 5

9 ELEMENTS ALL TYPE BAR
10 1, 6, 7 ROTATION SUPPRESSED
11 2, 4 ROTATION Z 60.
i2 3, 5 ROTATION Z -60.
C
13 INCIDENCES
14 1 12
15 2 31

16 3 14

A NONL INEAR, MULTILEVEL SUBSTRUCTURED MODEL AND TO PERFORM
A TRANSIENT ANALYS!S OF THE STRUCTURE WHEN IT IS SUBJECTED

RESTRICTED TO A MATERIALLY NONLINEAR ELEMENT AT THE HIGHEST
LEVEL. THE STRUCTURE IS THE TRUSS FROM EXAMPLE NO. 4 WITH
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19
20

21
22
23

24
25
26

27

29
30
31
32
33

34
35

36
37

38
39
40

41

43

44
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ADD MASS TO ONE OF THE LOWER CHORDS.

MASS
ELEMENT MASS FOR TYPE PLANEFRAME
7 UNIFORM U V W W 0.0003

CONDENSE OUT NODE 4 USING GUYAN REDUCTION

STRUCTURE PIECE
NUMBER OF ELEMENTS 1 NODES 4
ELEMENT 1 TYPE THREE_BAY CONDENSED

INCIDENCES
1T 3152

STICK TWO OF THE FRAMES TOGETHER AND CLOSE THE GAP
AT THE TOP WITH A BAR ELEMENT.

STRUCTURE HALF
NUMBER OF ELEMENTS 3 NODES 7
ELEMENTS
1, 3 TYPE PIECE ROTATION SUPPRESSED
2 TYPE BAR  ROTATION SUPPRESSED

INCIDENCES

1 1234
45
3567

ADD A LITTLE MORE MASS TO SOME SELECTED NODES

MASS
NODAL MASS
4,5 UV W 0.5

ADD THE PATTERN OF LOAD TO BE USED IN THE DYNAMIC
LOADING

LOADING CENTER_SPAN

NODAL LOADS
3 FORCE Y P -1.0

DEFINE FREQUENCY ANALYS!S PARAMETERS FOR THIS STRUCTURE
SINCE IT WILL BE CONDENSED USING MODAL SYNTHES!S

FREQUENCY ANALYS!S TYPE SUBSPACE



45

46
47

49
50
51

52
53

54
56

57

58
59
60

62
63
64
65
66
67

68
69
70

71
72
73
74

QOO0

s NoNe

QOO0

QOO0

PROPERTIES
CONVERGENCE TOLER 1.0E-08,

MAX ITERATIONS 10,
MAX MODES 5

285

CONDENSE HALF VIA MODAL SYNTHESIS

STRUCTURE HALF_CON
NUMBER OF ELEMENTS 1 NODES 4

ELEMENT 1 TYPE HALF CONDENSED RETAINED MODES 3

INCIDENCES

1

1

267

CARRY FORWARD THE LOADS FROM HALF

LOADING CENTER_CON
EXTERNAL ELEMENT LOADS

i

CENTER__SPAN

1.0

DEFINE THE NONL INEAR MATERIAL

MATERIAL STEEL TYPE VON_MISES
PROPERTIES SIGNAL YIELD
USE STRESS=STRAIN FUNCTION SEGMENTAL

PROPERTIES E 1 NU O STRAIN HARDENING,

TENSYIELD 1 TENSION_SLOPE .1

STRUCTURE BRIDGE

BUILD THE TWO SPAN BRIDGE

CLOSE THE GAP OVER THE CENTER SUPFPORT WITH A

NONL INEAR BAR.

NUMBER OF ELEMENTS 3 NODES 7

ELEMENTS
1, 3 TYPE HALF_CON ROTATION SUPPRESSED

TYPE PLANEFRAME MATERIAL STEEL CONSISTENT AX 20.0 ,

2

COORDINATES

4 0.0 0.0

5 9.0 0.0
INCIDENCES

1 1234

2 45

3 3567

AY 5.877

1Z 724 DENSITY 0.00074



75
76
77

78

<79
80
81

82
83

84
85

87
88

89
90
91
92
93

94
95

96

97

QOO0 OO0

OO0

OO0

C

c

286

CONSTRAINTS
1 UV =20.0
36 V=20.0

APPLY DAMPING TO THE STRUCTURE BY USING RAYLEIGH DAMPING

DAMPING RAYLEIGH FREQUENCIES 2.0 12.0 PERCENTS 1.0 3.4

APPLY THE LOAD PATTERN TO EACH SPAN

LOADING PATTERN
EXTERNAL ELEMENT LOADS
1,3 CENTER_CON 1.0

DEFINE THE DYNAMIC, NONLINEAR LOAD.

