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Abstract 

A series of tests of the Pultruded Rod Stitched Efficient Unitized Structure 
(PRSEUS) pressure cube were conducted during third quarter 2011 at NASA 
Langley Research Center (LaRC) in the Combined Loads Test facility (COLTS). 
This is a report of the analysis of the Acoustic Emission (AE) data collected 
during those tests. The AE signals of the later tests are consistent with the final 
failure progression through two of the pressure cube panels. Calibration tests 
and “damage precursor” AE indications, from preliminary checkout 
pressurizations, indicated areas of concern that eventually failed. Hence those 
tests have potential  for  vehicle health monitoring.  

1.0 Introduction 

A cube constructed of Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) composite 
panels was pressurized pneumatically at NASA Langley Research Center (LaRC) in the 
Combined Loads Test facility (COLTS) to increasing levels during a series of tests. The series 
started with checkout tests to verify the proper operation of all instrumentation and finished with 
the final test in which internal pressure was increased until final failure. This document describes 
the investigation of the Acoustic Emission (AE) data collected during these tests. 

The PRSEUS concept [1] for the composite structure improves on the state of the art as noted in 
figure 1 by eliminating fasteners and providing damage arrest while incorporating integral 
stiffeners for efficient strength to weight ratios. A pultruded rod in a stringer cap perpendicular to 
foam-core frames is a novel way to create a dry carbon fiber stitched preform that supports itself 
during vacuum bagging and resin infusion. Fabrication does not require complex interior mold 
tools [2] so that point-of-fabrication customization for structural changes is easy and 
inexpensive. The dry multi-ply stacks and sub-structures are stitched together using Vectran 
fibers into the near final shape for incorporation into the Blended Wing Body (BWB) design. 

Figure 2 illustrates a 3-D schematic of a subsection of the large scale BWB test article being 
realized as the PRSEUS pressure cube test article with a bulkhead panel removed [3]. The cube 
consists of six sides of PRESUS construction. There are two ribs, two bulkheads, a crown and a 
floor. Each bulkhead panel is joined to the adjacent sides by bolting it to T-cross-section integral 
caps. These caps on the surrounding rib, crown, and floor panels capture the panel like a picture 
frame. Every panel has seven or eight rod stiffened PRSEUS stringers (rib or bulkhead panel, 
respectively) spaced 6.0 inches apart. These stringers cross perpendicular to two frames spaced 
24 inches apart. The spaces of unstiffened panel are called bays. At the corner of two contiguous 
panels the stringers on one panel do not intersect the stringers of the other.  The outside 
dimensions of the pressure cube are approximately 52 in. x 48 in. x 56 in. [4] 

The AE sensors applied to the crown and one of the rib panels, as well as the section of the frame 
that buckled first during failure, are shown in figure 2. For purposes of illustration the bulkhead 
panel indicated as “blkhd panel removed for clarity” can be considered as the panel that blew out 
during failure, leaving the cube looking much as the figure illustrates, albeit, a little more ragged 
and fractured.  

That bulkhead panel (containing AE sensors 1-6) and the indicated rib panel (containing AE 
sensors 19-26) were painted with black/white speckle pattern. The patterning is for the Visual 
Image Correlation (VIC) non-contacting full-field strain measurement technique developed by 
researchers at the University of South Carolina [5, 6]. These panels are described in this 
document as “VIC” or “speckled” panels. This strain measurement is realized by tracking the 
deformation of the speckling with two location-calibrated and synchronized cameras for each 
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panel. The other panels on the cube were painted grey and are described as such in the following 
discussions.  

 
2.0 Acoustic Emission Collection Test Configuration  

Thirty-two acoustic emission sensors (Digital Wave B225.5) were mounted on the outside of the 
pressure cube as shown in figures 2 and 3. For easy removal all sensors were bonded with Lord 
202 acrylic adhesive onto aluminum metal tape that was attached to the test article as seen in 
figure 4. The diameter of the sensor is approximately 0.75 inches. 

Figure 3 shows the numbering scheme for the sensors. This figure is a multiview orthographic 
projection of all the panels excluding the floor. Each view is a scaled drawing of the stitching 
pattern for the panel.  Each panel contains six sensors, except for the speckled rib panel that 
has two extra sensors around an applied impact. A 1-inch spherical impactor applied the dropped 
weight impact of 100 ft-lbs during the test series prior to the final failure pressurization [3]. This 
illustration allows one to note the location of the AE sensors, which were attached to the smooth 
outside of the cube, relative to the structural components (stringers, frames, and integral caps) 
inside the cube. This type of description of the sensor locations is relevant because the significant 
changes in geometry of the cube at the stiffening elements are more likely to be where damage 
occurs first. These stiffeners can also act as waveguides to propagate the AE.  

All sensors were connected to thin coaxial sensor cables, which in turn were connected to Digital 
Wave PA0 preamp/line drivers to buffer the weak signal back to the data acquisition system. The 
preamps were connected via thicker low noise coaxial cables to two Digital Wave FM1 signal 
conditioning 16-channel amplifiers, which were remotely located in the COLTS control room. 
The amplifiers were connected to a computer containing multi-channel Digital Wave data 
acquisition hardware and software. The computer and amplifiers were actively manned during 
the tests. The data was recorded for subsequent processing with the same software. 

