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Introduction
National Forest Inventories (NFIs) serve a primary purpose of providing crucial infor-

mation for formulating national forest policy, environmental planning and reporting to 
international processes (Tomppo and others 2010). Pressure for timely and reliable forestry 
statistics urges countries to put a NFI in place or to consider alternative designs. Some 
countries, for example, USA and Finland, moved from a periodic inventory design to an 
annual inventory design (Lawrence and others 2010) with the Swedish NFI being one of 
the earliest examples of the transition (Matérn 1960, Ranneby and others 1987). An annual 
inventory systematically subdivides a plot network, with equal proportion, into a number 
of panels equal to the length of measurement cycle (Reams and others 2005). A measure-
ment cycle is typically five or ten years. Panels are measured successively on an annual basis. 
Remeasurement starts in the next cycle once all panels are visited. Thus, an annual inven-
tory is expected to meet the demand for continually updated information.

An analytical challenge with annual inventory is deriving accurate and precise estimates 
of forest statistics for a single year. An unbiased estimate of population mean is the de-
sign-based mean estimate from panel data (Van Deusen 2002). However, McRoberts and 
Hansen (1999) found that the precision of the estimate was unacceptable due to reduced 



2

Research Note RMRS-RN-52.  2013

sample size from subdividing total samples into panels. The latter has motivated research 
in combining time-series of multiple panels to achieve desirable precision. There are a mul-
titude of approaches for combining panel data including moving average and temporally 
different methods (Patterson and Reams 2005), growth models (Lessard and others 2001), 
time series models (Johnson and others 2003), and mixed estimator (Van Deusen 2002).

Recent development has seen a proliferation of imputation methods for combining panel 
data (Eskelson and others 2009). The drawback is the requirement for auxiliary informa-
tion such as remotely sensed land use classification or climatic variables. With the advent of 
satellite imagery and airborne sensors, this information could be obtained easily (Czaplewski 
1999). However, not all countries—especially developing countries—with the intention of 
adopting an annual inventory system have the resources to invest in remotely sensed auxiliary 
information or human resources to process the information. Thus, alternative methods that 
do not rely on auxiliary information may be more appropriate under such circumstances.

One alternative is the Kalman filter, which is well known in many fields of study, such 
as aerospace engineering, and economics (Petris and others 2009), but the experience in 
forest inventory is limited (exception see Dixon and Howitt 1979, Czaplewski 2010). The 
Kalman filter is a recursive statistical estimator that combines a model prediction and an ob-
servation into a weighted average at each calculation step or time increment (Czaplewski and 
Thompson 2009). In the context of annual inventory, the model describes how a population 
is expected to change over time, and the observation comes from a panel estimate. Hence, the 
combination of model- and design-based estimates is expected to reduce risk from model bias 
and preserve gain in precision from the modeling process (Czaplewski and others 2012). With 
this advantage, the Kalman filter is potentially an effective method in combining panel data.

The goal of this study was to explore the Kalman filter as an alternative method for com-
bining panel data when auxiliary information is not readily available. The study does not 
attempt to identify a universally best model that applies across any annual inventory. Instead, 
the objective was to study advantages, disadvantages and application of three specifications 
of the Kalman filter in contrast to conventional methods of moving average and weight-
ed moving average under three populations with different characteristics of change. Each 
method assumes different rates of change in a population, and therefore, each is a separate 
hypothesis (Czaplewski and others 2012). This study could be viewed from a perspective of 
test-of-hypothesis: which model best predicts the trends in population change. Based on these 
observations, a recommendation is made on possible choice of model for a given set of panel 
data.

Materials and Methods

Data
This study used the panel data from the 5th South Korea NFI (NFI-5) as a means for mak-

ing comparisons. The NFI program in South Korea was initiated in the early 1960s based on 
periodic inventory design, but was later enhanced in the fifth session to an annual inventory 
with new features such as new plot design (Kim 2009). The annual inventory had a measure-
ment cycle of five years with the first cycle completed during years 2006 to 2010. A systematic 
grid of 4 km spacing was overlaid over the whole country, yielding about 4,000 grid points 
covered by forest. A forest was defined as having a minimum area of 0.5 ha, minimum width 
of 30 m, crown cover >10% and tree height >5 m (KFRI 2009). The grid points were sys-
tematically subdivided into five non-overlapping panels with each panel covering the whole 
country.



