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Conversion Factors
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Area
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acre 0.4047 hectare (ha)
acre 0.4047 square hectometer (hm?)
acre 0.004047 square kilometer (km?)
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square foot (ft?) 0.09290 square meter (m?)
square mile (mi?) 259.0 hectare (ha)
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cubic foot (ft) 28.32 cubic decimeter (dm?)
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Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).
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Concentrations of chemical constituents in water are given either in milligrams per liter (mg/L)
or micrograms per liter (pg/L).
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Characterization and Data-Gap Analysis of Surface-Water
Quality in the Piceance Study Area, Western Colorado,

1959-2009

By Judith C. Thomas, Jennifer L. Moore, Keelin R. Schaffrath, Jean A. Dupree, Cory A. Williams,

and Kenneth J. Leib

Abstract

The U.S. Geological Survey, in cooperation with Federal,
State, county, and industry partners, developed a Web-
accessible common data repository to provide access to histor-
ical and current (as of August 2009) water-quality information
(available on the Internet at http://rmgsc.cr.usgs.gov/cwqdr/
Piceance/index.shtml). Surface-water-quality data from public
and private sources were compiled for the period 1931 to 2009
and loaded into the common data repository for the Piceance
Basin. A subset of surface-water-quality data for 1959 to 2009
from the repository were compiled, reviewed, and checked
for quality assurance for this report. This report contains data
summaries, comparisons to water-quality standards, trend
analyses, a generalized spatial analysis, and a data-gap analy-
sis for select water-quality properties and constituents.

Summary statistics and a comparison to standards were
provided for 347 sites for 33 constituents including field proper-
ties, nutrients, major ions, trace elements, suspended sediment,
Escherichia coli, and BTEX (benzene, toluene, ethylbenzene,
and xylene). When sufficient data were available, trends over
time were analyzed and loads were calculated for those sites
where there were also continuous streamflow data.

The majority of sites had information on field properties.
Water temperature data was available for 316 sites where data
were collected between 1959 and 2009. The only trend that was
detected in temperature was an upward trend at the Gunnison
River near Grand Junction, Colorado. There were 326 values
out of a total of 32,006 values in the study area that exceeded
the aquatic-life standard for daily maximum water temperature.
For the entire study area, 196 sites had dissolved-oxygen data
collected between 1970 and 2009, and median dissolved-oxygen
concentrations ranged from 6.8 to 11.2 milligrams per liter
(mg/L). There were 185 concentrations that exceeded the dis-
solved oxygen aquatic-life standard out of a total of 11,248 val-
ues. The pH data were available for 276 sites, and median
pH values ranged from 7.5 to 9.0. There were 241 values that
exceeded the high pH standard and 13 values that were less than
the low pH standard of the 16,790 values in the study area.

Nutrients within the study area were not well represented
in each basin and were often not being sampled currently.

For the entire study area, 62 sites had nitrate data collected
between 1958 and 2009, and median nitrate concentrations
ranged from less than detection to 3.72 mg/L as nitrogen. The
maximum contaminant level for domestic water supply for
nitrate is 10 mg/L and was exceeded once in 3,736 samples.
Total phosphorus was collected at 113 sites between 1974
and 2009, and median total phosphorus concentrations ranged
from less than detection to 5.04 mg/L. The U.S. Environ-
mental Protection Agency recommendation for phosphorus is
less than 0.1 mg/L, and 1,469 of 4,842 samples exceeded this
recommended standard. An upward trend in both nitrate and
total phosphorus was detected in the White River above Coal
Creek near Meeker, Colo.

Standards for major ions exist only for chloride and
sulfate. For the entire study area, 118 sites had both chloride
and sulfate concentration data collected between 1958 and
2009. Median chloride concentrations ranged from 0.085 mg/L
to 280 mg/L. Median sulfate concentrations ranged from
4.57 mg/L to 15,000 mg/L. Both chloride and sulfate domestic
water-supply standards are 250 mg/L. There were 120 chloride
concentrations and 1,111 sulfate concentration samples that
exceeded these standards. A downward trend in dissolved sol-
ids was detected at the Colorado River near the Colorado-Utah
state border and could be a result of salinity control work near
Grand Junction, Colo.

Trace elements were relatively well represented both
temporally and spatially in the study area though the number
of trace element samples per site was not typically enough
to compute trends or loads except for selenium. There were
127 sites that had dissolved iron concentration data collected
between 1961 and 2009, and median iron concentrations
ranged from less than detection to 1,100 micrograms per
liter (ug/L). The 30-day drinking-water standard for iron is
300 pg/L, and 203 samples exceeded the standard. Selenium
was the best represented trace element with selenium con-
centration data collected at 197 sites between 1973 and 2009,
and median selenium concentrations range from less than
detection to 181 pg/L. The chronic standard of 4.6 pg/L for
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selenium concentrations was exceeded in 899 samples, and
the acute aquatic-life standard of 18.4 pg/L for selenium was
exceeded in 629 samples. High concentrations of selenium are
of concern in the Lower Gunnison River Basin because of the
combination of geologic formations and land use. There were
significant downward trends in selenium at both main-stem
sites on the Gunnison River at Delta, Colo., and the Gunnison
River near Grand Junction, Colo. High selenium concentra-
tions correlate with high salinity concentrations; thus, when
salinity control efforts are conducted in selenium-rich areas in
the Lower Gunnison River Basin, both salinity and selenium
have the potential to decrease.

Spatial, temporal, and analytical data gaps were iden-
tified in the study area. The spatial coverage of sampling
sites could be expanded in the White River Basin by adding
more tributary sites. No water-quality data exist for tributary
streams in the area north of Rangely, Colo., where extensive
energy development has occurred in a complex geologic set-
ting. Douglas Creek has a drainage area of 425 square miles
and has limited historic water-quality and water-quantity data.
Limited data were available for field properties, major ions,
nutrients, and trace elements on the main stem of the Colorado
River between Glenwood Springs and Cameo, Colo. Nutrient
data were minimally collected upstream from Colorado River
at the Colorado-Utah state border and on the Gunnison River
(major tributary in the reach). Approximately 30 percent of
the samples for total phosphorus in the Lower Gunnison River
Basin exceeded the recommended standard, yet there were
insufficient data to do trends analysis in the Lower Gunnison
River Basin except at the Gunnison near Grand Junction site.
There is limited trace element data except for selenium in the
Lower Gunnison River Basin. Additional sampling is neces-
sary to understand the occurrence, concentrations, and loads of
these constituents.

Introduction

Water resources can be affected by natural and human
factors. Human factors can include activities such as urban-
ization, agriculture, and multiple types of development and
changes in land use, including energy development and
infrastructure. Northwestern Colorado is experiencing many
of these types of changes in land use, which can result in
short- and long-term changes in the water resources in the
study area. Ongoing monitoring and assessment are required
to periodically reestablish our understanding of baseline con-
ditions and to detect changes. Substantial water-resource data-
sets, publications, and other materials have been developed in
past years and can be used to assess baseline conditions and
to evaluate land-use effects. However, these data are generally
stored in disparate formats among numerous agencies, energy
companies, private consulting firms, universities, and stake-
holder groups. A publically accessible common data reposi-
tory was needed to compile water-quality data collected by
various entities. Compilation and quality assurance of existing

water-quality data from the currently disparate sources and
formats provides a useful contribution to public and private
entities tasked with planning, oversight, conservation, and
management of water resources. The U.S. Geological Survey
(USGS), in cooperation with Federal, State, county, and indus-
try partners, developed a Web-accessible common data reposi-
tory to provide energy operators, researchers, consultants,
agencies, and interested stakeholders equal access to historical
and current (as of August 2009) water-quality information
(available on the Internet at http://rmgsc.cr.usgs.gov/cwqdr/
Piceance/index.shtml). The following is an alphabetical list of
cooperators involved in this study: Antero Resources, Bureau
of Land Management, Bureau of Reclamation, Chevron
Corporation, City of Grand Junction and City of Rifie, Colo.,
Colorado Department of Agriculture, Colorado Department
of Natural Resources, Colorado Department of Public Health
and Environment, Colorado Division of Wildlife-River
Watch, Colorado Oil and Gas Conservation Commission,
Colorado River Water Conservation District, Delta County,
Colo., EnCana Oil & Gas (USA) Inc., Garfield County, Colo.,
Gunnison Energy Corp., National Park Service, Natural

Soda, Inc., North Fork River Improvement Association,

Oxy Petroleum Corporation, Petroleum Development Corp.,
Rio Blanco County, Shell Oil Company, Solvay Chemicals,
Towns of Carbondale, De Beque, Palisade, Parachute,
Rangely, and Silt, Colo., U.S. Forest Service, West Divide
Water Conservancy District, and Williams Companies, Inc.

Purpose and Scope

This report provides an analysis of select surface-water
data for 1959-2009 from the common data repository for
the Piceance study area. Data were summarized to identify
available data and evaluate temporal and spatial patterns in
the study area. These data were analyzed to provide a base-
line assessment of available water-resource data and aid in
the development of regional monitoring strategies. The report
contains data summaries, comparisons to standards, trend
analyses, and a generalized spatial analysis for selected water-
quality properties and constituents. Gaps in available data
were identified from these analyses.

Description of the Study Basin Areas

The Piceance study area refers to an area of approxi-
mately 9,500 square miles (mi?) in western Colorado extend-
ing from north of Rangely to south of Delta and east to west
from Glenwood Springs, Colorado (Colo.) to the Colorado-
Utah state border (fig. 1). The study area was delineated
based on hydrology, geology, and political boundaries. The
Piceance study area is subdivided into three study basin
areas: the White River Basin, the Colorado River Basin, and
the Lower Gunnison River Basin (fig. 1). The climate of the
Piceance study area is arid to semiarid with the exception of
higher elevations of the Grand Mesa and the Roan Plateau,
which are considered subalpine zones (fig. 1). The majority
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of precipitation in the lower elevations falls as rain during the
late summer and early fall. The majority of precipitation in the
higher elevations falls as snow and accumulates in a seasonal
snowpack (Western Regional Climate Center, 2012).

White River Basin

The White River Basin is partially defined by the
Piceance Structural Basin boundary and begins near the mouth
of Coal Creek and extends downstream to the White River at
the Colorado-Utah state border. Elevations range from more
than 8,675 feet (ft) at Cathedral Bluffs to about 5,200 ft on the
White River near the Colorado-Utah state border. The basin is
located in Rio Blanco, Garfield, and Moffat Counties (fig. 1).
The towns of Meeker and Rangely are the two largest popula-
tion centers in the basin (fig. 1). Meeker had a population of
2,475 in 2010, and Rangely had a population of 2,365 in 2010
(U.S. Census Bureau, 2011).

Colorado River Basin

The Colorado River Basin includes the drainage area from
Glenwood Springs, Colo., to the Colorado-Utah state border
(fig. 1). Elevations range from more than 11,000 ft on the Grand
Mesa (fig. 1) down to about 4,300 ft on the Colorado River at
the Colorado-Utah border. The basin is located in Garfield and
Mesa Counties (fig. 1). The primary population centers in this
basin (from east to west) are Glenwood Springs, New Castle,
Silt, Rifle, Parachute, Collbran, De Beque, Palisade, Grand
Junction, and Fruita, Colo. (fig. 1). The largest population center
in the basin is Grand Junction, which had a population of 58,566
in 2010 (U.S. Census Bureau, 2011). In comparison, Collbran
had a population of 708 in 2010 (U.S. Census Bureau, 2011).

Lower Gunnison River Basin

The Lower Gunnison River Basin is the southernmost
section of the Piceance study area (fig. 1). The Lower Gun-
nison River Basin is only a part of the entire Gunnison River
Basin; the Gunnison River is the largest tributary to the Colo-
rado River in Colorado. The Lower Gunnison River Basin,
for this study, included the entire drainage area of the North
Fork of the Gunnison River and the drainage area beginning
slightly downstream from the Gunnison Tunnel on both the
Gunnison River and the Uncompahgre River. The Gunnison
Tunnel diverts irrigation water from the Gunnison River to the
Uncompahgre River. Elevations in the Lower Gunnison River
Basin range from about 13,000 ft in the West Elk Mountains
(fig. 1) located in the southeast corner of the basin to 4,600
ft near the confluence of the Gunnison River and Colorado
River. The basin is located in Delta, Mesa, Gunnison, and
Montrose Counties (fig. 1). The largest population center in
the basin is Delta which had a population of 8,915 in 2010
(U.S. Census Bureau, 2011). The smallest population center in
the basin is Hotchkiss, which had a population of 944 in 2010
(U.S. Census Bureau, 2011).

Geology

The Piceance study area lies within the Piceance
Structural Basin, which is a downwarped region surrounded
by uplifted regions including the Axial Basin Arch to the
north, the Grand Hogback to the east, the Gunnison Uplift to
the southeast, the Uncompahgre Uplift to the southwest, and
the Douglas Creek Arch to the west (fig. 2). Outcropping bed-
rock units in the center of the downwarped region are Tertiary
sedimentary rocks (fig. 3). Uplifted regions at the boundaries
of the structural basin are primarily Cretaceous sedimentary
rocks (figs. 2 and 3).

The surface geology of the study area ranges from
Quaternary to Jurassic age (Tweto, 1979; Green, 1992) (fig. 3).
Alluvial, terrace, and valley-fill deposits of Quaternary age
form the unconsolidated materials in the valleys. The Green
River Formation, of early Tertiary age, rests conformably on
the Wasatch Formation (older Tertiary rock). The Green River
Formation is well known for rich oil-shale deposits. The Green
River Formation also contains natural resources of economic
interest including nacholite, dawsonite, potable groundwater,
natural gas, and crude oil, depending on location in the basin.
The Wasatch Formation consists of a varied colored mudstone
with sandstone lenses (Johnson and Flores, 2003). Some of
the sandstone lenses, such as the Wasatch “G” interval of the
Wasatch Formation, are appreciable reservoirs of natural gas
in or near Parachute and Rulison, Colo. (Nelson and Santus,
2010). The Wasatch Formation is also a source of potable water.

Cretaceous sedimentary rocks of primary interest in the
study area were the Mesaverde Group, the Mancos Shale,
and the Dakota Sandstone (fig. 3). The Mesaverde Group
was formed by a series of marine transgressions and regres-
sions with later periods of fluvial deposition (Johnson, 1989)
resulting in a sequence of marine shales, siltstones, and
sandstones capped by a thick sequence of terrestrial flu-
vial deposits. The fluvial deposits of the Mesaverde Group
consist almost entirely of lenticular channel sandstones and
fine-grained flood-plain deposits. The channel sandstones
are the primary reservoirs for natural gas and require a dense
pattern of drilling to recover the gas from these sandstones
(Nelson and Santus, 2010). The Mesaverde Group consists
of the Iles Formation and the Williams Fork Formation. The
Iles Formation contains the Corcoran, Cozzette, and Rollins
Members (Reinecke and others, 1991). The Williams Fork
Formation is an important natural gas producing unit within
the study area. The Mancos Shale is of Late Cretaceous age
and is composed of massive, fossiliferous marine shale with
interbedded sandstone, siltstone, and devitrified volcanic ash
layers. The Mancos Shale is a major source of dissolved solids
and selenium in the study area. The Mancos Shale is the lateral
equivalent to the Niobrara Shale, Cody Shale, and Pierre Shale
in Colorado, Montana, Nebraska, South Dakota, and Wyoming
(Tweto, 1979; Green, 1992; Wright and Butler, 1993). The
Dakota Sandstone, of Early Cretaceous age, is composed of
interbedded, hard sandstone, conglomerates, shale, and coal
(Brune, 1953); it is a potential source of potable water as well
as a source of dissolved solids in the study area.
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Figure 3. Generalized geologic map of the Piceance study area,
western Colorado.—Continued

Hydrology

The Piceance study area has three study basin areas:
the White River, Colorado River, and the Lower Gunnison
River (fig. 4). The annual streamflow cycle in the study
area is marked by spring snowmelt, which causes water
levels in the river to rapidly rise. Low-flow conditions are
characteristic of the late summer through winter seasons.
Annual-mean streamflows at 10 USGS streamflow-gaging
stations were calculated (1990 through 2009) to represent
effects such as the construction of major diversions or storage
facilities and climatic effects such as wet and dry hydrologic
cycles (table 1, fig. 5). Streamflow data were obtained from
the National Water Information System (NWIS) website
(http://waterdata.usgs.gov). Generally, the annual-mean
streamflows were variable based on basin area. Annual-mean
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streamflows in the Piceance study area demonstrated a wet
period from approximately 1997 through 1999 followed by a
dry period from approximately 2002 through 2004.

Land Use and Land Cover

Land use and land cover in the Piceance study area are
varied, including forested land, rangeland/shrubland, agri-
cultural land, barren land, and developed/urban land, which
includes ski resorts and energy development (fig. 6). The
total study area is almost 9,500 mi? and includes 4,600 mi?
(about 50 percent) of forested land and 3,800 mi? (about
40 percent) of rangeland (Homer and others, 2004). Natural
gas development has increased in the study area since 2000,
in part because of advancements in the application of hydrau-
lic fracturing, which has allowed successful extraction of
natural gas from previously inaccessible sources (Nelson and
Santus, 2010).

White River Basin

The area of the White River Basin is 3,160 mi®. The
Bureau of Land Management (BLM) owns 2,176 mi? (69 per-
cent), and private entities own 837 mi? (26 percent) (Bureau
of Land Management, 2009). The dominant land cover in the
basin in 2001 was rangeland/shrubland (48 percent) (Homer
and others, 2004). Much of the BLM land serves multiple
uses, including ranching of sheep and cattle, natural gas devel-
opment, and oil shale research development and demonstration
leases (Bureau of Land Management, 2009). Part of the BLM
land is managed for wild horse and burro herds (Bureau of
Land Management, 2011a). Natural gas development on pub-
lic lands in Rio Blanco County has increased from 58 permits
in 2001 to 200 permits in 2006, and a total of 2,556 multiple
well pads are projected during the next 20 years (Bureau of
Land Management, 2011b).

The White River Basin is located primarily in Rio Blanco
County (fig. 1) and is a tributary to the Green River, which
then flows into the Colorado River in Utah. The White River
Basin includes the White River and other major tributaries
such as Piceance Creek, Yellow Creek, and Douglas Creek
(fig. 1). Sedimentary rocks of Tertiary age including the
Uinta Formation and the Green River Formation outcrop in
the eastern and central part of the White River Basin (fig. 3).
Cretaceous Mesaverde Group rocks outcrop in the western
part of the White River Basin (fig. 3), specifically within the
Douglas Creek drainage area (figs. 1 and 3). The White River
has no major transbasin diversions or diversions for agricul-
tural use. Oil shale and natural gas development have been
and continue to be one of the most important land uses in the
White River Basin. Conventional and unconventional natural
gas extraction and the associated infrastructure are becoming
increasingly prevalent in the basin. Rio Blanco County is one
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Table 1.
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Annual-mean streamflow, in cubic feet per second, for selected U.S. Geological Survey

streamflow-gaging stations in the Piceance study area for the period 1990 through 2009, western Colorado.

[Mean annual streamflow caclulated using data from 1990 through 2009]

Site Mean annual
identification . streamflow, Drainage area,
Station name . . . .
number in cubic feet  in square miles
(fig. 4) per second
White River Basin
09304800 White River below Meeker, Colo. 614 1,024
09306222 Piceance Creek at White River, Colo. 38 652
09306290 White River below Boise Creek, near Rangely, Colo. 723 2,530
Colorado River Basin
09085100 Colorado River below Glenwood Springs, Colo. 3,344 6,014
09095500 Colorado River near Cameo, Colo. 3,854 7,986
09105000 Plateau Creek near Cameo, Colo. 194 592
09163500 Colorado River near Colorado-Utah State Line 6,465 17,849
Lower Gunnison River Basin
09149500 Uncompahgre River at Delta, Colo. 335 1,114
09144250 Gunnison River at Delta, Colo. 1,964 5,636
09152500 Gunnison River near Grand Junction, Colo. 2,600 7,923

of the six counties in Colorado that have the greatest number
of actively operating gas wells; there were 2,906 active gas
wells in Rio Blanco County as of October 2011 (Colorado Oil
and Conservation Commission, 2011).

