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Abstract—Due to its simplicity and robustness against wave-
front distortion, pulse position modulation (PPM) with photon
counting detector has been seriously considered for long-haul
optical wireless systems. This paper evaluates the dual-pulse
case and compares it with the conventional single-pulse case.
Analytical expressions for symbol error rate and bit error rate are
first derived and numerically evaluated, for the strong, negative-
exponential turbulent atmosphere; and bandwidth efficiency and
throughput are subsequently assessed. It is shown that, under
a set of practical constraints including pulse width and pulse
repetition frequency (PRF), dual-pulse PPM enables a better
channel utilization and hence a higher throughput than it single-
pulse counterpart. This result is new and different from the
previous idealistic studies that showed multi-pulse PPM provided
no essential information-theoretic gains than single-pulse PPM.

I. INTRODUCTION

Optical wireless communications, or, free-space optics
(FSO), has been widely used in inter-satellite and deep space
communications, as well as in roof-top networks and as a
viable solution for the “last mile” problem. A number of viable
modulation schemes have been proposed for optical wireless
systems, including on-off keying (OOK), pulse position mod-
ulation (PPM), differential phase shift keying (DPSK), and
even pulse width modulation (PWM). Among them, PPM
with direct detection involving photon-counting receiver is
regarded by many as highly advantageous, especially for long-
haul transmission such as inter-satellite, lunar, and deep-space
communications.

From the information-theoretic perspective, it has long
been known that under peak and average power constraints,
restricting the modulation to a binary, slotted scheme results in
only negligible capacity loss [3]. More recent analysis shows
that, under the peak and average power constraints typical of
a deep-space link, restricting the modulation to PPM results
in near-capacity performance also [10].

From the practical perspective, PPM signals are easy and
fast to modulate. They also allow for efficient photo-counting
receivers such as avalanche photodiode (APD) detectors. In
general, as optical signals transmit though a turbulent atmo-
sphere, they encounter a large amount of wavefront distortion
in amplitude and especially in phase. To correct phase distor-
tion is difficult, but is a must-have if single-mode operation

or diffraction-limited focusing is required. Since a photon
counting receiver does not need to amplify the optical signal,
the constraint for single-mode operation is relaxed, and, so
long as the photon-counting detector placed in the receiver
focal plane has adequate detection area, the second constraint
is also relaxed. Hence, PPM with photon counting receivers
is relatively robust against wavefront distortion due to atmo-
spheric turbulence or scintillation. Additionally, PPM is also
particularly desirable for lunar or deep-space communication
systems, since the superb sensitivity of the downlink photo-
counting receiver can effectively reduce the required power-
aperture product needed to operate the transmitter on the
satellite, which in term reduces the size, weight, and power of
the satellite.

There are two types of PPM schemes.
(1) In a conventional M -slot (single-pulse) PPM, a PPM

symbol interval is divided into M (even) time slots, and a
block of m = log2 M binary bits are mapped to one of the M
time slots, signified by an optical pulse in this very time slot.
The rate of the modulation, defined as the number of output
symbols vs the incoming bits is given as M/ log2 M = 2m/m.

(2) To improve the data rate and throughput, multi-pulse
PPM (MPPM) [1], also known as combinatorial PPM [2], has
been developed as an extension to the single-pulse PPM. Since
two or more pulses are allowed to convey information in each
M -slot symbol, there are potentially Ml

Δ
=

(
M
l

)
possible l-

pulse combinations, leading to a payload of up to �log2(Ml)�
bits per modulated symbol. Although the concept of MPPM
dates back to the late eighties (e.g. [1], [2]), the scheme has
recently received a revived interest, spurred in part by the ever
increasing data rate demand of today’s lunar and deep-space
communication systems (which now target a downlink data
rate of 600 Mbps to 1 Gbps), and in part by the emerging
technology of visible light communication (in which MPPM
can be used to, for example, simultaneously control brightness
and communicate data [5]).