3

Research Note RMRS-RN-52.  2013

A permanent sample plot (PSP) was installed at each grid point. A PSP consisted of four 
subplots with one at the center and three at 50 m away from the center and at azimuths of 
0º, 120º and 240º, respectively (KFRI 2009). Each subplot was a tri-areal plot consisting of 
three nested circular plots: (1) 0.08-ha plot for trees with diameter at breast height (DBH) 
≥30 cm, (2) 0.04-ha plot for trees with 6 <DBH <30 cm, and (3) 0.003-ha plot for saplings 
and shrubs (KFRI 2009). Observed variables included species, DBH, height, damage, and 
soil condition, and so on.

This study compared the following provinces in South Korea: Gyeongsangbuk-do, 
Gyeonggi-do, and Jeju-do. They were chosen for differences in geographical coverage, size, 
anthropogenic influence, and forest ecosystem. Gyeongsangbuk-do is the largest and the 
most mountainous province located in the east covering an area of 19,400 km2

 and is 
dominated by Korean red pine (Pinus densiflora S. et Z.). Gyeonggi-do is located in the 
northwest and ranks fifth in size, but the province has the highest population density. Thus, 
its dominant coniferous and deciduous forests are influenced by anthropogenic factors. 
Jeju-do is a volcanic island and the smallest province in the country (1,850 km2) located 
in the south. Because of distinct parent material and humid subtropical climate, Jeju-do 
has mostly intact deciduous forest. Due to its small area, a systematic grid of 2 × 2 km 
was installed to achieve sufficient sampling intensity. The total number of subplots for 
Gyeongsangbuk-do, Gyeonggi-do and Jeju-do were 3236, 1001, and 536, respectively, of 
which 20% were measured during any single year.

For each province, the studied variable was mean annual growing stock, that is, volume 
per hectare (m3/ha). Volume of an individual tree was estimated from volume equations in 
Kwon and others (2001) and then expanded to per ha by appropriate expansion factors. For 
each subplot, total volume and volumes of coniferous and deciduous groups were calculated 
by summing expanded individual tree volume accordingly. Based on the estimated volumes 
per hectare of the two groups, the subplot was classified into three general forest types: 
coniferous, deciduous, and mixed forests.

Let ytjk be volume/ha (growing stock) for k-th subplot of j-th forest type in t-th panel, ntj 
be number of subplots of j-th forest type in t-th panel, and nt be number of subplots in t-th 
panel, where j = 1,…,3 and t = 1,…,5 (year 2006 to 2010). Estimated mean and variance 
of growing stock for j-th forest type in t-th panel were
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The variance estimator assumed each subplot was an independent Primary Sampling 
Unit, following the procedure in Yim and others (2011). This estimator simplified the cal-
culation of mean annual growing stock in this study. Regardless of its statistical properties, 
this variance estimator was sufficient for comparisons of relative performances among meth-
ods and test-of-hypothesis on population. It was not the intention of this study to draw any 
significant inferences for decision making. Lastly, this estimator reflects the current practice 
in South Korea while development of variance estimators is in progress. Lastly, yt  (Eq. 1) 
and var yt^ h (Eq. 2) were denoted as single panel estimates at t-th panel (SINGLE), and 
were inputs to the methods described below.

Moving Average and Weighted Moving Average
The moving average (MA) is a basic method for combining panel data to increase preci-

sion of current estimate (Roesch and Reams 1999). Due to its simplicity, the method is 
adopted by several countries implementing annual inventory systems, for example, Sweden 
NFI program (Axelsson and others 2010). However, MA has often been criticized for lag 
bias (Johnson and others 2003). Nonetheless, it served as a benchmark comparison in this 
study. Roesch and Reams (1999) argued that MA might have the tendency to mask tem-
poral trends, and they proposed weighted moving average (WMA) whereby more recent 
panels would receive heavier weights. On this basis, a priori weights were assigned according 
to Table 1. The rules behind the weight assignment were: (1) the most recent panel received 
half of the total weight, and (2) weights diminished at a rate of 50% successively. The rules 
were relaxed for some cases to meet the constraint that total weight summed to one.

First, let y ,WMA t  be the WMA estimate of mean annual growing stock for t-th panel,

	 y w y
T

t

1

=
=

T,WMA t T/ 	 (3)

where wT was the weight assigned to corresponding T-th single panel estimate of mean 
annual growing stock, and the estimated variance of y ,WMA t  was,

	 var 2
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1
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=
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The MA was a special case of WMA, where for T-th panel, wT = 1/t. Finally, let y ,MA t  
and var y ,MA t^ h be the MA estimate of mean annual growing stock for t-th panel and its 
estimated variance, respectively.