Colorado River Basin

The area of the Colorado River Basin (study area) is
3,560 mi?, and the area of the drainage area of the Colorado
River upstream from the site at the Colorado-Utah state border
is 17,843 mi%. About 1,600 mi® (45 percent) of the study area
are managed by the Bureau of Land Management (Bureau
of Land Management, 2009). About 1,400 mi? (39 percent)
of the basin were privately owned and 500 mi? (14 percent)
were managed by the U.S. Forest Service (Bureau of Land
Management, 2009). The dominant land cover (48 percent)
in the basin during 2001 was deciduous and evergreen forest.
More than 230 mi? (6.5 percent) had an agricultural land cover
in 2001 (Homer and others, 2004) and 220 mi? were irrigated
(Techni Graphics Systems, Inc., 2004).

The Colorado River drains watersheds from seven states,
and the headwaters originate in Colorado. Large diversions
of water from the Colorado River are used for agricultural
irrigation and by municipalities for drinking water. There
are thermal hot springs adjacent to the Colorado River in
Glenwood Springs. The water chemistry of the springs
comprises up to 22,200 milligrams per liter (mg/L) dissolved
solids, 7,600 mg/L of sodium, 11,000 mg/L of chloride, and
2,450 mg/L of sulfate (Lund and Hunter, 2009). The springs
also contain significant quantities of fluoride, silica, barium,
iron, lithium, and boron. Water temperatures from the springs
flowing to the river are approximately 32—49 °C (Lund and
Hunter, 2009). Uranium and vanadium mining and milling
operations took place in Rifle, Colo., in the 1920s and again
from 1947 to 1957 (U.S. Energy Information Administration,

2011). During the latter time period, the mill processed ore at
about 200 tons/day. A second mill was built in 1958 with an
ore processing capacity of 400 tons/day. Both mill locations
were remediated by the U.S. Department of Energy starting in
1989 (U.S. Energy Information Administration, 2011).

The economy of the basin is dominated by agriculture,
energy development, industry, real estate development, tour-
ism, and recreation (Leib and Bauch, 2008). The Colorado
River is home to 14 native species of fish, of which four
are endemic and endangered: the Colorado pikeminnow,
razorback sucker, bonytail chub, and humpback chub
(U.S.Fish and Wildlife Services, 2011). The Roan Plateau
(fig. 1) provides habitat to a native, genetically diverse popula-
tion of cutthroat trout (Bureau of Land Management, 2002).
The Grand Mesa has more than 200 lakes and reservoirs. The
Grand Mesa, as part of the Grand Mesa Uncompahgre and
Gunnison National Forests (GMUG), has unique natural peat-
forming wetlands called fens that are considered an aquatic
resource of national importance by the U.S. Environmental
Protection Agency (USEPA) (U.S. Forest Service, 2011). The
Roan Plateau is leased for the drilling of natural gas. Based
on estimates from the BLM management plan for the Roan
Plateau Planning area, Federal lands on the Roan Plateau
could provide 3,630 billion cubic feet (ft*) of natural gas dur-
ing the next 20 years (Bureau of Land Management, 2002).
The estimated technically recoverable gas resource within
the Roan Plateau Planning Area of Federal lands is approxi-
mately 8,900 billion ft*. Colorado Oil and Gas Conservation
Commission issued 13,775 application permits to develop
natural gas since 2004 in Garfield County (fig. 6) (Colorado
Oil and Gas Conservation Commission, 2011). The Roan
Plateau area also is a potential region for the development of
oil shale. The Parachute Creek Member of the Green River
Formation is about 900 to 1,200 ft thick in the Roan Plateau
area and is generally considered the primary oil shale unit of
interest (Bureau of Land Management, 2002).
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Figure 5. Annual-mean streamflows for selected U.S. Geological Survey streamflow-gaging stations in the Piceance study area for
1990 through 2009, western Colorado.
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Lower Gunnison River Basin

The area of the Lower Gunnison River Basin is
2,700 mi?, and the entire drainage area (measured from where
the Gunnison River enters the Colorado River) is 7,900 mi?.
The U.S. Forest Service manages the GMUG National Forests,
which comprise 1,100 mi?(about 41 percent) within the basin.
The BLM manages public lands with an area of about 790 mi?
(29 percent) of public land; private ownership accounts for
about 780 mi? (29 percent) (Bureau of Land Management,
2009). The land cover in the Lower Gunnison River Basin is
dominated by forest (48 percent), rangeland (33 percent), and
agriculture (8 percent) (Homer and others, 2004). Throughout
the lower elevations in the Lower Gunnison River Basin, about
6 percent (173 mi?) of the land is irrigated agriculture (Techni
Graphic Systems, Inc., 2004). Coal mining occurs within
the national forest in the North Fork of the Gunnison River.

The GMUG has approximately 25 mi? of Federal coal leases
(U.S. Forest Service, 2011).

The Gunnison River is the largest tributary to the Colorado
River in Colorado. Major storage facilities such as the Wayne
N. Aspinall Federal Storage Unit (fig. 1; outside the study area)
are situated in line with the main channel of the Gunnison River
(Bureau of Reclamation, 2011). There are multiple beneficial
uses of Aspinall Project water, including irrigation and domestic
supplies, hydropower generation, and essential environmental
and recreational uses in Colorado. The Gunnison Tunnel (fig. 1)
delivers about 320,000 acre-ft per year from the Gunnison River
to the Uncompahgre River during the irrigation season (April
through October) (Colorado Department of Public Health and
Environment, 2010). Nearly 173 mi? of land are irrigated in
the Lower Gunnison River Basin (Techni Graphic Systems,
2004). The complex geology, combined with various land-
use types such as irrigation and residential development, can
greatly impact water-quality conditions in the Lower Gunnison
River Basin.

The source water for the City of Grand Junction comes
from Juniata Reservoir and Kannah Creek (fig. 1), which
drain the western slopes of the Grand Mesa into the Lower
Gunnison River Basin. Energy development (gas drilling) is
increasing in scale on the slopes of the Grand Mesa (Bureau of
Land Management, 2004). This type of development has the
potential to affect groundwater and surface-water quality run-
ning off the Grand Mesa.

Land-Use Impacts

Agricultural land use in the study area is largely irri-
gated where 440 mi® of the 540 mi? of agricultural land cover
was irrigated in 2001 (Techni Graphic Systems, Inc., 2004;
Homer and others, 2004). Irrigated agriculture is a main
concern to water managers because of the additional dis-
solved solids (DS) that enter the watershed. Natural sources
of DS include seeps or springs that originate from geological
formations with high salt content. Salts are mobilized through
dissolution, surface runoff, and deep percolation into the

groundwater system that discharges to the river system as base
flow (Kanzer and Merritt, 2008). The application of irrigation
water to these agricultural lands increases the rate at which
salts in the bedrock are dissolved and transported to streams
(Prairie and others, 2005; Kenney and others, 2009). The his-
tory of salinity control efforts in the Gunnison and Colorado
River Basins dates back to the 1970s when the Salinity
Control Act, Public Law 93-320, prompted the creation of the
Colorado River Basin Salinity Control Forum to investigate,
plan, and construct projects to reduce salinity loading to the
Colorado River (Bureau of Reclamation, 2009). Investiga-
tions and projects completed by the Colorado River Basin
Salinity Control Forum refer to the entire drainage area of the
Gunnison River or Colorado River, rather than the parts of the
basins presented in this report. The Bureau of Reclamation
(2011a) estimated that 47 percent of the salinity load in the
entire Colorado River Basin is derived from natural sources,
including geological formations, saline springs, and surface
runoff; 37 percent results from irrigation; and the remaining
16 percent results from reservoir-storage effects and municipal
and industrial activities.

Selenium is another concern in the Lower Gunnison and
Colorado River Basins. The National Irrigation Water Quality
Program (NIWQP) is a multiagency program within the
Department of the Interior that has performed investigations of
various irrigation projects in the Western United States to deter-
mine whether irrigation drainage was having adverse effects
on water quality and on fish and wildlife (Butler and Leib,
2002). NIWQP studies were initiated in the Lower Gunnison
River Basin in 1988. In 1997 the Colorado State Water Quality
Control Commission revised the chronic aquatic-life criterion
for dissolved selenium from 17 micrograms per liter (ng/L)
to 4.6 pg/L. In response to this action and in cooperation with
NIWQP, the Gunnison Basin Selenium Task Force was estab-
lished in 1998 as a group of private, local, State, and Federal
interests to develop ideas and projects for reducing selenium in
the Lower Gunnison River Basin.

Previous Studies

The Piceance study area in western Colorado contains
energy, mineral, and other natural resources that have been the
subject of numerous studies and publications. Selected publi-
cations that relate to water resources within the study area are
summarized herein.

The relationship between groundwater and surface water
in the White River Basin has been evaluated in several stud-
ies. A study of simulated effects of oil shale development
used digital models to evaluate the hydrologic system (Weeks
and others, 1975). The study, specifically in the Piceance
and Yellow Creek drainage areas, concluded that proposed
oil shale development would have significant effects on the
surface-water and groundwater systems. A study from 1977
to 1981 of Piceance and Yellow Creeks collected physi-
cal and chemical data at perennial and intermittent streams



(Tobin and others, 1985). The study indicated that ground-
water contributions to streams during medium and low

flow result in increases in fluoride, sulfate, dissolved solids,
arsenic, boron, lithium, and strontium. A study conducted
during December 2000 used tracer-dilution techniques and
synoptic-water-quality sampling to evaluate mass loading in
Piceance Creek (Ortiz, 2002). Groundwater upwelling in the
Alkali Flats area (fig. 1) contributed substantially to observed
increases in constituent concentrations; however, losses in
streamflow resulted in small increases in loads downstream on
the study reach.

Trends and loads of DS, suspended sediment, and other
constituents in the White River Basin have been conducted. A
study from 1975 to 1988 of sediment transport, water-quality
characteristics, and loads on the White River determined that
snowmelt runoff from the headwaters of the White River
dilutes and transports large concentrations of suspended
sediment and dissolved solids in the central part of the basin
(Tobin, 1993). A study of characteristics and trends of stream-
flow and dissolved solids in the White River Basin reported
a decrease in annual-median-flow-adjusted concentrations of
dissolved solids in the White River below Meeker from 1974
through 1983 (Liebermann and others, 1989).

Water quality has been studied in springs and surface
water in the Colorado River Basin. A study in the Colorado
River Basin from 1981 to 1983 of discharge, water-quality,
and radiochemical data collected at springs in the oil shale
regions of the Roan and Parachute Creek Basins reported that
springs were mixed-cation bicarbonate water types (Butler,
1985). The study also concluded that springs located near oil
shale mines or processing plants could be used for monitor-
ing groundwater quality and quantity. In 2008, the USGS
published a report of DS trends (1986-2003) in the Upper
Colorado River Basin upstream from the Grand Valley Salinity
Control Unit (Leib and Bauch, 2008). The report details results
for trends in concentrations and loads of DS and selected
major ions near the Grand Valley Salinity Control Unit. The
largest decrease in salinity load was 6,590 tons per year
(ton/yr) and occurred in the area between the Colorado River
at Cameo, Colo., and the Colorado River above Glenwood
Springs, Colo. Downward trends in DS load (11,200 ton/yr)
were detected at the Gunnison River near Grand Junction,
Colo., streamflow-gaging station. A USGS study from 2004
to 2006 analyzed DS and selenium trends (concentrations and
loads) in the Upper Colorado River Basin, specifically, in three
tributaries to the Colorado River in the Grand Valley (Leib,
2008). The report states that the reduction in annual DS load
at Lewis Wash (fig. 1) could be the result of either salinity-
control work or land-use change, particularly the conversion
of agricultural land to residential development. A USGS study
from 2000 to 2004 collected and analyzed water-quality data
for the Government Highline Canal and Highline Lake, which
are located in the Grand Valley area (Ortiz, 2005). Data were
used to characterize the seasonal stratification patterns, water-
quality chemistry, bacteria populations, and phytoplankton
community structure in the lake. Highline Lake was reported
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as having strong thermal and dissolved-oxygen stratification
patterns during the summer months, which likely released
ammonia from the bottom sediments. Generally, the seasonal
succession of phytoplankton was similar to that of other lakes
in similar climates.

The importance and complexity of DS and selenium in
the Gunnison River is reflected in the abundance of studies and
publications on the topics. These efforts have included quantify-
ing the natural component of the DS load as well as identifying
trends over time in DS and selenium concentrations and loads.
Salt loading from natural sources in the Gunnison River Basin
was 542,000 ton/yr for water years 1914-1957 (a water year is
from October 1 through the following September 30 and is des-
ignated by the year in which it ends), assuming the 1957 level of
water-resources development (lorns and others, 1965). Another
study for the same period used a mass balance approach and
reported that 431,000-463,000 tons of DS load were caused by
natural sources (Mueller and Osen, 1988). The DS concentra-
tion and load results were reported in both studies for the site
Gunnison River near Grand Junction, Colo. (streamflow-gaging
station 09152500).

Studies that quantified DS trends over time relative to
land-use changes have reported downward trends in DS at the
Gunnison River near Grand Junction, Colo. (09152500) for
different study periods. Liebermann and others (1989) quanti-
fied the DS trends at the Gunnison River near Grand Junction
(streamflow-gaging station 09152500) based on the comple-
tion of the Blue Mesa Dam in 1965, the uppermost of the
three dams that make up the Aspinall Unit. The Aspinall Unit
is located outside of the study area upstream from the Lower
Gunnison River Basin (fig. 1). The pre-reservoir period was
1934-1965 and the post-reservoir period was 1966—1983, and
they performed a step trend test to determine whether there
were significant differences between the pre- and post-dam
periods as well as trend tests within each of the two periods.
A downward step trend of 119,000 tons (pre- and post-dam
comparison) was reported at the Gunnison River near Grand
Junction, Colo., site as a result of the construction and opera-
tion of Blue Mesa reservoir, but there were no significant
trends within each of the two periods (Liebermann and others,
1989). Streamflow and DS concentrations in the Gunnison
River decreased during high flow (May—June) and increased
during the low-flow period (August-March) as a result of
Blue Mesa Reservoir. Butler and others (1996) reported a net
downward trend of 146,000 tons of DS at Gunnison River
near Grand Junction (streamflow-gaging station 09152500)
from 1970 to 1993. Butler and others (1996) concluded that
the measured decreases were not the result of DS control
projects implemented by the Bureau of Reclamation and the
Natural Resources Conservation Service. Leib and Bauch
(2008) showed a downward trend of 201,600 tons in the
Gunnison River near Grand Junction, Colo., for water years
1986-2003. Schaffrath (2012) quantified trends at 15 sites in
the Gunnison River Basin. Results indicated a downward trend
of 247,000 tons from 1989 to 2004. The downward trend was
smaller at 190,000 tons from 1989 to 2007, potentially indicat-
ing that DS concentration and load are leveling off.
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The effect of converting previously irrigated agricultural
land to urban land use was investigated during two recent
studies (Mayo, 2008; Moore, 2011) in western Colorado. The
Grand Valley study measured irrigation-water application
and deep percolation on urban sites in Grand Junction, Colo.,
where deep percolation was defined as infiltration of water
below the top 12 inches of soil (Mayo, 2008). The measure-
ments were compared to water application and deep perco-
lation data from agricultural sites provided by the Natural
Resources Conservation Service. The study results indicated
that conversion of land from agricultural use to urban residen-
tial use can result in a decrease in salt loading of 90 percent
per developed acre. The second study compared DS concen-
trations and load between two sites on the Montrose Arroyo
near Montrose, Colo. (Moore, 2011). One site was upstream
and the other was downstream from increased urbanization.
The previous land use was dominated by irrigated agriculture
but included other land-use categories. There were no signifi-
cant differences between DS at the two sites, which implies
that urbanization had no effect on DS concentration or load at
that scale.

A study in 2007 analyzed selenium load from 1978 to 2005
in the Lower Gunnison River Basin in support of the develop-
ment of total maximum daily loads (TMDLs) for selenium
(Thomas and others, 2008). Results for the Uncompahgre River
indicated that a reduction of 69 percent of the mean annual load
of selenium for water years 2001-2005 was necessary to meet
the water-quality standard for the Uncompahgre River at Delta,
Colo., streamflow-gaging station.

Methods

The data compiled in the Web-accessible common data
repository were analyzed to provide a baseline assessment of
available water-resource data and aid in the development of
regional monitoring strategies. Selected water-quality proper-
ties and constituents were compared to Federal and State stan-
dards or previous studies where applicable. When sufficient
data were available, trends over time were analyzed and loads
were calculated for those sites where there were also continu-
ous streamflow data.

Compilation of Data

A repository of available water-quality data was com-
piled from local, State, and Federal agencies and private
entities (consulting firms, energy, and mining compa-
nies). The data repository is accessible on the Internet at
http://rmgsc.cr.usgs.gov/cwqdr/Piceance/index.shtml. Not all
known data sources were loaded into the data repository for a
variety of reasons, such as non-participation, non-electronic
format, insufficient metadata, and late data submission.

However, the repository represents the most comprehensive
set of surface-water-quality data for the study area available as
of August 2009. Data were evaluated for duplication (the same
site, sample, or result submitted to the repository under two

or more source agencies) and removed prior to analysis. Sites
and water-quality data were evaluated to determine if it was
appropriate to aggregate data if sites were within a 50-ft buffer
of one another. The USGS NWIS Water-Quality User Manual
was consulted for evaluating properties and constituents

that can be recensored (assigned the value of “less than the
censoring level”) if the stored value is zero and for properties
and constituents that allow negative values (U.S. Geological
Survey, 2011).

The data repository contained 1,433 surface-water sites,
45,008 samples, and 1,144,808 water-quality results for the
period from 1931 to 2009. A subset of data from the repository
was extracted and checked for quality assurance for this report
using the following criteria. Only water-quality data from the
most recent 50 water years (1959 to 2009) were included, so
data had to be collected after September 30, 1958. Sites were
required to have five or more samples, collected over at least
13 months so that seasonality would be represented. USEPA
water-quality standards and guidelines were used to analyze
a subset of the available constituents. Additionally, specific
constituents of interest were analyzed based on stakeholder
input, land-use factors, recommendations from the Colorado
Department of Public Health and Environment (CDPHE)
303d (table 2), and monitoring and evaluation lists (Colorado
Department of Public Health and Environment, 2010). Lake
sites were not included because of the lack of depth informa-
tion associated with samples. When multiple samples were
collected in a single day, such as stormwater sampling, the first
sample was included and the remaining data were removed
from the analysis. The final dataset used in this report included
347 surface-water sites, 35,970 samples, and 228,242 water-
quality results (app. 1). Limited metadata were available for
much of the data, which limited the ability to evaluate the
quality of the water-quality data. No distinctions between
water-quality data collection methods or laboratory-analytical
techniques were made owing to this limited metadata. Dispari-
ties between data from various sources resulting from these
differences may bias the statistical results. Robust statistical
methods were employed to limit these sources of bias on the
statistical results.

Analysis of Data

The final dataset that resulted from the compilation of the
data contained 347 sites and 33 constituents. These data were
summarized using summary statistics and compared to USEPA
and CDPHE recommendations and standards. Additional
criteria were applied to select data for analysis of time trends
and load calculations.
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16 Characterization and Data-Gap Analysis of Surface-Water Quality in the Piceance Study Area, 1959-2009

Summary Statistics

Summary statistics were computed for each of the 347
sites and the selected constituents, including the period of
record, the number of observations, the number of censored
observations, and minimum, 25th percentile, median (50th
percentile), 75th percentile, and maximum values (app. 1).
Most of the 33 constituents are dissolved, meaning the sample
was filtered, unless otherwise stated. Unfiltered samples will
be referred to as total or total recoverable. In addition, certain
constituents are never filtered and include field properties (pH,
temperature, dissolved oxygen, specific conductance). Constit-
uents like E. coli and suspended sediment are also unfiltered
as these are particulates carried in water. The determination of
the chemical properties of waters can result in left-censored
data (nondetects) because of analytical limits of the labora-
tory analysis. In a dataset of this breadth, there can be multiple
forms of bias in nondetect data including antiquated methods
for storing nondetects (zero and negative values) and changes
in the meaning of less-than values (Helsel, 2005a). In an effort
to reduce these sources of bias, zero-values were changed to
the appropriate reporting limit for select constituents. Where
multiple censoring levels exist for a single constituent, data
were not edited to a common censoring level in this report
(Helsel, 2005b). Instead, data were re-censored using the long-
term method detection limit where applicable. This resulted
in an improvement to the overall dataset but did not remove
all instances of these forms of bias; therefore, these results
should be considered with this in mind. Summary statistics
were computed using Kaplan-Meier methods when no more
than 50 percent of the observations were censored (Helsel,
2005b). Maximum likelihood estimations were computed for
greater than 50 observations and where 50 to 80 percent of
the observations were censored. Regression-on-order statis-
tics were computed for less than 50 observations where 50 to
80 percent of the observations were censored. The data range,
censoring levels, and maximum observation were reported
where more than 80 percent of the observations were censored
(Helsel, 2005b).