For a propagation distance of less than 100m, the optical
signals tend to experience relatively weak turbulence, which
may be modeled as a log-normal distribution with good
accuracy. This generally corresponds to a scintillation index in
the range of [0, 0.75]. As the communication range increases,
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the accuracy of the log-normal distribution quickly fades.
Over the years, several statistical models have been developed
to describe FSO channels under a variety of atmospheric
turbulence conditions, including K distribution and I-K distri-
bution [6], log-normal Rician distribution [7], gamma-gamma
distribution [8], [9], and the negative-exponential distribution
[10]. Although the gamma-gamma channel model, based on
the modified Rytov theory, captures a fairly wide range of
turbulent conditions, the negative-exponential channel model
remains one of the most popular models for strong scintillation
(when scintillation index is 1), due to its good accuracy and
analytical tractability.

The performance of single-pulse PPM, especially at rela-
tively low order such as M = 2 and 4, have been extensively
studied in both weak and strong atmospheric scintillation.
Noteworthy studies include, for example, uncoded M -ary PPM
over log-normal and negative-exponential channels [10], Reed-
Solomon (RS) coded M -ary PPM over log-normal channels
[11], Reed-Solomon (RS) coded M -ary PPM over negative-
exponential channels [12]. In comparison, the performance
of multi-pulse PPM is much less studied. Not considering
atmospheric scintillation, [4] performed a compressive study
of the error rate performance of dual-pulse PPM (DPPM)
by evaluating a pure Poisson counting process. However, the
performance of a scintillated DPPM FSO system has not
received adequate attention. This paper analyzes the error rate
performance of uncoded DPPM, as well as its bandwidth
efficiency and throughput, with comparison to single-pulse
PPM. Targeting lunar and deep space communications, we
consider strong atmospheric scintillation that is modeled as
the negative-exponential distribution.

Our main contributions include:
(1) We developer the analytical expressions for the symbol

error rate (SER) and the bit error rate (BER) of dual-pulse
PPM (and single-pulse PPM) over negative-exponential FSO
channels. We show that, for the same M = 2m-slot symbol,
DPPM incurs very marginal performance loss with but delivers
(m − 2) bits more per symbol.

(2) Using the Z-channel model as an abstraction of the
intensity-modulated directly-detected (IM/DD) FSO channel,
we evaluate the channel capacity. We show that for single-
pulse PPM, smaller M delivers a better bandwidth efficiency
(in bits/Hz/s) and performs closer to the capacity limit (and
non-equal-probable OOK can achieve the capacity). We also
show that, from the information-theoretic perspective, M -slot
dual-pulse PPM is the equivalence to M/2-slot single-pulse
PPM, which suggests little need to adopt dual-pulse PPM.

(3) We further evaluate the system by considering the
practicality issues. The clock frequency sets a limit on the
minimum slot width, and the pulse repetition frequency (PRF)
sets a constraint on the minimum guard-time (between two
PPM symbols). Hence, in single-pulse PPM as well in dual-
pulse PPM, a smaller M does not necessarily lead to a better
bandwidth efficiency. For a given set of realistic constraints,
optimal values of M can be derived to maximize the through-
put of either case. In general, carefully-designed dual-pulse

PPM can expect to reduce the amount of guard-time, improve
the channel utilization, and hence outperform single-pulse
PPM. For specific (realistic) system profiles, it is possible for
a carefully-designed dual-pulse PPM scheme to be 20% more
bandwidth efficient than the optimal single-pulse PPM, with
the same energy efficiency.

II. SYSTEM MODEL

Consider an FSO communication system that employs in-
tensity modulation with direct detection. Light emitting diodes
(LED) or laser diodes (LD) are used as transmitters, and
avalanche photodiodes (APD) involving photon counting is
used as the receiver.

