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Abstract 

This report describes an approach for the assessement of 

upset resilience that is applicable to systems in general, 

including safety-critical, real-time systems.  For this work, 

resilience is defined as the ability to preserve and restore service 

availability and integrity under stated conditions of 

configuration, functional inputs and environmental conditions.  

To enable a quantitative approach, we define novel system 

service degradation metrics and propose a new mathematical 

definition of resilience.   These behavioral-level metrics are 

based on the fundamental service classification criteria of 

correctness, detectability, symmetry and persistence.  This 

approach consists of a Monte-Carlo-based stimulus injection 

experiment, on a physical implementation or an error-

propagation model of a system, to generate a system response 

set that can be characterized in terms of dimensional error 

metrics and integrated to form an overall measure of resilience.  

We expect this approach to be helpful in gaining insight into the 

error containment and repair capabilities of systems for a wide 

range of conditions. 
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1.   Introduction 

A research effort is underway to develop practical validation and verification (V&V) methods that can 

enable rigorous safety assurance for the next generation of aviation systems.  These systems are 

characterized by highly complex, large-scale, network-based distributed architectures with software-

implemented functionality and advanced computation and communication capabilities.  To meet the 

safety goals, these systems must be demonstrably robust with respect to system design and 

implementation errors, component degradations and failures, and partial system failures.  The V&V 

challenge is compounded by strong coupling of system components in the software and the hardware, as 

well as the need to consider unexpected and possibly malicious component behaviors [26].   

To support this research effort, verification approaches are being developed for robust distributed 

algorithms that support system redundancy management in a fault space with a wide range of severity.  A 

system architecture for safety-critical real-time applications must have the ability to mitigate the effects of 

internal component faults of varying severity [18].  A safety-critical system must have sufficient design 

fault tolerance to accommodate the more frequent uncorrelated random faults without malfunctions at the 

system services.  A robust system must also mitigate infrequent but more severe correlated faults that can 

exceed the system design assumptions, disrupt internal coordinated operation among the system 

components and propagate effects outward to the external service interfaces.  Analysis techniques will be 

developed for system designs intended to ensure continued safe operation in the presence of component 

misbehavior while simultaneously minimizing their adverse effects.  These techniques should enable 

designs with strongly assured safety properties under the weakest possible (i.e., least restrictive) 

assumptions in terms of the number and types of faults a system can handle.  

In this research context, a physical fault injection experiment was conducted in which a prototype 

implementation of an onboard data network for distributed safety-critical, real-time Integrated Modular 

Architectures (IMA) was exposed to a High Intensity Radiated Field (HIRF) environment in a mode-

stirred electromagnetic reverberation chamber [54, 87, 88, 90, 91].  The purpose of the experiment was to 

gain insight into the response of the system to a wide range of internal faults, including conditions that 

exceed the design safety margins.  There is special interest in examining the response to functional 

upsets, which are error modes that involve no permanent component damage, can simultaneously occur 

in multiple channels of a redundant distributed system and can cause unrecoverable distributed state error 

conditions [9, 29, 38].   

The fault injection experiment was divided in two parts.  The HIRF Susceptibility Threshold 

Characterization (HSTC) experiment was intended to identify and examine factors that determine the 

measured minimum HIRF field strength level at which a particular electronic System Under Test (SUT) 

begins to experience HIRF-induced interference to its internal operation (i.e., faults).  The results and 

lessons learned in the execution of the HSTC experiment are described in report [88].  The HIRF Effects 

Characterization (HEC) experiment was intended to assess the system response to functional system 

upsets.  Different system configurations were tested with variations on the communication data rate, the 

degree of redundancy, and the number of simultaneously irradiated components.  The objective was to 

characterize the effect of a HIRF environment on the behavior of the system and its components.  The 

characterization will consider the effects at the external system interfaces and at the interfaces of internal 

components.  Of special interest is determining the severity of component faults and assessing the 

robustness of the system to multiple simultaneous faults.  We would like to identify weaknesses in the 

design of the system and desirable features for more robust communication systems.  The test results are 

expected to contribute to the development of redundancy management mechanisms and policies for 

robust processing architectures.   
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This report describes the approach to assess the HEC-experiment fault effects at the interfaces of the 

system and its components.  We also expect that the approach will help us gain insight into the relation 

between the severity of internal faults and the propagated effects.  However, a thorough understanding of 

that relation is outside the scope of this assessment approach and will be the subject of future work using 

error-propagation system models to perform simulated fault injection experiments.   

The characterization of fault effects is based on the concept of resilience.  In [55], Laprie defines 

resilience as “the persistence of service delivery that can justifiably be trusted, when facing changes.”  In 

[59], Leveson states that resilience is often defined as “the ability to continue operations or recover stable 

state after a major mishap or event”.  We are interested in an objective and quantitative characterization of 

fault effects.  For this, we define a set of metrics to measure various dimensions of error manifestations.  

We also define composite metrics that integrate the error dimensions.  These metrics are described in 

detail in subsequent sections. 

This report is organized as follows.  The next section reviews background concepts that will be used 

later in this report.  This is followed by a description of the approach for the assessment of resilience.  

Severity metrics for faults and their effects are presented after that.  This report concludes with a 

summary of accomplishments and an overview of the plan to analyze the data collected in the HEC 

experiment.  The appendix has sketches of proofs showing that the newly defined error metrics satisfy the 

required mathematical properties. 

 

2.   Background Concepts 

This section is a review of concepts relevant to the presentation in later sections.  It covers the 

definition of a system, threats to achieving dependable service, the desired attributes for dependable 

systems, a brief description of the design process, and an overview of the concept of a metric, including 

the required mathematical properties.  

2.1.   System 

For our purpose, a system is an entity that consists of an arrangement of components and interacts 

with its environment (i.e., other entities and the natural physical world) at external interfaces to perform a 

specific function [4, 42].  The environment defines the boundaries of the system.  A system can be 

specified at various levels of abstraction (i.e., with varying amount of detail) in three domains: 

behavioral (i.e., in terms of the input-output response, without reference to implementation), structural 

(i.e., in terms of an interconnection of more primitive functional components, without reference to the 

external system-level function), and physical (i.e., in terms of physical components and physical 

characteristics, without reference to functionality).  A system viewed as a black box is described in the 

behavioral domain in terms of inputs and outputs and the relation between them.  In a white-box view of 

a system, the internal functional structure is visible and the system can be described in terms of the 

interaction among the components.  The structural description of a system is recursive in the sense that 

each component is itself a system with its own function and structure.  The recursion stops when a level is 

reached at which it is not possible, or of interest, to further decompose a component, and thus the 

component can be thought of as atomic or primitive (i.e., as a black box).  

A distributed computation system consists of a set of processing elements (or nodes) interconnected 

by a communication network [50].  The nodes communicate with each other by sending messages over 
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the network to exchange data and coordinate their actions in order to achieve a common functional goal.  

A system is said to be synchronous if it performs its function within finite and known time bounds; 

otherwise, the system is said to be asynchronous [42].  This concept applies both to computation and 

communication systems. 

The actions of a system are triggered by the events (i.e., changes in state [50]) of internal and external 

signals.  A time-triggered system is triggered (or driven) by the progression of a clock that generates a 

sequence of events equally spaced in time (i.e., the events are periodic and constitute a measure of 

elapsed physical time).  The most stringent time-related requirements for a computer system originate in 

applications involving the control of physical systems such as engines, airplanes, or industrial plants.  

These applications require sampling the state of the controlled process at regular intervals, followed by 

the computation and application of suitable control commands with strict timing constraints.  A 

distributed time-triggered system requires a clock synchronization mechanism to establish a common 

time base at the processing elements, which can then be used as the foundation for coordinated action to 

deliver the required system-level function [50, 86, 93]. 

The behavior of a system is its sequence of outputs in time [50].  The service delivered by a system is 

the behavior as perceived by its user [4].  A user is a system that receives the service.  In [72, 73], Powell 

defines a service as a sequence of service items, each characterized by a value (or content) and a time of 

observation.  A service item is correct if the existence of the item was actually specified and its value and 

time are within the specified set of allowed values and time interval for the service item.  In general, the 

specification of a service item depends on the history of inputs to the system.  The correctness of a service 

can be accurately judged by an omniscient observer that has complete knowledge of the sequence of 

service items that should be delivered according to the specification.  A real observer may have to rely 

on incomplete knowledge to derive expected (or acceptable) value and time sets for the service items. 

A system may deliver a single service to multiple users.  In this case, the service is defined as a 

sequence of replicated service items [72, 73].  This type of multi-user (or broadcast) service consists of 

a sequence of broadcast service items delivered to a set of users, with each broadcast service item 

consisting of a set of single-user (or simplex) service items, with one simplex item per user.  A broadcast 

service item is correct if all the simplex service items are correct and there is consistency (i.e., agreement 

or symmetry) between every pair of simplex items.  In the value domain, two types of agreement are 

possible: exact or approximate (i.e., inexact).  Two values are in exact agreement if they are exactly 

equal.  Approximate agreement is defined with respect to a specified error bound, such that two values 

are in approximate agreement if the difference between them is smaller than or equal to the error bound.  

In the continuous physical time domain, only the concept of approximate agreement is defined.  Two 

simplex service items are in agreement if their value and time elements are in agreement.  The selection 

of either exact or approximate value agreement in the specification of a broadcast item is dependent on 

the nature of the service being delivered. 

2.2.   Defects and Failures 

Next we review service failure terminology, categories and models. 