Comparison to Standards

Instream water-quality standards for surface water in
Colorado have been established by the Water Quality Con-
trol Commission of the CDPHE to protect the beneficial uses
of surface water, which include aquatic life, domestic water
supply, agriculture, and recreation (Colorado Department of
Public Health and Environment, 2010). The CDPHE provides
basic standards (Regulation 31) and separates Colorado into
13 planning and management regions for regulatory purposes,
each with standards tabulated by stream-reach segment.
Stream-segment descriptions for this study were used to assign
each surface-water measurement site to a segment to apply the
appropriate standards. Surface-water sites in the study area are
located in one of the following three management regions: the
Upper Colorado River Basin and North Platte River (Region

12, Regulation 33), the Lower Colorado River Basin (Region
11, Regulation 37), or the Gunnison and Lower Dolores River
Basins (Region 10, Regulation 35). Not all constituents are
regulated by established water-quality standards. The CDPHE
has not established a water-quality standard for the constituent
total phosphorus; therefore, the standard of 0.1 mg/L recom-
mended by USEPA was used (U.S. Environmental Protection
Agency, 2000). Data from the study area were compared to
the CDPHE and USEPA standards to guide interpretation of
surface-water quality, look for spatial patterns of standard
exceedances, and obtain a broad understanding of water-
quality conditions across the study area. The objective of this
comparison was not to assess stream impairment or compli-
ance with standards.

Each stream segment has a different standard and can be
regulated for multiple beneficial uses. For example, a given
segment may have a different standard for iron concentrations
for drinking-water supply than for aquatic life. Standards can
vary by season, elevation, or fish species believed to be pres-
ent in the segment (for example, water temperature). Several
segments that were matched to sites in the study area have
temporary standards for certain constituents, particularly for
selenium concentrations. Table 3 lists constituents and the
standards for individual segments that were used to assess
water-quality measurement sites in the study area.

The CDPHE has established two types of numeric water-
quality standards: (1) fixed-value standards and (2) table-value
standards (TVSs) (Colorado Department of Public Health and
Environment, 2011). Fixed-value standards can be aquatic-
life standards; USEPA maximum contaminant levels (MCLs);
standards for domestic water supply; or recreation-based
standards (table 3). An MCL is a legally enforceable standard
that applies to drinking water from public water systems only.
The TVSs are usually calculated values that are established for
aquatic-life protection and include acute and chronic clas-
sifications. An acute standard is not to be exceeded by the
concentration in a single sample or by the average concentra-
tion of all samples collected during a one-day period. For
water temperature, the acute standard is the daily maximum,
which is the highest 2-hour average temperature measured
in a 24-hour period. A chronic standard is a value not to be
exceeded by the concentration for either a single representa-
tive sample or by the average of all samples collected during
a 30-day period. The chronic standard for water temperature
is based on the average of equally spaced measurements (a
minimum of three per day) made for seven consecutive days.
The chronic standard is implemented in combination with a
selected duration and frequency of recurrence. The TVSs for
water temperature are specified for Regulation 37, the Lower
Colorado River region, and are based on water temperature,
fish species, and season. Acute and chronic TVSs based on
pH and temperature have been established for total ammonia
for cold- and warm-water stream segments. The TVSs have
been established for trace elements based on stream hardness.
The CDPHE hardness-dependent TVSs were calculated for
samples analyzed for trace elements using either a hardness
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value measured for the same sample or a calculated hardness
derived from calcium and magnesium data for that sample.
When hardness values exceed 400 mg/L, a hardness of

400 mg/L (113 mg/L for zinc, sculpin standards) was used to
determine trace element standards (Sarah Johnson, Colorado
Department of Public Health and Environment, written com-
mun., September 26, 2011).

Trend Analysis and Load Calculation

Data were selected from the original dataset of 347 sites
for analysis of trends based on several criteria. Trend analysis
using the method chosen was best for periods of 20 years or
less; thus, data had to be collected after October 1, 1989, with
a minimum of § years of continuous data. Data from 68 of
the 347 sites met these criteria. Separate techniques for trends
analysis were used depending on the constituent. Monotonic
trends in field properties (water temperature, dissolved oxy-
gen, and pH) were assessed using the seasonal Kendall test, a
nonparametric technique (Hirsch and others, 1982; Helsel and
Hirsch, 2002). Regression models define the relation between
the concentration of a given water-quality constituent with
explanatory variables such as streamflow, seasonality, and
time (Helsel and Hirsch, 2002; Cohn, 2005). The relation of
concentration with time in the regression model describes the
time trend.

The load of a given constituent is the mass of the con-
stituent transported in the water. Regression models, which are
parametric techniques, were used for estimating loads from the
concentration data. Loads calculated from the field properties
are either not possible (temperature or pH) or not meaningful
(dissolved oxygen).

Parametric techniques assume a normal distribution
of the data, while nonparametric techniques do not require
the data to be normally distributed (Helsel and Hirsch,

2002). Where there is a perfect normal distribution of the
data, parametric tests have more statistical power. However,
water-quality data will only approximate a normal distribu-
tion, so the statistical power in parametric and nonparametric
techniques is similar for analysis of water-quality data (Helsel
and Hirsch, 2002). Statistical power, in this analysis, refers to
the probability of rejecting the null hypothesis that there is no
time trend when there is a net trend (Alley, 1988; Hirsch and
others, 1991).

Seasonal Kendall Test

Monotonic trends in temperature, dissolved oxygen, and
pH data were tested using the seasonal Kendall test (Hirsch
and others, 1982, 1991; Schertz and others, 1991; Helsel and
Hirsch, 2002). The seasonal Kendall test accounts for seasonal
variability in the field property data through the separation
and comparison of data by each season. The seasonal Kendall
test was applied using the computer program Estimate Trend
(ESTREND) (Schertz and others, 1991), which was modified
to run in the S-Plus Statistical Package (TIBCO Software, Inc.,
1998-2008).

Methods 21

To run ESTREND, sites had to have a minimum of
8 years of record with 10 or more samples and less than
50 percent of the data could be censored. A total of 30 sites
had sufficient data to meet these criteria for at least one of the
three field properties. Seasonality was characterized within the
ESTREND interface with input from the user. For the analysis
presented in this report, a sampling frequency of 2 to 4 months
was required, which allow trends to be run with 6 or 4 sea-
sons, respectively. The choice of the number of seasons was
determined using the first and last fifths of the record (Lanfear
and Alexander, 1990; Schertz and others, 1991). If the site did
not have at least one sample for each of at least four seasons
in the first and last fifths of the record, the analysis was not
completed. The user defines adequate seasonal characteriza-
tion within ESTREND. For example, each season of every
year for a 10-year study period is compared to that same
season for all other years. The user for this analysis required
that at least 50 percent of possible seasonal comparisons were
possible and that at least 3 of 4 seasons or 5 of 6 seasons must
meet the 50 percent criteria to qualify for analysis (Schertz and
others, 1991).

The seasonal Kendall tests for the significance of
Kendall’s tau, which in this case is testing time against con-
centration. The test is completed on each of the 4 to 6 sea-
sons, the results are combined, and the resulting test statistic
is evaluated against a standard normal distribution (Mann,
1945; Kendall, 1975; Hirsch and others, 1982; Schertz and
others, 1991; Helsel and Hirsch, 2002). The p-value associ-
ated with Kendall’s tau was used to determine the significance
of a time trend, where the p-value is a measure of the prob-
ability of incorrectly rejecting the null hypothesis. The null
hypothesis is that the probability distribution of the random
concentration variable has not changed over time. The test
statistic is adjusted in the ESTREND program to account for
serial correlation among the seasons and compute a corrected
p-value. The trend was considered highly significant when the
corrected p-value was less than 0.01 and significant when the
corrected p-value was greater than 0.01 and less than or equal
to 0.05. The trend direction from the seasonal Kendall test is
the sign on the slope, which is computed as the median of all
slopes between data pairs within the same season (Sen, 1968;
Schertz and others, 1991; Helsel and Hirsch, 2002). The slope
describes the monotonic trend observed throughout the entire
trend period instead of an average annual slope, and the trend
is not necessarily linear.

Trends in field properties or concentrations can be due to
variability in streamflow quantity or timing. Where adequate
streamflow data were available and the amount of censored
water-quality data was less than 8 percent, the field property
data were flow adjusted to account for the variability that was
related to streamflow (Helsel and Hirsch, 2002). The flow-
adjustment portion of this analysis is derived from the relation
between streamflow and the field property result where the
flow-adjusted data are the residuals from the relation. The
relation between streamflow and the field property data was
significant when the p-value on the streamflow term was less
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than or equal to 0.05. The ESTREND program has 13 flow-
adjustment models, and the best model was chosen based on
the PRESS (prediction sum of squares) statistic (Myers, 1986;
Schertz and others, 1991). The best model was the model with
the minimum PRESS value, which indicates that the model
has the lowest prediction error among the models compared.
Residual plots were inspected qualitatively to assure that
regression assumptions were met. Approximate normality of
model residuals was apparent when the normal-probability
plot was approximately linear relative to a 1:1 line and the
plots of the residuals have no pattern and show uniformity of
scatter (homoscedacity). Flow-adjusted analysis better quanti-
fies changes in the field property over time that are not the
result of changes in streamflow; therefore, where both trend
tests were evaluated, preference was given to flow-adjusted
trend results when the relation between streamflow and the
field property was significant.

Regression Model

Additional selection criteria were applied to the dataset of
68 sites for analysis using the regression model. A total of 28
sites met the criteria of having a minimum of 8 years of record
with at least 20 observations and less than 80 percent censor-
ing of the data (Runkel and others, 2004).

Trends in concentration data were tested using regres-
sion models developed for each site, where constituent load
was the response variable. The models were used to calculate
annual load of each constituent. Concentrations are a mass
per known volume of a constituent, and load represents the
mass of the constituent in the river per unit time. Load (in
tons or pounds) is computed by multiplying the concentration
(milligrams or micrograms per liter) by the streamflow (cubic
feet per second) and a unit conversion constant. Loads can
be estimated for any day when a sample has been collected
by assuming that the concentration represents the daily mean
concentration. A regression model is used for the days when
no sample was collected.

The regression model used for trend analysis was
applied using a USGS statistical program, LOADEST (Load
Estimation), that was developed by Runkel and others (2004).
S-LOADEST is a version of the LOADEST software devel-
oped to run as a plug-in program to the PC-based statistical
software package Spotfire S+ and was used in this study
(TIBCO Software, Inc., 1998-2008). S-LOADEST uses up
to six explanatory variables to build a regression model that
defines the relation of a constituent load to streamflow, time,
and season. The inclusion of streamflow in the regression
meant that there had to be existing streamflow associated with
each sample included in this part of the trend analysis. The
resulting general equation form used in this analysis is similar
to Runkel and others (2004), Cohn (2005), and Dalby (2006)
and is represented below in equation 1.

In L = by +(InQ — InQ*) + b, (¢ — t*)
+ b; (sin(2n7)) + by (cos(2nT)) + e ()

where
L is the load, in tons, pounds, or million colonies;
b, is the regression equation intercept;

b, is the coefficient on the n™ regression variable, where
nis 1 through 4;

QO is a streamflow term, in cubic feet per second;

O* 1is the streamflow centering value, in cubic feet
per second;

¢t 1istime, in decimal years;

t* is the time centering value from the calibration
dataset, in decimal years;

T 1is the decimal portion of the year starting January 1;

e s the error associated with the regression equation;

sin is the sine; and
cos is the cosine.

The model is developed using a calibration dataset
that includes the date of the periodic sample collection, the
associated value of concentration, and a streamflow value
associated with the sampling date. The input values for
concentration and streamflow were log transformed to meet
the assumptions of normality and constant variance (Hirsch
and others, 1991). Quadratic terms for decimal time and (or)
streamflow were significant variables in some of the final
selected model equations. However, with both the linear and
quadratic terms in the equation, the possibility of multi-
collinearity increases, which inflates the variance in the associ-
ated coefficients. Streamflow and decimal time were centered
to reduce the likelihood of multicollinearity and to ensure
orthogonality in the streamflow and decimal time variables
(Cohn and others, 1992). Compensation for differences in sea-
sonal flux was accomplished, where significant, using Fourier
series (Runkel and others, 2004; Cohn, 2005; Dalby, 2006).
Fourier series uses sine and cosine terms to describe continual
changes over the seasonal period. Model coefficients (b,) were
estimated using adjusted maximum likelihood estimation
(Runkel and others, 2004).

The p-value associated with the model coefficient on the
time parameter(s) was used to determine the significance of a
time trend. The p-value associated with model coefficient(s) is
the probability of obtaining the computed parameter coeffi-
cient when the null hypothesis is true, where the null hypoth-
esis is that the coefficient is zero. The trend was considered
highly significant when the p-value for the time term(s) was
less than 0.01 and significant when the p-value was greater
than 0.01 and less than or equal to 0.05. The sign (positive or
negative) on the model coefficient(s) was used to determine
the net direction of the trend. The time term in the model
represents the trend over time for concentration and load and
accounts for flow and seasonal variability. The net direction
was only presented when the p-value indicated that the linear
time term was significant. When quadratic time was signifi-
cant, the trend was referred to as parabolic. The water year
when the slope of the parabola was zero was presented as the
year when the direction changed. The zero-slope year and the
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directions of the trend before and after the zero-slope year
were visually determined using plots of the model line without
streamflow or seasonality terms. The model line describes the
mean response of the concentration and load variable relative
to the explanatory variables (time, streamflow, and seasonal-
ity) that were significant.

The final model equations were obtained by iteration
using the option that is built into S-LOADEST that chooses
the best model from nine model options made up of varying
combinations of the variables listed in equation 1. The best
model has the lowest Akaike Information Criteria (Runkel
and others, 2004). S-LOADEST outputs diagnostic plots and
statistics that were used to determine whether the calibration
data met the assumptions of normality. The plots included a
normal-probability plot and plots of the standardized residuals.
Normality of model residuals was apparent when the normal-
probability plot was approximately linear relative to a 1:1 line
and the plots of the residuals have no pattern and show uni-
formity of scatter (homoscedacity). The plots were assessed
qualitatively by the authors of this report. The criteria for the
model statistics were that the variance inflation factor had to be
less than 10 for each parameter in the model; serial correlation
of the residuals had to be less than 0.6 and estimated residual
variance had to be less than 1. Additionally, the p-values of the
model coefficients had to be significant, or less than 0.05, to
be included in the final model (app. 2). This final criterion had
two exceptions: (1) only one of the model coefficients on the
sine-cosine pair of the Fourier series had to be significant for
the pair to be included in the model and (2) the linear time term
was included anytime quadratic time was significant, even if
the linear time was not significant. If the final model failed any
of these diagnostics, results from the trend analysis were not
presented. This scenario may indicate that more data might be
required or a more randomized sampling approach might be
needed to acquire a normal distribution of data.

Annual loads were used for a regional loading analysis.
Using the selected form of equation 1 that was unique for each
site and an estimation dataset with daily streamflow values,
daily load and concentration were estimated. Annual loads
were the sum of the daily loads for the water year. Each site and
constituent had different study periods for trend analysis and,
in some cases, the daily streamflow record had missing years;
therefore, a comparison of sites required the selection of a com-
mon year among the sites based on the average annual stream-
flows for each site. Discussion of the loads using a common
year provided the opportunity to describe sources of the constit-
uent of interest. For each constituent described in the regional
loading analysis, the average annual streamflow was calculated
for each site. The average annual streamflow was calculated for
the common study period of all the sites where the same constit-
uent was analyzed. For example, the Colorado River Basin had
four DS sites that had sufficient data for trend analysis and load
calculation. The longest study period was 1990 to 2009 and the
shortest was 1992 to 2002. Thus, the average annual streamflow
for those four sites was calculated for the period 1992 to 2002.
The one year within that period was chosen that most closely

matched the average annual streamflow for each site. That
common year was the year that represented the common study
period for that constituent and basin.

Temporal trends have both a statistical significance
and an environmental significance, but this distinction is
often a subjective decision based on the context of the cur-
rent stream conditions. Review of trend summaries requires
consideration of the specific constituent of concern and any
corresponding standard.

Characterization and Data-Gap
Analysis of Surface-Water Quality

Surface-water quality can be affected by natural and
human factors. Natural factors affecting water quality include
but are not limited to geology, soil type, vegetation, stream-
flow, precipitation, and climate. Human factors can include
activities such as urbanization, agriculture, and other types
of land development, including energy development and
infrastructure. Potential effects of land-use activities on water
quality may include changes in streamflow, changes in DS
concentration and load, detection of chemicals associated with
energy development, and increases in sediment in streams that
can potentially transport chemicals that have adhered to the
sediment. The relation between land use and surface-water
quality is complex and often requires special monitoring
efforts to identify specific sources contributing to changes in
surface-water quality. Land and water-use managers need a
better understanding of the relationship between land use and
water quality. The descriptions of surface-water quality in this
study are designed as an inclusive approach to help understand
changes in the Piceance study area. Data gaps and limitations
might inhibit the analysis from conveying specific conclu-
sions that identify pollution sources or their immediate effects
within the study area.

Summary Statistics and
Comparison to Standards

Summary statistics and water-quality exceedances are
discussed by basin to provide a general overview of water
quality (app. 1). Throughout the Piceance study area, water-
quality constituent sampling was variable among basins. Sum-
mary statistics and comparison to standards were provided for
347 sites. The locations of these sites are shown on plate 1 and
exceedances of water-quality standards are shown on plates 2
through 5. The constituents summarized include field proper-
ties (pH, temperature, dissolved oxygen), nutrients (ammonia,
nitrate, orthophosphate, total phosphorus, dissolved organic
carbon), major ions (calcium, magnesium, sodium, potas-
sium, chloride, sulfate, fluoride, silica, alkalinity, bicarbon-
ate, carbonate, dissolved solids), dissolved trace elements
(copper, iron, lead, zinc, selenium), total recoverable iron,
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Escherichia coli (E. coli), suspended sediment, and BTEX
compounds (benzene, toluene, ethylbenzene, xylene). The
number of observations, number of censored observations,
period of record, minimum, 25th percentile, median (50th per-
centile), 75th percentile, maximum values, and, where appro-
priate, information on censored values for each constituent,
and comparison to water-quality standards are provided in
appendix 1.

The collection of field properties is an important compo-
nent to all water-quality sampling in order to properly charac-
terize water-quality results. The majority of sites had infor-
mation on field properties (app. 1, pl. 2). For the entire study
area, 316 sites had temperature data collected between 1959
and 2009: 41 sites in the White River Basin, 165 sites in the
Colorado River Basin, and 110 sites in the Lower Gunnison
River Basin. Median temperature values ranged from 0.5 to
17.0 degrees Celsius (°C) in the White River Basin, from
4.0 to 19.0 °C in the Colorado River Basin, and from 0.7
to 19.5 °C in the Lower Gunnison River Basin. There were
326 values out of a total of 32,006 values in the study area that
exceeded the aquatic-life standard for daily maximum water
temperature: 220 values in the White River Basin and 106 val-
ues in the Colorado River Basin. There were 220 values that
exceeded the aquatic-life standard for maximum weekly
average water temperature in the study area: all 220 occurred
in the Lower Gunnison River Basin. Maximum weekly aver-
age water temperature standards only exist for the Lower
Gunnison in the study area (table 3). For the entire study area,
196 sites had dissolved-oxygen data collected between 1970
and 2009: 34 sites in the White River Basin, 111 sites in the
Colorado River Basin, and 51 sites in the Lower Gunnison
River Basin. Median dissolved-oxygen concentrations ranged
from 7.6 to 11.2 mg/L in the White River Basin, from 6.8
to 10.9 mg/L in the Colorado River Basin, and from 7.0 to
11.2 mg/L in the Lower Gunnison River Basin. There were
185 concentrations that exceeded the dissolved oxygen
aquatic-life standard out of a total of 11,248 values in the
study area: 13 in the White River Basin, 168 in the Colorado
River Basin, and 4 in the Lower Gunnison River Basin.