LOADING SHAKE
DYNAMIC NONL INEAR

GENERAL COMBINE PATTERN,
FACTORS 0.0 100. 40. -50. 100. 0. 50
TIMES 0.0 0.2 0.4 0.6 0.8 1.0 1

TIME STEPS 1-100 0.0 TO 1.0 BY .01
SAVE STEPS 5-100 BY 5

DEFINE THE TRANSIENT ANALYSIS

TRANSIENT ANALYSIS TYPE NEWMARK
PROPERTIES
ALPHA 0.0,
BETA 0.5,
GAMMA 0.25

COMPUTE NONL INEAR DYNAMIC DISPLACEMENTS STRUCTURE BRIDGE,
LOADING SHAKE TIME STEPS 1-25

OUTPUT NONLINEAR DISPLACEMENTS LOADING SHAKE TIME STEPS 5-25 BY 5

sToP
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Element Bar Structure Three - Bay

Structure Bridge

5 —Node Number NODAL DOF: Co S—
(3)- Element Number 6

Figure 7.3 -- Two Span Nonlinear Bridge (Example Input #5)
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CHAPTER 8
SUMMARY AND TOPICS FOR FURTHER STUDY
8.1 Summary

Comprehensive dynamic analysis of compiex structural systems by the
finite element method can be an expensive, if not Impossible under-
taking. Existing software systems capable of achieving some economy
suffer a limited scope. The need exists for a general purpose FEM
system which is capable of dynamic analysis of arbltrary structures.
This capability includes structures experiencing geometric and material
nonl Inearities. In order to achieve an economical solution, multilevel
substructuring is seen as a requisite modeling approach. It is the pur-
pose ot this work to bring together the individual, isolated topics of
multilevel substructured modeling, dynamic analysis by the FEM, and non-
linear continuum mechanics into the design of a comprehensive, general
purpose, finite element package. The resulting software will be used to
perform numerical experiments to explore the behavior of the proposed
modal synthesis technique in a multilevel substructured environment.
The factors studied will include the economics, accuracy, and analyst
interaction required to perform modal synthesis.

Implementation of multilievel substructuring for static analysis of
Itnear and nonlinear structures has been discussed in detail. The suc-
cess of the effort is dependent upon the schemes used for data storage
and retrieval, equation solving, and user definition of the model. [T
was shown that static results are equivalent for both substructured and

standard models. Economy in the solution via substructured modeling was

289
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demonstrated in two numerical examples.

Dynamic reduction of the stiffness and mass matrices has been iden-
tifled as the plvotal process In accurately representing complex struc-
tures as simplified models for dynamic analysis. A number of the
varfous methods currently available for dynamic reduction have been
‘Tdentified by a review of the open literature. Guyan reduction and the
fixed-interface method have been chosen for Incorporation into the
general purpose FEM software system.

Efgenproblem solution and ftransient response analysis are the most
computational ly - expensive operations in the dynamic analysis of struc-
tural systems. Thelr proper implementation and use Is essential to +the
success of the dynamic analysis. A brief review of these processes and
an examination of their use In a multilevel substructured environment
was given. The most effective eigenproblem solution methods have been
Identified while ftransient response analysis was discussed in more
general terms.

Using matrix notation, the nonlinear equations of continuum
mechanics were derived. Two formulations, Total Lagrangfan (T. L.) and
Updafed'Lagrangtan (U. L.) were described In detail. Both formuliations
were shown to derive from a common definition of the rate of work per
unit mass and thus should provide identical analysis results., Dif=
ferences In the computational efficiency of the two formulations were
shown to arise In the stress rate transformations and in the complexity
‘of the nonlinear strain-displacement relations. |t was concluded that
the T. L. formulation has a slight advantage in that no question arises

regarding the significance of certain nonlinear terms, i.e., all non-



linear terms must be included in the formulation.

The detalls of a transient solution procedure for a substructured
nonlinear mode! based upon an implicit Iintegration operator were
presented. An Implicit scheme was recommended to support dynamic
analysis since a static solution procedure can be obtained as the
degenerate case of dynamic analysis. Details of the elemental stiffness
matrices were derived for both the T. L. and U. L. formulations.
Specific matrices were listed for the general 2-D cass. Qualitative
comparisons of computational efficiency were made and a T. L. approach
was recommended for a general software system. The current absence of
computational evidence in the |iterature regarding the performance of a
finite element solution based on each approach does not enable the
superior approach +to be identified. However, an U. L. approach can be
easily embedded within a T. L. software system., A T. L. approach can=
not be as easily Incorporated into a U. L. based system. Thus, the
choice of T. L. provides some flexibllity for future modiflcations.

The POLO-FINITE input language has been extended to Include the
computational features recommended 1in this report for general purpose
dynamic analysis. Wherever possible, consistency has been maintained in
the philosophy and method of defining the substructured model. The com-

piete command structure was detailed and examples of Its use were

presented.



292

8.2 Topics for Further Study

With the definition of the basic requirements for general dynamic
analysis now avallable, efforts can be directed fto software design, im-
plementation, and verification.

The next task to be performed is the design of a prototype software
system with the specific goal of demonstrating the applicability of mul-
tilevel substructuring in nonlinear dynamic analysis. During the
I1terature review, no evidence was found of this having been attempted
at any level of sophistication. Additional software design toplics in-
clude design of the data structures and processing modules necessary for
performing the analysis and specification of the formats for convenient
and selective output of results.

Later activities include Implementation and testing of the system
in the POLO=FINITE structural mechanics software system. The perfor-
mance of the system will be evaluated over a broad range of structural

types including general substructure geometry and |lnear/nonlinear

response.
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