2.2.1.   Fault, Error, Failure 

The service delivered by a system can be either correct or incorrect.  A service failure event is a 

transition from correct to incorrect service [4].  A service restoration event is the transition from 

incorrect to correct service.  A service outage is an interruption in correct service delivery lasting from 
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the time of the failure to the time of service restoration.  For the purpose of this report, it is useful to 

model a service outage as an error burst, which is an incorrect subsequence of service items
*
.  The 

service is correct and said to be available before and after an error burst. 

The terms fault, error, and failure are used to describe a cause-and-effect relationship between 

undesired circumstances in the context of the hierarchical composition of a system.  Failure is assessed at 

the external interface of a system and is determined by deviations from the behavior expected according 

to the specification.  An error is a deviation from the intended value and/or timing of data somewhere in 

a system.  A fault is a defect in a system component that is the cause of errors.  A fault in a system 

corresponds to a failure of a component.  The fault, error, and failure terms facilitate the structured 

analysis of the failure characteristics of a system and the determination of failure causality chains from 

low-level components to higher-level components.  In a simple chain, the failure of a system is due to the 

presence of errors in it, which are caused by one or more faulty components that failed to deliver the 

intended service.  At this point, a faulty component can be seen as a failed system and the failure causality 

chain can be expanded by further exploring the hierarchical structure.  The chain ends when a component 

is reached beyond which no internal structure can be discerned or is of interest [4].   

2.2.2.   Fault Classification 

Faults can be classified according to a multitude of criteria.  Avizienis et al. [4] proposed a fault 

taxonomy based on the following classification criteria: phase of creation (either development or 

operations), system boundaries (internal or external defect), phenomenological cause (natural or human-

made), dimension (hardware or software defect), objective (malicious or non-malicious), intent 

(deliberate or non-deliberate), capability (accidental or incompetence), and persistence (permanent or 

transient).  Suri et al. [85] proposed the following fault classification criteria: activity (either latent or 

active, i.e., generating errors), duration (permanent or transient), perception (symmetric or asymmetric, as 

manifested at the service users), cause (random or generic, i.e., systemic), intent (benign or malicious, i.e., 

detectable or not by the users), count (single or multiple),  time of multiple faults (coincident or distinct), 

and cause of multiple faults (independent or common mode, i.e., same or different causes).   

For characterizing the resilience of a system, we prefer fault classification criteria more suitable to the 

analysis of system effects.  In general, a system is a recursive composition of (sub-)systems, and the main 

purpose of a system (as well as a sub-system) is to deliver a service to it users, which are other systems.  

The output service of a system is the input service of another.  Thus, we focus on fault classification 

criteria that characterize the service delivered by a component.  Our preferred service classification 

criteria are the following. 

� Correctness: Whether the service delivered is correct or incorrect. 

� Inline detectability: Whether a user can independently detect incorrect service.  If a user can detect 

input service errors using inline acceptance checks (e.g., coding, timing and reasonableness checks 

[42, 94]), then it may be able to take appropriate actions to prevent the propagation of the errors to 

its own computation. 

                                                           

 
*
 More precisely, an error burst is a sequence of service items in which the first and last are incorrect and there is 

not a subsequence of g or more correct service items within the burst [32].  An outage is preceded and followed by 

sequences of at least g correct service items.  The parameter g is the guard band of the burst, and its value may vary 

depending on the purpose  and specifics of the service failure analysis performed. 
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� Symmetry: Qualitatively, a service failure can be symmetric (i.e., all users receive the same 

service) or asymmetric (i.e., not all users receive the same service).  Quantitatively, we can count, 

for example, how many pairs of users observe the same failure manifestations and how many pairs 

disagree on their observations. 

� Persistence: Qualitatively, a service failure can be permanent or transient.  Quantitatively, the 

failure persistence has a specific duration. 

2.2.3.   Hybrid Fault Models 

For proper coordinated action, the processing elements of a distributed system must have a consistent 

view of the system state and the results of distributed computations.  The processing elements use 

distributed protocols to achieve and preserve valid agreement on the state and data [42, 61].  The 

Omissive-Transmissive Hybrid (OTH) fault model [5, 6, 89, 90, 93] defines a fault classification suitable 

for the analysis of distributed agreement protocols.  The OTH fault categories are defined as follows for a 

broadcast service item.   

� Correct Symmetric (CS): All users accept the same correct simplex service item. 

� Omissive Symmetric (OS): All users reject the service item. 

� Transmissive Symmetric (TS): All users accept the same incorrect simplex service item. 

� Strictly Omissive Asymmetric (SOA): Some users accept the same correct simplex service item 

and others reject the item.  

� Single-Data Omissive Asymmetric (SDOA): Some users accept the same incorrect simplex 

service item and others reject the item. 

� Transmissive Asymmetric (TA): The users have other patterns of disagreeing simplex service 

items. 

A user rejects a service items if the item is not received at all or the received item is detectably 

incorrect based on input error detection checks; otherwise, the user accepts a received service item.  In 

the OTH model, an incorrect item is omissive if it is detectable by the input acceptance checks at the user; 

otherwise, the item is transmissive.  Alternative equivalent terms for omissive and transmissive incorrect 

items are detectable and undetectable by input acceptance checks, respectively. 

Notice that a set of omissive items is symmetric irrespective of the actual content or timing of the 

items because symmetry in this case is assessed based on input unacceptability (i.e., error detectability).  

Also, notice that the SOA category divides the users into two subgroups, one CS and the other OS, so 

each is symmetric on its own.  Likewise, the SDOA category divides the users into TS and OS subgroups.  

Additionally, notice that a broadcast item is TA only if there is at least one pair of users that accepts 

disagreeing input items, which can be either one correct and one transmissive, or two transmissive items. 

The OTH fault model is complete in the sense that it covers all possible error patterns for a broadcast 

service item.  Furthermore, the fault categories are mutually exclusive and form a partition of the set of 

possible error patterns (i.e., the manifestations of any given service item fall under exactly one of the 

OTH categories).  Note that other fault-space partitions not based on the OTH model might be better 
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suited for a particular analysis being performed. 

A service outage consisting of multiple broadcast service items may have error manifestations under 

one or more OTH categories.  Often, a service outage is classified based on the worst-case error 

manifestation.  With respect to error severity, an incorrect item is considered to be worse than a correct 

item, an undetectable incorrect item is worse than a detectable one, and an asymmetric item is worse than 

a symmetric one.  Miner et al. [61] used the following classification for a hybrid fault model.   

� Good: The service is correct. 

� Benign: The service items are either correct or omissive symmetric. 

� Symmetric: The service items may be arbitrary (i.e., correct, omissive or transmissive) but all users 

receive the same service. 

� Asymmetric: The service items may be arbitrary and asymmetric. 

This classification has a failure semantics (i.e., failure mode) [16] order of increasingly severe 

behavior from Good to Asymmetric, and forms a constrained-behavior hierarchy such that an Asymmetric 

service includes Symmetric service, which in turn includes Benign, which includes Good service. 

2.3.   Attributes 

Next, we consider a series of system qualities that are related to and provide a context for the concept 

of resilience in a safety-critical real-time system.  Here the qualities of a system are defined in terms of 

the service it delivers. 

2.3.1.   Real-Time 

In a real-time (i.e., time-critical) system service, the correctness of the service is determined not only 

by the value of the service items, but also the time of delivery [50].  A hard real-time service must 

always deliver service items within the specified time interval, as there may be severe consequences on 

the users if this constraint is violated.  A soft real-time service may fail to deliver service items within the 

specified time constraint, but the utility of the item decreases when the constraint is violated [85].  Some 

systems have firm real-time service requirements in which infrequent timing constraint violations are 

tolerable but may degrade the quality of the service.  Some systems may be firm real-time with respect to 

the quality of the service, but hard real-time with respect to safety.  For these systems, the quality of the 

service degrades as the update delay increases beyond the firm timing constraint until the hard real-time 

constraint is reached, at which point safety is compromised.  This hard real-time delay threshold 

corresponds to the time-to-criticality
*
 of a system, which is the time interval between the occurrence of a 

failure and the user or environment reaching an unsafe state.  For example, Paulitsch et al. [69] and 

Pimentel [71] reference a design requirement of 50 ms maximum service outage duration for an 

automobile steer-by-wire system. 

                                                           

 
*
 Based on definition at http://www.faa.gov/library/manuals/aviation/risk_management/ss_handbook/ 

media/app_j_1200.pdf.  Accessed September 2, 2012. 
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2.3.2.   Reliability 

Reliability refers to the uninterrupted delivery of correct service [4].  Reliability is measured as the 

probability that correct service will continue for a time interval of specified duration and under stated 

conditions [50, 59].  The conditions can be physical environmental conditions (e.g., temperature, 

vibration, etc) in the case of a physical system, and include the configuration of the system, the functional 

input patterns and possibly the types and number of faults experienced by the system. 

2.3.3.   Recoverability 

Recoverability is the ability to restore correct service delivery after experiencing a failure.  Here we 

use the term recoverability to refer to the ability of a system to restore service on the fly.  This falls under 

the larger context of maintainability, which includes physical replacement and repair of system 

components.  For our purpose, recoverability is the complement of reliability and is measured as the 

probability that the service is restored within a specified time interval after the occurrence of a failure.  

Suri et al. [85, p. 5] ranked fault-handling strategies by their best achievable recovery-delay performance.  

In order of decreasing minimum recovery delay, these strategies are: diagnosis and reconfiguration 

policies, active and passive replication policies, and fault masking policies.   

2.3.4.   Availability 

In this report, we use the term availability to refer to the fraction of time that the delivered service is 

correct.  The availability of a service is a function of the reliability and recoverability.  Availability is 

highest when both reliability and recoverability are high, as in this case the service remains correct for 

long time intervals and is quickly restored after a failure occurs. 