Table 1. The a priori weights for weighted moving average (WMA).

t-th Panel

Weights (wT)

w1 w2 w3 w4 w5

1 1.00 – – – –

2 0.40 0.60 – – –

3 0.10 0.30 0.60 – –

4 0.10 0.15 0.25 0.50 –

5 0.03 0.07 0.15 0.25 0.50
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Kalman Filters
The Kalman filter resembles a recursive predictor-corrector algorithm for solving a nu-

merical problem, which is analogous to the method of recursive estimation (Pollock 2002, 
Welch and Bishop 2006). It consists of two sets of equations—prediction equations and 
correction equations. The prediction equations predict the mean annual growing stock and 
its error covariance for the time step based on a model of changes in the variable during 
a single year. The best estimate of mean annual growing stock during the preceding year 
serves as initial conditions in the model. When a panel estimate of mean annual growing 
stock and its error covariance are obtained at the next time step, the correction equations are 
a weighted average of the observed and predicted estimates and error covariances. The more 
precise estimate receives more weight, and the less precise estimate receives proportion-
ally less weight. The correction equations are a generalization of the composite estimator 
(Gregoire and Walters 1988). Thus, the final estimates consist of a weighted average esti-
mate and error covariance for the variable of interest. This procedure is repeated for any 
number of time steps. For additional information, refer to Maybeck (1979) and Czaplewski 
and Thompson (2013).

Three Gaussian linear state-space models were studied, that is, random walk plus noise 
model (WALK), linear growth plus noise model (LINEAR), and exponential growth plus 
noise model (EXP). A state-space model is a mathematical model representing the underly-
ing stochastic process of a system (Czaplewski 2010). A Gaussian linear state-space model 
is a special case such that the model is a linear function of variables and is built on the 
normality assumption (Petris and others 2009). Under this assumption, the Kalman filter 
is a maximum likelihood estimator (Maybeck 1979). The actual computation of a state-
space model is complex, but application of the Kalman filter coupled with the normality 
assumption simplifies the computation significantly (Petris and others 2009). The WALK, 
LINEAR and EXP were laid out in the state-space model representation.

The state-space model for WALK was (Petris and others 2009),
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where μt and μt–1 were state variables for t- and (t–1)-th panels, vt and wt were normally dis-
tributed random errors and assumed uncorrelated, and the estimator of 2

v ,v t  was ( )var yt .
The second equation of WALK (Eq. 5) specified the stochastic model that the change in 

mean annual growing stock was a random process with mean zero over panels (Petris and 
others 2009). The ratio between the two variances 2 2

/v v, ,w t v t  
was called signal-to-noise 

ratio (SNRWALK), which influenced the performance of WALK (Petris and others 2009). 
Increasing SNRWALK would weigh the observation heavier in the correction equations of 
the Kalman filter (Johnson and others 2003). There is no strict rule of assigning a value 
to SNRWALK; so, it was assumed 0.1 for this study implying that 2

v ,w t  was 10% of 2
v ,v t .

The state-space model for LINEAR, elaborated from WALK, was (Petris and others 2009),
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where the random errors vt, w1,t and w2,t were assumed normally distributed and uncorrelated.
The parameter bt  was interpreted as growth rate (Petris and others 2009). Hence, 

the stochastic model of LINEAR (last two equations in Eq. 6) implied that current panel 

w1,t
w2,t
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population mean annual growing stock nt  depended on the previous panel mean an-
nual growing stock nt 1-  and a rate of change. The latter might change over panels if  
2

02vw ,t2
. For LINEAR, there were two signal-to-noise ratios, that is, 2 2

/v v ,w v t,t1
 

(SNRLINEAR1) and 2 2
/v v ,w v t,t2

 (SNRLINEAR2) (Johnson and others 2003). Both ratios 
behaved in similar fashion to SNRWALK. For this study, SNRLINEAR1 and SNRLINEAR2 
were assumed 0.1 and 0.01, respectively. We assumed a small ratio for SNRLINEAR2 because 
the data for this study had only five panels and might not be long term enough to detect 
obvious change in the growth rate bt .

The state-space model for EXP (Czaplewski and Thompson 2013) was specified as,
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where { was exponential growth factor and CV was coefficient of variation.
The EXP (where { ≠ 1) resembled WALK (where { = 1) with two exceptions. The pa-

rameter { implied that mean annual growing stock at t-th panel increased by a factor of { 
from that of (t–1)-th panel. Because of the reforestation effort in the 1950s, forest site con-
dition has recuperated and growing stock has increased recently (Lee 2010). Therefore, the 
assumption of exponential growth was consistent with the past history and anthropogenic 
influence on the country forests. The { was estimated from the published growing stock 
statistics from 1981 to 2005 (Korea Forest Service 2010). It was the average of the first dif-
ference of the growing stock series; thus, the average { values were 1.058, 1.077, and 1.039 
for Gyeongsangbuk-do, Gyeonggi-do and Jeju-do, respectively. Lastly, the variance of the 
stochastic model implied that underlying stochastic process was assumed heteroscedastic, 
which is common in many natural systems. For practicality, CV was assumed 0.01.