A summary of the amplifier gains for the tests is shown in figure 5. Settings did not change until 
the increase in AE rate and signal strength necessitated a reduction in signal gain to reduce signal 
amplitude saturation, and/or a reduction in trigger gain to reduce rate saturation and subsequent 
data loss. A change in signal gain can be compensated for, in post processing under certain 
conditions, by scaling the amplitude as though acquired at a different gain. However, 
comparisons between signals cannot be accurate if one signal is amplitude saturated when 
acquired (i.e. amplitude clipped by a hardware limitation) and the other is not. Calculations such 
as energy or frequency content acquire errors when the signal is clipped. A reduction in trigger 
gain is a change that cannot be compensated for, because it involves loss of potentially relevant 
data that is now below the threshold for triggering data acquisition, but was above the threshold 
at the higher previous gain. When these changes have occurred, comparing parameters such as 
total or cumulative AE/energy or AE event rates is not wise. As noted in figure 5, a trigger gain 
change was implemented when executing AE system check tests (pencil lead break tests) and 
prior to the “2P” and “Failure” pressurization tests.  

 
3.0 AE Metrics 

AE systems collect structure-borne sound, typically not audible, in the ultrasonic frequency band 
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from 50 to 500 kHz, generated by dynamic processes such as damage initiation and growth in a 
structure. The technique can be sensitive to rapidly occurring displacements at scales as small as 
picometers [7]. That sensitivity can monitor pre-cursors to failure in real-time but comes at the 
cost of differentiating types of real damage from other sources of AE. 

For a typical test, data from an array of acoustic sensors located around the structure is acquired. 
The AE data can be used to locate the epicenter or source location of the damage by 
triangulation. This requires using the time-of-flight of the sound from the source to the different 
sensors along with knowledge of the sound wave velocity and sound path. Also typically 
recorded are the event time and various types of test parameters such as load or pressure. 
Therefore, one can plot the event rate (events per unit time) as well as the events as a function of 
those parameters such as load or pressure.  

Knowing the velocity of the AE wave propagation accurately is a major factor affecting the 
accuracy of event location calculations. The simplest unbounded materials are homogeneous and 
isotropic and have three modes of wave travel with differing velocities. Boundaries support 
many other modes of wave propagation (plate, surface, etc.). Wave propagation can also be 
dispersive, particularly in guided waves, where the velocity is a function of frequency. 
Anisotropy introduces velocity that varies with direction even for the same mode of propagation. 
Hence, wave velocity can be a function of where the wave is traveling in a material, what 
direction it is traveling, and its mode of travel. Complex, bounded, inhomogeneous, and 
anisotropic structures made from various materials can potentially create and sustain many 
different modes, frequencies and, hence, velocities of propagation. Damage introduces changes 
in material and mechanical properties that can further affect propagation velocity.  

Knowing the arrival times at the sensors accurately is another major factor affecting the accuracy 
of event location calculations. A low signal to noise ratio makes it more difficult to determine the 
signal arrival time accurately due to the interference of the noise with the signal. Determining the 
wave arrival times can also be complicated when there are numerous overlapping arrivals of 
different wave modes and reflections from different boundaries. Hence, the accuracy of event 
source location is a function of many variables. 

Yet another factor in source location accuracy is the sensor density, or the number of sensors 
near a given AE event. Typically, the more sensors that detect the event and record the arrival 
time, the better the estimate obtained for the source location. However, this comes at the cost of 
requiring additional sensors and instrumentation. For complex structures, one way to limit sensor 
count is to use a regional or zonal location method where each sensor is positioned in a central 
location of a region of critical or structural significance. For this sparse distribution of sensors, 
AE signals from a given source event are typically only detected by a few of the sensors located 
closest to the event. The location estimate is then a region or zone surrounding the first hit sensor 
and bounded by either the zones for surrounding sensors or an estimate of the maximum distance 
a signal might propagate and still be detectable. While this does not provide a pinpoint estimate 
of damage location, it provides a region in which other NDE techniques are used to more 
accurately locate and assess the damage.  

Another metric is the signal energy contained in the detected acoustic signal acquired at each 
sensor. This energy of an event is evaluated by calculating the signal energy, SE, from the signal 
as 
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where Vi is the signal voltage, i is the time reference point, n is the number of time points in the 
signal, ∆t is the sampling time per point. In other words, the signal energy is the area under the 
voltage2-time curve, with units such as V2µsec. However, energy in a physical sense is defined 
as Joules with dimensions of Watt·sec or V2sec/ohm. To relate signal energy to physical energy 
E requires including the impedance in ohms of the load driven by the signal. The calculated AE 
signal energy is related to the energy released in the source event by effects from the transfer 
function of the material (attenuation, filtering, reflection, etc.) during propagation from source to 
sensor as well as from the transfer function of the sensor. So the trends in changes of the energy 
over time, load, or some other experimental variable is more valuable than efforts to get absolute 
calibrated values for each event. 

Material behavior that is related to change of AE over time and load, such as the Kaiser Effect 
and the Felicity effect, can be used to evaluate damage development. To paraphrase the 
Nondestructive Testing volume of the ASM Metals Handbook [8], initial loading of a virgin 
material typically produces more emission than subsequent loading. An “instantly-plastic” 
material will not produce any emission on later loadings, unless the previous load peak is 
exceeded or unless some type of deterioration occurred between loadings. This is the Kaiser 
effect. This behavior, for metallic materials, is due to AE generated by the 
acceleration/deceleration of large populations of dislocations under load. Hysteresis in these 
motions eventually leads to fracture. For composites, the discontinuities at the boundaries of 
different constituents (i.e., matrix and fibers) are much larger than the dislocations in metals. 
These discontinuities are stress raisers that contribute to degradation by development of 
distributed and distinctly different types of damage than metals. A typical damage progression 
scenario in a laminate composite is matrix microcracking, delaminations, disbonds, and finally 
fiber breakage. In the early stage of this progression, new surface is created internally without a 
significant loss in strength. However, as the specimen is strained, internal friction of these 
surfaces generates AE. If the geometry of the new surface developed at the peak strain is not 
completely locked in that configuration, it will emit AE at strains lower than the peak, when it is 
unloaded and reloaded. However, experience tells us that this typically is not indicative of 
intensive damage progression unless it occurs at a significantly lower fraction of the peak load or 
continues to occur during subsequent loading cycles. To paraphrase [8] again, structurally 
significant defects will tend to emit at loads below previous maximum, or, when the load is held 
constant. However, emission due to structure stabilization will tend not to recur. This is the 
Felicity effect and it is quantified by the Felicity ratio (FR): the load at which emission begins 
divided by the previous maximum load. The Kaiser effect is a FR of 1.0 or greater. For 
composite laminates, FR can systematically decrease under fatigue and FR less than 0.95 has 
been cause for rejection of FRP pressure vessels. [8]    

