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Fire Spread Characteristics Determined in the Laboratory

INTRODUCTION

A study of the mechanisms of fire spread was conducted from January 1961 to January 1964
by the Fire Physics Research project located at the Northern Forest Fire Laboratory. The re-
search program was supported by the U.S. Forest Service and the National Science,Foundation.
This report presents the major findings of that study and is part of a continuing program
conducted by the Forest Service to obtain a better understanding of forest fires.

Light forest material such as pine needles, leaves, and rotten wood are recognized as the
fuels in which fires start and spread in early stages (7, 9, 15).:L Such fires often burn on the
ground in a thin layer of fuel without generating enougﬁ heat to carry them into the tree crowns.
Running crown fires are dangerous to approach and are therefore difficult to control or instru-
ment for research purposes. The small initial fire burning in a flat bed, however, can be
studied successfully in the laboratory.

Moisture content of the fuel and velocity of the air over it are two primary factors that
determine the rate of spread and other burning characteristics of a fire. Laboratory research
on the mechanisms of fire spread was directed at understanding the influence of these two
factors on the behavior of fire in a mat-type fuel bed of randomly placed pine needles.

Past research in forest fuels (8, 10, 11) was hampered by the variability of outdoor
weather conditions, Consequently, most of the work in the last decade (5, 13, 14, 17) has been
directed toward controlled environmental conditions and controlled fuel bed characteristics.
In most of these investigations, fuel particles larger than 0.25 inch thick have been arranged
in a geometric pattern. This provides an idealized model which is easily duplicated, but does
not represent the randomized arrangement nor the particle size of forest fuels that contribute
to the start and early spread of a forest fire. This study of the mechanisms of fire spread is
aimed at providing this information.

PURPOSE

This study was designed to find the relative importance of fuel moisture and wind upon the
rate of fire spread in light forest fuels, Systematic investigations of a physical phenomenon
often produce an insight into its cause and effect. Through this technique, the authors hoped to
gain a better understanding of the basic mechanisms of fire spread, which would enable them to
develop hypotheses to be analyzed in future experiments.

Several questions of technique and instrumentation also needed answers. Could a repro-
ducible fuel bed be constructed with pine needles? Could the environmental system of the
laboratory maintain stable conditions long enough to complete a test fire? How could flame
dimensions be measured consistently? How could the energy released by the fire be measured?
What is the best technique for measuring low velocities of air movement?

1
Italic numbers in parentheses refer to Literature Cited, page 24.
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These experiments were conducted at the Northern Forest Fire Laboratory in Missoula,
Montana. The combustion facilities there consist of two wind tunnels, a still-air combustion
laboratory, and an environmental conditioning section (fig., 1). The large wind tunnel has a 10-
by 10-foot cross section and is capable of velocities up to 8 m.p.h. The combustion labora-
tory in which the no-wind experiments were conducted is 66 feet high and 44 feet square. A
flue exhaust hood, located in the center of the room, may be raised or lowered to accommodate
the size of the fire. The exhaust velocity may be controlled automatically. The air circulated
through the combustion laboratory and wind tunnels is conditioned to the desired temperature
and humidity in a series of heaters, chillers, and water spray nozzles. The tabulation below
describes the range of environmental conditions and limits of control used.

Range Control
Relative humidity (percent) 6.4 —=> 75 *1.5
Air temperature (°F.) 89° —> 97° t1°F,
Air velocity (ft./min.) 0 —= 704 +2.0 percent

EXPERIMENTAL TECHNIQUE

The experiments were conducted in two phases. In the first phase we investigated the
effect of fuel moisture on rate of fire spread in still air. In the second, we studied the effect
ot wind on fire spread with fuels at three distinct moisture content levels,

All primary experiments were conducted on a fuel bed 8 feet long and 1.5 feet wide. The
fuel was needles of ponderosa pine and white pine. The fuel was precpqditioned for several
days at the same air temperature and relative humidity conditiglms that would prevail during the

test burnings. This determined the fuel moisture content. The ponderosa pine needle beds
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were 3 inches thick and loaded at 0.5 1b. /ft .Z. The white pine needle beds were 2 inches thick
and loaded at 0.33 1b, /ft.z . Uniform loading was achieved by spreading 1 pound of needles 1
inch deep over 4 feet of the 8-foot bed. Successive layers were added until loading was
completed by techniques for collecting and processing already described by Schuette (16). Ad-
ditional information concerning initial experiments and determination of fuel bed size was
published by Anderson (1).