The results of fitting WALK, LINEAR, and EXP were filtered mean annual growing 
stock for each method ,y y yand, , ,WALK t LINEAR t EXP t^ h and its associated estimated vari-
ance var ( ), var ( and ( ))vary y y, , ,WALK t LINEAR t EXP t^ h  for t-th panel.

Bootstrap Method
Bootstrap method was used to compare performances of MA, WMA, WALK, LINEAR 

and EXP relative to SINGLE for each province. The procedure in the following was de-
scribed for a province, but was repeated for all three provinces. At t-th panel, bootstrapping 
was independently carried out for each of the three forest types, that is, coniferous, decidu-
ous and mixed forests. In other words, a sample of ntj subplots was randomly selected with 
replacement for j-th forest type in the t-th panel. On average, ntj was approximately 216, 
67 and 36 subplots for a forest type in one panel for Gyeongsangbuk-do, Gyeonggi-do, and 
Jeju-do, respectively. Then, Eq. 1 and Eq. 2 were applied to estimate SINGLE for the t-th 
panel. After that, the five methods (MA, WMA, WALK, LINEAR, and EXP) were fitted 
with the SINGLE estimates. The sampling and estimation steps were repeated 1000 times 
for the t-th panel resulting in 1000 estimates of SINGLE, MA, WMA, WALK, LINEAR 
and EXP. With the bootstrapped estimates, bootstrap average 

+
yMETHOD t^ h and bootstrap 

variance ( )var y
+

,METHOD t
^ h  of mean annual growing stock for a method at the t-th panel 

were calculated as

+ +1000 1000 2
/ ( ) /andy y var y y y1000 999= = -

+

, , , , , ,m METHOD t m METHOD t METHOD t m METHOD tm1 1= =,METHOD t
^ h/ / ,

respectively. Lastly, the above procedure was repeated for each of the five panels.
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The statistics for evaluating relative performances between methods were mean and  
standard deviation of errors. For a method and t-th panel, error was defined as the difference  
between m-th bootstrapped estimate of mean annual growing stock of the method 
y , ,METHOD t m^ h and the m-th bootstrapped SINGLE estimate y ,t m^ h, that 

is, e y y= -, , , ,t m METHOD t m t m  for m = 1,…,1000. Thus, mean (ME) and 
standard deviation (SDE) of the error were 1000

/ME e 1000= ,t t m
m 1=
/  and 

1000 /SDE e ME 999,t m
2

= -t t
m 1=

^ h/ , respectively. The distribution of et,m for t-th panel 
and a method was tested for normality with the Shapiro-Wilk test (Shapiro and Wilk 
1965). The analysis was done in R open source statistical software (R Development Core 
Team 2011).

Results
The MA clearly showed symptoms of lag bias when the method was applied in combin-

ing panel data for all three provinces, with the exception of Gyeonggi-do from year 2006 
to 2009. The MA estimates in general could not trace the trends of SINGLE estimates 
(Fig. 1). The lag bias apparently produced underestimation for Gyeongsangbuk-do on aver-
age (Fig. 1A) and for the majority of the bootstrapped estimates (Fig. 2A). On the other 
hand, overestimation was observed for Jeju-do (Fig. 1C and Fig. 2K). For Gyeonggi-do, 
MA agreed well with SINGLE estimates for the first four years as indicated by average 
zero error (Fig. 2F), but the symptoms of lag bias were strongly evident in 2010 (Fig. 1B). 
The MA was among the five methods that had the highest increase in estimated precision 

Fig. 1. Bootstrap average of mean growing stock ( ,METHOD ty ) from year 2006 to 2010 for the six methods and 
three provinces: (A) Gyeongsangbuk-do, (B) Gyeonggi-do, and (C) Jeju-do. The SINGLE is depicted by solid 
gray line with ○ with the error bars indicating one bootstrap standard deviation. The five methods are: MA 
(solid line with •), WMA (solid line with ■), WALK (dotted line with ○), LINEAR (dotted line with □) and EXP 
(dotted line with ◊).
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(Eq. 4) after combining panel data. The estimated relative standard errors in 2010 were 
52–58% of those in 2006 for the three provinces (Table 2). However, the bootstrap showed 
that MA had the largest variation in error among the five methods for all provinces (SDE in 
Table 3). The tests supported normally distributed errors (p-values >0.14, Table 3).