2.3.5.   Integrity 

In a general sense, integrity is related to the concept of truthfulness.  Avizienis et al. [4] defined 

integrity as the absence of improper system state alterations.  A service item satisfies this condition when 

it is correct, or incorrect but detectable by the user.  Integrity is violated when the user accepts an 

incorrect service item.  In [69], Paulitsch et al. defined integrity as the probability of an undetected 

failure.  Service integrity is an important quality as it is related to the likelihood that the effects of a fault 

in a system will propagate and corrupt other systems. 

For distributed systems, proper coordinated action depends on consistency of state.  Integrity in a 

distributed system is violated when users expect to receive the same service but are actually delivered 

different services. 

2.3.6.   Safety 

Avizienis et al. [4] defines safety as the absence of catastrophic consequences on the user(s) and the 

environment.  In the IEC 61508 standard [41], safety is defined as freedom from an unacceptable 

combination of the probability of the occurrence of injury or damage to people, equipment or the 

environment, and the severity of the occurrence.  Kopetz [50] defines safety as the probability that a 

system will survive for a given time interval without a critical failure mode (i.e., a failure mode that can 

lead to catastrophic consequences), and thus, in this sense, safety is reliability regarding critical failure 

modes.   
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For a safety-critical real-time system, safety requirements can be stated in terms of system functional 

quality attributes related to two basic service failure modes: loss of function (i.e., passive failure) and 

malfunction (i.e., active failure) [99 - 102].  The system safety requirements can be expressed in terms of 

the availability and integrity of the service delivered to the users.  Unavailability of the service with 

preserved integrity is a passive failure that may not be catastrophic if service can be restored before the 

time-to-criticality.  An integrity violation corresponds to an active failure and is considered (or assumed 

to be) immediately unsafe (i.e., catastrophic).  The ability to suppress incorrect service items at the source 

and to detect incorrect service items at the users are critical determining factors of safety. 

2.3.7.   Robustness 

Siewiorek et al. [80] defines robustness as the ability of a system to identify and handle errors (at the 

functional inputs or internal to the system) of varying severity in a consistent and predictable manner.  

Kopetz in [50] states that a system is robust if the severity of the consequences of a fault is inversely 

proportional to the probability of fault occurrence (i.e., frequent faults have less severe effects on service 

quality than infrequent faults).  Bishop et al. [11] considers a system to be robust if it resists a wide range 

of attacks (i.e., faults) and operational conditions without significant service degradation, but may not 

have the ability to restore lost functionality (i.e., service quality).   

The main aspect of interest to us relative to system robustness is the assessment of service quality over 

a wide range of operational conditions (including number and severity of internal faults).  Under these 

conditions, a service is robust if it satisfies Kopetz’s criterion for robustness (i.e., severity of effects is 

inversely proportional to the frequency of the fault).  In general, robustness does not imply ability to 

recover the service, but recovery may be essential for safety-critical real-time systems in order to satisfy 

Kopetz’s criterion. 

2.3.8.   Survivability 

A survivable system has the ability to continue to operate, possibly with highly degraded service, even 

under severe conditions.  In essence, a survivable system may be easily degraded but nearly impossible to 

disable completely [11].  A survivable system may have the ability to effect some degree of recovery, but 

this is not essential. 

2.3.9.   Resilience 

A resilient system may experience degraded operation due to faults, but will eventually recover.  In 

[55], Laprie defines resilience as “the persistence of service delivery that can justifiably be trusted, when 

facing changes.”  Trivedi et al. [96] states that “resilience deals with conditions that are outside the design 

envelope” and, in general, refers to the ability of a system to resist and recover from shock or strain.  In 

[59], Leveson states that resilience is often defined as “the ability to continue operations or recover stable 

state after a major mishap or event”.  Bishop et al. [11] states that “a resilient system is effectively a 

survivable system that is capable of restoring not only its performance level back to desirable levels, but 

also the capacity of the system itself to recover, maintaining its ability to sustain future attacks or 

failures.” 

From our perspective, resilience describes the ability of a system to mitigate the effects of component-

level service degradations.  A system is resilient to faults if its service quality is hard to degrade and 

quality is restored after the fault condition has subsided.  For safety-critical real-time systems, availability 

(in terms of reliability and recoverability) and integrity are the most significant measures of service 
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quality.  Therefore, for safety-critical real-time systems, we define resilience as the ability to preserve and 

restore service availability and integrity under stated conditions. 

2.4.   Fault Hypothesis 

Depending on the application (e.g., commercial transport aircraft, manned military aircraft, 

autonomous vehicles, engine controls), the probability requirement for critical failure modes of safety-

critical systems may be in the range of 10
-6

 to 10
-10

 per hour [50, 52, 53].  Given that electronic 

components (e.g., chips, circuit boards, computer modules) have failure rates on the order of 10
-4

 to 10
-6

 

per hour [50, 52] with failure modes that can be difficult or impossible to characterize [17], physical 

redundancy and suitable redundancy management mechanisms are necessary to meet system safety 

requirements regarding failure modes and rates.   

The first major step in the design of a fault-tolerant system is the specification of the fault hypothesis 

(or fault assumptions) [50].  The fault hypothesis specifies a partition of the system into fault 

containment regions (FCR), which are components assumed to experience defects with a high degree of 

independence (in a probabilistic sense) [49, 52, 53, 65 - 67].  This implies that whatever causes a defect in 

an FCR is unlikely to coincidentally also cause a defect in another FCR, and that a defect in an FCR is 

unlikely to cause a defect in another FCR (i.e., a fault cascade).  Thus, the FCRs are the basic units of 

failure in a system [50].  The fault hypothesis states the expected FCR failure modes and rates, as well as 

the maximum number of simultaneously failed FCRs that the system may experience in operation [50, 72, 

73, 85].  (Note that the fault hypothesis is a way of specifying part of the “stated conditions” in the 

definition of system reliability, with other parts being the functional inputs and the configuration of the 

system.)    

The system is designed to meet the functional and service quality requirements while handling the 

fault space defined by the fault hypothesis.  The operational fault-handling effectiveness of a system 

depends on two basic factors: the fault-assumption coverage (i.e., the probability that actually occurring 

faults are within the assumed fault space) and the fault-handling coverage (i.e., the probability that 

assumed faults are properly handled by the system) [4, 72, 73].  Thus, the design development is an 

iterative optimization process involving refinements to the fault hypothesis and the fault handling strategy 

and mechanisms.  Usually, the fault modes and rates of non-redundant, primitive system components are 

fixed as determined by the implementation technology.  The component fault rate is a determining factor 

in the amount of redundancy needed to satisfy the system service availability requirement, and the fault 

modes (i.e., failure semantics) influence the amount and organization of redundancy to satisfy the 

integrity requirement [5, 6, 52, 72, 73].  In general, to satisfy particular availability and integrity 

requirements, higher fault rates necessitate increased redundancy, and less constrained fault modes 

demand increased redundancy and more complex organization.  However, using redundancy in hardware, 

software, time and/or information domains [43], it is possible to define higher-level structural components 

with less severe (i.e., safer) failure-mode rate profiles [16].  This approach increases the complexity of 

these higher-level components in exchange for easier-to-handle failure modes, which enables a simpler 

high-level system design.  Examples of this include Honeywell’s SAFEbus with self-checking-pair 

components [17], Airbus’ Command-Monitor (COM-MON) computers [13, 94, 95], and the Boeing 777 

primary flight computers with triple internal redundancy in a command-monitor-standby configuration 

[99 - 102].  The design of the B777 flight computers shows that it is possible to constrain the failure-

mode rates of high-level components while preserving their availability. 

The fault hypothesis divides the fault space into normal and rare fault regions (or subsets) based on 

assumed FCR failure rates [50].  (These regions are also labeled, respectively, expected and unexpected, 
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or credible and non-credible.)  A primary system design goal is to achieve fault-handling coverage as 

close as possible to 100% for normal faults.  To mitigate the risk of a fault assumption violation, the 

system fault-handling design should also cover a significant percentage of the most likely fault scenarios 

in the rare-fault region.  Ideally, a robust system should have fault-handling coverage that is proportional 

to the probability of occurrence of fault scenarios.  An example of a fault-handling robustness approach is 

the never-give-up operational strategy of the Boeing 777 primary flight control computer (PFC), which 

required a high probability that the PFC would continue operating as long as there were known good 

resources and that it would recover from temporary failures [85, p. 12].  According to Kopetz [49], in a 

properly designed system, a likely scenario for a fault-hypothesis violation is a transient correlated failure 

of multiple FCRs.  For such scenarios, a robust safety-critical real-time system should recover to an 

operational state with high probability.  The ability of a system to recover from any arbitrary state is 

called self-stabilization [1, 3, 33, 34]. 

2.5.   Measurements and Metrics 

Measurement is the process of determining the amount (i.e., degree, size or extent) of some property 

present in an entity.  There are four basic scales of measurement [83]: nominal, ordinal, interval, and 

ratio.  A nominal scale defines categories (or classes) of the property of interest in terms of exemplars 

and/or descriptions of membership in a category.  A measurement on a nominal scale simply assigns a 

category by determining equality with members of the category.  An ordinal scale adds a ranking 

relationship between nominal categories such that it is now possible to compare the amount of the 

property of interest in any two categories and determine which is greater.  An interval scale defines the 

difference (or “distance”) between any two entities in their amounts of the property of interest.  This 

requires the definition of a unit of measurement, which is an accepted or standard amount such that any 

quantity of the property of interest can be expressed as a multiple of it.  In an interval scale, the definition 

of the zero amount point is arbitrary or by convention, and therefore, the ratio between numbers on an 

interval scale is meaningless.  A ratio scale introduces the concept of an absolute zero.  A ratio scale is 

the kind commonly used in physics and engineering, and requires the definition of the four relations: 

equality, rank, difference, and ratio. 