There were 273 concentrations that exceeded the aquatic-life
standard for dissolved oxygen (spawning season only) in the
study area: 27 in the White River Basin, 214 in the Colorado
River Basin, and 32 in the Lower Gunnison River Basin. For
the entire study area, 276 sites had pH data collected between
1958 and 2009: 39 sites in the White River Basin, 147 sites in
the Colorado River Basin, and 90 sites in the Lower Gunnison
River Basin. Median pH values ranged from 7.9 to 8.9 in the
White River Basin, from 7.5 to 9.0 in the Colorado River
Basin, and from 7.4 to 8.7 in the Lower Gunnison River Basin.
There were 241 values out of a total of 16,307 values that
exceeded the high pH standard in the study area: 32 in the
White River Basin, 191 in the Colorado River Basin, and 18
in the Lower Gunnison River Basin. There were 7 values that
were less than the low pH standard in the study area: 1 in the
White River Basin, 2 in the Colorado River Basin, and 4 in the
Lower Gunnison River Basin.

Natural changes in precipitation and streamflow and
anthropogenic changes in nutrient sources (such as wastewater
treatment facilities, golf courses, urban runoff, agricultural
fields, and septic tanks) can influence nutrient concentrations
in streams (Sprague and others, 2009). Nitrogen and phos-
phorus inputs to the stream could be derived from fertilizer
and manure applications to agricultural land areas (Puckett,
1994; Paschke and others, 2008). Nutrients within the study
area were not well represented in each basin and were often
not being sampled currently (August 2009) (app. 1, pl. 3). The
White River Basin, in contrast to the other basins, had recent
nutrient data collected in the past 5 years and historic nutri-
ent data. For the entire study area, 62 sites had nitrate data
collected between 1958 and 2009: 24 sites in the White River
Basin, 22 sites in the Colorado River Basin, and 16 sites in
the Lower Gunnison River Basin. Median nitrate concentra-
tions ranged from less than detection to 1.49 mg/L as nitro-
gen (N) in the White River Basin, from less than detection
to 2.70 mg/L as N in the Colorado River Basin, and from
less than detection to 3.72 mg/L as N in the Lower Gunnison
River Basin. The MCL for domestic water supply for nitrate
is 10 mg/L and was exceeded once in 3,736 samples. Total
phosphorus data was better represented spatially throughout
the study area relative to other nutrients. Total phosphorus
was collected at 113 sites between 1974 and 2009: 32 sites in
the White River Basin, 43 sites in the Colorado River Basin,
and 38 sites in the Lower Gunnison River Basin. Median total
phosphorus concentrations ranged from 0.02 to 5.04 mg/L in
the White River Basin, from less than detection to 0.6 mg/L
in the Colorado River Basin, and from less than detection to
0.55 mg/L in the Lower Gunnison River Basin. The USEPA
recommendation for phosphorus is less than 0.1 mg/L, and
1,469 of 4,842 samples exceeded this recommended standard
in the study area. Overall, 400 values in the White River
Basin, 586 values in the Colorado River Basin, and 483 values
in the Lower Gunnison River Basin exceeded the recom-
mended standard.

Standards for major ions exist only for chloride and
sulfate (app. 1, pl. 4). For the entire study area, 118 sites had
chloride and sulfate concentration data collected between 1958
and 2009: 27 sites in the White River Basin, 49 sites in the
Colorado River Basin, and 42 sites in the Lower Gunnison
River Basin. Median chloride concentrations ranged from 1.4
to 165 mg/L in the White River Basin, from 1.4 to 280 mg/L in
the Colorado River Basin, and from 0.085 to 190 mg/L in the
Lower Gunnison River Basin. There were 120 samples with
chloride concentrations that exceeded the chloride domestic
water-supply standard of 250 mg/L from a total of 8,817 sam-
ples with chloride concentration data: 86 in the White River
Basin and 34 in the Colorado River Basin. Median sulfate
concentrations ranged from 57.5 to 1,780 mg/L in the White
River Basin, from 11.0 to 15,000 mg/L in the Colorado River
Basin, and from 4.57 to 1,680 mg/L in the Lower Gunnison
River Basin. There were 1,111 samples with sulfate concentra-
tions that exceeded the sulfate domestic water-supply standard
of 250 mg/L (477 mg/L in the Lower Gunnison River Basin)
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(table 3) from a total of 8,736 samples with sulfate concen-
tration data in the study area: 503 in the White River Basin,
131 values in the Colorado River Basin, and 477 in the Lower
Gunnison River Basin.

Many trace elements in natural waters are essential to
plant and aquatic life. There are natural (geology) and anthro-
pogenic sources of trace elements in streams. Mining can
provide conduits for water and air to come in contact with
the underlying geologic material, where both physical and
chemical weathering can dissolve and transport these constitu-
ents into streams. River segments adjacent to urban areas are
subject to mobilization of trace elements from urban runoff
and treated wastewater. Trace elements were relatively well
represented both temporally and spatially in the study area
(app. 1, pl. 5), though the number of trace element samples
per site was not typically enough to compute trends or loads
except for selenium. There were 109 sites that had dissolved
copper concentration data collected between 1972 and 2009:
27 sites in the White River Basin, 42 sites in the Colorado
River Basin, and 40 sites in the Lower Gunnison River Basin.
Median copper concentrations ranged from less than detec-
tion to 4.5 pg/L in the White River Basin, from 0.62 to 6 ng/L
in the Colorado River Basin, and from 0.53 to 5 pg/L in the
Lower Gunnison River Basin. Copper concentrations were
compared to two standards: the chronic (30-day) aquatic-life
standard, which ranges from 1.57 to 29.3 pg/L, and the acute
aquatic-life standard, which ranges from 1.96 to 49.6 pg/L in
the study area (table 3). There were 69 samples with copper
concentrations that exceeded the chronic standard from a total
of 2,885 samples with copper concentration data: 12 in the
White River Basin, 23 in the Colorado River Basin, and 34
in the Lower Gunnison River Basin. There were 29 samples
with copper concentrations that exceeded the acute standard:
9 in the White River Basin, 2 in the Colorado River Basin, and
18 in the Lower Gunnison River Basin. There were 127 sites
that had dissolved iron concentration data collected between
1961 and 2009: 33 sites in the White River Basin, 63 sites in
the Colorado River Basin, and 31 sites in the Lower Gunnison
River Basin. Median iron concentrations ranged from 7 to
78 pg/L in the White River Basin, from less than detection
to 1,100 pg/L in the Colorado River Basin, and from 4 to
120 pg/L in the Lower Gunnison River Basin. The 30-day
drinking-water standard for iron is 300 pug/L, and 203 samples
exceeded the standard from a total of 5,027 samples with iron
concentration data, 196 of which occurred in the Colorado
River Basin, most of which are from Divide Creek. The sam-
ples on Divide Creek were collected as part of a multiphase
water-quality investigation associated with a leaking natural
gas well (Papadopulos & Associates, Inc., 2008). Selenium
was the best represented trace element with selenium con-
centration data collected at 197 sites between 1973 and 2009:
28 sites in the White River Basin, 94 sites in the Colorado
River Basin, and 75 sites in the Lower Gunnison River Basin.
Median selenium concentrations range from 0.79 to 5.7 pg/L
in the White River Basin, from less than detection to 86 pg/L
in the Colorado River Basin, and from less than detection to

181 ng/L in the Lower Gunnison River Basin. For most stream
segments in the study area, the chronic (30-day) aquatic-life
selenium standard is 4.6 ng/L, but a few segments have tem-
porary chronic standards based either on a fixed standard or on
the 85th-percentile data value for a given site, which can be as
high as 280 pg/L (table 3). The chronic standard for selenium
concentrations was exceeded in 899 samples: 22 in the White
River Basin, 741 in the Colorado River Basin, and 136 in the
Lower Gunnison River Basin. The acute aquatic-life standard
of 18.4 ng/L for selenium was exceeded in 629 samples: 202
in the Colorado River Basin and 427 in the Lower Gunnison
River Basin.

Statistics for suspended sediment, E. coli, and BTEX were
summarized (app. 1). The study area included 53 sites with
suspended sediment data. Sediment affects macroinvertebrate
and fish habitat and municipal water treatment. Where sediment
is on the monitoring and evaluation list of the CDPHE 303d list,
there is not an easily defined standard. Only 18 sites had E. coli
concentration data that could provide an assessment of the
suitability of the water for recreational use. The E. coli recre-
ational standard is 630 colony forming units (CFU) in streams
where primary contact (such as swimming or other water sports)
will occur, 205 CFU in areas of potential primary contact, and
126 CFU where the stream is not suitable for primary contact
recreation (table 3). Of the 18 sites, 11 sites had exceedances of
the E. coli recreational standard (app. 1). The seasonal E. coli
standard is 126 CFU and was only exceeded once in the White
River Basin. There were 5 sites in the Colorado River Basin that
had BTEX concentration data, which could be a constituent of
interest when looking at energy-related activities. For example,
in the Divide Creek and Mamm Creek area (fig. 1), BTEX
concentration data were used to evaluate the impacts from
faulty natural gas production well completion where detections
and elevated concentrations of BTEX were observed in surface
water and groundwater (Papadopulos & Associates, Inc., 2008).
BTEX does not persist in the environment where conditions are
typically well oxygenated, so BTEX might not be a constitu-
ent to add to routine monitoring of surface water, but more for
use in evaluating known occurrences and persistent sources
of BTEX.

Temporal Trends and Loads

The results of the trend analysis are presented for the
three study basins starting with the northernmost basin
(White River Basin) and ending with the southernmost basin
(Lower Gunnison River Basin). Within each basin, results are
presented beginning with the main-stem sites in the basin,
starting with the most upstream site and ending with the most
downstream site. The most downstream site on the main
stem in each basin represents the entire drainage area of the
basin. After the main-stem sites, tributary sites are presented
from upstream to downstream. Finally, trends for lower order
tributaries are presented where there were sufficient data for
analysis. Only 37 sites met the final selection criteria for trend
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analysis: 31 sites had sufficient field property data for analysis
using the seasonal Kendall test and 28 sites had sufficient con-
centration data for analysis using regression models (fig. 7).

Loads and exceedances are presented for some constitu-
ents not only to provide context to the trends analysis results,
but also to identify data gaps. Additionally, the land use and
geology for each basin, as it may relate to water quality, are
presented in further detail. Loading profiles are presented for
selected constituents for all sites where trend analysis was
computed and where there were sufficient streamflow data
to compute a load. The figures include both main-stem and
tributary sites and are ordered from upstream to downstream
(figs. 8-12).

Loads and loading profiles are presented in fig-
ures 812, and trend data are presented in tables 4—7. Table 4
contains the results of the trend analysis for field proper-
ties using ESTREND. Tables 5-7 present the results of the
trends analysis for concentration data (nutrients, major ions
and dissolved solids, and trace elements, respectively) using
S-LOADEST. Tables include the study period and a trend
direction (where trends were significant) when sufficient data
existed for trend analysis. The code “ND” was used to indicate
that there were no data for that constituent at that site. The
code “IS” indicates that there were data but they did not meet
the selection criteria detailed in the “Trend Analysis and Load
Calculation” section presented earlier in this report (p. 21).
The code “NT” was used to indicate no trend, and “F” was
used to indicate the model failed diagnostics. The code “NA”
was used to indicate not applicable. In the field properties
table (table 4), there are also dashes (—) that were used to
indicate that the dataset met the initial criteria but did not meet
the internal ESTREND criteria to adequately characterize
seasonality.

White River Basin

Temporal and spatial variability of water-quality data in
the White River Basin were evaluated at 10 sites: 6 sites on the
White River main stem and 4 sites on tributaries to the White
River (tables 4-7, fig. 7). Main-stem sites on the White River
were 09304200 (White River above Coal Creek), 09304500
(White River near Meeker), 09304800 (White River below
Meeker), 09306224 (White River above Crooked Wash near
White River City), 09306290 (White River below Boise
Creek, near Rangely), and 09306305 (White River below
Taylor Draw Reservoir, above Rangely) (fig. 1) in order from
upstream to downstream. Tributary sites included 2 sites
on Piceance Creek, 09306200 (Piceance Creek below Ryan
Gulch, near Rio Blanco) and 09306222 (Piceance Creek at
White River) from upstream to downstream; 09306242 (Corral
Gulch near Rangely), which is tributary to Yellow Creek; and
09306255 (Yellow Creek near White River), which then flows
into the White River downstream from Piceance Creek.

Field Properties

Results of the trend analysis for water temperature, pH,
and dissolved oxygen are presented in table 4. Sufficient
data were available to analyze for water temperature trends
at 8 sites in the White River Basin; however, there were no
significant trends in water temperature at any of these sites.
Sufficient data were available to analyze for dissolved-oxygen
trends at 6 sites; however, no trends were detected from 1990
to 2009 for all sites. Sufficient data existed to analyze for
pH trends at 6 sites. An upward trend in pH was observed at
the most upstream site, 09304200 (White River above Coal
Creek), from 1990 to 2009, and no trends were detected at the
remaining 5 sites for the same period.

Nutrients

Trends in nutrient concentration data were evaluated
for ammonia, nitrate, orthophosphate, and total phosphorus
in the White River main stem (table 5). In addition, organic
carbon and E. coli are discussed in this section as well. At
09304200 (White River above Coal Creek, near Meeker), a
net, upward trend was detected in nitrate from 1990 to 2009.
The trend was parabolic with a zero-slope year around 2002,
after which the shape of the parabola indicated a downward
trend. Trends were detected in other nutrients at this site,
including an upward trend in total phosphorus from 1991 to
2009 and a downward trend in orthophosphate from 1990 to
2009. A net, downward trend in orthophosphate was detected
at 09304800 (White River below Meeker) from 1990 to 2009.
The trend was parabolic with a zero-slope year around 1997,
prior to which the shape of the parabola indicated an upward
trend. Trends in orthophosphate were consistently downward
throughout the main stem of the White River. All other models
failed diagnostics for nutrients for this site. Downstream at site
09306290 (White River below Boise Creek, near Rangely),
dissolved organic carbon had a net, downward trend from
1990 to 2009. The trend was parabolic with a zero-slope year
around 1999, prior to which the shape of the parabola indi-
cated an upward trend.

Trends were analyzed for nutrients on tributary sites
to the White River Basin (table 5). Downward trends were
detected for nitrate, orthophosphate, and organic carbon at
site 09306200 (Piceance Creek below Ryan Gulch, near Rio
Blanco) from 1990 to 2009. Downstream, at site 09306222
(Piceance Creek at White River), no trend was detected in
orthophosphate and the model failed diagnostics for nitrate for
the same period. It is unclear why the trend in orthophosphate
is not consistent between Piceance Creek below Ryan Gulch,
near Rio Blanco, and Piceance Creek at White River for the
same period. All trend models failed diagnostics for nutrients
at 09306255 (Yellow Creek near White River); however, no
trend was detected in nitrate or orthophosphate from 1990 to
2008 at 09306242 (Corral Gulch near Rangely), a tributary to
Yellow Creek.
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Table 5.
Colorado, 1990-2009.

Summary of regression model trend analysis results for nutrients and Escherichia coli, Piceance study area, western

[The upward and downward columns are populated whenever there is a significant trend. If the trend was parabolic, then both columns contain the time frame of
the respective trend direction, the net direction of the trend is indicated by shading. If the trend was monotonic, then the respective column contains the respective
time frame and the other columns contains NA. If no significant trend was detected, then the combined columns contain an indicator of no trend and the time frame
of the analysis; NT, no trend detected; F, model failed the model diagnostics; —, site did not have sufficient data for trend analysis; ND, site did not have data;

IS, insufficient data for regression model analysis]

. Drainage Ammonia, filtered, . —
Site A . Nitrate, in milligrams
. R area, in milligrams per liter . .
Site name identification . . per liter as nitrogen
ber in st.]uare as nitrogen
num miles Upward Downward Upward Downward
White River Basin

White River above Coal Creek, 09304200 648 F; 19902009 19902002 2002-2009

near Meeker, Colo.
White River below Meeker, Colo. 09304800 1,024 F; 1990-2009 F; 1990-2009
Piceance Creek below Ryan Gulch, 09306200 506 NT; 1990-2009 NA 19902009

near Rio Blanco, Colo.
Piceance Creek at White River, Colo. 09306222 652 19902001 2001-2009 F; 19902009
White River above Crooked Wash, 09306224 1,821 F; 1990-2008 NT; 19902008

near White River City, Colo.
Corral Gulch near Rangely, Colo. 09306242 32 F; 1990-2008 NT; 19902008
Yellow Creek near White River, Colo. 09306255 262 F; 1990-2009 F; 19902009
White River below Boise Creek, 09306290 2,530 F; 1990-2009 F; 1990-2009

near Rangely, Colo.
White River below Taylor Draw Reservoir, 09306305 2,776 NT; 1995-2009 NT; 1995-2009

above Rangely, Colo.

Colorado River Basin

Colorado River Devereaux Bridge CDOWRW-47 — ND ND
Colorado River above South Canyon Creek, 09085150 6,040 ND ND

near Glenwood Springs, Colo.
Dry Fork at Upper Station, near DeBeque, Colo. 09095300 97 F; 19962004 1996-1998 1998-2004
Colorado River near Cameo, Colo. 09095500 8,050 F; 1991-2002 F; 1991-2002
Plateau Creek near Cameo, Colo. 09105000 592 IS IS
Colorado River below Grand Valley Diversion, 09106150 8,753 IS IS

near Palisade, Colo.
Colorado River Hwy 6 CDOWRW-555 — ND ND
Lewis Wash near Grand Junction, Colo. 09106200 4.7 IS IS
Colorado River Watson CDOWRW-560 — ND ND
Reed Wash near Mack, Colo. 09153290 16 1S IS
Colorado River near Colorado-Utah State Line 09163500 17,843 2002-2008 19902002 NA 19902008

Lower Gunnison River Basin

North Fork Gunnison River above mouth, 09136100 969 IS IS

near Lazear, Colo.
Sunflower Drain at Highway 92, near Read 384551107591901 — IS IS
Gunnison River at Delta, Colo. 09144250 5,628 IS IS
Loutsenhizer Arroyo at Falcon Road 383528107552001 — ND ND
West Tributary of Loutsenhizer Arroyo 383728107572001 — ND ND

below East Canal
Loutsenhizer Arroyo at North River Road 383946107595301 — IS IS
Uncompahgre River at Delta, Colo. 09149500 1,115 IS —
Gunnison River near Grand Junction, Colo. 09152500 7,928 F; 1990-2002 NT; 1990-2002
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Table 5. Summary of regression model trend analysis results for nutrients and Escherichia coli, Piceance study area, western
Colorado, 1990-2009.—Continued
[The upward and downward columns are populated whenever there is a significant trend. If the trend was parabolic, then both columns contain the time frame of
the respective trend direction, the net direction of the trend is indicated by shading. If the trend was monotonic, then the respective column contains the respective
time frame and the other columns contains NA. If no significant trend was detected, then the combined columns contain an indicator of no trend and the time
frame of the analysis; NT, no trend detected; F, model failed the model diagnostics; —, site did not have sufficient data for trend analysis; ND, site did not have
data; IS, insufficient data for regression model analysis]
Orthophosphate, filtered, Total phosphorous, Organic carbon, filtered, Escherichia coli,
in milligrams per liter in milligrams per liter in milligrams per liter colonies per 100 milliliters
Upward Downward Upward Downward Upward Downward Upward Downward
White River Basin
NA 1990-2009 1991-2009 NA IS NT; 1991-2004
1990-1997 1997-2009 F; 1991-2009 — F; 1991-2003
NA 1990-2009 — NA 1993-2009 IS
NT; 1990-2009 — NT; 1991-2009 IS
NT; 19902008 IS IS ND
NT; 19902008 — F; 1991-2008 IS
F; 1990-2009 — NT; 1991-2009 IS
NA 1990-2009 F; 1990-2009 1990-1999 1999-2009 IS
NA 1995-2009 1995-2009 NA ND IS
Colorado River Basin
ND IS ND ND
ND ND ND ND
NT; 1996-2004 F; 1996-2004 — IS
IS IS IS IS
— IS ND IS
IS IS ND IS
ND IS ND ND
— IS IS ND
ND IS ND ND
IS IS IS ND
NA 19902008 1990-2008 NA NT; 1995-2002 ND
Lower Gunnison River Basin
ND ND ND ND
IS IS IS ND
IS IS ND IS
ND ND ND ND
ND ND ND ND
IS ND ND ND
— IS IS IS
NT; 1990-1998 F; 1990-2002 NT; 19952002 IS
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Table 6. Summary of regression model trend analysis results for dissolved solids and major ions, Piceance study area, western

Colorado, 1990-2009.