The WMA on average showed less evidence of lag bias compared to MA (Fig. 1), that is, 
estimates of WMA captured the trends of SINGLE better. The apparent underestimation 
for Gyeongsangbuk-do (Fig. 2B) and Gyeonggi-do in 2010 (Fig. 2G) and the overestima-
tion for Jeju-do (Fig. 2L) were less. However, the reduction in estimated standard error 
(Eq. 4) from combining panel data was less than the MA. The estimated relative standard 
errors were only reduced by 40–50% in 2010 (Table 2). The reduction in estimated vari-
ance of WMA compared to MA was also indicated by smaller SDE (Table 3). Similarly with 
MA, normal distribution for the errors was supported by the test of normality (p-values 
>0.08, Table 3).

The performance of WALK was almost identical to MA in terms of trends in the esti-
mates and errors (Fig. 1 and Fig. 2). However, there were some differences. The reduction 
in estimated relative standard errors from combining panel data was not as much as MA, 
i.e., only 42–52% reductions in 2010 (Table 2). In some cases, the SDE of WALK was 
lower than that of MA (Table 3). However, the most noticeable difference between the two 
methods was that the normality test did not support the hypothesis of normally distributed 
errors especially for Jeju-do (p-values <0.03, Table 3).

LINEAR was the method that best traced the SINGLE estimates. The average 
LINEAR estimates were generally similar to SINGLE estimates and were within one 
standard deviation of latter (Fig. 1). Furthermore, the trends in error over the years did 
not show any excessive over- and underestimation with the exception of Gyeonggi-do in 
2010 (Fig. 2D, I and N). LINEAR has achieved the least increase in estimated precision 

Fig. 2. The trends of error (et,m) from year 2006 to 2010 for the five methods and three provinces. The gray lines 
depict 1000 bootstrapped error with the horizontal solid black lines depicting zero error and the dotted black 
lines depicting mean error.
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Table 2. Average estimated relative standard error (%) of the three provinces for the five panels and the six methods. 
Relative standard error is estimated as var( ) /y y100 # METHOD, METHOD,t tand is then averaged from 1000 
bootstrapped estimates.

Estimation Methods 2006 2007 2008 2009 2010

Gyeongsangbuk-do
SINGLE 2.04 2.03 1.79 1.90 2.11
MA 2.04 1.44 1.12 0.97 0.88
WMA 2.04 1.47 1.27 1.12 1.22
WALK 2.04 1.47 1.20 1.10 1.12
LINEAR 2.04 2.03 1.67 1.56 1.57
EXP 2.04 1.50 1.26 1.21 1.24

Gyeonggi-do
SINGLE 3.42 4.05 3.54 4.04 3.29
MA 3.42 2.64 2.12 1.88 1.63
WMA 3.42 2.76 2.49 2.30 2.09
WALK 3.42 2.70 2.26 2.18 2.00
LINEAR 3.42 4.05 3.33 3.29 2.76
EXP 3.42 2.67 2.21 2.06 1.86

Jeju-do
SINGLE 6.27 5.42 6.31 5.58 5.41
MA 6.27 4.15 3.48 2.97 2.62
WMA 6.27 4.12 4.13 3.34 3.15
WALK 6.27 4.15 3.70 3.28 3.01
LINEAR 6.27 5.42 5.64 4.87 4.41
EXP 6.27 4.11 3.50 3.04 2.75

Table 3. The SDE and p-value from the Shapiro-Wilk test of normality in parenthesis of the three provinces for the 
five panels and the six methods. Significant p-value (α = 0.05) is in bold and italic.