A metric is a mathematical function that defines, for every pair of elements in a set, how far apart the 

elements are from each other (i.e., the distance between the elements) [36].  Thus, a metric is defined on 

an interval scale with a suitable unit of measurement.  Let x, y, and z denote elements in a set S, and let d 

denote a function defined on the set S.  Function d is a metric if it satisfies the following properties. 

• Non-negativity: d(x, y) ≥ 0 

• Symmetry: d(x, y) = d(y, x) 

• Identity of Indiscernibles: d(x, y) = 0 if and only if x = y 

• Triangle Inequality: d(x, z) ≤ d(x, y) + d(y, z) 

 

3.   Resilience Assessment Approach 

We have defined resilience in safety-critical real-time systems as a measure of the ability to preserve 

and restore service availability and integrity under stated conditions.  The statement of conditions 
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specifies the system configuration and the functional inputs, as well as the threats to the delivery of proper 

system service.  These threats may be described as fault conditions occurring internal to the system, or as 

external environmental conditions (e.g., HIRF, lightning, high-energy particle radiation, power system 

transients, etc) that may cause faults in the system.  In what follows, we treat the configuration and 

functional inputs as given, and we focus on the relation between the threat conditions and the quality of 

delivered services.   

The system can then be viewed from a stimulus-response (i.e., cause and effect) perspective (see 

Figures 1 and 2).  The threat conditions specify the stimulus space, which is a subset of all possible 

system threat patterns.  A disturbance is an external system stimulus that may cause a perturbation, 

defined here as an internal fault condition in the form outages on the services provided by the 

components.  Alternatively, we can skip the specification of the disturbance and specify the stimulus as a 

perturbation.  The effects of a perturbation (i.e., errors) may propagate throughout the system and reach 

the external functional interface, thus causing an outage on the external system service, which we refer to 

as a disruption.  The response space is the set of system disruptions resulting from the application of the 

stimulus space.   

Figure 1: Stimulus-Response System Model 

As Figure 2 suggests, for a given perturbation, the severity of the disruptions is determined by the 

error propagation characteristics of the system.  Thus, from this perspective, resilience can be defined as 

the ability to contain the propagation of internal errors and to repair propagated errors.  Note that these 

two aspects of resilience (i.e., containment and repair) correspond to the two key system attributes of 

integrity and availability. 

Figure 2: Stimulus-Response Chain 

For a quantitative system resilience analysis, the disturbance, perturbation and disruption spaces may 

be described in terms of probability distributions (PDs) of random variables whose values correspond to 

the severity of occurrences (i.e., items, events or instances) in these spaces.  Figure 3 illustrates the use of 

PDs to describe the spaces in the stimulus-response chain.  To enable the use of such distributions in 

analyses, we need to define severity metrics for the occurrences in each space.  Report [87] offers a 
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simple occurrence severity model for a HIRF disturbance.  For perturbations and disruptions, we use the 

concept of corruption, which we define as the amount of error in a service outage.  Sections 4 and 5 in 

this report present our proposed corruption metrics for disruptions and perturbations.  Given a stimulus 

probability distribution, we can perform a stimulus injection experiment (e.g., a Monte Carlo experiment) 

to generate a response set, for which we can then compute the probability distribution.   

Figure 3: Description of spaces in the stimulus-response chain using probability distributions 

If we have a PD-based description of a space, we can compute basic statistical measures like 

percentiles (e.g., minimum, median, maximum and quartiles) and averages (e.g., mean, standard deviation 

SD, and root-mean-square RMS) to characterize the distribution.  Note that a PD-based description of the 

spaces in the system stimulus-response chain is, in effect, an abstract system description that is suitable 

for quantitative comparison of system quality attributes for different systems or the same system under 

different conditions. 

Our preferred statistical measure for these error or error-inducing spaces is the RMS value of the 

distribution.  The RMS value of a space (i.e., a set) described by the probability distribution of the 

severity of occurrences is defined as follows.  We consider the case of a discrete-valued severity range, 

but the description is similar for a continuous range, using an integral instead of a summation.  Let λ be 

the index of the severity levels in the space, with 0 ≤ λ ≤ λmax, and let sλ and pλ denote the magnitude and 

probability of the λ-th severity level.  The RMS severity Srms is given by: 

The RMS value has the interesting property that it can be expressed in terms of the mean Smean and 

standard deviation SSD as follows: 

The reason we prefer the RMS value to the mean is that if we compare two distributions with the same 

mean, the one with the largest dispersion as measured by the standard deviation has a larger proportion of 

occurrences at higher severity levels.  Intuitively, we consider that distribution to have a higher aggregate 

degradation severity, and we want our statistical measure to reflect that.  The RMS value is a more 

conservative measure of the occurrence severity distribution than the mean.  Of course, a single measure 

is usually not an adequate characterization of a distribution, and we should always consider the other 

statistical measures, including averages and percentiles. 

Probability 

 

Severity 

 

Disturbance Space 

Severity 

 

Perturbation Space 

Severity 

 

Disruption Space 

FCRs System 

Structure 

Probability 

 

Probability 

 

2
SD

2
mean

2
rms SSS +=

∑
=

⋅=
max

0

2
rms spS

λ

λ
λλ



 

 

 

 

13 

Let sλmax (= smax) denote the highest disruption severity.  We define the RMS severity of the disruption 

space as the RMS corruptibility Qrms of a system for a given stimulus space.  Q is an aggregate measure 

of the deterioration in system service quality due to the disturbance or perturbation stimulus.  That is the 

opposite of resilience.  Thus, we define the RMS resilience Rrms as the complement of corruptibility: 

Rrms + Qrms = sλmax          (1) 

We normalize the severity scale to simplify the interpretation of these measures.  The normalized 

RMS corruptibility and resilience, denoted qrms and rrms , are given by: 

qrms = Qrms/sλmax          (2) 

rrms = Rrms/sλmax = (sλmax - Qrms)/sλmax        (3) 

Equation (1) then becomes: 

rrms + qrms = 1          (4) 

The following sections describe our proposed disruption and perturbation severity metrics. 

 

4.   Service Disruption Metrics 

We seek meaningful measures for the amount of error in a service disruption, which is an error burst 

consisting of a sequence of one or more service items, some of which are in error.  We would like the 

error measures to be useful in error propagation analyses, especially for synchronous distributed systems, 

where the validity and agreement of the data and state are paramount [61, 93].  Based on our system 

analysis experience, the OTH fault model is defined at a suitable level of abstraction for service items [61, 

89, 93].  Thus, in accounting for service errors, we choose the service item as the lowest level of 

granularity and we abstract out the service item dimensions of value and time.  Furthermore, for a single-

user service, the OTH model describes a service item based on two criteria: correctness and detectability.  

For a multi-user service, the OTH model for a broadcast service item adds the dimension of symmetry for 

the classification of error patterns.  To describe an error burst, we also need to consider the dimension of 

persistence (i.e., duration) of the burst.  The selected strategy to measure the disruption error is to define a 

separate dimensional-error metric for each of these criteria and then properly combine the dimensional 

metrics to form a composite total-error metric.  Note that depending on the purpose of a particular 

resilience analysis being performed, the disruption error may be measured in terms of one of the basic 

dimensional errors or some function of these. 

We assume a synchronous user model by which the timeline is partitioned into a complete set of 

mutually exclusive time intervals such that there is exactly one item expected for each interval.  The range 

of each time interval coincides or extends beyond the correct time range of the corresponding service 

item.  In the case of a multi-user service, all the users are assumed to have perfect mutually synchronized 

time intervals.  This model accounts for errors in which the number of items a user receives in a time 

interval is fewer or greater than expected.  In the assumed user model, such errors are allocated to the 

expected service item. 
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4.1.   Single-User Service Item 

Figure 4 illustrates the model for a single-user service.  With respect to correctness, a delivered 

service item at the user can be either correct or incorrect.  With respect to detectability by the input 

acceptance check, the item can be either detectable or undetectable.  As shown in Figure 4, a service item 

x can be expressed in terms of correctness xC and detectability xD “coordinates”, both of which are 

Boolean variables.  To quantify the values in each of these dimensions, we use the same basic idea as in 

the Hamming distance [98], where the unit of measurement is a disagreement (≠) between values.  This 

way the distance between correct and incorrect is assigned the numeric value of 1, and the distance 

between detectable and undetectable is also 1.  Let dC’(x, y) and dD’(x, y) denote the distance between 

items x and y in the dimensions of correctness and detectability, respectively, assuming independence 

between the dimensions.  Table 1 shows the values of dC’ and dD’ for all possible combinations of 

correctness and detectability.   

Figure 4: Single-user service model with correctness and detectability dimensions 

 

Table 1: Correctness and detectability distance functions for single-user service items assuming dimensional 

independence 

xC yC dC’(x, y)  xD yD dD’(x, y) 

T T 0  T T 0 

T F 1  T F 1 

F T 1  F T 1 

F F 0  F F 0 

 

In theory, the correctness and detectability dimensions of the model can be independent, but in 

practice, a correct item should not be declared invalid by the input acceptance check as that effectively 

reduces the availability of the system.  Here we assume that the acceptance check never invalidates a 

correct service item (i.e., no false-positives).  However, it is not always possible to achieve perfect inline 

detectability, which means that some incorrect items may not be detectable (i.e., possible false-negatives).  