As a laser beam shoots through the turbulent atmosphere,
the intensity of the optical field experiences random fluc-
tuations, commonly known as atmospheric scintillation or
atmospheric turbulence. The scintillation index is a rather
complicated function, which is mostly governed by the fluctu-
ation of the index of fraction (due to temperature variations)
and the propagation distance, but is also related to the beam
parameters, and the heights of the transmitter and receiver.

A. Strong Atmospheric Scintillation
The log-normal fading model is rather accurate for clear-air

scintillation with a fairly short transmit range, but its accuracy
fades when the transmit distance increases beyond 100m and
when the scintillation indexes exceeds 0.75. Researchers have
shown that strong atmospheric scintillation may be modeled
as negative exponential distribution, which corresponds to a
scintillation index of 1.

The notations used in the discussion are listed as follows.
M the number of slots per PPM symbol, m =

log2 M
Ts the PPM symbol duration
τ the PPM slot time
Tθ the PPM symbol guard time
Ks the received photon count of a PPM “mark” slot
Kb the background-noise/radiation photon count per

PPM “space” slot
Γ(Ks) the equivalent signal-to-noise ratio (SNR) for the

optical detection process
Pe symbol error rate for single-pulse PPM (i.e.

misdetecting a mark)
P dp

e symbol error rate for dual-pulse PPM
Pb bit error rate for single-pulse PPM
P dp

b bit error rate for dual-pulse PPM

We have the following additional comments:
(1) In an ideal situation, the slot time τ relates to the symbol

duration Ts by Ts = Mτ , where a slot may be either a signal
slot (“mark”) or an empty slot (“space”). In practice, however,
there may be constraints on pulse repetition frequency (PRF)
due to the physical limitation of the laser diodes, such that
two pulses may not be shoot immediately back to back. This
results in a a minimal time interval requirement between any
two consecutive marks, which necessitates the allocation of
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guard time Tg between two symbols. Hence, Ts = Mτ + Tg.
In practice, the guard time Tg may be as small as one PPM
slot interval, or as large as 25% of the M -PPM slots: τ ≤
Tg ≤ Mτ/4.

The APD direct-detection receiver performs a photodetec-
tion process, which can be modeled fairly accurately as a
Poisson point process over M distinct and disjoint counting
intervals (M PPM slots) . The probability for each count
component is Poisson distribution with an average value
Kb = λbτ for the space slots and Ks + Kb = (λs + λb)τ for
the mark slots. For simplicity, the arrival rates λs and λb are
assumed constants over a PPM slot. λs is related to several
factors, including the quantum efficiency of the detector η,
the intensity of the received optical field I , the detector area
Ad, the wavelength of the light v, and Planck’s constant:
λs = ηAdI

hv .
(2) In a perfect “clear-air free-space” case, such as inter-

satellite communication outside of the earth atmosphere, I and
λs remains a constant throughput a transmission session, and
hence Ks follows a Poisson distribution. However, when the
signal travels through (part of) the atmosphere, the optical in-
tensity I is no longer invariant, but becomes a random variable.
Specifically, under strong atmospheric scintillation, I may be
well-approximated by a negative exponential distribution, and
consequently, the photon count per PPM slot also follows a
negative exponential distribution, whose pdf is given by

f(Ks) =

{
1

λsτ exp
(
− Ks

λsτ

)
, for Ks ≥ 0,

0, otherwise.
(1)

where λsτ = E[Ks] is the average photon count per PPM
mark slot.