One of the issues with evaluating material behavior according to the Kaiser effect and Felicity 
ratio is that existence of AE  is affected by the signal amplitude. More specifically, the signal to 
noise ratio of a test configuration, as noted previously, governs trigger gains that one uses, which 
affects the size of signal that triggers event acquisition. Therefore when comparing the results of 
different tests one must be cognizant of all the factors affecting each test.  
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A zone location approach is used for this analysis by comparing cumulative energy arriving at 
different sensors. In other words, trends in cumulative energy at a sensor indicate proximity and 
intensity of damage. Event locations were calculated, and abandoned, because the complexity of 
the structure and the resultant anisotropy made the results hard to interpret. In addition, because a 
series of loading tests occurred, the behavior is assessed according to the Kaiser Effect. 

 

4.0 Analysis 

In the following discussion, AE events may be described as occurring at a particular sensor. This 
does not necessarily mean that the source of the AE event is right at the sensor indicated. It is 
shorthand for the scenario that the sensor is likely to be the sensor closest to the AE source. The 
stress wave propagation impinging on that sensor has the largest initial amplitude of all the 
waveforms monitored at all the sensors and therefore has triggered the data acquisition of that 
“event”.  

The panels were almost acoustically independent of each other for several reasons: 
 Gaps between frames force acoustic coupling between frames from panel to panel via the 

bolted metal brackets. Optimum transfer across this joint is dependent upon matched 
acoustic impedances for all the components of the joint. This almost never happens to be 
the case. The presence of reflection and scattering surfaces from the bolt holes further 
tends to attenuate the transmission.  

 Elastomeric sealants reduce acoustic coupling and dampen propagation. 
 Bolted fabrication without adhesive (or with poorly bonded adhesive) reduces acoustic 

coupling. 

Analysis of the sensor verification tests (pencil lead breaks, section 4.5) supported this concept. 
Signal loss was approximately an order of magnitude across a few feet of panel. Subsequently, 
the pressure test data was reduced by splitting the data into five panel files, each containing only 
the channels for each of the five panels. Filtering by energy threshold eliminated events 
occurring on other panels that were not registering on that panel. However, this does not 
eliminate any event that may register on another panel.  
 
The most likely final failure sequence of the pressure cube, as noted in more detail elsewhere [3] 
is: 

 Metallic frame splice failure: A frame splice cracked. These plates connected one section 
of the frame on the crown panel to another section of the frame on the adjacent rib panel. 
The particular splice in question is the one that connects the section of frame under AE 
sensors 27, 28, and 29 to the section of frame under AE sensors 22 and 23. 

 Frame buckling: Once the splice plates failed, the detached rib frame of the speckled rib 
panel, subjected to increased in-plane bending, buckled.  

 Integral cap failure: Post-frame-buckle load redistribution causes adjacent integral cap to 
fail.  

 Catastrophic decompression in a fraction of a second: During this failure the cube rotated 
counterclockwise, as viewed from above. Sensors on the panel that blew out, were 
thrown up and out, as was the panel itself. This suggests that the panel failure initiated at 
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the left edge, air escaping to the left, quickly followed by detaching across the bottom 
and up the other side.  

The following analysis attempts to map the damage development that led to this failure. 
 

4.1		Checkout	tests	1	and	2	(0.5P	pressure	where	P=9.2	psi)	
These two tests were performed to exercise all the COLTS testing equipment, systems, and test 
procedures. These tests were not expected to introduce any damage to the structure because the 
load of 0.5P was well below design pressure P. However, a few AE events did occur in both 
tests, but the amplitude was at least 2 orders of magnitude smaller than AE from later higher 
pressure tests. So, no intensive damage occurred, but some of these events possibly foretell the 
locations of the final failure. 

During checkout test 1, only four AE events occurred, near the peak pressure, as seen in the 
“Load profile and AE Events” plot in figure 6. The load profile (vs. time in test) is the red trace 
and AE events are indicated by the blue dots. Three events occurred at sensor 16 on the bulkhead 
panel that did not fail, and one at sensor 31 in the center of the crown panel, between the regions 
later discovered to have delaminated. Please note, as seen in figure 7 of the waveforms captured 
at all the sensors for event 1, there does not seem to be much signal on the sensors other than 16, 
indicating a source very local to that sensor. However, after filtering out frequency content below 
50 kHz, neighboring sensors 11, 14, 17, 18 do indicate some wave content other than noise. 
None of these sensors are near the panel that eventually failed but these events are either much 
smaller than the ones from the second checkout test or, as in the case of the channel 16 signal, 
are not particularly similar to that of a damage induced AE signal. Sensor 20 is showing a type of 
continuous AE not seen on the other sensors, although its frequency content (50-75 kHz) is much 
lower than the 400 kHz seen at sensor 16 and neighbors.  