Fuel beds were ignited at one end across their entire width by means 'of an alcohol trough.
In the absence of wind the fuel bed was moved on a track at the same rate as the fire pro-
gressed (fig. 2). This kept the flame centered under the exhaust hood and overhead instrumen-
tation. In the wind tunnel, the fuel bed was stationary 2 feet above the floor. A ground plane
surrounded the bed and was held flush with the top surface of the fuel.

In the wind tunnel a boundary layer trip fence or air spoiler was placed on the ground
plane 1 foot ahead of the fuel bed. The spoiler started a wake that developed quickly into a tur-
bulent boundary layer over the entire fuel bed. Without the spoiler, the free-stream air passed
directly over the surface of the pine needles in the first portion of the fuel bed. As a conse-
quence the rate of spread was four to seven times faster over the first half than over the last
half of the fuel bed. The spoiler prevented this acceleration and permitted the fire to stabilize
within the first 2 feet. (For further explanation of this phenomenon and results of boundary
layer investigation with a hot wire anemometer, see Appendix B.)

INSTRUMENTATION

The instrumentation was designed to eliminate need for visual observations. However,
visual observations of rate of spread and flame dimensions were used until the instrument
system was proved reliable., Similar instrumentation (fig. 2) was used in the combustion labo-
ratory and the wind tunnel; provisions were made for the fact that the flame front was
stationary in the combustion laboratory but mobile in the wind tunnel.

Weight-loss system.--A system for weighing the fuel bed continuously during the fire was
developed to permit the energy release rate of the fire to be determined. The original system
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used four cantilever beams with a strain gage on the top and bottom of each beam. The gages
were arranged in a Wheatstone bridge circuit. The output of the bridge was amplified and re-
corded on a strip chart recorder. An improved version of the system incorporates force rings
in place of the cantilever beams (3). ’

The recorded trace of weight loss was linear with time during the steady state of the fire.
The slope of the trace began decreasing when the fire reached the end of the bed, and was essen-
tially flat when the flames ceased. This indicated that most of the fuel is consumed in the fire
front, and not in the afterburning and glowing combustion. :

Fuel bed thermocouples.--Thermocouples of 30-gage chromel-alumel wire were placed
in the fuel bed one-fourth inch beneath the upper surface of the pine needles (4). The thermo-
couples were spaced 9 inches apart along the longitudinal centerline of the fuel bed and were
used primarily to locate the leading and trailing edges of the fire. The thermocouple signal
was recorded continuously on strip chart oscillograph recorders. When the fire reached the
thermocouple, the recorder trace rose sharply. When the rear of the fire passed over the
thermocouple, the trace became erratic and finally dropped. The drop indicated that the major
flame front had passed.

From these traces, the rate of spread of the fire was determined by the time required for
the flame front to travel the 9 inches between thermocouples. Residence time of the fire, i.e.,
the time flaming exists at one point, was taken as the difference between rise time and drop
time of the thermocouple. The flame depth of the fire, i.e., the distance from the leading edge
of the flame to the trailing edge, was computed by multiplying rate of spread by residence time.

Radiometers.--Gier & Dunkle® directional radiometers were used to measure irradiance
from the fires. In the wind tunnel, only overhead measurements were made. In the combustion
laboratory, measurements were taken with an instrument 18 feet in front of the fire.

Photographs,—~Several photographic techniques were tried for recording flame dimensions.
The best results were obtained with Plus-X film with 1-second exposure at f:11. Flame height,
flame length, and flame angle were measured from the photographs. Flame depth measured
from photographs was shorter than flame depth obtained by thermocouple techniques when the
fire was being driven by wind,

Environment monitors. --Air temperature was measured with a platinum resistance bulb,
Dewpoint temperature was measured with a salt-saturated heater bobbin and a resistance bulb.
Air velocity was measured with pressure probes connected to a microdifferential transducer
and amplifier.

RESULTS

The results were analyzed with the object of exploring phenomena and relative influences
of various parameters. No hypotheses were tested, but empirical formulas were developed to
demonstrate the effects of wind and fuel moisture on the fire. The results of these tests, to-
gether with the studies by others, are beginning to reveal the characteristics of fires and
should eventually lead to an understanding of the basic laws governing fires.

A complete list of the results for each fire is presented in Appendix B.