[The upward and downward columns are populated whenever there is a significant trend. If the trend was parabolic, then both columns contain the time frame
of the respective trend direction, the net direction of the trend is indicated by shading. If the trend was monotonic, then the respective column contains the
respective time frame and the other columns contains NA. If no significant trend was detected, then the combined columns contain an indicator of no trend and
the time frame of the analysis; NT, no trend detected; F, model failed the model diagnostics; —, site did not have sufficient data for trend analysis; ND, site did

not have data; IS, insufficient data for regression model analysis]

Site Drainage Calcium, filtered,
Site name identification area, in in milligrams per liter
number square miles Upward Downward
White River Basin
White River above Coal Creek, near Meeker, Colo. 09304200 648 NT; 1990-2002
White River below Meeker, Colo. 09304800 1,024 NT; 1990-2009
Piceance Creek below Ryan Gulch, near Rio Blanco, Colo. 09306200 506 1990-2009 NA
Piceance Creek at White River, Colo. 09306222 652 2000-2009 1990-2000
White Riv above Crooked Wash near White River City, Colo. 09306224 1,821 —
Corral Gulch near Rangely, Colo. 09306242 32 1990-1996 1996-2008
Yellow Creek near White River, Colo. 09306255 262 NT; 1990-2009
White River below Boise Creek, near Rangely, Colo. 09306290 2,530 NT; 1990-2009
White River below Taylor Draw Reservoir, above Rangely Colo. 09306305 2,776 IS
Colorado River Basin
Colorado River Devereaux Bridge CDOWRW-47 — NT; 2000-2007
Colorado River above South Canyon Creek near Glenwood Springs, Colo. 09085150 6,040 IS
Dry Fork at Upper Station, near DeBeque Colo. 09095300 97 IS
Colorado River near Cameo, Colo. 09095500 8,050 1990-2001 2001-2009
Plateau Creek near Cameo, Colo. 09105000 592 NT; 1991-2009
Colorado River below Grand Valley Diversion near Palisade, Colo. 09106150 8,753 NT; 1992-2002
Colorado River Hwy 6 CDOWRW-555 — IS
Lewis Wash near Grand Junction, Colo. 09106200 4.7 NT; 1991-2006
Colorado River Watson CDOWRW-560 — IS
Reed Wash near Mack, Colo. 09153290 16 IS
Colorado River near Colorado-Utah State Line 09163500 17,843 2001-2009 19902001
Lower Gunnison River Basin

North Fork Gunnison River above mouth near Lazear, Colo. 09136100 969 NA 1991-2009
Sunflower Drain at Highway 92, near Read 384551107591901 — NT; 1991-2003
Gunnison River at Delta, Colo. 09144250 5,628 F; 1991-2009
Loutsenhizer Arroyo at Falcon Road 383528107552001 — IS
West Tributary of Loutsenhizer Arroyo below East Canal 383728107572001 — IS
Loutsenhizer Arroyo at North River Road 383946107595301 — NT; 1991-2009
Uncompahgre River at Delta, Colo. 09149500 1115 2001-2009 1991-2001
Gunnison River near Grand Junction, Colo. 09152500 7,928 2002-2009 1990-2002

Nitrate and orthophosphate loads and total phosphorus
standard exceedances were evaluated in the White River
Basin. The White River Basin had the greatest number of
nitrate concentration samples; however, use of the loading pro-
file for nitrate was limited at the main stem of the White River
because load could not be calculated for the most downstream
site 09306290 (White River below Boise Creek, near Rangely)
(fig. 84). A loading profile for orthophosphate in the White
River Basin indicated a slight increase in orthophosphate from
upstream to downstream (fig. 8B8). Between 09304800 (White
River below Meeker) and 09306290 (White River below
Boise Creek, near Rangely), orthophosphate increased by only
0.2 tons while tributaries between the two sites sum to more
than 6 tons of additional orthophosphate. There were 29 sites
that had exceedances of the recommended total phosphorus
standard, with more than 402 exceedances, many of which
occur prior to 2000 (21 sites and 323 samples had total phos-
phorus standard exceedances) (app. 1).

Dissolved Solids and Major lons

Dissolved solids (DS) refers to the concentration of dis-
solved solids in water, including calcium, magnesium, sodium,
potassium, silica, chloride, sulfate, and carbonate species.
Although DS has not been a significant water-quality concern
in the White River Basin, a potential source of the DS might
be 55 mi? of irrigated land in the basin. Irrigation occurs pri-
marily near Meeker, Colo., and in the Piceance Creek Basin.
Prior to 1980, Meeker Dome, 3 miles east of the town of
Meeker, was a point source for DS on the White River owing
to highly saline water that was discharging at the surface
through abandoned and improperly plugged exploration oil
wells drilled during the 1920s (Liebermann and others, 1989).
The wells were eventually plugged during the 1960s and
1980s and the source was mitigated. However, results from
this previous study indicated that there were potentially large
conduits for high DS groundwater to upwell to the surface and
enter surface water.
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Table 6. Summary of regression model trend analysis results for dissolved solids and major ions, Piceance study area, western

Colorado, 1990-2009.—Continued

[The upward and downward columns are populated whenever there is a significant trend. If the trend was parabolic, then both columns contain the time frame
of the respective trend direction, the net direction of the trend is indicated by shading. If the trend was monotonic, then the respective column contains the
respective time frame and the other columns contains NA. If no significant trend was detected, then the combined columns contain an indicator of no trend and
the time frame of the analysis; NT, no trend detected; F, model failed the model diagnostics; —, site did not have sufficient data for trend analysis; ND, site did

not have data; IS, insufficient data for regression model analysis]

Sodium, filtered,
in milligrams per liter

Magnesium, filtered,
in milligrams per liter

Chloride, filtered,
in milligrams per liter

Potassium, filtered,
in milligrams per liter

Upward Downward Upward Downward Upward Downward  Upward Downward
White River Basin
NT; 1990-2002 1990-1992 1992-2002 F; 1990-2002 NT; 1990-2009
NT; 1990-2009 NT; 19902009 NT; 19902009 NA 1990-2009
NT; 1990-2009 1997-2009 1990-1997 NT; 19902009 2003-2009 1990-2003
1999-2009 1990-1999 NT; 1990-2009 NT; 1990-2009 NA 1990-2009
1990-1996 1996-2008 NA 1990-2008 NT; 1990-2008 2002-2008 1990-2002
F; 1990-2009 NT; 1990-2009 NT; 1990-2009 1999-2009 1990-1999
1990-1999 1999-2009 1990-1998 1998-2009 1990-1999 1999-2009 NA 19902009
IS IS IS IS
Colorado River Basin
NT; 2000-2007 ND ND ND
IS IS IS IS
IS IS IS NT; 19962004
NT; 1990-2009 NT; 1990-2009 NT; 1990-2009 1990-2009 NA
NT; 1991-2009 NA 1991-2009 NT; 1991-2009 1991-2002 2002-2009
NT; 1992-2002 NT; 1992-2002 NT; 1992-2002 NT; 1992-2002
IS ND ND ND
NA 1991-2006 NT; 1991-2006 NT; 1991-2006 F; 19912006
IS ND ND ND
IS IS IS IS
2004-2009 1990-2004 2002-2009 1990-2002 1999-2009 1990-1999 NT; 1990-2009
Lower Gunnison River Basin
NA 1991-2009 NA 1991-2009 NT; 1991-2009 F; 19912009
NT; 1991-2003 NT; 1991-2003 NT; 1991-2003 NT; 1991-2003
NA 1991-2009 F; 1991-2009 NT; 1991-2009 F; 1991-2009
IS IS IS IS
IS IS IS IS
NT; 1991-2009 NT; 1991-2009 NT; 1991-2009 NT; 1991-2009
2000-2009 1991-2000 2000-2009 1991-2000 NT; 1991-2009 2000-2009 1991-2000
2003-2009 1990-2003 2005-2009 19902005 20002009 1990-2000 2002-2009 1990-2002

Sufficient data were available to analyze for trends in DS
and other major ions for 3 sites on the White River main stem:
09304200 (White River above Coal Creek, near Meeker),
09304800 (White River below Meeker), and 09306290 (White
River below Boise Creek, near Rangely). No trends were
detected from 1990 to 2002 at 09304200 (White River above
Coal Creek, near Meeker) for calcium, magnesium, chloride,
sulfate, silica, and DS (table 6). Sodium had a net, downward
trend at 09304200 from 1990 to 2002. The trend was para-
bolic with a zero-slope year around 1992, after which the
shape of the parabola indicated an upward trend. No trends
were detected downstream at 09304800 (White River below
Meeker) from 1990 to 2009 for calcium, magnesium, sodium,
potassium, sulfate, fluoride, silica, or DS. A downward trend
was detected for chloride at 09304800 from 1990 to 2009. Net,
downward trends were detected for DS and sodium from 1990
to 2009 at site 09306290 (White River below Boise Creek,
near Rangely). The trend for both constituents was parabolic

with a zero-slope year around 1998, prior to which the shape
of the parabola indicated an upward trend. It is unclear what
contributed to the fluctuation in DS throughout the main stem
of the White River.

Trends in DS and other major ions were analyzed
for 4 tributary sites to the White River. At site 09306200
(Piceance Creek below Ryan Gulch, near Rio Blanco), a net,
downward trend was detected for DS from 1990 to 2009.
The trend was parabolic with a zero-slope year of 2003, after
which the shape indicated an upward trend (table 6). At the
next site downstream, 09306222 (Piceance Creek at White
River), a downward trend was detected for DS from 1990 to
2009 (table 6). No trends were detected at 09306255 (Yellow
Creek near White River); however, at 09306242 (Corral Gulch
near Rangely), a tributary to Yellow Creek, a net, downward
trend was detected for DS from 1990 to 2008. The trend was
parabolic with a zero-slope year around 1993 prior to which
the shape of the parabola indicated an upward trend.
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Table 6. Summary of regression model trend analysis results for dissolved solids and major ions, Piceance study area, western

Colorado, 1990-2009.—Continued

[The upward and downward columns are populated whenever there is a significant trend. If the trend was parabolic, then both columns contain the time frame of
the respective trend direction, the net direction of the trend is indicated by shading. If the trend was monotonic, then the respective column contains the respec-
tive time frame and the other columns contains NA. If no significant trend was detected, then the combined columns contain an indicator of no trend and the
time frame of the analysis; NT, no trend detected; F, model failed the model diagnostics; —, site did not have sufficient data for trend analysis; ND, site did not

have data; IS, insufficient data for regression model analysis]

Site Sulfate, filtered,
Site name identification in milligrams per liter
number
Upward Downward
White River Basin
White River above Coal Creek, near Meeker, Colo. 09304200 NT; 1990-2002
White River below Meeker, Colo. 09304800 NT; 1990-2009
Piceance Creek below Ryan Gulch, near Rio Blanco, Colo. 09306200 NA 1990-2009
Piceance Creek at White River, Colo. 09306222 2004-2009 19902004
White Riv above Crooked Wash near White River City, Colo. 09306224 —
Corral Gulch near Rangely, Colo. 09306242 F; 1990-2008
Yellow Creek near White River, Colo. 09306255 NT; 1990-2009
White River below Boise Creek, near Rangely, Colo. 09306290 NA 1990-2009
White River below Taylor Draw Reservoir, above Rangely Colo. 09306305 IS
Colorado River Basin
Colorado River Devereaux Bridge CDOWRW-47 ND
Colorado River above South Canyon Creek near Glenwood Springs, Colo. 09085150 IS
Dry Fork at Upper Station, near DeBeque Colo. 09095300 1996-1999 1999-2004
Colorado River near Cameo, Colo. 09095500 NA 1990-2009
Plateau Creek near Cameo, Colo. 09105000 NA 1991-2009
Colorado River below Grand Valley Diversion near Palisade, Colo. 09106150 NT; 1992-2002
Colorado River Hwy 6 CDOWRW-555 ND
Lewis Wash near Grand Junction, Colo. 09106200 NA 1991-2006
Colorado River Watson CDOWRW-560 ND
Reed Wash near Mack, Colo. 09153290 IS
Colorado River near Colorado-Utah State Line 09163500 2008-2009 19902008
Lower Gunnison River Basin

North Fork Gunnison River above mouth near Lazear, Colo. 09136100 NA 1991-2009
Sunflower Drain at Highway 92, near Read 384551107591901 NT; 1991-2003
Gunnison River at Delta, Colo. 09144250 F; 1991-2009
Loutsenhizer Arroyo at Falcon Road 383528107552001 IS
West Tributary of Loutsenhizer Arroyo below East Canal 383728107572001 IS
Loutsenhizer Arroyo at North River Road 383946107595301 NT; 1991-2009
Uncompahgre River at Delta, Colo. 09149500 2000-2009 1991-2000
Gunnison River near Grand Junction, Colo. 09152500 NA 1990-2009

Generally, the trend analysis indicated that there was
either no change or a net, downward trend in DS and other
major ions. However, there were exceedances of chloride and
sulfate standards in the upstream area of the basin on tribu-
taries to the White River. Only 2 sites had exceedances of
the chloride standard, most of these exceedances occurred at
09304550 (Curtis Creek), and all exceedances occurred from
data sampled prior to 1985 (app. 1). There were a total of 504
exceedances of the sulfate standard at 6 sites, although most
of the exceedances occurred at 09304480 (Coal Creek) and
09304550 (Curtis Creek), 196 and 294 exceedances respec-
tively. Most exceedances occurred prior to 1986; no sampling
for chloride and sulfate occurred after that time at Curtis Creek
and Coal Creek (app. 1). Insufficient data were available on
the remaining tributaries to further aid in the analysis of DS in
the White River Basin.

A loading profile for the White River Basin indicated
increasing DS loads from upstream to downstream (fig. 94).
The total DS load from the White River Basin was represented
by the most downstream site, 09306290 (White River below
Boise Creek, near Rangely), where the load in water year 2000
was 245,000 tons. The DS load at 09304200 for water
year 2000 was 102,000 tons, which was about 41 percent
of the load in the White River Basin at site 09306290. The
DS load at 09304800 (White River below Meeker) for water
year 2000 was 164,000 tons, which was about 67 percent
of the load from the White River Basin. Between 09304200
and 09304800 more than 60,000 tons of DS load are gener-
ated that could potentially be from irrigated agriculture. Load
from 09306222 (Piceance Creek at White River) for water
year 2000 was about 26,600 tons, which was about 11 percent
of the load from the White River Basin. Alkali Flats is an arca
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Table 6. Summary of regression model trend analysis results for dissolved solids and major ions, Piceance study area, western

Colorado, 1990-2009.—Continued

[The upward and downward columns are populated whenever there is a significant trend. If the trend was parabolic, then both columns contain the time frame of
the respective trend direction, the net direction of the trend is indicated by shading. If the trend was monotonic, then the respective column contains the respec-
tive time frame and the other columns contains NA. If no significant trend was detected, then the combined columns contain an indicator of no trend and the time
frame of the analysis; NT, no trend detected; F, model failed the model diagnostics; —, site did not have sufficient data for trend analysis; ND, site did not have

data; IS, insufficient data for regression model analysis]

Silica, filtered,
in milligrams per liter

Fluoride, filtered,
in milligrams per liter

Alkalinity, filtered,
in milligrams per liter as
calcium carbonate

Dissolved solids,
in milligrams per liter

Upward Downward Upward Downward

Upward Downward Upward Downward

White River Basin

IS NT; 1990-2002
NT; 1990-2009 NT; 1990-2009

— NT; 1990-2002
— NT; 1990-2009

NT; 1990-2009 NT; 1990-2009 NT; 1999-2009 2003-2009 1990-2003
NT; 1990-2009 NT; 1990-2009 NT; 1998-2009 NA 1990-2009
NT; 1990-2008 1990-1999 1999-2008 NA 1999-2008 1990-1993 1993-2008
1990-2000 2000-2009 NT; 1990-2009 F; 1999-2009 F; 19902009
NT; 1990-2009 NT; 1990-2009 IS 1990-1998 1998-2009
IS 1S IS IS
Colorado River Basin
ND ND ND ND
IS 1S IS IS
IS IS 1996-1999 1999-2004 IS
F; 1990-2009 NA 1990-2009 NT; 1996-2009 NA 1990-2009
NT; 1991-2009 NT; 1991-2009 1995-2002 2002-2009 NA 1991-2009
IS NT; 1992-2002 IS NT; 19922002
ND ND ND ND
NT; 1991-2006 NT; 1991-2006 NT; 1998-2006 NT; 1991-2006
ND ND ND ND
IS IS IS IS
NT; 1990-2009 F; 1990-2009 2001-2009 1990-2001 2005-2009 1990-2005
Lower Gunnison River Basin
NT; 1991-2009 NT; 1991-2009 1999-2004 2004-2009 NA 1991-2009
1991-2003 NA 1991-2003 NA IS NT; 1991-2003
F; 1990-2009 NT; 1991-2009 IS F; 1991-2009
IS IS IS IS
IS 1S IS IS
NT; 1991-2009 1991-2009 NA NT; 2001-2009 NT; 1991-2009
1991-2009 NA 1991-2009 NA NT; 1998-2009 2001-2009 19912001
NT; 1990-2009 NT; 1990-2009 1999-2009 1990-1999 2005-2009 1990-2005

of known groundwater upwelling upstream from 09306222
(Piceance Creek at White River). The area could represent

an important input of DS to surface water, though losses in
streamflow in the Alkali Flats area may also be occurring
(Tobin and others, 1985; Ortiz, 2002). The sum of the loads at
09304800 (White river below Meeker) and the tributary sites
do not equal the load calculated at the most downstream site
09306290 (White River below Boise Creek, near Rangely).
The remaining DS load measured at the gage and unaccounted
for by tributary inputs might be sourced from groundwater or
unsampled tributaries.

Trace Elements

Sufficient data were available to compare the results of
the trends analysis only for iron and total recoverable iron in
the White River Basin (table 7). Along the main stem of the

White River, no trend was detected in iron or total recover-

able iron at either 09304800 (White River below Meeker) or
09306290 (White River below Boise Creek, near Rangely)

for the periods 1995 to 2009 and 1990 to 2009, respectively
(table 7). At site 09306200 (Piceance Creek below Ryan Gulch,
near Rio Blanco), no trend was detected in iron from 1990 to
2009. Downstream at site 09306222 (Piceance Creek at White
River), there was no net trend from 1991 to 2009, although
there was a parabolic trend. The parabolic trend in iron was
initially downward until around 2001, after which the trend was
upward. An upward trend in iron was detected at 09306255
(Yellow Creek near White River) from 1991 to 2009. Only 2

of the 33 sites had exceedances of the 30-day drinking-water
standard for iron; 1,871 samples had iron data (app. 1). The
loading profile for the of the White River Basin indicated that
iron load between the two White River sites (below Meeker and
near Rangely) increased although the sampled tributaries did not



40 Characterization and Data-Gap Analysis of Surface-Water Quality in the Piceance Study Area, 1959-2009

Table 7. Summary of regression model trend analysis results for trace elements and suspended sediment, Piceance study area,
western Colorado, 1990-2009.