Estimation Methods 2006 2007 2008 2009 2010

Gyeongsangbuk-do
MA 0.00 (–) 1.73 (0.67) 2.05 (0.51) 2.10 (0.14) 2.61 (0.71)
WMA 0.00 (–) 1.39 (0.67) 1.28 (0.28) 1.44 (0.15) 1.69 (0.08)

WALK 0.00 (–) 1.68 (0.54) 1.99 (0.39) 1.92 (0.06) 2.54 (0.23)

LINEAR 0.00 (–) 0.00 (–) 1.03 (0.00) 1.26 (0.96) 2.02 (0.06)

EXP 0.00 (–) 1.47 (0.64) 1.70 (0.14) 1.51 (0.06) 2.17 (0.01)

Gyeonggi-do
MA 0.00 (–) 3.22 (0.54) 3.71 (0.96) 4.02 (0.67) 4.35 (0.51)
WMA 0.00 (–) 2.58 (0.54) 2.35 (0.49) 2.72 (0.20) 2.83 (0.51)

WALK 0.00 (–) 3.23 (0.75) 3.42 (0.59) 3.77 (0.63) 4.07 (0.05)

LINEAR 0.00 (–) 0.00 (–) 1.84 (0.00) 2.69 (0.66) 3.15 (0.02)

EXP 0.00 (–) 3.03 (0.50) 3.28 (0.26) 3.61 (0.31) 3.90 (0.03)

Jeju-do
MA 0.00 (–) 6.59 (0.29) 8.09 (0.80) 7.58 (0.89) 7.33 (0.34)
WMA 0.00 (–) 5.28 (0.24) 4.93 (0.85) 5.23 (0.45) 4.73 (0.20)

WALK 0.00 (–) 5.57 (0.00) 7.51 (0.00) 6.34 (0.03) 5.64 (0.02)

LINEAR 0.00 (–) 0.00 (–) 4.17 (0.00) 4.44 (0.00) 4.01 (0.02)

EXP 0.00 (–) 5.42 (0.00) 7.49 (0.00) 6.47 (0.07) 5.77 (0.02)
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from combining panel data; the reduction in estimated relative standard error was merely 
20–30% in 2010 (Table 2). When comparing to other methods, LINEAR generally had 
the smallest SDE. However, the test of normality strongly suggested that errors were not 
normally distributed for many panels across the three provinces (p-values <0.02, Table 
3). However, in absence of normality, the Kalman filter remains a minimum-variance 
estimator (Maybeck 1979).

The results from EXP fitting were mixed. On average, it adequately captured the trend 
of SINGLE estimates for Gyeongsangbuk-do but not so for Gyeonggi-do and Jeju-do 
(Fig. 1). The former was supported by the trends of error for Gyeongsangbuk-do over 
the years (Fig. 2E). On the other hand, the errors were mostly positive for the other two 
provinces, especially Jeju-do (Fig. 2J and O), which is an indicator of possible estimation 
bias. The reduction in estimated relative standard error by EXP covered a wide range, 
that is, 39–56% in 2010 (Table 2). The SDE of EXP was moderate in most cases and 
was generally between those of MA and WMA (Table 3). However, there was significant 
indication of non-normally distributed errors for year 2010 for all three provinces (p-
values <0.03, Table 3).

Lastly, estimated relative standard error (Table 2) was compared to bootstrap relative 
standard deviation (Table 4) to assess the variance estimators of SINGLE, MA, WMA, 
WALK, LINEAR and EXP var( )y ,METHOD t^ h . In general, the estimated relative standard 
error of the six methods was similar to or was higher than the corresponding bootstrap 
relative standard deviation for Gyeongsangbuk-do and Gyeonggi-do for all panels. The 
former was on average 2-11% higher than the latter. This is evidence for bias in the 
variance estimators. On the other hand, the estimated relative standard error of the six 
methods was smaller than the corresponding bootstrap relative standard deviation for 
Jeju-do with the exception of year 2006 and 2010.

Table 4. Average bootstrap relative standard deviation (%) of the three provinces for the five panels and the six 

methods. Bootstrap relative standard deviation is calculated as ,METHOD t

+
( ) /var y y100 #

+
,METHOD t .

Estimation Methods 2006 2007 2008 2009 2010
Gyeongsangbuk-do

SINGLE 1.94 1.95 1.84 1.82 2.10
MA 1.94 1.36 1.10 0.95 0.88
WMA 1.94 1.39 1.30 1.09 1.22
WALK 1.94 1.36 1.13 0.97 0.91
LINEAR 1.94 1.95 1.70 1.54 1.50
EXP 1.94 1.39 1.15 1.07 1.02

Gyeonggi-do
SINGLE 3.18 3.92 3.32 3.73 3.13
MA 3.18 2.53 2.00 1.81 1.56
WMA 3.18 2.66 2.35 2.20 1.98
WALK 3.18 2.51 2.02 1.85 1.64
LINEAR 3.18 3.92 3.18 3.11 2.59
EXP 3.18 2.55 1.98 1.92 1.63