The high amplifier gains for this test highlight the larger noise amplitude at frequencies below 50 
kHz on all sensors except 1, 13, 15 and 29. As noted previously sensors 1 and 13 are the only 
sensors mounted on a bay panel and may not have as much signal transmitted to them as the 
signal is carried on the stiffeners, hence the lower level of noise. All other sensors, as noted in 
Section 2, are opposite some internal structure such as a frame or stiffener. Channel (sensor) 15 
failed and remained that way for the entire series of tests. Channel 29 showed weak signal for the 
entire test series despite troubleshooting prior to the failure test. The cause of the signal 
weakness for that channel was never ascertained because much sensor and cable damage 
occurred during the failure test. 

During checkout test 2, only two AE events occurred, near the peak pressure, as seen in the 
“Load profile and AE events” plot in figure 8. These events show less localized (geographically) 
and longer (in time) activity, indicated by the number of sensors with significant waveform, as 
illustrated in figure 9 of event 1. The event registered significantly on sensors 19 to 26, as 
indicated by the red arrowhead line. These signals look more like typical damage-induced AE 
signals. Also, these sensors are on the speckle-pattern rib panel which suffered a metal splice 
fracture and frame buckling during later tests. Compared to the signals from checkout test 1, 
these signals are more likely to be from a distributed structural “damage” source. The response 
of event 2 is similar and has indications on sensors 1-6, 8, and 10. Note that sensors 1-6 are on 
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the panel that eventually blew out entirely during the failure test. Sensors 8 and 10, albeit on 
another panel, are closest to the edge contiguous to the “failure” panel.  

In summary: AE signals from these “checkout” tests are much smaller than failure events 
occurring in later tests, but the general locations of sensors showing AE-like indications are 
consistent with the location of the final catastrophic failures of the speckled rib and bulkhead 
panels. This shows potential for vehicle health monitoring by damage “precursor” AE. 

 

4.2	Test	3:	1P	pressure	
The load profile and AE event plot for the 1P test is shown in figure 10. The dotted green lines 
indicate the point in time where the pressure reaches the previous peak pressure achieved during 
the 0.5P tests. A Felicity Ratio of 1 indicates that no structurally destabilizing damage occurred 
during the 0.5 P tests The black vertical line indicates the beginning of the unloading. Events 
after this point indicate that some damage, which created new surface, had occurred during this 
test. As the load reduces, the friction of these surfaces coming together creates acoustic emission 
as they interfere.  

For this analysis, the cumulative energy of the events was calculated for each channel (sensor) 
and is plotted, versus time, for each panel as seen in figures 11-15. Red ovals indicate items of 
interest. In figure 11, the speckled bulkhead panel that blew-out during the failure test, has a 
significant rapid coordinated jump in energy occurring on all sensors around 1680 seconds (~ 8.6 
psi). Sensor 1 with the lowest cumulative energy is bay-located. This bulkhead panel had the 
next-to-the-highest cumulative energies per sensor. Figure 12 shows the cumulative energy plot 
for the gray rib panel, which is opposite the failure initiating speckled rib panel. It has the lowest 
sensor energies of all the panels. Now, note that the cumulative energies of the gray bulkhead 
panel, as seen in figure 13, includes the highest energies, with the largest increases occurring at 
1790 seconds right before unloading. This panel is farthest from the later failure locations, so 
hindsight allows us to suggest that these events were “structurally stabilizing” because their 
location is not involved in the final failure. However, they did occur on a bulkhead panel, 
suggesting that these types of panels may be more likely to fail and should be monitored more 
closely. Significant coordinated increases also occur on most sensors of that panel at 1610 
seconds (~ 8.0 psi) and 1660 seconds (~ 8.5 psi), especially sensors closer to the floor (16, 17, 
and 18). The smallest increases occurred at sensor 13 (bay-located), and 15 (failed). Figure 14 
shows a significant coordinated increase at 1720 seconds (~ 9.0 psi) of the cumulative energies 
of the speckled rib panel which later had initiated the final catastrophic failure. It also has the 
next lowest cumulative energies of the side panels. Comparable cumulative energies are noted 
for the crown panel as seen in figure 15. There is a coordinated increase around 1650 seconds (~ 
8.4 psi) with sensor 27 having the greatest increase by 1700 seconds. Sensor 27 is closest to the 
metal splice failure on the affected frame. The greatest total cumulative energy occurs on sensor 
31. After the 2P test, delaminations were discovered that run along the edges of the crown panel 
contiguous to the rib panels. Sensors 31 and 28 are closer to both of those edges than the other 
crown sensors. An explanation for the large total cumulative energy at 31 may be that the 
delamination damage (or delamination-initiating damage) was already occurring near both 
sensors 30 and 32. Although the energy at sensor 30 or 32 would be greatest from the damage 
nearest to each, the sum of the energy from both damage regions could be greater at the sensor in 
the middle, 31. This may also account for the higher total cumulative energy (vs. others on same 
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panel) at sensors 20 and 9 on the rib panels (adjacent to 30 and 32 respectively). In figure 14, 
sensor 20 obviously leads the others on the speckled rib panel. In figure 12 it is harder to see, but 
9 is at the top with 10 and 11 by the end of the test. 