[The upward and downward columns are populated whenever there is a significant trend. If the trend was parabolic, then both columns contain the time frame
of the respective trend direction, the net direction of the trend is indicated by shading. If the trend was monotonic, then the respective column contains the
respective time frame and the other columns contains NA. If no significant trend was detected, then the combined columns contain an indicator of no trend and
the time frame of the analysis; NT, no trend detected; F, model failed the model diagnostics; —, site did not have sufficient data for trend analysis; ND, site did
not have data; IS, insufficient data for regression model analysis]

Site Drainage Copper, filtered,
Site name identification area, in in micrograms per liter
number square miles Upward Downward
White River Basin
White River above Coal Creek, near Meeker, Colo. 09304200 648 1S
White River below Meeker, Colo. 09304800 1,024 F; 1991-2009
Piceance Creek below Ryan Gulch, near Rio Blanco, Colo. 09306200 506 1999-2002 2002-2009
Piceance Creek at White River, Colo. 09306222 652 1999-2003 2003-2009
White River above Crooked Wash, near White River City, Colo. 09306224 1,821 1S
Corral Gulch near Rangely, Colo. 09306242 32 —
Yellow Creek near White River, Colo. 09306255 262 —
White River below Boise Creek, near Rangely, Colo. 09306290 2,530 —
White River below Taylor Draw Reservoir, above Rangely, Colo. 09306305 2,776 1S
Colorado River Basin
Colorado River Devereaux Bridge CDOWRW-47 — 1991-1999 19992006
Colorado River above South Canyon Creek, near Glenwood Springs, Colo. 09085150 6,040 ND
Dry Fork at Upper Station, near DeBeque Colo. 09095300 97 ND
Colorado River near Cameo, Colo. 09095500 8,050 1S
Plateau Creek near Cameo, Colo. 09105000 592 1S
Colorado River below Grand Valley Diversion, near Palisade, Colo. 09106150 8,753 IS
Colorado River Hwy 6 CDOWRW-555 — 1S
Lewis Wash near Grand Junction, Colo. 09106200 4.7 1S
Colorado River Watson CDOWRW-560 — 1S
Reed Wash near Mack, Colo. 09153290 16 ND
Colorado River near Colorado-Utah State Line 09163500 17,843 —
Lower Gunnison River Basin

North Fork Gunnison River above mouth, near Lazear, Colo. 09136100 969 IS
Sunflower Drain at Highway 92, near Read 384551107591901 — IS
Gunnison River at Delta, Colo. 09144250 5,628 IS
Loutsenhizer Arroyo at Falcon Road 383528107552001 — ND
West Tributary of Loutsenhizer Arroyo below East Canal 383728107572001 — ND
Loutsenhizer Arroyo at North River Road 383946107595301 — IS
Uncompahgre River at Delta, Colo. 09149500 1,115 —
Gunnison River near Grand Junction, Colo. 09152500 7,928 —

account for the increase (fig. 9B8). Load from 09304800 (White
River below Meeker) for water year 1996 was 21,000 pounds
per year, which is 60 percent of the load from the White River
Basin (fig. 9B). The remaining load might be sourced from
groundwater or unsampled tributaries.

Suspended Sediment

Suspended sediment is a water-quality concern in the
White River Basin, specifically in Douglas Creek. Douglas
Creek is listed on the CDPHE 303(d) list for suspended sedi-
ment (table 2), yet there were no suspended sediment data
available to evaluate trends and or calculate suspended sedi-
ment load. Suspended sediment loads were previously evalu-
ated on the White River as part of the design of the Taylor
Draw Reservoir (also known as Kenney Reservoir) (Salas and
Shin, 1999).

Trends in suspended sediment were analyzed for 4 sites
on the White River main stem. No trends were detected from
1990 to 2001 at 09304200 (White River above Coal Creek, near

Meeker) (table 7). The suspended sediment model failed diag-
nostics at 09304800 (White River below Meeker) from 1990

to 2009. A downward trend was detected at 09306290 (White
River below Boise Creek, near Rangely) in suspended sedi-
ment from 1990 to 2009. A net, downward trend was detected
at 09306305 (White River below Taylor Draw Reservoir, above
Rangely) from 1995 to 2002. The trend was parabolic with a
zero-slope year around 1996, prior to which the shape of the
parabola indicated a downward trend. The downward trend at
09306305 could be related to Taylor Draw Reservoir, which
was constructed in 1984. The efficiency of a reservoir to retain
sediment is a function of reservoir capacity, inflow volume,
mean velocity of flow through the reservoir, and size composi-
tion of the sediment load (Churchill, 1948; Brune, 1953). A
reservoir’s ability to retain sediment can increase as the ratio of
the reservoir capacity to inflow volume increases or the percent
composition of silt and clay in the sediment load decreases, or
both. The downward trend at 09306305 might reflect a decrease
in inflow volume or changes in sources of fluvial sediment.
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Summary of regression model trend analysis results for trace elements and suspended sediment, Piceance study area,

[The upward and downward columns are populated whenever there is a significant trend. If the trend was parabolic, then both columns contain the time frame
of the respective trend direction, the net direction of the trend is indicated by shading. If the trend was monotonic, then the respective column contains the
respective time frame and the other columns contains NA. If no significant trend was detected, then the combined columns contain an indicator of no trend and
the time frame of the analysis; NT, no trend detected; F, model failed the model diagnostics; —, site did not have sufficient data for trend analysis; ND, site did

not have data; IS, insufficient data for regression model analysis]

Iron, filtered, Iron, total recoverable, Lead, filtered, Zinc, filtered, Selenium, filtered,
in micrograms per liter in micrograms per liter in micrograms per liter in micrograms per liter in micrograms per liter
Upward Downward Upward Downward Upward Downward Upward Downward Upward Downward
White River Basin
IS NA 1991-2001 IS IS IS
NT; 1995-2009 NT; 1991-2002 — F; 1991-2009 F; 1991-2009
NT; 1990-2009 1S F; 1999-2009 NA 1990-2009 NT; 1999-2009
2001-2009 1991-2001 IS NT; 1999-2009 NA 1991-2009 NT; 1999-2009
IS IS IS IS IS
1991-2009 NA IS — F; 1991-2009 —
NT; 1990-2009 NT; 1991-2001 — — NT; 1990-2009
IS IS ND ND IS
Colorado River Basin
NA 1991-2007 2000-2007 1991-2000 IS 1991-1995  1995-2007 IN
ND ND ND ND NT; 2006-2009
IS ND ND ND IS
1999-2002 1995-1999 IS IS IS NT; 1991-2009
— IS IS IS IS
— I IS I IN
IS IS IS IS IS
— ND IS IS 2000-2006 1991-2000
IS IS ND IS IS
IS ND ND ND IS
1997-2002 1990-1997 IS — — NA 1990-2009
Lower Gunnison River Basin
ND IS IS IS NT; 1991-2009
IS ND IS IS NA 1991-2003
ND 1S IS 1S NA 1991-2009
ND ND ND ND IS
ND ND ND ND IS
IS I IS I 1991-2009 NA
— — — IS 2002-2009 1991-2002
1999-2002 1990-1999 — — — NA 1990-2009

Trends in suspended sediment were analyzed for 4 tribu-
tary sites to the White River. A downward trend in suspended
sediment was detected at 09306200 (Piceance Creek below
Ryan Gulch, near Rio Blanco) from 1990 to 2009. A net,
downward trend in suspended sediment was detected at

09306222 (Piceance Creek at White River) from 1990 to 2009.

The trend was parabolic with a zero-slope year around 2003,
prior to which the shape of the parabola indicates a down-
ward trend. Both site 09306255 (Yellow Creek near White
River) and site 09306242 (Corral Gulch near Rangely) failed
model diagnostics.

Colorado River Basin

Temporal and spatial variability of water-quality data
in the Colorado River Basin were evaluated at 13 sites:
8 sites on the Colorado main stem and 5 sites on tributar-
ies to the Colorado River (tables 4-7, fig. 7). Main-stem

sites on the Colorado River were CDOWRW-47 (Colorado
River Deveraux Bridge), 09085150 (Colorado River above
South Canyon near Glenwood Springs), CDOWRW-550
(Colorado River Rifle Bridge), 09095500 (Colorado River
near Cameo), 09106150 (Colorado River below Grand Valley
Diversion near Palisade), CDOWRW-555 (Colorado River
Highway 6), CDOWRW-560 (Colorado River Watson),

and 09163500 (Colorado River near Colorado-Utah state
line). Tributary sites were 09089500 (West Divide Creek
near Raven), 09095300 (Dry Fork at Upper Station, near
DeBeque), 09105000 (Plateau Creek near Cameo), 09106200
(Lewis Wash near Grand Junction), and 09153290 (Reed
Wash near Mack). The Gunnison River is also a tributary to
the Colorado River, and it is discussed as a separate basin in
this report. The most downstream site in the Lower Gunnison
River Basin, 09152500 (Gunnison River near Grand Junction),
is included in the figures and discussion of loading profiles
for the Colorado River Basin to complete the discussion of
spatial patterns.
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Table 7.
western Colorado, 1990-2009.—Continued

Summary of regression model trend analysis results for trace elements and suspended sediment, Piceance study area,

[The upward and downward columns are populated whenever there is a significant trend. If the trend was parabolic, then both columns contain the time frame
of the respective trend direction, the net direction of the trend is indicated by shading. If the trend was monotonic, then the respective column contains the
respective time frame and the other columns contains NA. If no significant trend was detected, then the combined columns contain an indicator of no trend and
the time frame of the analysis; NT, no trend detected; F, model failed the model diagnostics; —, site did not have sufficient data for trend analysis; ND, site did

not have data; IS, insufficient data for regression model analysis]

Site Suspended sediment,
Site name identification in milligrams per liter
number Upward Downward
White River Basin
White River above Coal Creek, near Meeker, Colo. 09304200 NT; 1990-2001
White River below Meeker, Colo. 09304800 F; 1990-2009
Piceance Creek below Ryan Gulch, near Rio Blanco, Colo. 09306200 NA 1990-2009
Piceance Creek at White River, Colo. 09306222 2003-2009 19902003
White River above Crooked Wash, near White River City, Colo. 09306224 —
Corral Gulch near Rangely, Colo. 09306242 F; 1990-2008
Yellow Creek near White River, Colo. 09306255 F; 1990-2009
White River below Boise Creek, near Rangely, Colo. 09306290 NA 1990-2009
White River below Taylor Draw Reservoir, above Rangely, Colo. 09306305 1995-1996 19962002
Colorado River Basin
Colorado River Devereaux Bridge CDOWRW-47 ND
Colorado River above South Canyon Creek, near Glenwood Springs, Colo. 09085150 ND
Dry Fork at Upper Station, near DeBeque Colo. 09095300 F; 1996-2004
Colorado River near Cameo, Colo. 09095500 F; 1990-1998
Plateau Creek near Cameo, Colo. 09105000 ND
Colorado River below Grand Valley Diversion, near Palisade, Colo. 09106150 ND
Colorado River Hwy 6 CDOWRW-555 ND
Lewis Wash near Grand Junction, Colo. 09106200 N
Colorado River Watson CDOWRW-560 ND
Reed Wash near Mack, Colo. 09153290 1S
Colorado River near Colorado—Utah State Line 09163500 F; 1990-2008
Lower Gunnison River Basin

North Fork Gunnison River above mouth, near Lazear, Colo. 09136100 IN
Sunflower Drain at Highway 92, near Read 384551107591901 IS
Gunnison River at Delta, Colo. 09144250 ND
Loutsenhizer Arroyo at Falcon Road 383528107552001 ND
West Tributary of Loutsenhizer Arroyo below East Canal 383728107572001 ND
Loutsenhizer Arroyo at North River Road 383946107595301 ND
Uncompahgre River at Delta, Colo. 09149500 —
Gunnison River near Grand Junction, Colo. 09152500 F; 1990-2007

Field Properties

Results of the trend analysis for water temperature, pH,
and dissolved oxygen are presented in table 4. Sufficient data
were available to analyze for temperature trends at 5 sites in
the Colorado River Basin. No significant trends in temperature
were detected throughout the Colorado main-stem section.
Sufficient data were available to analyze for pH trends at
3 sites in the Colorado River Basin. An upward trend in pH
was detected at 09095500 (Colorado River near Cameo) from
1990 to 2009. Sufficient data were available to analyze for
dissolved-oxygen trends at 4 sites. A downward trend in dis-
solved oxygen was detected at CDOWRW-47 (Colorado River
Devereux Bridge) from 1991 to 2007.

Nutrients

Trends in nutrient concentration data were evaluated for
ammonia, nitrate, orthophosphate, and total phosphorus. Models
failed diagnostics for ammonia and nitrate at site 09095500

(Colorado River near Cameo) from 1991 to 2002 (table 5).
Additionally, between 1980 and 1998, there were 16 exceed-
ances for total phosphorus (app. 1). At 09163500 (Colorado
River near Colorado-Utah state line), a downward trend was
detected in nitrate and orthophosphate from 1990-2008. A net,
downward trend in ammonia was detected at this site from 1990
to 2008. The trend was parabolic with a zero-slope year around
2002, prior to which the shape of the parabola indicates a down-
ward trend. An upward trend was detected in total phosphorus
at the same site during the same time period, and there were
122 exceedances from 1979-2008 (app. 1). Without a regres-
sion model for nutrient data upstream from 09095500 (Colorado
River near Cameo) on the main stem of the Colorado River,
it is difficult to determine what the potential upstream sources
were contributing to the observed trends at 09163500 (Colorado
River near Colorado-Utah state line).

Limited nutrient data were available for tributaries to
the Colorado main stem. Sufficient data were not available
for trend analysis at 09153290 (Reed Wash near Mack), but
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there were 40 exceedances in total phosphorus from 1995 to
1998 (app. 1). As such, Reed Wash was a probable source of
total phosphorus to the Colorado River. No trend was detected
at 09095300 (Dry Fork at Upper Station, near DeBeque) for
orthophosphate from 1996 to 2004, and a net, downward trend
in nitrate was detected from 1996 to 2004. The total phospho-
rus model failed diagnostics for site 09095300 (Dry Fork at
Upper Station, near DeBeque) from 1996 to 2004; 24 exceed-
ances were observed for the same period (app. 1).

Although neither the nitrate nor the orthophosphate load-
ing profile for the Colorado River has sufficient information
for a comprehensive analysis (fig. 10), the lower Colorado
River was analyzed with respect to the contributions from its
principal tributary, the Gunnison River. The total nitrate load
from the Gunnison River, represented by 091520500 (Gunnison
River near Grand Junction), was 1,670 tons in 1996, which was
52 percent of the total load at 09163500 (Colorado River near
Colorado-Utah state line) (fig. 104). The total nitrate load from
the Colorado River Basin, represented by the most downstream
site 09163500 (Colorado River near Colorado-Utah state line),
was 3,230 tons. Orthophosphate load from the Gunnison River
in water year 1996 was 125 tons, 32 percent of the total load
at the Colorado River near Colorado-Utah state line (385 tons)
(fig. 10B). These results indicated that the Gunnison River
is a substantial source of nitrate and orthophosphate to the
Colorado River.

Dissolved Solids and Major lons

Trends in DS were evaluated at 3 sites on the Colorado
main stem. A downward trend was detected in DS at 09095500
(Colorado River near Cameo) from 1990 to 2009, and no
trend was detected at 09106150 (Colorado River below Grand
Valley Diversion near Palisade) from 1992 to 2002 (table 6).
A net, downward trend in DS was detected at 09163500
(Colorado River near Colorado-Utah state border) from 1990
to 2009. The trend was parabolic with a zero-slope year
around 2005, prior to which the shape of the parabola indi-
cates a downward trend. Salinity control work in the Grand
Valley could have contributed to the downward trend at
09163500 (Colorado River near Colorado-Utah state border).
Trends in other major ion concentrations may aid in identify-
ing sources of DS based on mineral composition, where dis-
solution of these sources might be controlling DS contribution
to the Colorado River. The trend results indicated that other
major ions (sulfate, chloride, magnesium, and sodium) had
similar trend patterns as DS throughout the basin.

The three tributary sites for the Colorado River that had
sufficient data for trend analysis for the majority of major ions
were 09095300 (Dry Fork at Upper Station, near DeBeque),
09105000 (Plateau Creek near Cameo), and 09106200
(Lewis Wash near Grand Junction) (table 6). Net, downward
trends were detected for sulfate, alkalinity, and bicarbonate
at site 09095300 (Dry Fork at Upper Station, near DeBeque)
from 1996 to 2004. The trends were parabolic with a zero-
slope year around 1999, prior to which the shape of the

parabola indicated an upward trend. No trends were detected
at 09095300 (Dry Fork at Upper Station, near DeBeque)
for chloride and carbonate, and there were insufficient data
to analyze trends in DS. A downward trend was detected at
09105000 (Plateau Creek near Cameo) from 1991 to 2009 for
DS, sulfate, and sodium. A net, downward trend was detected
for chloride from 1991 to 2009. The trend was parabolic with
a zero-slope year around 2002, prior to which the shape of
the parabola indicated an upward trend. There were no trends
detected in calcium, magnesium, potassium, fluoride, or silica.
An upward trend was detected for bicarbonate from 1995 to
2009, while no trend was detected for carbonate during the
same period. The headwaters of Plateau Creek originate on
the Grand Mesa (fig. 1) where the geology is dominated by
vesicular basalt. The Grand Mesa has relatively little urban
development in comparison to the Colorado River main-
stem corridor, but the area is experiencing increasing energy
development. Downstream, Plateau Creek flows over Tertiary
sedimentary formations composed of mudstone and sandstone,
which are a likely source for DS in Plateau Creek. Downward
trends were detected at 09106200 (Lewis Wash near Grand
Junction) for magnesium and sulfate from 1991 to 2006; no
trends were detected for DS and the other major ions (table 6).
Natural sources and anthropogenic activities contribute
to DS along the Colorado River main stem. The Eagle Valley
Evaporite (fig. 3), present upstream from Glenwood Springs
and in the Roaring Fork drainage area, is a natural source of
DS in the upper part of the basin. Chafin and Butler (2002)
reported that the Eagle Valley Evaporite contributed approxi-
mately 800,000 metric tons of salt per year to the Colorado
River. Salts from the Eagle Valley Evaporite contributed
nearly 60 percent of the annual DS load observed at the
USGS gaging station Colorado River near Cameo (09095500)
(Chafin and Butler, 2002). The high concentrations of DS
downstream from 09095500 (Colorado River near Cameo) can
be attributed to irrigation of the sedimentary formations such
as the Mancos Shale and Dakota Sandstone (fig. 3). Irrigation
return flows generally have a higher salinity concentration
than the applied water because of the effect of salt dissolu-
tion in the soil and subsurface materials and the concentrating
effect of evapotranspiration (Vaill and Butler, 1999). A loading
profile for the Colorado River Basin indicated increasing DS
load from upstream to downstream with the exception of the
Colorado River below the Grand Valley Diversion (fig. 114).
The total DS load from the Colorado River Basin is repre-
sented by the most downstream site, 09163500 (Colorado
River near Colorado-Utah state line). The load in water
year 1999 was 2,850,000 tons (fig. 114), which is about
10 times larger than the DS load from the White River Basin
in water year 2000 (fig. 94). Load at 09095500 (Colorado
River near Cameo) for water year 1999 was 1,380,000 tons,
which was about 48 percent of the load from the Colorado
River Basin (fig. 114). Load from 09105000 (Plateau Creek
near Cameo) for water year 1999 was 59,700 tons, which was
about 2 percent of the load from the Colorado River Basin
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(fig. 114). Load from 09106150 (Colorado River below the
Grand Valley Diversion near Palisade) was 1,090,000 tons
for water year 1999, which was about 38 percent of the

load from the Colorado River Basin. The reduction in load
from 09095500 (Colorado River near Cameo) to 09106150
(Colorado River below the Grand Valley Diversion near
Palisade) indicated that DS loads were removed along with
significant diversions in this area (fig. 114). Downstream
from 09095500 (Colorado River near Cameo) there are two
diversions of irrigation water that have an estimated capacity
0f 2,380 cubic feet per second (ft*/s), and about 650 ft*/s is
returned to the Colorado River just above the site 09106150
(Colorado River below the Grand Valley Diversion near
Palisade) (Butler, 1985; Kuhn and Williams, 2004). Leib and
Bauch (2008) estimated an average annual DS concentration
of 374 mg/L for 09095500 in water year 1999, which included
both irrigated and non-irrigated seasons. Using the concentra-
tion of 374 mg/L resulted in an estimation of approximately
350,000 tons of dissolved solids that could be diverted
between 09095500 and 09106150, and this estimation would
vary based on season and water availability. The Gunnison
River, represented by 09152500 (Gunnison River near Grand
Junction), contributed 1,064,000 tons of dissolved solids to
the Colorado River in water year 1996 (fig. 114), which was
37 percent of the most downstream site, 09163500 (Colorado
River near Colorado-Utah state line).