This is related to the trade-off between correctness and completeness in system diagnosis, where a 

correctness-biased diagnosis policy will not declare bad any good component but may have to allow some 

bad components to be declared good, whereas a completeness-biased diagnosis policy identifies all bad 

components but may also declare bad some components which are actually good [93, p. 27].  Therefore, 

in effect, our service model assumes a correctness policy for input acceptance checks. 

To measure the total service-item error for correctness and detectability, we need to consider the 

interaction between these dimensions taking into consideration the above discussion.  In particular, a 

correct item must not be said to have an error in the detectability dimension.  An incorrect item may be 
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either detectable or undetectable.  Thus, there are only three outcomes for a service item: correct (denoted 

C), detectable incorrect (D), and undetectable incorrect (U).  Let dC(x, y) and dD(x, y) denote the distance 

between items x and y in the dimensions of correctness and detectability, respectively, with dependence 

between the dimensions.  dCD(x, y) denotes the correctness-and-detectability distance between items x and 

y.  The value of dCD is the sum of the distances in the correctness and detectability dimensions (i.e., the 

Manhattan Distance). 

dCD(x, y) = dC(x, y) + dD(x, y)        (5) 

Table 2 shows the values of dC and dD for all combinations of x and y.  Note that in order to 

accommodate the dependence between the dimensions, we set dD(C, D) = 0 despite the fact that C is not 

detectable while D represents a detectable item.  This is justified by the fact that there is no misdetection 

for either C or D.  

Table 2: Correctness and detectability distance functions for single-user service items with dimensional dependence 

x y dC(x, y) dD(x, y) dCD(x, y) 

C C 0 0 0 

C D 1 0 1 

C U 1 1 2 

D D 0 0 0 

D U 0 1 1 

U U 0 0 0 

 

To measure the total amount of correctness and detectability error, we define C as the zero-error 

reference item.  Let eC and eD denote the correctness and detectability dimensional errors, respectively, 

which are defined as follows.   

eC(x) = dC(x, C)          (6) 

eD(x) = dD(x, C)          (7) 

Then the total correctness-and-detectability error, denoted eCD, is given by the following expression. 

eCD(x) = eC(x) + eD(x) = dCD(x, C)        (8) 

Table 3 breaks down of correctness and detectability error for a single-user service item.  Notice that 

the case of correct and detectable is assumed not to occur.  Also, notice the correspondence between the 

combination of correctness and detectability and the attributes of availability and integrity.  Specifically, 

an item is available if it is correct, and it has integrity if it is either correct or detectable incorrect.  An 

undetectable incorrect item has a total error count of 2 because it is both incorrect and undetectable. 

Table 3: Correctness and detectability errors for a single-user service item 

xCD xC xD Availability Integrity eC eD eCD = eC + eD 

-- T T F T 0 1 (1) 

C T F T T 0 0 0 

D F T F T 1 0 1 

U F F F F 1 1 2 
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From Table 3, it is easy to see that the following relations are valid.  The proofs are given in Appendix 

A. 

dC(x,y) = |eC(x) - eC(y)|         (9) 

dD(x,y) = |eD(x) - eD(y)|         (10) 

dCD(x,y) = |eC(x) - eC(y)| + |eD(x) - eD(y)|       (11) 

dCD(x,y) = |eCD(x) - eCD(y)|         (12) 

4.2.   Multiple-User Service Item 

For multi-user service, we must account for the error in the dimension of symmetry among the 

simplex items.  The total error, then, includes the dimensions of correctness, detectability and symmetry.   

We begin by defining the error for the dimensions of correctness and detectability using the concepts 

in the definition of error for a single-user service item.  We then define the symmetry error for 

approximate and exact agreement.  Finally, we define the total error as a combination of the dimensional 

errors. 

4.2.1.   Correctness and Detectability 

We use the letter n to denote the number of service users.  A multi-user service item X is a vector of 

simplex service items denoted by xi for 1 ≤ i ≤ n.  Thus:  

X = (x1, x2, …, xn) 

In the correctness and detectability dimensions, the distance between two multi-user items X and Y is 

given by the sum of the distances between respective elements. 

dC(X, Y) = dC(x1, y1) + … + dC(xn, yn)       (13) 

dD(X, Y) = dD(x1, y1) + … + dD(xn, yn)       (14) 

The total correctness-and-detectability (CD) distance is also given by the sum of the distances between 

the elements. 

dCD(X, Y) = dCD(x1, y1) + … + dCD(xn, yn)       (15) 

The correctness and detectability dimensional errors of service item X are given by the sum of the 

errors of its elements: 

eC(X) = eC(x1) + … + eC(xn)         (16) 

eD(X) = eD(x1) + … + eD(xn)         (17) 
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The total CD error is given by: 

eCD(X) = eCD(x1) + … + eCD(xn)        (18) 

A multi-user service item X in the correctness and detectability model can be expressed as vector XCD 

= (x1,CD, x2,CD, …, xn,CD).  Because the correctness-and-detectability error is commutative, the order of the 

elements in XCD is not significant in the computation of eCD.  Based on this, XCD can expressed using the 

following compact notation, with b + p + w = n. 

XCD = C
b
D

p
U

w
          (19) 

Therefore, eCD(X) can also be expressed as follows.   

eCD(X) = [b⋅eCD(C)] + [p⋅eCD(D)] + [w⋅eCD(U)] = p + 2w     (20) 

4.2.2.   Symmetry 

Approximate agreement and exact agreement have fundamentally different relational structures.  In 

defining the symmetry error for a multi-user service item, we must consider these structures in defining 

the “amount of error”.  Thus, we define separate error functions for each type of agreement.   

For both approximate and exact agreement we assume that all correct simplex items are in mutual 

agreement (i.e., any C is in agreement with every other C and C
n
 is symmetric), all detectable incorrect 

items mutually agree (i.e., any D is in agreement with every other D and D
n
 is symmetric), and detectable 

incorrect items are in disagreement with all other kinds of items (i.e., Ds do not agree with Cs nor Us).   

4.2.2.1.   Approximate Agreement 

Figure 5 illustrates the pair-wise approximate agreement relations for n = 4.  In general, there are a 

total of n(n + 1)/2 pair-wise (i.e., binary) relations that define the agreement pattern for an n item set.  In 

Figure 5, a link represents agreement between the pair of connected items.  The graph is fully connected 

for a symmetric set.  An asymmetric set has one or more missing links.   

Figure 5: Examples of symmetric and asymmetric approximate-agreement patterns for n = 4 

However, the links in Figure 5 may not be independent.  To see this, consider the concept of 

approximate agreement for a set of n items in which each item is mapped to a point on a number line, 

which can be either integer or real valued.  The items can thus be sorted by increasing magnitude.  A pair 

of items is in agreement if their distance on the line is smaller than or equal to a specified bound, denoted 
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ε.  Figure 6 illustrates the pair-wise agreement relations when the individual items are placed in order on a 

number line.  A link between nodes i and j is denoted li,j.  The set of all possible links, denoted  L, is given 

by: 

L = {li,j , 1 ≤ i ≤ n, 1 ≤ j ≤ n, i ≠ j } 

This set is composed of all links between first (i.e., immediate) neighbors, all links between second 

neighbors, and so on, with the last link being between the nodes at the extreme ends.  On a number line, a 

link li,j is said to cover link lk,m if the segment from k to m is included in the segment from i to j.  Notice 

that if a link is missing (e.g., l1,2), then all longer links that cover the missing link are also missing (i.e., l1,3 

and l1,4).  This corresponds to the property that, if items 1 and 2 disagree, then all items at or to the left of 

1 disagree with all items at or to the right of 2.  This property does not apply in the opposite direction 

from longer links to covered shorter links.  For example, if l1,3 is missing, l1,2 and l2,3 may still be present. 

Considering these agreement graphs, we can think of two different approaches to measure the 

symmetry distance between two multi-user service items.  One approach is to focus on the individual 

links as independent units of symmetry and define the symmetry distance between two multi-user items 

as the number of agreement links in which they differ.  For example, patterns (b) and (c) in Figure 6 differ 

in links l1,2, l1,3, l3,4, and l2,4, so the distance between the graphs is 4.  The second approach is to focus on 

the clusters of fully connected subsets of individual items and compare different multi-user items based 

on the relative size of their clusters.  In Figure 6, graph (a) has a single 4-item cluster, and both graphs (b) 

and (c) have clusters of size 3 and 1.  Comparing cluster sizes we can say that graph (a) has a greater 

degree of symmetry and graphs (b) and (c) have equal symmetry, but it is not obvious how to define the 

distance between the patterns.  We address these two symmetry-distance approaches separately. 

Figure 6: Examples of approximate-agreement patterns on a number line for n = 4 

4.2.2.1.1.  Link-based Distance 

We define li,j to be a Boolean variable that is TRUE (T) when node i is in approximate agreement with 

node j, and FALSE (F) if otherwise.  L can then be represented as a Boolean vector L = (… , li,j, …).  To 

define the link-based symmetry distance between two multi-user service items X and Y, we again borrow 
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the basic idea used in the definition of the Hamming distance.  We specify the unit of link-based 

symmetry distance as a disagreement (≠) between corresponding links in X and Y.  Link li,j in X and Y is 

denoted lX,i,j and lY,i,j, respectively.  dS(lX,i,j, lY,i,j) denotes the symmetry distance between items X and Y 

with respect to link li,j, such that dS(lX,i,j, lY,i,j) = 1 if lX,i,j ≠ lY,i,j and dS(lX,i,j, lY,i,j) = 0 if lX,i,j = lY,i,j.  The 

symmetry distance between X and Y is given by: 

dS(X, Y) = ∑i,j dS(lX,i,j, lY,i,j)          (21) 

with 1 ≤ i ≤ n, 1 ≤ j ≤ n, i ≠ j. 