In summary, the highest cumulative energies occurred at symmetric locations: the speckled 
bulkhead panel (that eventually failed) and gray bulkhead panel. The lowest energies (not 
counting the crown) occurred on the two rib panels. This leads one to surmise that even though 
the bulkhead panels have one more stiffening stringer than the rib panels, something about the 
construction of the bulkhead panels contributes more to damage development. As seen in all the 
figures 11-15 the existence of events during unloading indicates that some significant damage 
had occurred during this test. Assuming that the coordinated increases in cumulative energy are 
indicative of primary damage mechanisms the chronology of damage development is as follows: 

 1610 seconds (~ 8.4 psi) Bulkhead, gray: near bottom of panel 
 1650 seconds (~ 8.4 psi) Crown: front left (as if facing speckled bulkhead) 
 1660 seconds (~ 8.5 psi) Bulkhead gray: near bottom of panel 
 1680 seconds (~ 8.6 psi) Bulkhead speckled: left 
 1720 seconds (~ 9.0 psi) Rib speckled: all 
 1790 seconds (~ 9.2 psi) Bulkhead gray: lower left 

Also, evidence suggests that the later-discovered crown panel delaminations were already in 
development during this test. 

 
 

4.3		Test	4:	2P	pressure	
The load profile and AE event plot for the 2P test is shown in figure 16. Some randomness was 
seen in the test pressure values (red dots), so a smoothed version was calculated and is plotted as 
the black curve. The dotted green lines indicate the point in time where the pressure reaches the 
previous peak pressure achieved during the 1P tests. A Felicity Ratio of approximately 0.3 
supports the conclusion that significant damage did occur during the 1P test. Since the trigger 
gain was reduced 3 dB from the 1P test to the 2P test, this FR is especially indicting because AE 
may have been sensed even earlier if the higher gain had been used.  The overall larger number 
of events during 2P test compared to 1P test indicates more rapid damage progression. The larger 
number of events during unloading after 1100 seconds (~ 20 psi), than has occurred during 
previous unloadings, also indicates more significant damage had occurred during the 2P test than 
previously. Figure 17 is a closer view of the same data with a region of interest shaded in yellow 
between 16-18 psi (885-950 sec) indicated because of increasing strain gauge activity at that 
time. 
 
As indicated by the red arrow on the cumulative energy plots for all the panels (figures 18-22), 
all sensors show significant rate increase in cumulative energy around 1060 seconds (~ 19 psi). 
The vertical black lines indicate the beginning of unloading. In figure 21 of the speckled rib 
panel that initiated failure during the failure test, a significant increase occurred during 
unloading; suggesting that the metallic frame splice failure began during the 2P test. Figures 23-
27 are close-ups of the cumulative energy plots with the yellow shaded region of strain gage 
activity-increase between 16 and 18 psi. The red ovals highlight significant increases in 
cumulative energy, most of them occurring well before the strain gages indicated damage. 
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During the 16-18 psi window, higher rates of increase (excluding the noted jumps) in the 
cumulative energy, occurred on the speckled bulkhead panel (figure 23) and the speckled rib 
panel (figure 26). Also, on all the panels except the gray bulkhead panel, around 18 psi (950 
seconds) at the end of the yellow shaded region, more rapid increases in cumulative energy 
occurred, especially on speckled rib and crown panels (noted for the delaminations that were 
discovered after this test). The largest cumulative energy at that point (around 1000 seconds, still 
approximately 18 psi) are on the speckled rib panel followed by the speckled bulkhead. Sensors 
19 and 20 leading on the speckled rib panel may be due to delamination growth in the crown 
away from sensor 30 toward 27. On the crown, sensor 27 lead with highest cumulative energy 
for most of the test, followed by sensors 28 and 31. Sensor 27 is the closest crown sensor to the 
metal frame splice that had failed, suggesting damage development that lead to the splice failing. 
Both sensors 28 and 31 being high indicate that both delaminations in the crown were growing. 
As noted previously sensor 29 was weak during the entire series of tests.  

All the noted indications suggest that the critical damage on the “failure initiation” panel 
(speckled rib) and the “blow-out” panel (speckled bulkhead) was already occurring and that 
structural integrity and remaining fatigue life had been severely compromised. 

Summary: 
The highest accumulated energies are from the speckled rib panel, followed by the speckled 
bulkhead panel. 

Chronology of indications: 
 820 seconds (~14 psi): Rib speckled, Ch. 19, 21, 22, 23, 24 rate increases (mid to upper 

right around impact) 
 820 seconds (~14 psi): Crown, Ch. 27, 30, 31, (left edge around back left corner, if facing 

bulkhead speckled) 
 835 seconds (~15 psi): Bulkhead speckled, Ch. 2-6 especially 3 and 5 
 835 seconds (~15 psi): Rib gray, Ch. 8, 10-12 especially 10 and 12 (lower right corner) 
 800-840 seconds (~13.5-15 psi): Bulkhead gray, no jumps but energy rate Ch. 16-18 

increasing past Ch 14 (bottom).  
 875 seconds (~15.5 psi): Rib speckled, Large energy release especially Ch 25 (bottom). 
 940 seconds (~16.5 psi): Rib gray and Rib VIC 
 950 seconds (~18 psi): Rib speckled,  all and crown all except 29 and 32 
 950 seconds to end of test: rate increases at most all sensors, again especially on the 

speckled rib panel followed by the speckled bulkhead panel. 
 

4.4		Test	5:	Failure	
The load profile and AE event plot for the failure test is shown in figure 28. The dotted green 
lines indicate the points in time when AE starts and the time when the pressure reaches the 
previous peak pressure achieved during the 2P tests. A Felicity Ratio of approximately 0.6 
indicates that more damage did occur during the previous 2P test Failure occurs a little after 2000 
seconds at a pressure of approximately 48 psi (approximately 5 times the design pressure P=9.2 
psi). Figures 29-33 are the cumulative energy plots. All of the plots show a leveling off or 
reduction of AE rate around 1550-1600 seconds, which coincides with a pressure hold of 
approximately a minute. This illustrates the extent that AE event rate is affected by load rate. 
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Variations in load rate should be kept to a minimum during testing, especially when analyzing 
the AE for onset of different failure mechanisms. The overall behavior, more obvious in this test, 
but also occurring during previous tests, is that the sensors nearer the floor (especially 6, 12, 18) 
tend to lead in cumulative energy for each side panel. This could be due to the hatch or the 
different construction of the floor (relative to the other panels) either making more noise or 
increasing stresses at the edge of the other panels.  