(3) The equivalent SNR Γ(Ks) is given by

Γ(Ks) =
K2

s

FKs + Kn
(2)

Where Kn denotes the overall impact of thermal noise and
background photon radiation, and is a function of the receiver
temperature (in degrees Kelvin) T o, the Boltzmann constant
κ, the average APD gain g, the noise factor of the APD F ,
the APD load resistance Rl, and the PPM slot duration τ and
the background photon count Kb:

Kn = 2FKb + 4κT oτ/(Rle
2g2). (3)

III. ERROR RATE ANALYSIS

A. Symbol and Bit Error Rate for Single-Pulse PPM
Consider a PPM mark with Ks signal photons and thermal

noise. The APD performs a threshold detection, whose prob-
ability of miss-detecting a mark can be characterized by the
conventional Gaussian tail function [13]. Specifically, given
the instantaneous SNR Γ(Ks), the (conditional) probability of
misdetecting a PPM mark (i.e. missed detection) is given by

Pe(Ks) = Q
(√

Γ(Ks)
)

, (4)

=
1

π

∫ π/2

0

exp
(
− K2

s

2(FKs + Kn) sin2(θ)

)
dθ. (5)

where Q(·) is the Gaussian-Q function defined as:

Q(x) =
1√
2π

∫
∞

x

e−t2/2dt, (6)

=
1

π

∫ π/2

0

e−x2/(2 sin2(θ))dθ. (7)

Because of the atmospheric scintillation, the photon count
per PPM mark Ks follows some fading distribution. Specifi-
cally, under strong atmospheric scintillations, Ks follows the
negative exponential distribution as shown in (1), and the
probability of misdetecting a PPM mark can be evaluated by
averaging Pe(Ks) over Ks:

Pe =

∫
∞

0

Pe(Ks)f(Ks)dKs. (8)

Substituting (5) and (1) in (8), we get

Pe =
1

λsπ

∫ π/2

0

∫
∞

0

exp
( −K2

s

2(FKs + Kn) sin2 θ
−Ks

λs

)
dKs︸ ︷︷ ︸

A(θ)

dθ.

(9)

Let x
Δ
= FKs + Kn, we can simplify A(θ) to

A(θ) =
1

F

∫
∞

0

exp
(

(x − Kn)2

2F 2 sin2 θx
− x − Kn

Fλs

)
dx, (10)

=
1

F
exp

(
Kn

F

( 1

λs
+

1

F sin2 θ

))
∫

∞

0

exp
(

x

Fλs

)
exp

(
−ax − b

1

x

)
dx, (11)

where a = − 1
2F 2 sin2 θ

, and b = − K2
n

2F 2 sin2 θ
.

Using the Taylor expansion exp
(
− x

Fλs

)
=∑

∞

v=0
1
v!

(
−x
Fλs

)v

, the expression in (11) becomes

A(θ) =
1

F
exp

(
Kn

F

( 1

λs
+

1

F sin2 θ

))
∞∑

v=0

(−1)v

v!(Fλs)v

[∫
∞

0

xvexp
(
−ax − b

1

x

)
dx

]
. (12)

Using the following equality [14],∫
∞

0

xvexp
(
− ax − b

1

x

)
dx = 2

(
b

a

)(v+1)/2

Kv+1

(
2
√

ab
)
,

(13)

where Kv+1(·) is the modified Bessel function of the second
kind of order (v + 1), we get

A(θ) =
2

FKn
exp

(
Kn

F

( 1

λs
+

1

F sin2 θ

))
∞∑

v=0

1

v!

(
− Kn

Fλs

)v

Kv+1

(
Kn

F 2 sin2 θ

)
. (14)
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Inserting (14) into (9), we get the symbol error probability
of M -slot PPM:

Pe =
2βeβ

K2
nπ

∞∑
v=0

[
1

v!
(−β)

v
∫ π/2

0

exp (B(θ))Kv+1 (B(θ)) dθ

]
,

(15)

where β = Kn

Fλs
and B(θ) = Kn

F 2 sin2 θ
.