The total symmetry error eS of a multi-user service item X is given by the distance from a symmetric 

item, represented here by C
n
 for convenience. 

eS(X) = dS(X, C
n
)          (22) 

4.2.2.1.2.  Cluster-based Distance 

The approximate agreement graph for a multi-user item can have up to n clusters.  We use the symbol 

α to denote the size of a cluster.  Thus, for cluster-based symmetry, a multi-user service item X can be 

represented by a vector of n cluster sizes: 

XS = (α1, … , αn),  

where the αi elements are sorted by decreasing value such that α1 ≥ α2 ≥ … ≥  αn.  Because some of the n 

single-user items of the multi-user service item X may be in multiple clusters, the cluster sizes may vary 

such that αi ≥ 0 and α1 + … + αn ≥ n. 

We have been unable to gain sufficient insight into this cluster-based representation to identify an 

objective unit of measure to define a symmetry distance function.  Therefore, we resort to define an 

ordinal scale based on ranking rules for vectors of cluster sizes.  To do this, we introduce the concept of 

dominance.  Let XS = (αX,1, … , αX,n) and YS = (αY,1, … , αY,n) be the cluster-size vector representations 

of multi-user items X and Y.  We say that XS dominates YS if there is a vector-element index i, 1 ≤ i ≤ n, 

such that αX,i > αY,i and αX,j = αY,j for 1 ≤ j < i.  If XS dominates YS, we say that X has more symmetry 

than Y, or equivalently, Y has larger symmetry error than X.   

To define the cluster-based symmetry scale, we have to list all possible cluster vectors sorted by 

dominance, and then form a one-to-one mapping from the dominance scale to the natural numbers 

beginning with a value of 0 for the symmetric case, i.e., XS = (n, 0, … , 0).  Table 4 shows the cluster 

vectors with n = 4 ranked by dominance and their assigned symmetry error values.  The symmetry 

distance between items X and Y is given by their distance on the error scale. 

dS(X, Y) = |eS(X) - eS(Y)|          (23) 
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Table 4: Cluster-based symmetry error scale for approximate agreement (n = 4) 

Cluster Vector Symmetry Error (eS) 

(4, 0, 0, 0) 0 

(3, 3, 0, 0) 1 

(3, 2, 0, 0) 2 

(3, 1, 0, 0) 3 

(2, 2, 2, 0) 4 

(2, 2, 1, 0) 5 

(2, 1, 1, 0) 6 

(1, 1, 1, 1) 7 

 

4.2.2.2.   Exact Agreement 

We have not been able to identify an objective unit of measure on which to base a symmetry distance 

function for exact agreement.  Therefore, we proceed with a similar approach as for cluster-based 

symmetry for approximate agreement.   

Again, a multi-user service item X can be represented by a vector of n cluster sizes: 

XS = (α1, … , αn)  

where the αi elements are sorted by decreasing value such that α1 ≥ α2 ≥ … ≥ αn.  For exact agreement, 

the simplex items of a multi-user service item form a partition (i.e., a set of mutually exclusive clusters 

incuding all the individual items) as now an item can belong to at most one cluster.  The cluster sizes 

under exact agreement may vary such that αi ≥ 0 and α1 + … + αn = n.  Thus, in effect, the possible 

cluster vectors for an n-user service item are given by the set of integer partitions of n [36].  Table 5 lists 

the integer partitions for n = 4 ranked by dominance and their corresponding symmetry error values.  

Equation 20 also applies here for the exact-agreement symmetry distance dS between multi-user service 

items. 

Table 5: Cluster-based symmetry error scale for exact agreement (n = 4) 

Cluster Vector Symmetry Error (eS) 

(4, 0, 0, 0) 0 

(3, 1, 0, 0) 1 

(2, 2, 0, 0) 2 

(2, 1, 1, 0) 3 

(1, 1, 1, 1) 4 

 

4.2.3.   Correctness, Detectability and Symmetry 

The total distance between two multi-user service items over the combined dimensions of correctness, 

detectability and symmetry must take into account any possible dependence between the dimensions.  Our 

definition of the correctness-and-detectability (CD) distance already accounts for the dependence between 

correctness and detectability.  In defining the contribution of the symmetry dimension, we would like our 

distance function to ignore differences already accounted for in the definition of the CD distance.  In 

particular, note that a D item always disagrees with C and U items.  In addition, for exact agreement, a C 

item always disagrees with a U item.  Thus, these “built-in” disagreements should not contribute to the 
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symmetry component of the total correctness-detectability-and-symmetry (CDS) distance.  We consider 

approximate and exact agreement separately. 

For approximate agreement, it is possible for a C to agree with a U.  This relation must be accounted 

for in the CDS distance.  We use XA to denote the acceptable single-user items (i.e., items that pass the 

input acceptance check at the users) of a multi-user service item X.  XA can include C and U items.  Using 

our compact CD notation for a vector, X can be expressed as follows. 

XCD = C
b
D

p
U

w
 = D

p
XA         (24) 

where: 

XA = C
b
U

w
           (25) 

We use the cluster-size notation to represent the agreement pattern in XA, which we denote XA,S. 

XA,S = (αA,1, … , αA,b+w)         (26) 

The total CDS distance between multi-user service items X and Y is given by: 

dCDS(X, Y) = dC(X, Y) + dD(X, Y) + dS(X, Y)       (27)  

with: 

dS(X, Y) = dS(XA,S, YA,S) = |eS(XA,S) - eS(YA,S)|      (28) 

where eS(XA,S) and eS(YA,S) are computed on their respective symmetry error scales.   

The CDS error in item X is given by: 

eCDS(X) = dCDS(X, C
n
) = dC(X, C

n
) + dD(X, C

n
) + dS(X, C

n
) 

eCDS(X) = eC(X) + eD(X) + eS(XA,S) = eCD(X) + eS(XA,S)     (29) 

For exact agreement, C and U items never agree.  Therefore, the symmetry distance contribution is 

only with respect to the U items in the multi-user service item.  Let XU denote the undetectable incorrect 

items in X.  For exact agreement, X can be expressed as: 

XCD = C
b
D

p
U

w
 = C

b
D

p
XU         (30) 

with: 

XU = Uw
           (31)  

Using cluster-size notation, the exact agreement pattern in XU, denoted XU,S, is expressed as: 

XU,S = (αU,1, … , αU,w)         (32) 

Equations (27) to (29) also apply to exact agreement with XA,S replaced by XU,S.  Table 6 shows the 
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total CDS error for patterns of OTH faults assuming exact agreement and n = 4. 

Table 6: Total CDS error with exact agreement for patterns of OTH faults (n = 4) 

OTH Category XCD XU,S eC eD eS(XU,S) eCDS 

Correct Symmetric (CS) C
4 

(0, 0, 0, 0) 0 0 0 0 

C
3
D (0, 0, 0, 0) 1 0 0 1 

C
2
D

2 
(0, 0, 0, 0) 2 0 0 2 Strictly Omissive Asymmetric (SOA) 

CD
3 

(0, 0, 0, 0) 3 0 0 3 

Omissive Symmetric (OS) D
4 

(0, 0, 0, 0) 4 0 0 4 

D
3
U (1, 0, 0, 0) 4 1 0 5 

D
2
U

2 
(2, 0, 0, 0) 4 2 0 6 Single-Data Omissive Asymmetric (SDOA) 

DU
3 

(3, 0, 0, 0) 4 3 0 7 

Transmissive Symmetric (TS) U
4 

(4, 0, 0, 0) 4 4 0 8 

U
4 

(3, 1, 0, 0) 4 4 1 9 

U
4 

(2, 2, 0, 0) 4 4 2 10 

U
4 

(2, 1, 1, 0) 4 4 3 11 

U
4 

(1, 1, 1, 1) 4 4 4 12 

C
3
U (1, 0, 0, 0) 1 1 0 2 

C
2
U

2 
(2, 0, 0, 0) 2 2 0 4 

C
2
U

2 
(1, 1, 0, 0) 2 2 1 5 

CD
2
U (1, 0, 0, 0) 3 1 0 4 

Transmissive Asymmetric (TA) 

CDU
2 

(1, 1, 0, 0) 3 2 1 6 

 

4.3.   Service Outage  

As stated in Section 2.2.1, a service outage can be modeled as an error burst.  We use k to denote the 

number of service items in an outage.  Note that k, in effect, measures of the persistence (i.e., duration) of 

the outage.  kgood and kbad denote the number of correct and incorrect items in the error burst, respectively, 

such that: 

k = kgood + kbad          (33) 

 The error in a service item can be measured with respect to correctness, detectability or symmetry, or 

combinations of these.  The choice of error metric depends on the purpose and specifics of the analysis 

being performed.  Here we use ei to denote the error in the i-th item of the error burst, with 1 ≤ i ≤ k.  The 

severity of corruption in an outage, denoted s, is the amount of error in the outage, which we define as the 

sum of the error in the service items. 

s = ∑i ei           (34) 

Let δ be an index for the error levels (i.e., magnitude of the error) in the chosen item error scale, such 

that 0 ≤ δ ≤ δmax, where δmax denotes the largest value on the item error scale.  kδ denotes the number of 

items in the error burst that have an error of δ.  Then, the corruption severity can be expressed as follows. 

s = ∑δ δ⋅kδ           (35) 

The number of service items in the outage can be expressed as: 
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k = k0 + … + kδmax          (36) 

Also: 

kgood = k0           (37) 

kbad = k1 + … + kδmax          (38) 

Alternatively, the corruption severity can be expressed in terms of the occurrence rates of the error 

levels.  To do this, let φδ denote the rate of item error level δ, such that: 

φδ = kδ/k           (39) 

Then: 

s = k⋅(∑δ δ⋅φδ)          (40) 

The summation in (40) is the mean value of service item error in the outage, denoted emean: 

emean = ∑δ δ⋅φδ          (41) 

So: 

s = k⋅emean           (42) 

The operation of the system may be periodic (or cyclic) such that the pattern of service repeats every 

certain number of items.  In that case, we use m to denote the number of expected service items per cycle.  