2 Trade names are used for identification only and do not imply endorsement or recom-
mendation by the U.S. Forest Service.
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We noted early in the program that the rates of spread in both kinds of fuel were strikingly
similar (1). A regression analysis over the range of fuel moistures used showed that a linear
relation gave the best fit with the data (fig. 3). The equations for rate of spread are:

ponderosa pine Ry = 1.04 — 0.044 Mg (D)

white pine Ry = 1.12 — 0.051 Mg (2)
where:

Ry = rate of spread in ft./min,, and

Mg = fuel moisture content, fraction of ovendry weight.

Equations (1) and (2) may be made dimensionless by dividing both sides of the equation by
the rate of spread at My = 0.

R . .
Thus for ponderosa pine © =1 -0.0423 Mg o ~(3)
RMf=O
Ro
and for white pine =1 —0.0455 Mg 4)
RMf=O

These equations show that the rate of spread in our ponderosa pine needle fuel beds decreased
by 4.23 percent for each l-percent increase in fuel moisture. Rate of spread in white pine
needle fuel beds decreased by 4.55 percent for each 1-percent increase in fuel moisture. If the
effect of moisture remains linear as moisture content increases, the ponderosa pine needles
would not sustain a rate of spread at a fuel moisture of 24 percent in the still air environment.
Similarly, the limit for white pine needles would be 22 percent.




The similarity of the equations for these two fuels is surprising because of the contrast
in flame size., The ponderosa pine beds burned with flames 3 to 4 feet high, and the fuel was
well burned out. The white pine beds burned with flame heights closer to 1 foot high, and con-
siderable unburned fuel was left beneath the ashes on the surface. Even though the equations
are similar, we should not expect that they will predict rate of spread over the wide variety of
compactness and fuel geometry that can be found in the field.

EFFECT OF WIND UPON RATE OF SPREAD
Ponderosa pine.--A plot of the logarithm of rate of spread in ponderosa pine needle fires

against air velocity on a linear scale produced a straight line graph for each fuel moisture
level. The equation for rate of spread in ponderosa pine needles assumes the form:

Rpp = RO erU (5)

where:

= rate of spread in ponderosa pine needles, ft./min.

o
)
|

rate of spread at U = 0, ft./min.

c = =
o]
]

il

air velocity, ft./min.

constant, min. /ft,

-
Il

e

base of natural logarithms.
A regression analysis for each moisture condition gave r values of:

0.00389 at Mg
0.00376 at Mg
0.00362 at Mg

4.5 percent

7.3 percent

9.6 percent
A weighted average r value = 0.0038.
Substituting the average value of r and the equation for R, gives
Rpp = (1.04 —0.044 My) exp 0.0038U. (6)

Equation (6) is plotted using the experimental points in figure 4. The equation predicts
rate of spread from U = 0 to at least U = 700 ft./min. where U is the free-stream air velocity
above the boundary layer of the fuel. A linear relation with moisture is predicted by equation (6).

White pine.--The rate of spread of fire in white pine needles also increases as windspeed
increases, but at a faster rate than in ponderosa pine needles. An exponential equation can be
fitted to the data (fig. 3), but it is good for free-stream air velocities only up to 440 ft, /min.
The equation is

_ 0.006U
Ryp = Ro © , (7)

substituting for R gives

pr =(1.12-0.051 My) exp 0.006U. (8)
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A more elaborate equation fits the data up to 704 ft./min.; however, it is easier to compare
coefficients if the equations are of the same form.

If we assume the exponential curve is the correct form for describing rate of spread with
wind, then the deviation of the data from the curve at 704 ft./min. is probably due to a cooling
effect of the increased windspeed. Possibly there is an upper limit to air velocity in which fire
can burn without being blown out. Such a limit would be at a lower velocity for small flames.
The white pine fire with its small flame may show the effects of this limit even though rate of
spread is still increasing. Comparative flame sizes of ponderosa pine and white pine may be
seen in figures 6 and 7 at 704 ft./min. and 15 percent relative humidity.
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Figure 7.--Flame size in white pine needles at 704 ft. /min. airspeed.



DISCUSSION OF RATE OF SPREAD

The experiments demonstrated that fuel moisture and wind do affect rate of spread and
showed the relative magnitude of that effect in a specific fuel bed. We have not shown how these
parameters exert their influences on the fire, however. Some insight into the processes
involved may be obtained from the following observations.