In the case of negligible background radiation (known in
the optical jargon as the quantum-limited case), we have
Kn = 0. For high data-rate free-space optical communication
under the negative exponential fading, large Ks are typically
used to achieve a low probability of error. In such cases,
it is reasonable to assume zero or nearly-zero background
radiation/noise at the cost of a reduced effective signal strength
[10]. The symbol error rate Pe in (8) can then be significantly
simplified to [10]

Quantum-limited: Pe =
1

π

∫ π/2

0

sin2 θ
Ks

2F + sin2 θ
dθ, (16)

=
1

2

(
1 −

√
Ks

Ks + 2F

)
. (17)

It is also worth noting that, in the quantum-limited case,
photons counts (above the detection threshold) can only occur
in the mark slot, such that the probability of detecting non-
zero photon counts in the space slot is zero. In other words, the
APD detection error is highly asymmetric with a probability
Pe for misdetecting a mark, but zero probability of misdetect-
ing a space. As shown in Fig. 1, the FSO channel therefore acts
like a Z-channel with a mark-to-space cross-over probability
of q = Pe. In general, for a properly-tuned practical FSO
system, even though there may be non-zero probability of
misdetecting a space, the probability of this type of error is
usually magnitudes lower than the probability of misdetecting
a mark, such that it can be safely ignored.

Space

Mark

Space

Mark

q

1−q

1

Fig. 1. Z-channel model for PPM FSO communications in the quantum-
limited case, where the asymmetric cross-over probability q = Pe.

To compute the bit error rate, we consider the ensemble
average scenario, where the labeling for the PPM symbol is
arbitrary, and a misdetection could cause the demodulator to
output a random PPM symbol. As such, the bit error rate of
the M = 2m-slot PPM takes the form of:

Pb =

∑m
k=1 k

(
m
k

)
m2m

Pe, (18)

≈ Pe/2. (19)

B. Symbol and Bit Error Rate for Dual-Pulse PPM
In the dual-pulse PPM case, a symbol error occurs as soon

as any one of the two marks is misdetected. Let Pe be the error
probability of misdetecting a mark in an M -slot PPM. Since
the probability of misdetecting a space is negligible compared
to Pe, we have the following expression for the dual-pulse
PPM SER:

P dp
e = 1 − (1 − Pe)

2 = 2Pe − P 2
e , (20)

where the superscript “dp” stands for dual-pulse.
We now evaluate the bit error rate for dual-pulse PPM

systems. Consider M = 2m PPM slots. There exist M(M −
1)/2 = 2m−1(2m−1) possible dual-pulse symbols, and hence
can convey �log2(2

m−1(2m − 1))� = 2m − 2 bits per dual-
pulse symbol. Clearly, the bit error rate of a dual-pulse PPM
modulation relates to the actual labeling scheme. We consider
two classes of dual-pulse labeling schemes:

• Class I: The set of 22m−2 valid dual-pulses are randomly
selected, and each dual-pulse combination is randomly
but uniquely mapped to a length-(2m− 2) bit sequence.
Such a dual-pulse modulation scheme represents the
ensemble average performance of all the dual-pulse PPM
schemes. An example of M = 16 is shown in Fig. 2(a).

• Class II: Class II labeling is a subset of Class I labeling,
by setting the constraint that one pulse must be picked
from, for example, the first M/2 half slots, and the other
must be picked from the second M/2 half slots. Each
pulse is separately labeled with log2(M/2) = m − 1
bits, so that the two pulses combined lead to an m-bit
sequence. The result is like two M/2-slot single-pulse
PPM symbols concatenated; see Fig. 2. This type of
labeling scheme would in general make the mapping table
less complex (than the more general case in Type I), as
well as reduce the number of bit errors (in the presence
of a symbol error).