Trace Elements

Sufficient data were available to compare the results
of the trends analysis for iron in the Colorado River Basin
(table 7). A downward trend for iron was detected at site
CDOWRW-47 (Colorado River Devereux Bridge) from 1991
to 2007 (table 7). At 09095500 (Colorado River near Cameo),

a net, downward trend in iron was detected from 1995 to 2002.

The trend was also parabolic with a zero-slope year around
1999, after which the shape of the parabola indicated an
upward trend. At 09163500 (Colorado River near Colorado-
Utah state line), a net, downward trend was detected in iron
from 1990 to 2002. The trend also was parabolic with a zero-
slope year around 1997, after which the shape of the parabola
indicated an upward trend. The loading profile for iron indi-
cated a decreasing iron load downstream (fig. 1158). The iron
load in water year 1996 at 09163500 (Colorado River near
Colorado-Utah state line) was 134,000 pounds, which was
43,000 pounds less than the iron load from the upstream site,
09095500 (Colorado River near Cameo) (177,000 pounds).
Despite the contribution of 41,700 pounds of iron in water
year 1996 from 09152500 (Gunnison River near Grand
Junction), there still was a loss in iron load (1,300 pounds)

at 09163500 (Colorado River near Colorado-Utah state line).
There are no major hard-rock mines in the Colorado River
Basin that could have been potential point sources for selected
trace elements like iron. Further study of iron sources and

sinks in the Colorado River Basin near Grand Junction would
be beneficial to better understand these results. Results for
total recoverable iron throughout the Colorado River Basin
reported 600 exceedances of the chronic aquatic-life standard
(app. 1). There were approximately 82 exceedances observed
at 4 sites on Plateau Creek, although the sampling period was
from 1992 to 2004. Insufficient data were available to perform
a trend analysis on any Plateau Creek site.

Similar to DS, selenium is a water-quality concern in
the Colorado River Basin because of the combination of
geologic formations and land use. The CDPHE has listed
many stream segments from East Rifle Creek to the Colorado-
Utah state border for selenium impairments (table 2). No
trend was detected in selenium at 09095500 (Colorado River
near Cameo) from 1991 to 2009, and a downward trend was
detected at 09163500 (Colorado River near Colorado-Utah
state line) from 1990 to 2009. Results for selenium in the
Colorado River Basin reported 741 exceedances of the chronic
aquatic-life standard and 201 exceedances of the acute stan-
dard (app. 1).

A loading profile for the Colorado River Basin indicated
increased selenium load between the 09095500 (Colorado
River near Cameo) and 09163500 (Colorado River near
Colorado-Utah state line) sites (fig.11C). The total selenium
load from the Colorado River Basin at the most downstream
site 09163500 (Colorado River near Colorado-Utah state line)
in water year 1999 was 36,200 pounds. Load at 09095500
(Colorado River near Cameo) for water year 1999 was
3,900 pounds, which was about 11 percent of the load from
the Colorado River Basin. Load at 09152500 (Gunnison River
near Grand Junction) for water year 1999 was 18,900 pounds,
which was about 52 percent of the load from the Colorado
River Basin, indicating that the Lower Gunnison River Basin
is one of the major source of selenium in this part of the
Colorado River Basin.

Insufficient data were available to analyze selenium
data for trends or loads on tributaries to the Colorado River
upstream from Plateau Creek. Median selenium concentration
at 09095300 (Dry Fork at Upper Station, near De Beque) was
4 ng/L, and there were 16 exceedances from 1996 to 2001
of the chronic aquatic-life standard. The site is listed on the
CDPHE 303d list for selenium impairment. Additional water-
quality monitoring could help land managers to identify what
is causing the selenium impairment. Sites on Divide Creek
(LANG2ST-LANGS8ST) had a median selenium concentration
of 5.6 pg/L and approximately 62 exceedances from 2004 to
2005 of the chronic aquatic-life standard. Other tributaries in
the basin such as East Rifle Creek, West Rifle Creek, and Rifle
Creek are listed on the CDPHE 303d list for selenium impair-
ment, but insufficient data were available from this study to
analyze for trends.
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Suspended Sediment

Suspended sediment data did not meet the criteria for
trend analysis at most sites, and the models failed diagnostics
at sites where there were sufficient data. Failed diagnostics
were reported at sites 09095300 (Dry Fork at Upper Station,
near DeBeque), 09095500 (Colorado River near Cameo), and
09163500 (Colorado River near Colorado-Utah state line).
Sediment is listed on the 303d list for Salt Creek, which is a
tributary to the Colorado River (table 2).

Lower Gunnison River Basin

Temporal and spatial variability of water-quality data in the
Lower Gunnison River Basin were evaluated at 14 sites: 2 sites
on the Gunnison River main stem and 12 sites on tributar-
ies to the Gunnison River (tables 4-7, fig.7). Main-stem sites
on the Gunnison River were 09144250 (Gunnison River at
Delta) and 09152500 (Gunnison River near Grand Junction).
Tributary sites included 09132500 (North Fork Gunnison
River near Somerset), 09136100 (North Fork Gunnison River
above mouth near Lazear), 09134000 (Minnesota Creek near
Paonia), 09135950 (North Fork of the Gunnison below Leroux
Creek, near Hotchkiss), 09128500 (Smith Fork near Crawford),
384551107591901 (Sunflower Drain at Highway 92, near
Read), 09143000 and 09143500 (Surface Creek near and at
Cedaredge, respectively), and 09149500 (Uncompahgre River
at Delta). There were 3 sites on Loutsenhizer Arroyo, which
is a tributary to the Uncompahgre River: 383528107552001
(Loutsenhizer Arroyo at Falcon Road), 383728107572001
(West tributary of Loutsenhizer Arroyo below East Canal), and
383946107595301 (Loutsenhizer Arroyo at North River Road).

Field Properties

Results of the trend analysis for water temperature, pH,
and dissolved oxygen are presented in table 4. Sufficient data
were available to analyze for temperature trends at 4 sites in
the Lower Gunnison River Basin. No trends were detected at 3
of these sites. However, an upward trend was detected in water
temperature from 1990 to 2009 at 09152500 (Gunnison River
near Grand Junction), the most downstream site. This same
site, 09152500, also had sufficient data to analyze for trends
in dissolved oxygen and pH from 1990 to 2009 and no trends
were detected.

Nutrients

There are limited nutrient data in the Lower Gunnison
River Basin (table 5). Only one site, 09152500 (Gunnison
River near Grand Junction), met the criteria for the trend
analysis. No trend was detected in nitrate from 1990 to
2002, orthophosphate from 1990 to 1998, or organic carbon
from 1995 to 2002. Comparisons to the recommended total
phosphorus standard showed nearly 500 exceedances out of

1,538 samples. Additional long-term monitoring of nutrients
in surface water could provide an opportunity to describe the
current nutrient levels in the Lower Gunnison River Basin.

Dissolved Solids and Major lons

Dissolved solids are a water-quality concern to land and
water managers in the Lower Gunnison River Basin because
of the combination of geologic formations and land use. This
scenario is in contrast to the Colorado River Basin where DS
levels are greatly elevated from natural sources such as the
Eagle Valley Evaporite Formation (Chafin and Butler, 2002).
Natural sources of DS include seeps or springs that originate
from geological formations with high DS content, such as the
Mancos Shale and Dakota Sandstone in the Lower Gunnison
River Basin (fig. 3). Another source of DS in the Lower
Gunnison River Basin is the result of irrigated agriculture in
areas underlain by Mancos Shale (Butler and others, 1996).

In the Lower Gunnison River Basin, trends in DS and
other major ions were tested at 2 sites on the main stem and
4 tributary sites of the Gunnison River. The main-stem sites
were 09152500 (Gunnison River near Grand Junction) and
09144250 (Gunnison River at Delta). The DS model failed
diagnostics at 09144250 (app. 1, table 6); many of the other
models for trends in major ions also failed model diagnos-
tics for this site. However, a downward trend at 09144250
(Gunnison River at Delta) was detected in magnesium, and no
trend was detected in potassium or silica from 1991 to 2009.
Schaffrath (2011) reported a downward trend in DS for the
period 1989 through 2004. The most downstream site in the
basin was 09152500 (Gunnison River near Grand Junction),
where a net, downward trend was detected from 1990 to 2009.
The trend was parabolic with a zero-slope year around 2005,
after which the shape of the parabola indicated an upward
trend. This conclusion is supported by the findings reported
by Schaffrath (2012); that is, a downward trend from 1989
through 2003 and a net, downward trend from 1989 through
2007 for DS. Other major ions analyzed for trends at this site
(and study period) generally had the same result. Calcium,
magnesium, sodium, and chloride all had the same general
trend pattern. Parabolic trends were detected for potas-
sium and alkalinity with zero slope years of 2000 and 1999,
respectively. No net trend was detected for the time period for
both of these constituents. No trend was detected for silica or
bicarbonate. Downward trends were detected for sulfate and
carbonate, while an upward trend was detected for fluoride
from 1990 to 2009.

Trends were analyzed at 4 tributary sites: 09136100
(North Fork Gunnison River above mouth near Lazear),
384551107591901 (Sunflower Drain at Highway 92, near
Read), 09149500 (Uncompahgre River at Delta), and
383946107595301 (Loutsenhizer Arroyo at North River
Road) (table 6). The first three sites are tributaries to the main
stem of the Gunnison River while the fourth site is tributary
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to the Uncompahgre River. A downward trend was detected
for DS, calcium, magnesium, sodium, and sulfate at site
09136100 (North Fork Gunnison River above mouth near
Lazear) from 1991 to 2009, and no trends were detected for
potassium, fluoride, or silica. No trends were detected for DS,
calcium, magnesium, sodium, potassium, chloride, or sulfate
at 384551107591901 (Sunflower Drain at Highway 92, near
Read) for the period from 1991 to 2003. However, upward
trends were detected for fluoride and silica from 1991 to 2003
at 384551107591901 (Sunflower Drain at Highway 92, near
Read). The trend analysis period for this site may not reflect
the most recent condition in that area. A portion of the DS
(and other major ions) load measured at site 384551107591901
(Sunflower Drain at Highway 92, near Read) was from water
diverted from the Uncompahgre River Basin; however, the
actual amount is unknown because of data limitations. A
net, downward trend was detected for DS at site 09149500
(Uncompahgre River at Delta) from 1991 to 2009. The trend
was parabolic with a zero-slope year around 2001, after which
the shape of the parabola indicated an upward trend. Downward
trends with significant parabolic trends similar to DS were
detected for calcium, magnesium, sodium, chloride, and sulfate.
An upward trend was detected for fluoride from 1991 to 2009.
The shape of the major ion trends at 09149500 (Uncompahgre
River at Delta) was similar to those detected at 09152500
(Gunnison River near Grand Junction), but the zero-slope years
differed slightly. Both the North Fork and the Uncompahgre
River Basins have similar DS and major ion trends and are the
two major tributaries to the Gunnison River. This would indicate
that both the North Fork and Uncompahgre River Basins were
controlling the trends at the 09152500 (Gunnison River near
Grand Junction) site; however, the trend at 09149500 (Uncom-
pahgre River at Delta) may have more influence based on its
similar trend slope and direction to that found for 09152500
(Gunnison River near Grand Junction). Schaffrath (2012)
reported a downward trend in DS at 09149500 (Uncompahgre
River at Delta) from 1989 to 2004. The drainage area above
this site is dominated by agricultural land and is underlain by
Mancos Shale. Salinity-control efforts have been focused in
this area since the 1980s. The site that was a tributary to the
Uncompahgre River, 383946107595301 (Loutsenhizer Arroyo
at North River Road), did not have a trend in DS or other major
ions except for an upward trend for silica from 1991 to 20009.
The DS load from the Gunnison River Basin is repre-
sented by the most downstream site, 09152500 (Gunnison
River near Grand Junction). The Gunnison River is a tributary
to the Colorado River, so the loading profile was compared
to 09163500 (Colorado River at the Colorado-Utah state
line) (fig. 124). Load at 09152500 (Gunnison River near
Grand Junction) for water year 1999 was approximately
1,060,000 tons (fig. 124), which was about 37 percent of
the load calculated for 09163500 (Colorado River at the
Colorado-Utah state line) (fig. 114). Load at 09136100 (North
Fork Gunnison River above mouth near Lazear) could not
be calculated because of an incomplete streamflow record.

The DS load in the North Fork of the Gunnison River drain-
age area is primarily from natural and agricultural sources
based on the low levels of industrial and residential uses
(Homer and others, 2004), and salinity control efforts are
ongoing in the area. The models failed diagnostics for loads
in DS at 09144250 (Gunnison River at Delta) and 09149500
(Uncompahgre River at Delta). However, Schaffrath (2012)
developed model equations for 09144250, 09149500, and
09152500. Using those equations, the 1999 water year

load calculated for 09152500 (Gunnison River near Grand
Junction) was 1,070,000 tons, which was only 10,000 tons
more than the load calculated using the model equations
developed in this report. The DS load in water year 1999 at
09144250 (Gunnison River at Delta), for comparison, was
582,000 tons, which was about 54 percent of the load from the
Lower Gunnison River Basin. The Uncompahgre River flows
into the Gunnison River just downstream from site 09149500
(Uncompahgre River at Delta). The DS load at 09144250
(Gunnison River at Delta) for water year 1999, also calcu-
lated using equations from Schaffrath (2012), was approxi-
mately 371,000 tons, which was about 35 percent of the load
from the Lower Gunnison River Basin that year. Load at the
Loutsenhizer Arroyo site could not be calculated because of
insufficient streamflow data.

The majority of DS load and respective salinity-control
efforts have occurred in the Gunnison River drainage area
downstream from the Gunnison Tunnel (Lower Gunnison
River Basin). Schaffrath (2012) reported no downward trends
in DS in the Upper Gunnison River drainage area, defined in
this report as the region of the Gunnison River upstream from
the Gunnison Tunnel. Efforts to reduce DS load in the Lower
Gunnison River Basin have been ongoing since the 1980s
through salinity control efforts. On-farm and small irriga-
tion ditch improvements as of 2007 had been implemented
in 76 mi? in the Lower Gunnison River Basin, resulting in
estimates of DS load reduction of 95,200 tons (Frank Riggle,
Natural Resources Conservation Service, written commun.,
July 28, 2010; Schaffrath, 2011). Bureau of Reclamation also
sponsors programs to reduce DS load in the Lower Gunnison
River Basin; they had participated in projects that included
29 miles of canal lining and elimination of stock water-
ing areas that resulted in estimates of DS load reduction of
49,520 tons as of 2007 (Mike Baker, Bureau of Reclamation,
written commun., September 20, 2010; Schaffrath, 2012).

Trace Elements

Sufficient data were available only for trend analysis of
iron at site 09152500 (Gunnison River near Grand Junction)
and selenium at various other sites in the Lower Gunnison
River Basin (table 7). A net, downward trend in iron was
detected at 09152500 (Gunnison River near Grand Junction)
from 1990 to 2002. The trend also was parabolic with a zero-
slope year of 1999, prior to which the shape of the parabola
indicated an upward trend. The Lower Gunnison River Basin
had 326 exceedances of the chronic (30-day) aquatic-life
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standard for iron (app. 1). There were exceedances for many
of the trace elements sampled in the basin. For example,

34 exceedances for the aquatic-life 30-day standard for copper,
18 exceedances for the acute copper standard, 73 exceedances
of the chronic (30-day) aquatic-life standard for lead, and

4 exceedances of the acute standard for lead were observed.
Zinc had no more than 7 exceedances of the chronic or acute
water-quality standards. About 25 mi? of the Lower Gunnison
River Basin are Federal coal leases, and Oxbow Mining and
Mountain Coal Company are interested in developing approxi-
mately 3 mi? (U.S. Forest Service, 2011). The infrequent
sampling for trace elements and high number of exceedances
in the Lower Gunnison River Basin illustrated a data gap in
the Piceance study area.

Selenium is a major water-quality concern for land and
water managers in the Lower Gunnison River Basin. Similar
to DS, high selenium concentrations are due to the combina-
tion of geologic formations and land use. Selenium is primar-
ily sourced from a geologic formation known as the Mancos
Shale; that is, DS is sourced from the Mancos Shale forma-
tion and a variety of sedimentary rock formations in the area.
Selenium is leached from soils in a similar manner as DS by
way of irrigation and natural chemical processes. Selenium is
more chemically reactive than the major ions included in the
DS measurements. The reactive nature of selenium can cause
selenium to oxidize and reduce between mobile and immobile
forms. Therefore, there is a high degree of the temporal and
spatial variability in selenium concentrations. This extreme
variability is complicated, and scientists and land managers
often have a difficult time understanding the effects that vari-
ous types of land use in the Lower Gunnison River Basin have
on selenium concentrations in rivers and streams. Previous
studies in the Lower Gunnison River Basin have documented
that high selenium concentrations correlate with high DS
concentrations. The nature of this paired occurrence means
that when salinity control efforts are conducted in selenium-
rich areas of the Lower Gunnison River Basin, both DS and
selenium concentrations have the potential to decrease (Butler
and others, 1996; Moore, 2011).

Trends in selenium were analyzed at 2 sites on the main
stem of the Gunnison River and at 4 sites on tributaries to the
Gunnison River. Main-stem sites were 09144250 (Gunnison
River at Delta) and 09152500 (Gunnison near Grand
Junction). Downward trends in selenium were detected at both
main-stem sites from 1991 to 2009 at 09144250 (Gunnison
River at Delta) and from 1990 to 2009 at 09152500 (Gunnison
near Grand Junction) (table 7).

The 4 tributary sites to the Gunnison River were 09136100
(North Fork of the Gunnison above mouth near Lazear),
09149500 (Uncompahgre River at Delta), 384551107591901
(Sunflower Drain at Highway 92, near Read), and
383946107595301 (Loutsenhizer Arroyo at North River Road).
No selenium trend was detected at site 09136100 (North Fork of
the Gunnison near the mouth of Lazear) from 1991 to 2009. A
net, downward trend for selenium was detected at site 09149500
(Uncompahgre River at Delta) from 1991 to 2009. The trend

was also parabolic with a zero-slope year of 2002, after which
the shape of the parabola indicates an upward trend. The shape
of the selenium trend at this site was very similar to that of

the DS trend observed at this site. A downward trend in sele-
nium was detected at 384551107591901 (Sunflower Drain at
Highway 92, near Read) from 1991 to 2003. The period of
record for 384551107591901 (Sunflower Drain at Highway 92,
near Read) ends in 2003; therefore, it is unknown if the down-
ward trend for the 1991 to 2003 period is representative of
current conditions. An upward trend in selenium was detected at
383946107595301 (Loutsenhizer Arroyo at North River Road),
a tributary to the Uncompahgre River, from 1991 to 2009. This
was the only site tested in the Lower Gunnison River Basin
that had an upward trend in selenium. Selenium load reported
by Butler and Leib (2002) indicated that Loutsenhizer Arroyo
drainage area is one of the largest sources of selenium load in
the Lower Gunnison River Basin. This may explain why there
is a parabolic trend in selenium at the 09149500 (Uncompahgre
River at Delta) while 09152500 (Gunnison River near Grand
Junction) only had a downward trend.