The duration of an error burst can be expressed in terms of the number of cycles, denoted ∆, such that:   

k = m⋅∆           (43) 

By normalizing the corruption severity with respect to the number of items per cycle, we can directly 

compare outage severity for periodic systems performing the same function, with the same user interface 

and with the same real-time cycle duration, but operating at different data rates such that they deliver 

different number of items per cycle.  Let s
*
 denote the data-rate-normalized corruption severity. 

s
*
 = s/m = ∆⋅(∑δ δ⋅φδ) = ∆⋅emean        (44) 

Finally, to compute the normalized corruptibility and resilience, we need to define a maximum value 

for the corruption severity, denoted smax.  Let kmax denote the maximum possible (or expected) number of 

items in an outage.  Then: 

smax = kmax⋅emax          (45) 

For a cyclic system, the maximum data-rate-normalized corruption severity s
*
max is given by: 

s
*
max = ∆max⋅emax          (46) 

where ∆max denotes the maximum number of cycles in an outage. 
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5.   System Perturbation Metrics 

A perturbation is an outage of the services provided by one or more internal system components due to 

(transient or permanent) defects in them.  These defects mean that, in effect, the defective components are 

not performing their specified functions and thus act as sources of errors in the system.  During a 

perturbation, it is possible for other components to fail to deliver proper services because of effects 

propagated out from the defective components.  The severity of a perturbation is determined by the 

service corruption only at the defective components, and non-defective components are treated as if they 

were performing correctly for the purpose of computing the corruption in a perturbation.  Note that it is 

perfectly legitimate for all system components to become defective during a perturbation.  However, 

depending on the purpose of the analysis being performed, there may be an upper bound constraint on the 

number of simultaneously defective components. 

All the concepts developed to measure disruption corruption directly apply to an outage at an internal 

component.  Let sj denote the severity of corruption at the j-th component, with 1 ≤ j ≤ γ, where γ denotes 

the number of components in the system.  sj is determined as described previously for a disruption.  Note 

that sj = 0 for a unperturbed component.  Then, the total perturbation severity s is given by: 

s = ∑j sj           (47) 

To determine the maximum perturbation severity, we simply need to maximize the values of the 

component corruption severities.   

smax = ∑j sj,max          (48) 

 

6.   Final Remarks 

In this report, we have proposed a new approach for the assessment of system upset resilience.  This 

approach is based on an analysis of desirable, top-level system attributes interpreted in terms of a generic 

system service model.  Special emphasis is given to the attributes for safety-critical, real-time systems, 

including distributed systems.  Combining the service model with a structural system description model, 

we develop a stimulus-response concept linking the events internal to the system to the behavior 

observable at the external system interface.  We propose the use of fault injection experiments to 

stimulate the system and generate a set of corresponding responses.  We have proposed a quantitative 

definition of resilience based on the statistical characterization of this response space.  To enable this, we 

defined a set of service error metrics derived from insight into the classification criteria implicit in the 

OTH fault model.  Throughout, we have tried to develop a general approach that leverages existing 

system concepts and applies novel and mathematically sound error metrics that are also meaningful in the 

analysis and design of systems.   

This approach will be applied in the analysis of observed HIRF effects in the HEC experiment.  To 

characterize the relation between field disturbances and internal perturbations, we will use the relation 

described in [87] between the strength of the radiated field and the severity of error bursts in a system, as 

well as analyses of state data collected during the experiment to identify low-level physical components 

directly affected by the disturbances.  Quantitative analyses of the response space using the metrics 
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described in this report will enable us to gain insight into the effectiveness of the fault handling 

mechanisms of the system.  In particular, we intend to identify error containment and recovery 

weaknesses in the network and to propose ways to strengthen the design.   

We will also apply the resilience assessment approach in a simulated fault-injection experiment using 

error-propagation system models.  The stimulus will be perturbations with a severity distribution based on 

the disturbance space characterized in [87].  The models will be validated through review and comparison 

with the results from the HEC experiment.  The purpose of this experiment will be to achieve a thorough 

understanding of the relation between internal upsets and the propagated effects observable at the external 

system interface.   

We expect that successful application of the proposed upset resilience assessment approach to the 

analysis of the HEC physical-fault injection experiment and to the simulated-fault injection experiment 

will affirm the practicality of the approach. 

With the insight gained from the analysis of the fault injection experiments, we will then tackle the 

problem of analysis of self-stabilization-based resilience in systems with required safety and real-time 

attributes.  The first goal in this direction is the design of an advanced version of the ROBUS-2 system 

[93] with provable self-stabilization properties while retaining its foundation on the unified fault-

tolerance theory described Miner et al. [61], including the dynamic fault assumptions.  We expect that 

attainment of this goal, especially proving self-stabilization properties, will demand a fundamental 

breakthrough in the analysis of distributed clock synchronization and membership protocols in the 

presence of U-type faults. 
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Appendix A.   Proofs for Metrics of Service Item Error  

In this appendix it is shown that the service-item error metrics defined in Section 4 satisfy the required 

mathematical properties for a metric.  The properties, introduced in Section 2.5, are restated here for 

convenience. 

• Non-negativity: d(x, y) ≥ 0 

• Symmetry: d(x, y) = d(y, x) 

• Identity of Indiscernibles: d(x, y) = 0 if and only if x = y 

• Triangle Inequality: d(x, z) ≤ d(x, y) + d(y, z) 

 

A.1.   Error metrics for a single-user service item 

We consider separately the distance metrics for the dimensions of correctness and detectability, 

followed by the case of correctness-and-detectability distance. 

A.1.1.   Correctness 

Recall from Section 4.1 that with respect to correctness, a simplex item x can be either correct or 

incorrect, and it can be represented by the Boolean variable xC, which is TRUE for a correct item.  Table 

A.1 shows that the following relation holds.   

dC(x,y) = |eC(x) - eC(y)|         (A.1) 

Table A.1: Correctness error and distance for a simplex item 

xC yC eC(x) eC(y) |eC(x) - eC(y)| dC(x, y) 

T T 0 0 0 0 

T F 0 1 1 1 

F T 1 0 1 1 

F F 1 1 0 0 

 

We use equation (A.1) and Table A.1 to show that dC(x,y) satisfies the properties of a metric. 

• Non-negativity: This is a property of the absolute-value function and applies to dC(x,y) from equality 

(A.1).  This is also shown by inspection of the last column of Table A.1. 

• Symmetry: This is shown by inspection of the first, second and last columns in Table A.1.  Also, 

using (A.1): 

dC(x,y) = |eC(x) - eC(y)| = |eC(y) - eC(x)| = dC(y,x)  

• Identify of Indiscernibles: This is shown by comparing the last column in Table A.1 with the first and 
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second columns combined. 

• Triangle Inequality:  It is well known that the Triangle Inequality applies to the absolute-value 

function, such that |a + b| ≤ |a| + |b| for arbitrary real-valued a and b.  If we substitute eC(x) - eC(y) for 

a and eC(y) - eC(z) for b, we get: 

| [eC(x) - eC(y)] + [eC(y) - eC(z)]| ≤ |eC(x) - eC(y)| + |eC(x) - eC(z)| 

Using equation (A.1): 

dC(x,z) ≤ dC(x,y) + dC(y,z) 

A.1.2.   Detectability 

The proofs that equation (A.2) is valid and that dD(x,y) satisfies the properties of a metric are identical 

to the proofs for correctness. 

dD(x,y) = |eD(x) - eD(y)|         (A.2) 

A.1.3.   Correctness and Detectability 

In Section 4.1, dCD(x,y) was defined as: 

dCD(x, y) = dC(x, y) + dD(x, y)         

Using (A.1) and (A.2), we get: 

dCD(x,y) = |eC(x) - eC(y)| + |eD(x) - eD(y)|       (A.3) 

Table A.2 is based on the content of Tables 2 and 3 in Section 4.1.  Table A.2 shows that the following 

relation is valid. 

dCD(x,y) = |eCD(x) - eCD(y)|         (A.4) 

Table A.2: Correctness-and-detectability error and distance for a simplex item 

x y eCD(x) eCD(y) |eCD(x) - eCD(y)| dCD(x, y) 

C C 0 0 0 0 

C D 0 1 1 1 

C U 0 2 2 2 

D D 1 1 0 0 

D U 1 2 1 1 

U U 2 2 0 0 

 

From basic algebra, we know that for natural numbers a and b, the distance between them is given by 

d(a, b) = |a - b|.  From Table 3 in Section 4.1, note that the CD error scale is a simple linear scale over the 

natural numbers from 0 to 2 where the values correspond to the CD errors of C, D, and U.  (A.4) is valid 

simply by definition of the distance between points on that scale.   



 

 

 

 

28 

Equation (A.4) and Table A.2 can be used to show that dCD(x,y) satisfies the properties of a metric.  

The reasoning is similar to the one used in Section A.1 for the correctness distance of a simplex item. 