Single−pulse

Dual−pulse (Type II)

Dual−pulse (Type I)

Fig. 2. Single-pulse PPM vs dual-pulse PPM. (M = 16 slots per symbol)

Class I: Due to the random selection of dual-pulses and
their random labels, if a dual-pulse symbol errs, it will incur,
on average, the same number of erroneous bits, regardless of
the detection error involves only one mark or both marks. The
average bit error rate can be computed by

P dp
b =

∑2m−2
k=1 k

(
2m−2

k

)
(2m − 2)22m−2

P dp
e , (21)

≈ Pe − P 2
e /2. (22)
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Class II: Since each mark specifies (m−1) bits, independent
of the other, there is a difference between the one-mark error
and the two-mark error. The average number of bit errors
induced by an arbitrary one-mark error (with the other mark
correctly detected) is

∑m−1
k=1 k

(
m−1

k

)
/2m−1, If both marks err,

then the number of bit errors gets doubled. Combining these
cases, we obtain the average bit error rate of Class-II dual-
pulse PPM

P dp
b = 2Pe(1 − Pe)

∑m−1
k=1 k

(
m−1

k

)
(2m − 2)(2m−1)

+ P 2
e

2
∑m−1

k=1 k
(
m−1

k

)
(2m − 2)(2m−1)

,

(23)
≈ P 2

e /2 + Pe(2 − Pe)/2 = Pe/2. (24)

It should be noted that the SER and BER expressions for
the M = 2m-slot dual-pulse PPM in (20), (22) and (24) are
evaluated using the same mark energy (i.e Ks photons per
mark) as the single-pulse PPM. Since dual-pulse PPM has two
marks per M -slot symbol and carries (2m − 2) bits/symbol,
when comparing it to single-pulse PPM that has one mark and
carries m bits/symbol, an energy penalty of m/(m− 1) must
be added to the dual-pulse PPM.

C. Capacity of FSO Channels
Before numerically assessing the performance of single-

pulse and dual-pulse PPM, let us analyze the capacity of the
Z-channel FSO communication systems depicted in Fig. 1.

Since the Z-channel is not a symmetric channel, the optimal
binary input distribution is therefore non-uniform. Let the
input X be a general Bernoulli distribution with the probability
of mark (“1”) being α. The output Y also follows a Bernoulli
distribution with the probability of mark being α(1 − q).
Following the definition of the capacity, we get

Cz(q) = max
α

I(X ; Y ) = max
α

(H(Y ) − H(Y |X)), (25)

= max
α

(
H(α(1 − q)) − αH(q)

)
, (26)

where q
Δ
= Pr(Y = 0|X = 1) = Pe is the crossover

probability, and H(x) = −x log2 x − (1 − x) log2(1 − x) is
the binary entropy function.

With some simplification, we can show that the maximum
value of CZ(q) is given by

Cz(q) = H

(
1

1 + 2H(q)/(1−q)

)
− H(q)/(1 − q)

1 + 2H(q)/(1−q)
, (27)

= log2(1 + (1 − q)qq/(1−q)), (28)

which is attained for α = 1/(1−q)

1+2H(q)/(1−q) . For very small q, the
capacity can be well approximated to

Cz(q) ≈ 1 − H(q)/2. (29)

IV. SINGLE-PULSE VS DUAL-PULSE PPM

To establish the true value of DPPM, we now provide a
multi-facet comparison between single-pulse and dual-pulse
PPM. We are aware of a couple of previous studies, which,

TABLE I
INFORMATION-THEORETIC PAYLOAD FOR l-PULSE PPM

M = 8 M = 16 M = 32

l # of sym bit/sym # of sym bit/sym # of sym bit/sym
1 8 3 16 4 32 5
2 28 4.81 120 6.91 496 8.95
3 56 4.81 560 9.13 4960 12.28
4 70 6.13 1820 10.83 35960 15.13
5 4368 12.09 201376 17.62
6 8008 12.97 906192 19.79

coming from fairly idealistic premises, show that going dual-
pulses does not really provide additional benefits over single-
pulse (e.g. [4]). Our assessment below will consider both ideal
and practical scenarios.