Jeju-do
SINGLE 6.15 5.42 6.67 5.44 5.35
MA 6.15 4.16 3.63 3.08 2.67
WMA 6.15 4.14 4.41 3.38 3.10
WALK 6.15 4.19 3.71 3.13 2.75
LINEAR 6.15 5.42 6.03 4.79 4.36
EXP 6.15 4.19 3.75 3.18 2.75
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Discussion
The MA has been criticized for lag bias especially when a population is changing rap-

idly over time, that is, producing biased estimate of current year’s population parameter 
(Johnson and others 2003) and underestimation of the variance. Having the largest SDE 
indicates that accuracy of the method could be very low, suggesting that the method could 
be unreliable in some instances. On the other hand, Johnson and others (2003) found that 
MA performed satisfactorily for simulated populations with small to moderate temporal 
change, which was supported in our study. Hence for a population that remains stable over 
time, MA could actually be the most suitable method. However, the demand for more 
current estimates with annual surveys is driven by concern that forest populations are not 
stable.

Incorporating weights into estimation has evidently allowed WMA to reduce lag bias, at 
least in this study. Eskelson and others (2009) found that WMA provided improved esti-
mates in terms of bias and root mean square error (RMSE) compared to MA. Furthermore, 
a smaller SDE suggests that WMA could accommodate more variety of trends. Another 
issue is assigning appropriate weights to panels. Weights are ideally selected based on 
knowledge of trend inherent in data, but this is generally unknown (Eskelson and others 
2009). The choice of weights would affect WMA performance. Arner and others (2004) 
found that RMSE for mean volume and volume change increased with heavier weighting 
on recent year rotating panel data from eight states in eastern USA.

The WALK and LINEAR are asymptotically time series autoregressive integrated mov-
ing average (ARIMA) models, specifically ARIMA(0,1,1) and ARIMA(0,2,2), respectively 
(Petris and others 2009). The similar results, especially lag bias, between WALK and MA 
are supported by the simulation study from Johnson and others (2003). Johnson and others 
(2003) also found that LINEAR fitted their data too closely and warned that such flexibility 
might result in the method merely tracking noise rather than any underlying trend. As with 
selecting weights for WMA, selecting a value for the SNRs of WALK and LINEAR could 
be as arbitrary (Johnson and others 2003). It depends on the degree of trend smoothing 
desired. By increasing the SNR, even WALK could match the observed data closely, but 
with an increase in estimated variances. Lastly, the observed non-normality in error suggests 
that further study is needed to determine fully the properties of both models.

The EXP takes advantage of state-space model by purposely injecting a priori knowl-
edge about underlying process into modeling. It accurately captured the general trend of 
mean annual growing stock for Gyeongsangbuk-do. Also, it is not surprising that the model 
performed poorly when the assumed process differed from the observed from year 2006 
to 2010 for Jeju-do. This might suggest that historical rate of growth for the province has 
changed in that period. However, EXP eventually adapted to the observed decreasing trend 
in mean annual growing stock of Jeju-do in spite of model-misspecification. This illustrates 
the robust nature of the Kalman filter, where prediction and observation sequentially influ-
ence the final estimate. Czaplewski and Thompson (2013) found that a simple Kalman 
filter model could produce more accurate estimate than MA for rapidly changing popula-
tion with detailed residual analysis. Such analysis could detect symptoms of poor model 
or inaccurate model parameters, and should be studied in future research. Lastly, non-
normally distributed errors could affect inference of confidence interval, which is calculated 
assuming that mean is normally distributed.

This study assumed subplots to be independent and ignored the cluster structure of 
the 5th NFI inventory design, which was in-line with the current institutional practice. 
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This would likely deflate standard error, which in turn, would inflate precision. In other 
words, estimated variance var y ,METHOD t^^ hh would be smaller than expected, and boot-
strap variance var y+

,METHOD t^^ hh was used as the basis for this comparison. Contrary to the 
expectation, this was not observed for Gyeongsangbuk-do, Gyeonggi-do and only partially 
for Jeju-do. This might suggest that the current variance estimator for mean annual growing 
stock (var yt^ h, Eq. 2) is positively biased for certain populations; however, the cause for 
the bias is obscure. This highlights the immediate need for further research into variance 
estimators conforming to the inventory design of the 5th NFI, and to view this study with 
caution. A proposed future analysis is developing mean and its variance estimators for an-
nual growing stock on the cluster level and evaluating the five methods of combining panel 
data on that level.