The loading profile includes the two main-stem Gunnison
River sites, 09144250 (Gunnison River at Delta) and 09152500
(Gunnison River near Grand Junction), and a site on the
Uncompahgre River, 09149500 (Uncompahgre River at Delta)
(fig. 12B). The other sites for which selenium trends were
analyzed did not have sufficient streamflow data to calcu-
late annual loads. The load at the most downstream site in
the basin, 09152500 (Gunnison River near Grand Junction),
was 19,000 pounds in 1999. This basin is a tributary to the
Colorado River, and 19,000 pounds is about 52 percent of the
load estimated for 09163500 (Colorado River at the Colorado-
Utah state line) (fig. 11C). Mayo and Leib (2012) reported a
downward trend in load at this site for the period 1986 to 2008.
Mayo and Leib also reported the magnitude of the trend to be an
approximate decrease of 2 ug/L, which is about 6,000 pounds
annual difference between 1986 and 2008. Selenium load at
09144250 (Gunnison River at Delta) for water year 1999 was
9,180 pounds in 1999, which was about 48 percent of the load
from site 09152500 (Gunnison River near Grand Junction).
Selenium load at 09144250 (Gunnison River at Delta) is
sourced not only from the Gunnison River and North Fork of
the Gunnison River Basins, but also from parts of the Uncom-
pahgre River Basin as a result of multiple water diversions from
the Uncompahgre River. The elevated selenium load is coun-
terintuitive because the Uncompahgre River Basin is a tributary
to the Gunnison River downstream from 09144250 (Gunnison
River at Delta). The actual portion of selenium load from the
Uncompahgre River Basin at 09144250 (Gunnison River at
Delta) is unknown because of data limitations. Moore (2011)
reported upward trends in selenium concentration and load in
Montrose Arroyo. Montrose Arroyo is situated geologically in a
similar manner and has similar geology as Loutsenhizer Arroyo
in the Uncompahgre River Basin but is outside the study area.
Moore (2011) suggested that changes in land use and possible
geochemical factors could be causing the increases in selenium.
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Suspended Sediment

Sufficient data were available at 09152500 (Gunnison
River near Grand Junction) to perform trend analysis, but the
model failed diagnostics. Therefore, insufficient data were
available and trend analysis could not be performed for the
Lower Gunnison River Basin (table 7).

Data Gaps

Spatial, temporal, and analytical data gaps were identi-
fied in the study area. Spatial data gaps were identified where
surface-water monitoring sites were not sufficient to charac-
terize trends and loads, especially in areas contributing to a
municipal drinking-water intake. Temporal data gaps were
identified where data were collected in the past but are not
being collected currently. Analytical data gaps were identi-
fied where analysis was incomplete (for example, not enough
major ions to do a charge balance), entire constituent groups
were omitted (for example, nutrients in the Lower Gunnison
River Basin), or select constituents were not sampled for (for
example, BTEX in the White River Basin).

White River Basin

The White River Basin had 45 water-quality sites of which
10 could be used for analysis of trends and loads (fig. 13). Sites
where trends or loads were not analyzed included sites that were
not currently being sampled, did not have sufficient data for
analysis beyond summary statistics and comparison to stan-
dards, or lacked continuous streamflow data.

The spatial coverage of sampling sites could be expanded
in the White River Basin by adding more tributary sites.
Water-quality and streamflow data for Douglas Creek are not
currently being collected. The exception is a single site located
at the mouth of Douglas Creek where streamflow gaging and
sampling were discontinued in 1996. Douglas Creek has a
drainage area of 425 mi? of the 2,776 mi? (about 15 percent) of
the White River Basin. Water-quality samples are collected on
Coal, Flag, and Strawberry Creeks, but the addition of stream-
flow data could greatly enhance these datasets. No water-
quality data exists for tributaries in the area north of Rangely,
Colo., where extensive energy development has occurred in a
complex geologic setting.

Analytical data gaps were identified in several constitu-
ent groups in the White River Basin. Owing to the amount
of natural gas development and the potential for naturally
occurring sources of BTEX, a synoptic sampling of BTEX at
surface-water sites and springs could provide useful baseline
information to better understand BTEX concentrations in the
White River Basin, specifically in the Piceance and Yellow
Creek drainage areas. Trace elements were collected at a
few sites, mostly on tributaries (Piceance Creek), thus limit-
ing the ability to understand occurrence, concentrations, and
load. Selenium is identified on the 303d list for Black Sulphur
Creek and Flag Creek (table 2), both tributaries to the White

River. However, sufficient data were not available at either site
to obtain an understanding of the sources or sinks of selenium
in the area. Furthermore, neither site has continuous stream-
flow to enable calculation of loads. Sediment is identified on
the 303d list for Douglas Creek and West Evacuation Creek
(table 2), but water-quality and quantity data are not currently
being collected on Douglas Creek or West Evacuation Creek.

Colorado River Basin

Data collection has occurred at numerous sites through-
out the Colorado River Basin (fig.14). The spatial and tempo-
ral continuity of these data efforts are often inconsistent. An
attempt to calculate loads in the Colorado River Basin resulted
in only 13 of the 179 sites meeting the criteria for trend analy-
sis. Limited data were available for field properties, major
ions, nutrients, and trace elements on the main stem of the
Colorado River between Glenwood Springs and Cameo, Colo.
Limited data were available on Plateau Creek for nutrients and
trace elements. Urban growth, energy development, and land-
use change in the Colorado River Basin increases the need to
understand changes in water quality in the main stem and the
respective tributaries.

The main analytical data gaps identified in the Colorado
River Basin were nutrients and trace elements. The nitrate and
orthophosphate trend analysis demonstrated at the Colorado
River near the Colorado-Utah state line (09163500) is a down-
ward trend from 1990 to 2008. Nutrient data were collected
minimally upstream from 09163500 on the main stem of the
Colorado River, and data were not collected on the Gunnison
River (major tributary in the reach). Therefore, existing data
are not sufficient to identify the land-use change and sources
of the nutrient trends.

Iron loads decreased between 09095500 (Colorado River
at Cameo) and 09163500 (Colorado River near Colorado-
Utah state line), and further study is needed to understand iron
sources and sinks in this area. Selenium has been identified on
the 303d list for all tributaries to the Colorado River between
the confluence of the Roaring Fork and the Colorado River
downstream to Parachute Creek (fig. 1). These tributaries have
limited or no streamflow or water-quality data to complete
load or trend analysis. Sediment has been identified on the
303d list for Salt Creek and E.coli and total recoverable iron
for Adobe Creek (table 2, fig. 14). Salt Creek and Adobe Creek
are tributaries to the Colorado River, and water-quality and
water-quantity data are not being collected currently.

Lower Gunnison River Basin

There were 130 water-quality sites in the Lower
Gunnison River Basin: 17 sites had sufficient data for trends
analysis and 3 sites had sufficient streamflow data to cal-
culate loads (fig. 15). Other sites were not currently being
sampled, did not have sufficient data for analysis beyond
summary statistics and comparison to standards, or lacked
continuous streamflow.
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Geographic coverage of surface-water-quality sites in
the Lower Gunnison River could be enhanced to include more
tributaries. The majority of sampling has occurred near Delta,
Colo. Additional sampling of tributaries to the Gunnison River
could enhance the existing dataset. The only data for Surface
Creek and the North Fork of the Gunnison River were field
properties. Downstream from Delta, Colo., to the Gunnison
River near Grand Junction (09152500), no surface-water
quality data were available that could be used for trends or
loads. Additional measurement of streamflow at the majority
of these sites could greatly enhance the dataset and pro-
vide a more complete loading profile for the basin for any
constituent sampled.

Analytical data gaps were identified in several constitu-
ent groups in the Lower Gunnison River Basin. A total of 84
samples were collected for E. coli, and 17 samples exceeded
the recommended standard (app. 1). However, insufficient
data were available to do any trend analysis of E.coli. Almost
30 percent of the samples for total phosphorus in the basin
exceeded the recommended standard (app. 1), yet there
were insufficient data to do trend analysis at all but one site
(09152500) (table 5). A better understanding of nutrient levels
in the Lower Gunnison River Basin will not be possible with-
out additional nutrient sampling in the area. The same data gap
exists for trace elements. Only one site, Gunnison River near
Grand Junction, had sufficient data for trend analysis in iron.
There were exceedances in copper, total recoverable iron, lead,
zine, and selenium, yet data were insufficient to complete a
trend analysis or calculate load. Additional sampling is neces-
sary to understand the occurrence, concentrations, and loads of
these elements. Continuous streamflow data are necessary to
calculate loads for any of the constituents sampled.

Summary

Northwestern Colorado is experiencing changes in land-
use including urbanization, agriculture, and increasing energy
development and infrastructure. These land-use changes can
result in short- and long-term changes in the water resources
in the study area. Ongoing monitoring and assessment are
required to periodically reestablish our understanding of
baseline conditions and to detect changes. Substantial water-
resource datasets, publications, and other materials have been
developed in past years and can be used to assess baseline
conditions and to evaluate land-use effects. The U.S. Geological
Survey (USGS), in cooperation with Federal, State, county and
industry partners, developed a Web-accessible common data
repository to provide energy operators, researchers, consultants,
agencies, and interested stakeholders equal access to histori-
cal and current (as of August 2009) water-quality information
(available on the Internet at http://rmgsc.crusgs.gov/cwqdr/
Piceance/index.shtml).

The following is an alphabetical list of cooperators
involved in this study: Antero Resources, Bureau of Land
Management, Chevron Corporation, City of Grand Junction,
City of Rifle, Colorado Department of Agriculture, Colorado
Department of Natural Resources, Colorado Department
of Public Health and Environment, Colorado Division of
Wildlife-River Watch, Colorado Oil and Gas Conservation
Commission, Colorado River Water Conservation District,
Delta County, EnCana Oil & Gas (USA) Inc., Garfield County,
Gunnison Energy Corp, National Park Service, Natural
Soda, Inc., North Fork River Improvement Association,

Oxy Petroleum Corporation, Petroleum Development Corp,
Rio Blanco County, Shell Oil Company, Solvay Chemicals,
Town of Carbondale, Town of De Beque, Town of Palisade,
Town of Parachute, Town of Rangely, Town of Silt, Bureau

of Reclamation, U.S. Forest Service, West Divide Water
Conservancy District, and Williams Companies, Inc. These
data are analyzed to provide a baseline assessment of available
water-resource data and aid in the development of regional
monitoring strategies.

The Piceance study area is subdivided into three study
basin areas: the White River Basin, the Colorado River Basin,
and the Lower Gunnison River Basin. The White River Basin
is partially defined by the Piceance Structural Basin boundary
and begins roughly at the mouth of Coal Creek and extends
downstream to the White River at the Colorado-Utah state
border. The Colorado River Basin includes the drainage area
from Glenwood Springs to the Colorado-Utah state border.
The Gunnison River is the largest tributary to the Colorado
River in Colorado. The Lower Gunnison River Basin is only a
part of the entire Gunnison River Basin. The Lower Gunnison
River Basin for this study included the entire drainage area of
the North Fork of the Gunnison River and the drainage area
beginning slightly downstream from the Gunnison Tunnel on
both the Gunnison River and the Uncompahgre River.

The area of the White River Basin is 3,160 mi>. Land use
in the White River Basin is affected by oil shale and natural
gas development. Conventional and unconventional natural
gas extraction and the associated infrastructure are becoming
increasingly prevalent in this basin. The area of the Colorado
River Basin (study area) is 3,560 mi? and the area of the drain-
age area of the Colorado River upstream from the site at the
Colorado-Utah state border is 17,843 mi®. The economy of
the Colorado River Basin is dominated by agriculture, energy
development, industry, real estate development, tourism, and
recreation. The area of the Lower Gunnison River Basin is
2,700 mi% and the entire drainage area (measured from where
the Gunnison River enters the Colorado River) is 7,900 mi?.
A primary concern of water managers in the Lower Gunnison
River Basin is the presence of salinity and selenium in the
surface water as a result of irrigated agriculture. The complex
geology, combined with various land-use types such as irriga-
tion and residential development, can influence water-quality
conditions in the Lower Gunnison River Basin.



Data were summarized to identify available data and
evaluate temporal and spatial patterns in the Piceance study
area. The report contains data summaries, comparison to
water-quality standards, trend analysis, a generalized spatial
analysis, and a data-gap analysis for select water-quality prop-
erties and constituents. Gaps in available data were identified
from these analyses and are provided in this report. A reposi-
tory of available water-quality data was compiled from local,
State, and Federal agencies and private entities (consulting
firms, energy, and mining companies). The data repository
contained 1,433 surface-water sites, 45,008 samples, and
1,144,808 water-quality results from 1931 to 2009. A subset of
surface-water-quality data from the repository was compiled,
reviewed, and checked for quality assurance for this report.

Summary statistics and comparison to standards were
provided for 347 sites for 33 constituents including field
properties, nutrients, major ions, trace elements, suspended
sediment, Escherichia coli, and BTEX (benzene, toluene, eth-
ylbenzene, xylene). Data from the study area were compared
to the Colorado Department of Public Health and Environment
and U.S. Environmental Protection Agency standards and rec-
ommendations to guide interpretation of surface-water quality,
evaluate spatial patterns, and obtain a broad understanding of
water-quality conditions across the study area. When sufficient
data were available, trends over time were analyzed and loads
were calculated for those sites where there were also continu-
ous streamflow data.

Summary statistics and water-quality exceedances are
discussed by basin to provide a general overview of water
quality. The collection of field properties is an important
component to all water-quality sampling in order to properly
characterize water-quality results. The majority of sites had
information on field properties. For the entire study area,

316 sites had temperature data collected between 1959 and
2009. There were 326 values out of a total of 32,006 values
in the study area that exceeded the aquatic-life standard for
daily maximum water temperature. For the entire study area,
196 sites had dissolved-oxygen data collected between 1970
and 2009. Median dissolved-oxygen concentrations ranged
from 6.8 to 11.2 mg/L. There were 185 concentrations that
exceeded the dissolved oxygen aquatic-life standard out of a
total of 11,248 values in the study area. For the entire study
area, 276 sites had pH data collected between 1958 and
2009. Median pH values ranged from 7.5 to 9.0. There were
241 values out of a total of 16,307 values that exceeded the
high pH standard in the study area, while there were 7 values
that were less than the low pH standard in the study area.
Nutrients within the study area were not well represented in
each basin and were often not being sampled currently. For the
entire study area, 62 sites had nitrate data collected between
1958 and 2009, and median nitrate concentrations ranged
from less than detection to 3.72 mg/L as nitrogen (N). The
maximum contaminate level for domestic water supply for
nitrate is 10 mg/L and was exceeded once in 3,736 samples.
Total phosphorus was collected at 113 sites between 1974
and 2009, and median total phosphorus concentrations ranged
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from less than detection to 5.04 mg/L. The USEPA recom-
mendation for phosphorus is less than 0.1 mg/L, and 1,469

of 4,842 samples exceeded this recommended standard in the
study area. Standards for major ions exist only for chloride
and sulfate. For the entire study area, 118 sites had chloride
and sulfate concentration data collected between 1958 and
2009. Median chloride concentrations ranged from 0.085 to
280 mg/L. There were 120 of the 8,817 chloride concentra-
tion samples that exceeded the chloride domestic water-
supply standard of 250 mg/L. Median sulfate concentrations
ranged from 4.57 to 15,000 mg/L. There were 1,111 of the
8,736 sulfate concentration samples that exceeded the sulfate
domestic water-supply standard of 250 mg/L. Trace elements
were relatively well represented both temporally and spatially
in the study area, though the number of trace element samples
per site was not typically enough to compute trends or loads
except for selenium. There were 127 sites that had dissolved
iron concentration data collected between 1961 and 2009, and
median iron concentrations ranged from less than detection

to 1,100 pg/L. The 30-day drinking-water standard for iron is
300 pg/L, and 203 samples exceeded the standard. Selenium
was the best represented trace element with selenium concen-
tration data collected at 197 sites between 1973 and 2009, and
median selenium concentrations range from less than detection
to 181 pg/L. The chronic aquatic-life standard of 4.6 ng/L for
selenium concentrations was exceeded in 899 samples, and
the acute aquatic-life standard of 18.4 pg/L for selenium was
exceeded in 629 samples.

Natural changes in precipitation and streamflow and
anthropogenic changes in nutrient sources (such as wastewater
treatment facilities, golf courses, urban runoff, agricultural
fields, and septic tanks) can influence nutrient concentrations
in streams throughout the study area. Upward trends in nitrate
and total phosphorus were detected in the White River Basin
at 09304200 (White River above Coal Creek near Meeker)
from 1990 to 2009 and 1991 to 2009, respectively. Downward
trends in DS were detected at 09163500 (Colorado River near
Colorado-Utah state line) from 1990 to 2009. Salinity control
work in the Colorado River Basin near Grand Junction might
have contributed to the downward trend. Field properties such
as water temperature, pH, and dissolved oxygen were tested
for trends over time. An upward trend in water temperature
was detected at the Gunnison River near Grand Junction
(09152500). There are limited trace element data except for
selenium in the Lower Gunnison River Basin. Concentrations
of trace elements, and more specifically selenium, are of con-
cern to water and land managers in the Lower Gunnison River
Basin because of the combination of geologic formations and
land use. Downward trends in selenium were detected at both
main-stem sites, from 1991 to 2009 at 09144250 (Gunnison
River at Delta) and from 1990 to 2009 at 09152500 (Gunnison
River near Grand Junction). High selenium concentrations
correlate with high salinity concentrations; thus, when salinity
control efforts are conducted in selenium-rich areas in the
Lower Gunnison River Basin, both salinity and selenium have
the potential to decrease.
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Spatial, temporal, and analytical data gaps were identified
in the study area. No water-quality data exist for tributaries
in the area north of Rangely, Colo., where extensive energy
development has occurred in a complex geologic setting. The
spatial coverage of sampling sites could be expanded in the
White River Basin by adding more tributary sites. Douglas
Creek has a drainage area of 425 mi?, and no water-quality or
quantity data are currently being collected at this site. Data
in the Colorado River Basin for all constituent groups were
limited on the main stem of the Colorado River between
Glenwood Springs and Cameo, Colo. Nutrient data were
minimally collected upstream from Cameo, Colo., on the main
stem of the Colorado River and were minimally collected on
the Gunnison River (a major tributary in the reach). Almost
30 percent of the samples for total phosphorus in this Lower
Gunnison River Basin exceeded the recommended standard,
yet there were insufficient data to do trends analysis in the
Lower Gunnison River Basin except at the Gunnison River
near Grand Junction site. Only one site had sufficient data for
trends analysis in iron (Gunnison River near Grand Junction).
Additional sampling is necessary to better understand the
occurrence, concentrations, and loads of these elements.
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Appendix 1. Summary of Surface-Water-Quality Data by Site, by Constituent,
Piceance Study Area, Western Colorado

The appendix is available in Excel format at the following URL:
http://pubs.usgs.gov/sir/2013/5015/appendix/appendix_1.xlsx.
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Appendix2. Model Coefficients and Statistical Diagnostics from Regression
Models Used for Trend Analysis in the Piceance Study Area, Colorado

The appendix is available in Excel format at the following URL:
http://pubs.usgs.gov/sir/2013/5015/appendix/appendix_2.xlsx.
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Zero-slope year

t* centered time value + t2* (centered time value)?

Time, in years

t* centered time value + t2* (centered time value)?
Zero-slope year

Time, in years

EXPLANATION
esmme Negative t coefficient

e Positive t coefficient

Appendix 3. Schematic diagrams of the model line without streamflow or seasonality terms to facilitate the determination of zero-
slope year, net trend direction, and direction of the trend before and after the zero-slope year. Appendix 3A illustrates net, downward
trends where quadratic term (t?) is either positive or negative, and appendix 3B illustrates a net, upward trend where quadratic term
(t?) is either positive or negative. (t, t?, and t*central value available in appendix 2; time, years from period of record available in tables
5, 6, and 7; centered time value = time — t*central value)
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Plates

Characterization and Data-Gap Analysis of Surface-Water Quality in the Piceance Study Area, 1959-2009
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Plates

Characterization and Data-Gap Analysis of Surface-Water Quality in the Piceance Study Area, 1959-2009
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Characterization and Data-Gap Analysis of Surface-Water Quality in the Piceance Study Area, 1959-2009
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Exceedances of water-quality standards for nitrate and phosphorus from appendix 1 in the Piceance study area, western Colorado.
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EXPLANATION
Site where one or more data values did not meet standard (for 30-day standards, site has one or more data values greater

than standard)

‘ Lead value greater than acute @ Zinc value greater than acute

A Copper value greater than

aquatic-life standard
@ Zinc value greater than 30-day

aquatic-life standard
(} Lead value greater than 30-day

acute aquatic-life standard
A Copper value greater than 30-day

chronic aquatic-life standard

for sculpin

chronic aquatic-life standard

chronic aquatic-life standard

X Selenium, greater than acute

M ironvalue greater than 30-day

Zinc value greater than 30-day

O

aquatic-life standard
X Selenium, greater than 30-day

water-supply standard
1 Iron, total recoverable, value

chronic aquatic-life standard

chronic aquatic-life standard

greater than 30-day chronic

aquatic-life standard

3

Exceedances of water-quality standards for copper, iron (total and dissolved), lead, zinc, and selenium from appendix 1 in the Piceance study area, western Colorado.

Plate 5.
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