From the information-theoretic perspective, an M -slot PPM
can support M single-pulse symbols, up to

(
M
2

)
dual-pulse

symbols, and up to
(
M
l

)
l-pulse symbols. Clearly, as long as

l does not increase beyond M/2, the larger the value of l, the
larger the number of l-pulse symbols that are available, and
the larger the payload there is to deliver (measured in terms of
the number of information bits per modulation symbol). This
speaks in favor of multi-pulse (many-pulse) PPM, and the gain
in the payload can be quite substantial especially for large M .
For example, Table I lists the number of available symbols
and the payload for M = 8, 16, 32 and l = 1, 2, 3, 4, 5, 6. As
we can see, with M = 32, single-pulse PPM can carry 5 bits
per symbol, whereas quad-pulse PPM can carry three times
more bits per symbol, and 6-pulse PPM can carry close to
four times as many bits per symbol.

It should be noted that the higher information-theoretic
payload (for the same M ) comes at the cost of a (consid-
erably) higher complexity as well as a (small) performance
degradation. An l-pulse PPM symbol has roughly l times as
high as a detection error as that of a single-pulse symbol. For
a fair evaluation between single-pulse and dual-pulse PPM, we
plot their error rate performance for different values of M , in
Figures 3-6. In all of the cases, APD noise factor is set to
F = 9, and the X-axis denotes the normalized energy (i.e.
photon count per information bit), measured in dB.

Fig. 3 demonstrates the BER and the SER for single-pulse
PPM, and Fig. 4 does dual-pulse PPM. In either case, BER
is slightly better than the respective SER, and for dual-pulse
PPM, Class-II BER is slightly better than that of the general
ensemble average (i.e. Class-I). It should be noted that, as M
increases, although the error rate performance also improves,
the gain is very small and practically negligible for high M .
Hence, it is fair to say that increasing M brings in only
marginal energy efficiency.

Now comparing the SER and the BER curves between
single-pulse PPM and dual-pulse PPM in Fig. 5 and Fig. 6, we
observe that, for the same value of M , (i) dual-pulse incurs
a slightly higher SER than single-pulse; and (ii) the average
BER of Class-II dual-pulse PPM is extremely close to that of
single-pulse PPM, and the average BER of Class-I dual-pulse
PPM is slightly higher.
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Fig. 3. SER (red lines) and BER (blue lines) for single-pulse PPM. From
top down: M = 2, 4, 8, 16, 32, 64.
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Fig. 4. SER (red) and BER (blue for Class-I, and green for Class-II) for
dual-pulse PPM. From top down: M = 4, 8, 16, 32, 64.

It is then tempting to conclude that, disregard the higher
complexity, dual-pulse PPM is advantageous over single-
pulse PPM in that it provides a considerably higher payload
with a minor performance degradation. However, on second
thought, the comparison has not been entirely fair. We caution
that unlike phase shift keying (PSK) and quadratic ampli-
tude modulation (QAM), where a higher modulation order
implies a more efficient bandwidth utilization (measured in
bit/Hz/second), increasing the order of PPM also cause an
increase in the symbol interval (for the same slot width τ )
and hence a reduced bit/Hz/second. For example, 8-slot single-
pulse PPM with slot width τ (seconds) and frequency band B
(Hz), delivers a bandwidth efficiency of 3

8
1

Bτ bit/Hz/s, whereas
going to M = 16 reduces the bandwidth efficiency to 1

4
1

Bτ
bit/Hz/s, and M = 32 further reduces it to 5

32
1

Bτ bit/Hz/s.
Hence, for single-pulse PPM, the most bandwidth efficient
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Fig. 5. SER comparison between dual-pulse (blue) and single-pulse (red)
PPM. From top down: M = 8, 64.
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Fig. 6. BER comparison between dual-pulse (green for Class-I, blue for
Class-II) and single-pulse (red) PPM. From top down: M = 8, 64.

case is M = 2 or 4, both delivering 1
2

1
Bτ bit/Hz/s. Now

consider the dual-pulse case. From Fig. 2 and all the perfor-
mance curves, Type-II M -slot dual-pulse PPM is essentially
M/2-slot single-pulse PPM, where two symbols of the latter
concatenatively form one symbol of the former. Since the more
general dual-pulse case (i.e. Class-I) is even worse than Class-
II performance-wise and complexity-wise, this leads to the
following immediate implications: first, there is no gain to go
from single-pulse to dual-pulse; and second, there is no need
to go for large M , and the 4-slot single-pulse PPM is both
simple and most bandwidth efficient.