Any comparisons of estimated relative standard errors among the methods are con-
founded by bias in the variance estimators. MA and WMA are known to suffer from lag bias 
(Johnson and others 2003), which is also a source of bias in the variance estimators of both 
methods because the squared error of lag bias is ignored in the estimators. WALK, LINEAR 
and EXP are model-unbiased (Maybeck 1979), that is, they are unbiased if, and only if, the 
model predictions are unbiased. However, in the best case, only one of these different model 
specifications is model-unbiased, and it maybe that they all suffer from model-prediction 
bias. Hence, even though the estimated relative standard errors for MA were less than the 
other methods, this does not imply that MA is more precise due to its variance estima-
tor not accounting for lag bias. Similarly for WMA, comparisons are confounded by the 
unknown magnitude of bias in the variance estimators. Comparison in precision between 
moving average methods and the Kalman filter is tricky because it is confounded by differ-
ent types of bias in the variance estimators. Bias is a property of a sample-survey estimator 
over all possible samples. The true magnitude of bias in any of the methods considered here 
is unknown because we have only one sample out of very large number of possible samples. 
Therefore, caution is prudent when comparing estimated relative standard errors among the 
different methods. All of these estimated relative standard errors are likely biased, and we 
have no definitive method to determine magnitudes of any of these biases.

The choice of a method for combining a set of panel data from an annualized inventory 
should consider several criteria: (1) ability to increase precision from combining panel data, 
(2) inherent number of assumptions, (3) capturing the population underlying process, (4) 
forecasting, and (5) incorporating data from remeasured panels. All methods in this study 
produce lower estimated variance. The gain in estimated precision for the Kalman filter 
depends on model specifications and populations with EXP performing the best for two 
provinces. The MA and WMA require one assumption in model specification, that is, as-
signing weights to panel data, whereas the three Kalman filter methods require at least two 
assumptions in model specification. Having more assumptions does not necessarily imply a 
method to be inferior as long as they are justifiable. However, it does require more thought-
fulness and defensible arguments. The EXP is the single method that explicitly incorporates 
knowledge of the underlying process of a population into modeling. Thus, interpretation 
of the estimates between panels could be directly related to growth. However, the results of 
Gyeonggi-do and Jeju-do highlighted the need to carefully consider the underlying process. 
If the underlying process is poorly represented, the resulted model fit will be poor. In con-
trast, estimates from the moving average method do not carry such interpretation because 
measurements between panels are not strictly remeasurements (Czaplewski and Thompson 
2013). The ability of the Kalman filter for forecasting has been demonstrated in Petris and 
others (2009), and one could specify the state-space model to properly take in remeasure-
ment data. Specification of the moving average methods do not offer a direct forecasting, and 
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to best of our knowledge, such issue has not been addressed in the literature. Lastly, attempts 
have been made to modify MA to incorporate remeasured panels (see Van Deusen 2002).

The results did not offer a clear picture on the choice of a method for the 5th South 
Korea NFI as each method has its advantages and disadvantages. Unless a population is 
unchanged over time, MA and WMA, and their variance estimators, are known to be bi-
ased by design whenever they are used to estimate population variables at one point in 
time. WALK, LINEAR and EXP are model-unbiased, but only on the condition that the 
prediction model produces unbiased predictions, and there is little basis for asserting this 
assumption. Only circumstantial evidence is available to assess the relative degrees of bias 
among methods, and this evidence is discussed above. Nonetheless, we recommend the 
Kalman filter over the moving average. This study has demonstrated that the Kalman filter 
could be specified either as a conventional time series model or a model with hypothesized 
processes. Because of this flexibility, considerable thought is required to formulate an appro-
priate model specification. Furthermore, one has to contend with assumptions associated 
with the Kalman filter models, for example, values of signal-to-noise ratios (WALK and 
LINEAR) and a model representing underlying population change (EXP). It is necessary to 
understand how different ratios and accuracy in representing underlying processes impact 
model fit for different populations. Estimation of SNR might be possible through analy-
sis of residual differences between model predictions and observed estimates (Czaplewski 
and Thompson 2009), but requires further investigation that is outside the scope of this 
study. Among the three Kalman filter models, EXP incorporates knowledge of the underly-
ing population process, and is beneficial for interpreting results as growth. From another 
perspective, different model specifications of the Kalman filter can be viewed as test-of-
hypothesis regarding characteristics of change in a population; thus, further substantiating 
our recommendation of the Kalman filter.

More broadly speaking, moving average methods could be a standard method for ana-
lyzing a country annual national forest inventory. If the methods fail to provide adequate 
model fit, it is an indication that the underlying population changes at a drastic rate beyond 
which could be captured by the methods. Thus, one could then refer to the Kalman filter 
with different model specifications representing different degrees of change as a test-of-
hypothesis on the population underlying rate of change.
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