The raw average AE data rate was much higher for this test than for the previous 2P test: 

 2P: 8209 events over 1300 sec = 6.3 event/sec 
 Failure: 50001events over 2000 sec = 25 events/sec (approx. 4X higher) 

Because of the increased AE rates, even after filtering, there does not seem to be many easily 
identified jumps in cumulative energy for this test as opposed to previous tests. This suggests a 
new regime of damage development. Previous tests had large events followed by periods that 
were more quiescent. In those tests, stress redistribution after stress relief allowed structural 
stability for a period of time before stress buildup exceeded local weakness. In this test, large and 
small events are more evenly distributed in time and location. Dynamic load redistribution 
almost immediately causes more damage. Failure is accelerating. 

Some sense of failure progression can be illustrated by tracking increases of cumulative energy 
rates. The activity on the right side of the speckled bulkhead (sensors 3 and 5) panel picks up 
around 1700 seconds (~38 psi) compared to the left side. The rates during the pressure hold, 
around 1600 sec (~ 36 psi), do not flatten as much as in the other panels. This suggests the panel 
is weaker or the stresses higher than the other panels, especially since there was also a short 
pressure hold at 1700 seconds. The entire gray rib panel also seems to be ramping up about the 
same time with sensors 10-12 (on the lower half) leading. Both the gray rib panel and gray 
bulkhead panel are more quiescent than the other panels, relatively speaking, if not including the 
near-floor sensors. Looking at the speckled rib panel where the frame buckled, four sensors were 
located equidistant from the prescribed impact on the integral cap: 21, 22, 23, and 24. We see a 
distinct increase at sensors 22 and 23 (located on that frame) at 1840 seconds (~ 41 psi) but not 
at sensors, 24 and 21, which are near the integral cap. Expecting the impact to have a consistent 
effect on the damage development and hence AE received at all four sensors, 21-24, the increase 
suggests that this is when either the frame metal splices started cracking and/or the frame was 
weakening. As to the question of whether the impact had any effect at all on initiating the failure, 
one should note that earlier, between 1400 and 1500 seconds (28-32 psi) the sensors around the 
impact (21-24) are starting to lead the others (not including the floor sensor 25). This is not 
definitive evidence, but it raises the possibility that the impact contributed to local weakening. 
This could have led to the frame or frame/panel interface weakening before the splice failure. For 
the crown, the central edge sensors (28 and 31) have highest cumulative energy. These sensors 
are closest to both of the crown delaminations, which already existed before this test, as noted 
previously. This suggests that the delaminations are either growing or rubbing to create AE.  
 
Summary: 
Damage Chronology 

 ~20 psi (1200 sec): Cumulative energy at bottom of gray bulkhead leads others. 
 ~24 psi (1300 sec): Cumulative energy of other bottom sensors (6, 12, 25) also leading. 
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 ~32 psi (1550-1600 seconds): Most all sensor energies start to level off due to pressure 
hold, except for the sensors of the two bulkhead.  

 ~38 psi (1700 sec): Most all sensor energies ramping up again, even though there was 
another pressure hold at 1700 seconds. 

 ~41 psi (1840 sec): Energy increase beginning on frame that buckled at sensors 22 and 
23. 

 

4.5		Pencil	lead	breaks:	Pre‐test	and	Post	2P	
The pencil lead break (PLB) is a standardized method [9] for testing AE sensor and 
instrumentation response. It consists of loading a graphite pencil lead in bending at a particular 
angle to a surface (governed by the addition of a guide ring to a mechanical pencil) as illustrated 
in figure 34. When the lead breaks, a step-unload of the surface generates stress waves 
propagating in the structure away from the point of loading. Figure 35 shows the resultant load 
traces of 10 PLB’s overlaid to illustrate the repeatability of the step unload [7]. The peak loads at 
breakage (notation 2) are within approximately ± 8% of -0.75 N (-0.17 lb) illustrating that it is 
reasonably consistent. One can also see that the load rate of the lead on the surface (notation 1) is 
much slower than the unload. The resultant wideband AE is more of a function of the response of 
the material, as illustrated by the reverberation of the load cell (notation 3) used to measure the 
PLB’s, than the application of the load. This is much more analogous to the stress release of 
damage development in the material than the classic coin tap test (and later variants) where the 
impact of the coin governs the response. In plate-like structures, the resultant AE plate wave 
propagation is very similar to that generated by microstructural damage development. 

 For the PRSEUS pressure cube, tests two series of PLB’s with the same data acquisition settings 
were executed: one series prior to any pressurization tests at Langley and one after the 2P test, 
but before the final failure test. The PLB’s were performed adjacent to every AE sensor. Data 
acquisition is the same as in a regular AE test such that wave propagation arriving at all the 
sensors was captured for each PLB at a single sensor. Prior to the failure test, the cube had to be 
tipped on its side to apply a damage initiating impact. Sensors 1 and 14 had been dislodged and 
reattached, hence, initiating the second series of PLB’s. The original intent of the PLB’s was 
only to check out the sensor attachment and instrumentation, so no particular care was taken to 
conduct the PLB’s in exactly the same locations for each series. However, they were conducted 
approximately an inch away from each sensor in the same manner as noted in the standard. 

The energy propagating to distant sensors is less likely to be affected by local variations in PLB 
location than by the types of damaged structure the wave propagation would have to traverse. 
Distributed damage that occurs early in the damage progression of composites tends to attenuate 
signal strength so typically energy received at a sensor would be expected to be lower post-
damage.  