Note that, by equations (A.3) and (A.4), the following relation is valid. 

|eC(x) - eC(y)| + |eD(x) - eD(y)| = |[eC(x) + eD(x)] - [eC(y) + eD(y)]|    (A.5) 

 

A.2.   Error metrics for a multiple-user service item 

We now show that the metrics for multi-user service items satisfy the properties of a mathematical 

metric.  Recall that a multi-user service item X is a vector of simplex service items denoted by xi for 1 ≤ i 

≤ n.   

X = (x1, x2, …, xn) 

A.2.1.   Correctness 

From Section 4.2.1: 

dC(X, Y) = dC(x1, y1) + … + dC(xn, yn)       (A.6) 

Using equation (A.1), equation (A.6) can be expressed as: 

dC(X, Y) = |eC(x1) - eC(y1)| + … + |eC(xn) - eC(yn)|      (A.7) 

We leverage equations (A.6) and (A.7) to show that dC(X, Y) satisfies the properties of a metric. 

• Non-negativity: This is a property of the absolute-value function.  It applies to all dC(xi, yi) and it is 

preserved by addition in (A.6).   

• Symmetry: Using (A.7): 

dC(X, Y) = |eC(x1) - eC(y1)| + … + |eC(xn) - eC(yn)| = |eC(y1) - eC(x1)| + … + |eC(yn) - eC(xn)| = dC(Y, X) 

• Identify of Indiscernibles: From Section A.1.1, we know that Identify of Indiscernibles applies to 

each of the summands in equation (A.6).  Because dC(xi, yi) ≥ 0, dC(X,Y) = 0 requires dC(xi, yi) = 0 for 

all i.  Therefore, with respect to correctness, xi = yi, which means that X = Y with respect to 

correctness.  Reasoning in the opposite direction completes the proof. 

• Triangle Inequality:  From (A.6) :  

dC(X, Z) = dC(x1, z1) + … + dC(xn, zn) 

Using the proof in Section A.1.1: 

dC(xi, zi) ≤ dC(xi, yi) + dC(yi, zi) 
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Thus: 

dC(X, Z) ≤ [dC(x1, y1) + … + dC(xn, yn)] + [dC(y1, z1) + … + dC(yn, zn)]  

dC(X, Z) ≤ dC(X, Y) + dC(Y, Z) 

A.2.2.   Detectability 

The proof that dD(X, Y) is a metric is essentially the same as in Section A.2.1 with dC(X, Y) replaced 

by dD(X, Y). 

A.2.3.   Correctness and Detectability 

From equation (15) in Section 4.2.1: 

dCD(X, Y) = dCD(x1, y1) + … + dCD(xn, yn)       (A.8) 

Using equation (5) from Section 4.1: 

dCD(X, Y) = [dC(x1, y1) + dD(x1, y1)] + … + [dC(xn, yn) + dD(xn, yn)]     

dCD(X, Y) = [dC(x1, y1) + … + dC(xn, yn)] + [dD(x1, y1) + … + dD(xn, yn)]     

Using equations (13) and (14) from Section 4.2.1: 

dCD(X, Y) = dC(X, Y) + dD(X, Y)        (A.9)  

Equation (A.9) can be leveraged to show that dCD(X,Y) satisfies the properties of a metric.   

• Non-negativity: From Sections A.2.1 and A.2.2, dC(X, Y) and dD(X, Y) individually satisfy this 

property.  Their sum in (A.9) preserves this property. 

• Symmetry: From Sections A.2.1 and A.2.2, we know that dC(X, Y) and dD(X, Y) individually satisfy 

this property.  Then: 

dCD(X, Y) = dC(X, Y) + dD(X, Y) = dC(Y, X) + dD(Y, X) = dCD(Y, X) 

• Identify of Indiscernibles: From Sections A.2.1 and A.2.2, we know that dC(X, Y) and dD(X, Y) 

individually satisfy this property.  dCD(X, Y) = 0 if dC(X, Y) = 0 and dD(X, Y) = 0, which require X = 

Y with respect to correctness and detectability.  Reasoning in the opposite direction, it can be shown 

that X = Y with respect to correctness and detectability implies dCD(X, Y) = 0. 

• Triangle Inequality: From Sections A.2.1 and A.2.2, we know that dC(X, Y) and dD(X, Y) 

individually satisfy this property.  Thus: 

dCD(X, Z) = dC(X, Z) + dD(X, Z) ≤ [dC(X, Y) + dC(Y, Z)] + [dD(X, Y) + dD(Y, Z)]  

dCD(X, Z) ≤ dCD(X, Y) + dCD(Y, Z) 
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A.2.4.   Symmetry 

Recall from Section 4.2.2 that for cluster-based symmetry, a multi-user service item X can be 

represented by a vector XS of n cluster sizes: 

XS = (α1, … , αn),  

where αi denotes the size of the i-th cluster and the αi elements are sorted by decreasing value such that 

α1 ≥ α2 ≥ … ≥  αn.  From Tables 4 and 5 in Section 4.2.2, note that the cluster-based symmetry scale is a 

simple linear scale over the natural numbers from 0 up to some maximum value, where the values 

correspond to the symmetry errors of the cluster patterns.  (A.10) is valid simply by definition of the 

distance between points on that scale.   

dS(X, Y) = |eS(X) - eS(Y)|          (A.10) 

Equation (A.10) can be used to show that dS(X,Y) satisfies the properties of a metric.   

• Non-negativity: This is a property of the absolute-value function and applies to dS(X,Y) from equality 

(A.10).   

• Symmetry: Using (A.10): 

dS(X,Y) = |eS(X) - eS(Y)| = |eS(Y) - eS(X)| = dC(Y,X)  

• Identify of Indiscernibles: From (A.10), dS(X, Y) = 0 implies that eS(X) = eS(Y).  On our simple linear 

symmetry error scale, this means that XS = YS.  

• Triangle Inequality:  It is well known that the Triangle Inequality applies to the absolute-value 

function, such that |a + b| ≤ |a| + |b| for arbitrary real-valued a and b.  Thus, if we substitute eS(X) – 

eS(Y) for a and eS(Y) – eS(Z) for b, we get: 

| [eS(X) – eS(Y)] + [eS(Y) – eS(Z)]| ≤ |eS(X) – eS(Y)| + |eS(X) – eS(Z)| 

Using equation (A.10): 

dS(X,Z) ≤ dS(X,Y) + dS(Y,Z) 

A.2.5.   Correctness, Detectability and Symmetry 

The total CDS distance between multi-user service items X and Y is given by: 

dCDS(X, Y) = dC(X, Y) + dD(X, Y) + dS(X, Y)       (A.11)  

with: 

dS(X, Y) = dS(XA,S, YA,S) = |eS(XA,S) - eS(YA,S)|      (A.12) 

for approximate agreement, or for exact agreement: 
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dS(X, Y) = dS(XU,S, YU,S) = |eS(XU,S) - eS(YU,S)|      (A.13) 

where eS(XA,S), eS(YA,S), eS(XU,S) and eS(YU,S) are computed on their respective symmetry error scales.  

Using equation (A.9), equation (A.11) can be expressed as: 

dCDS(X, Y) = dCD(X, Y) + dS(X, Y)        (A.14)  

We know that dCD(X, Y) and dS(X, Y) satisfy the mathematical properties of a metric.  We use this fact 

to show that dCDS(X, Y) also satisfies the properties of a metric. 

• Non-negativity: dCD(X, Y) ≥ 0 and dS(X, Y) ≥ 0 imply that dCDS(X, Y) ≥ 0. 

• Symmetry: dCDS(X, Y) = dCD(X, Y) + dS(X, Y) = dCD(Y, X) + dS(Y, X) = dCDS(Y, X) 

• Identify of Indiscernibles: dCDS(X, Y) = 0 implies that dCD(X, Y) = 0 and dS(X, Y) = 0.  dCD(X, Y) = 0 

implies that X = Y with respect to correctness and detectability.  Using the notation in Section 4.2.1, 

XCD = YCD.  For approximate agreement, this implies that XA and YA have the same number of 

elements: b + w (see equation (25) in Section 4.2.3).  For exact agreement, XU and YU have the same 

number of elements: w (see equation (31) in Section 4.2.3).  This, combined with dS(X, Y) = 0, 

implies that XA,S = YA,S for approximate agreement and XU,S = YU,S for exact agreement.  Thus, X = Y 

with respect to correctness, detectability and symmetry.  In the other direction, X = Y with respect to 

correctness, detectability and symmetry implies dCD(X, Y) = 0 and dS(X, Y) = 0, which implies 

dCDS(X, Y) = 0. 

• Triangle Inequality:  We know that: 

dCD(X, Z) ≤ dCD(X, Y) + dCD(Y, Z) 

and 

dS(X, Z) ≤ dS(X, Y) + dS(Y, Z) 

Adding these two inequalities: 

dCD(X, Z) + dS(X, Z) ≤ [dCD(X, Y) + dS(X, Y)] + [dCD(Y, Z)+ dS(Y, Z)] 

Therefore: 

dCDS(X, Z) ≤ dCDS(X, Y) + dCDS(Y, Z) 
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IMA Integrated Modular Architecture 
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OTH Omissive-Transmissive Hybrid (fault model) 
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PE Processing Element 
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RSPP Reconfigurable SPIDER Prototyping Platform 

RTCA Radio Technical Commission for Aeronautics 

SBIR Small Business Innovation Research 

SD Standard Deviation 

SDOA Single Data Omissive Asymmetric 

SHM System Health Monitor 

SIM Stirrer Induced Modulation 

SOA Strictly Omissive Asymmetric 
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