To see this, Fig. 7 evaluates the “capacity” of different PPM
schemes. The X-axis denotes the power efficiency, measured
in photon count per information bit (dB), and the Y-axis
denotes the bandwidth efficiency, measured in normalized
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bit/Hz/second. The capacity of the Z-channel for both the
optimal input distribution and the uniform input distribution
are shown. Since here the crossover probability q is the
probability of misdetecting a mark, which is upper bounded
by 0.5 (i.e. random guess), the capacity can never drop to 0. In
fact, for optimal input, the limit is Cz(0.5) = 0.3219 bit/Hz/s,
and for uniform input, that is 0.3113 bit/Hz/s. The PPM
systems are evaluated at BER of 10−5, with uniform input.
We see that as M increases, the energy-efficiency increases
slightly, but the bandwidth-efficiency considerably decreases.
This clearly speaks for the preference to stay with low M , and
4-slot single-pulse PPM, or, 8-slot dual-pulse PPM, strikes the
best balance between bandwidth and energy efficiency.
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Fig. 7. Bandwidth efficiency vs energy efficiency for singel-pulse PPM.

The previous conclusions would be all valid if there is no
requirement for guard time Tg. In practice, many laser emitting
systems have a pulse repetition frequency (PRF) constraint,
which specifies how frequently two laser pulses (of a decent
strength) can be generated, and which translates to the require-
ment for a minimum and a maximum time separation between
two pulses. This practicality issue immediately changes the
picture in two ways. First, in the case of single-pulse PPM, a
very small M would result in a very low channel utilization,
as a considerable amount of time is spent to guard between
two very short symbols. Hence, an appropriate value of M
should be selected in order to deliver the best throughput under
a given PRF constraint. Second, now there is benefit to be
gained by going from (M/2)-slot single-pulse PPM to M -
slot dual-pulse PPM. As shown in Fig. 8, with the appropriate
system specifications, there exists an adequate pool of dual-
pulses meeting the separation requirement, such that explicit
guard time is needed only after every M slots. For example,
for M = 8, it is possible to design dual-pulse PPM with a
minimum of 12.5% separation between the two pulses (i.e.
1 slot separation); and for M ≥ 16, dual-pulse PPM with
a minimum of 25% separation (i.e. M/4 slots) is attainable
between the two pulses. On the other hand, single-pulse PPM
would need guard time after every M/2 slots. Clearly, dual-
pulse enhances the channel utilization and hence the data
throughput. When there is substantial guard time constraint,

such as a minimum of 16 slots, then dual-pulse PPM can
promise to be 20% more bandwidth efficient than single-pulse
PPM, while delivering the same energy efficiency.

single−pulse PPM

dual−pulse PPM

GT

GTGT

M PPM slots M PPM slots

M/2 slots M/2 slots M/2 slots

Fig. 8. Illustration of guard time (GT) and channel utilization for single-pulse
and dual-pulse PPM.

V. CONCLUSION

We have evaluated the error rate performance and the
bandwidth effiency for dual-pulse PPM as well as for single-
pulse PPM under strong turbulent channels. We show that
without any guard time constraint, there is no benefit of
going from single-pulse to dual-pulse, and that 4-slot single-
PPM strikes the best trade-off between energy efficiency and
bandwidth efficiency. When there is substantial guard time
constraint, then dual-pulse PPM can effectively improve the
channel utilization and hence the system throughput.
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