Two scenarios could explain the inverse behavior of energy being higher post-damage. There is 
an increased potential for unstable residual stresses, due to load cycling, that could release and 
add to the stress wave when tripped by that passing wave energy. Also, the cube is a combination 
of different geometries and local stiffness. In the virgin condition, the stress wave propagation 
away from a PLB has a particular distribution due to these variations. This distribution will be 
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affected, with damage localization, as many smaller cracks coalescence into larger 
discontinuities, possibly focusing the energy at some sensors. In particular, damage along the 
stiffener/panel interface could reduce the transfer of wave propagation into the stiffener, thereby 
increasing the amplitude at the sensor, given everything else equal.  

For these tests, an indication of the energies collected at all sensors due to one PLB is made by 
calculating the RMS (root-mean-square) value for each collected waveform. This is plotted in 
figures 36-37 with respect to each sensor. Figure 36, for a PLB at sensor 13, shows the expected 
behavior of attenuation from damage development because all the RMS values prior to testing 
(blue X) are higher than after the 2P test (red X). To accentuate the sometimes small differences 
in RMS value, the scale for RMS is such that the values collected at the PLB sensor are off the 
graph. Figure 37 illustrates the opposite behavior where the post test RMS values are larger than 
the pretest. Figures 38-41 are spectra of the waveforms collected at a PLB sensor and its nearest 
neighbors. The pre-test to post comparison of spectra of the “expected-behavior” responses, seen 
in figures 38 and 39, respectively, shows a decrease in energy post-2P across most all 
frequencies. Figures 40 and 41, illustrating the inverse behavior for the PLB at sensor 1, show 
the increase occurring predominantly in the frequencies below 150 kHz. Note that sensor 1 is on 
the panel that blew out during failure. 

Therefore, comparing the number of times sensors had signal energy increased (i.e. more energy 
received post-2P than before testing) and tabulating by panel we have the following results: 

 Bulkhead (VIC, failed)    34  
 Rib (VIC, impacted)      10  
 Crown          9  
 Bulkhead (gray)        6  
 Rib (gray)         4 

Note the interesting correspondence of behavior with damage. The bulkhead panel that blew out 
had the most “increased energy” behavior and the rib panel that initiated failure had the second 
most. In third is the crown panel, which had major delaminations.  

Summary: 
 The locations of the sensors with “increasing” energy PLB behavior seem consistent with 

major structural failures of the speckled rib and bulkhead.  
 PLB response may be useful as an indicator of structural damage on a large scale. 
 Identification of particular frequency bands that may be more sensitive to damage merits 

further investigation. 
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5.0 Lessons Learned, Summary, and Conclusions 

 
Lessons Learned: 

 The AE event rate is affected by load rate. Variations in load rate should be kept to a 
minimum during testing, especially when trying to analyze the AE for onset of different 
failure mechanisms. 

 

Summary and Conclusions: 

 The AE signals from the 0.5P “checkout” tests are much smaller than events occurring in 
later tests, but the locations of sensors showing AE-like indications are generally 
consistent with the location of the final catastrophic failures of the speckled rib and 
bulkhead panels.  

 In the 1P test, the highest cumulative energies occurred at symmetric locations: the 
speckled bulkhead panel (that eventually failed) and the gray bulkhead panel. The lowest 
energies (not counting the crown) occurred on the two rib panels. This leads one to 
surmise that even though the bulkhead panels have one more stiffening stringer than the 
rib panels, something about the construction of the bulkhead panels contributes more to 
damage development. A Felicity Ratio of 1 indicates that no structurally destabilizing 
damage occurred during the 0.5 P tests. However, the existence of events during 
unloading indicates that some significant damage had occurred during the 1P test. Also, 
evidence suggests that the later-discovered crown panel delaminations were already in 
development during this test. 

 For the 2P test, in general, a Felicity Ratio of approximately 0.3 supports the conclusion 
that significant damage did occur during the 1P test. The larger number of events during 
unloading, than had occurred during previous unloadings, indicates more significant 
damage had occurred during the 2P test than previously. All indications suggest that 
critical damage on the “failure initiation” panel (speckled rib), metal frame splice, and the 
“blow-out” panel (speckled bulkhead) was occurring. Crown panel delaminations were 
growing.  

 For the Failure test, again, a Felicity Ratio of approximately 0.6 indicates that more 
damage did occur during the previous 2P test. The crown delaminations are continuing to 
emit AE. Indications raise the possibility that the prescribed impact contributed to 
damage which led to the frame weakening preceding the splice failure.  

 PLB’s & AE in early tests (“precursor” AE): These types of tests may indicate the 
appropriate regions that will ultimately fail. Closely monitoring those regions may prove 
to be an efficient and effective means of structural health evaluation. 
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Figure 1. Evolution of BWB fuselage design [1] 

 

 
Figure 2. Schematic of Pressure cube with approximate locations of some of the AE sensors (red dots) mounted on 

the crown panel and other notations in red by the author. [4] 
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Figure 3. Locations of AE sensors on the panels of the pressure cube   
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Figure 4.  Installation of one AE sensor on the crown panel 

 

 
Figure 5. AE Instrumentation Settings  

 

 

 

Test Signal Trigger Data Acquisition (Sampling)
Parametric 
(Sampling)

Description [and ID] Date
Gain 
(dB)

HP Filter 
(kHz)

Gain 
(dB)

BP Filter 
(kHz)

Rate 
(MhZ)

Range 
(V)

Points Pretrig
Rate 
(Hz)

Range 
(V)

Pencil lead breaks to 
check AE channels

7/29/2011 24 20 21 50 - 750 1 +/- 1 2048 256

Pneumatic pressure 0.5P
(P = 9.2 psi) [Checkout 1]

7/29/2011 48 20 33 50 - 750 1 +/- 1 2048 256 0.5-1* +/- 10

Pneumatic pressure 0.5P 
[Checkout 2]

7/29/2011 48 20 33 50 - 750 1 +/- 1 4096 256 0.5-1* +/- 10

Pneumatic pressure 1P 
[Shaker 1P]

7/29/2011 48 20 33 50 - 750 1 +/- 1 4096 256 0.5-1* +/- 10

Pneumatic pressure 2P 
[Pressure 2P]

7/29/2011 36 20 30 50 - 750 1 +/- 1 4096 256 0.5-1* +/- 10

Post-“applied impact” 
PLB’s

8/9/2011 24 20 21 50 - 750 1 +/- 1 2048 256

Failure @ 48 psi 
[Pressure failure]

8/10/2011 24 20 30 50 - 750 1 +/- 1 4096 256 0.5-1* +/- 10
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Checkout 1 test: PRSEUS cube 
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Figure 6. Checkout test 1 (0.5P, P=9.2 psi) Load profile and AE events 

 

 
Figure 7. Checkout test 1 waveforms from AE event #1 captured at all the sensors 
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Checkout 2 test: PRSEUS cube 
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Figure 8. Checkout test 2 (0.5P) Load profile and AE events 

 

 
Figure 9. Checkout test 2 waveforms from AE event #1 captured at all the sensors 
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Test 1P Pressure and AE
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Figure 10. Pressure 1P Test Load profile and AE events 
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Figure 11. Pressure 1P Test: Speckled bulkhead panel AE energy 
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Rib (gray) panel AE Cumulative Energy
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Figure 12. Pressure 1P Test: Gray rib panel AE energy 
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Figure 13. Pressure 1P Test: Gray bulkhead panel AE energy 
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Rib (VIC) panel AE Cumulative Energy
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Figure 14. Pressure 1P Test: Speckled rib panel AE energy 
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Figure 15. Pressure 1P Test: Crown panel AE energy 
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PRSEUS Cube Test 4 "2P": Pressure
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Figure 16. Pressure 2P Test Load profile and AE events 

 

PRSEUS Cube Test 4 "2P": Pressure
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Figure 17. Pressure 2P Window of increasing strain gage activity 
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Bulkhead (speckled) panel AE Cumulative Energy
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Figure 18. Pressure 2P Test: Speckled bulkhead panel AE energy 
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Figure 19. Pressure 2P Test: Gray rib panel AE energy 
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Figure 20. Pressure 2P Test: Gray bulkhead panel AE energy 
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Figure 21. Pressure 2P Test: Speckled rib panel AE energy 
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Crown panel AE Cumulative Energy
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Figure 22. Pressure 2P Test: Crown panel AE energy 
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Figure 23. Pressure 2P Test: Close‐up of speckled bulkhead panel AE energy near window of strain gage activity  
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Rib (gray) panel AE Cumulative Energy
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Figure 24. Pressure 2P Test: Close‐up of gray rib panel AE energy near window of strain gage activity 

 

Bulkhead (gray) panel AE Cumulative Energy

Time (sec)

600 700 800 900 1000

E
ne

rg
y 

(V
2
 s

ec
)

0

10000

20000

30000

40000

50000
Ch 13 
Ch 14 
Inactive
Ch 16 
Ch 17 
Ch 18 

 
Figure 25. Pressure 2P Test: Close‐up of gray bulkhead panel AE energy near window of strain gage activity 
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Rib (speckled) panel AE Cumulative Energy
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Figure 26. Pressure 2P Test: Close‐up of speckled rib panel AE energy near window of strain gage activity 
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Figure 27. Pressure 2P Test: Close‐up of crown panel AE energy near window of strain gage activity 
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PRSEUS Cube Failure test: Pressure and AE
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Figure 28. Failure Pressure Test Load profile and AE events 

 

Bulkhead (speckled) panel AE Cumulative Energy

Time (sec)

800 1000 1200 1400 1600 1800 2000 2200

E
n

er
gy

 (
V

2
 s

ec
)

0

2e+4

4e+4

6e+4

8e+4

1e+5
Ch 1 
Ch 2 
Ch 3 
Ch 4 
Ch 5 
Ch 6 

Failure

 
Figure 29. Failure Pressure Test: Speckled bulkhead panel AE energy 
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Rib (gray) panel AE Cumulative Energy
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Figure 30. Failure Pressure Test: gray rib panel AE energy 
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Figure 31. Failure Pressure Test: Gray bulkhead panel AE energy 
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Rib (speckled) panel AE Cumulative Energy
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Figure 32. Failure Pressure Test: Speckled rib panel AE energy 
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Figure 33. Failure Pressure Test: Crown panel AE energy 
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Figure 34. Pencil lead break configuration [9]  

 

 
Figure 35. Pencil lead break repeatability [7]  
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Figure 36. Change in response with damage accumulation of PLB at sensor 13  
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Figure 37. Change in response with damage accumulation of PLB at sensor 1 
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Spectrum of PLB @ sensor 13 pretest
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Figure 38. Spectra of initial response of PLB at sensor 13 

 

Spectrum of PLB @ sensor 13 post 2P
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Figure 39. Spectra of response with damage accumulation of PLB at sensor 13 

 



38 

Spectrum of PLB @ sensor 01 pretest
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Figure 40. Spectra of initial response of PLB at sensor 1 
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Figure 41. Spectra of response with damage accumulation of PLB at sensor 1 
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