It is not difficult to picture moisture as a dampening agent which must be driven from a
fuel before its temperature can be raised to ignition point. Just how the heat gets to the fuel to
drive out the moisture by radiation, convection, or mass transport is not clear and is a matter
of controversy among some fire researchers. We must answer this question before we can
successfully develop mathematical models for rate of spread.

A fuel bed with a propagating fire burns much differently in the absence of wind than in
the presence of wind. In the absence of external air movement, the fire creates an indraft and
moves against this airflow into the unburned fuel. The leading flame surface is a thin, well-
defined sheet (fig. 8). The base of this sheet forms in the gases issuing from the newly ignited
fuel. If there is any preheating of the fuel ahead of the fire, it must be due to radiation because
there is no mass transport (firebrands) and the convective flow is toward the fire, not away
from it., The radiation source may be from either the overhead flames or from within the
fuel bed.

Wind creates a much more complex situation. Wind tips the flame forward, and sporadic
burning occurs at the base of the flame where it contacts the unburned fuel (fig. 9). This burn-
ing appears to play a key role in propagation of the fire. Observation of this phenomenon with
high-speed motion pictures and visual observation of many laboratory fires indicate that the
sporadic flames are caused by an accumulation of ignitible gases which have collected at the
surface of the fuel bed just ahead of the fire. The fire itself provides the pilot flame that ignites
the gases--which burn in a direction away from the fire, and appear as a jet of hot gas issuing
from the fire.

The source of the unburned gases is not clear, but may be very important in forming a
mathematical model of rate of spread. Gases may be formed in the actively burning portion of
the fuel bed and may be blown
forward through the fuel to rise
in front of the fire; they may
not ignite before reaching the
surface because of an improper
fuel/air ratio. They may be a
product of pyrolysis of the un- IGNITION OF GASES
burned fuel ahead of the fire, ABOVE COOL ZONE

WHERE PROPER
FUEL—AIR RATIO
EXISTS.
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Figure §.--Flaming zone
combustion character-
istics in the absence
of wind.

-4——FIRE  INDUCED INFLOW

L ) T ) L ]

L
GLOWING CHARRING UNBURNED
COMBUSTION FUEL FUEL




Figure 9.--Flaming zone
combustion character-
istics in the presence
of wind.

FLAME
FRONT

FURBULENT
MIXING AND
BURNING

PILOT IGNITED GASES

PYROLYZED
GASES

T : — !
MIXED GLOWING MIXED CHARRING UNBURNED PYROLYZING FUEL

AND BURNING FUEL AND BURNING FUEL

If they are combustible gases from unburned fuel ahead of the fire, then this fuel must be
receiving sufficient heat to drive the gases off before it is engulfed by the fire. Again the heat
may come from several sources--radiant heat from the fuel bed, radiant heat from the overhead
flame which is now tipped forward very close to the fuel, or it may be convective heat carried
by the wind blowing through the fire. Mass transport of firebrands was not observed in labora-
tory fires but may be very important in natural uncontrolled fires, Some simple experiments
were conducted to answer some of these questions,

Heat shield.--The most straightforward method of observing the effect of radiation is to
shield the unburned fuel so that radiation from the flame cannot heat it, A horizontal sheet of
asbestos was placed above the fuel bed in the combustion laboratory just high enough to permit
the fuel bed to be moved under it without scraping the needles out of position. The fuel bed was
ponderosa pine needles, 3.5 feet wide, 8 feet long, and 3 inches deep. Burned in still air, the
rate of spread in the first half of the bed (which was not shielded) was 1.18 ft./min. When the
fire reached the 4-foot mark, the bed was positioned so the shield stayed just ahead of the flame
but did not touch it. The rate of spread decreased to 0.72 ft./min. Blocking the radiation from
the flame thus reduced the rate of spread by 39 percent. Interestingly, the fuel burnout was
much more nearly complete when the fire was slowed by the shield than when it was unimpeded.
This was very evident to the eye because ash content changed from black residue to grey ash
where the fire had been slowed.

A similar experiment was performed in the wind tunnel with the air velocity at 5 m.p.h.,
air temperature at 90° F., and relative humidity at 14.5 percent. The ponderosa pine needle
fuel bed was standard size--1.5 feet wide, 8 feet long, and 3 inches deep. The shield was
moved so that it stayed 1 to 1.5 inches ahead of the fire. The rate of spread was 1.42 ft, /min.,
whereas without the shield it would have been 4.5 ft. /min, The shield therefore reduced rate
of spread by 68.5 percent, This reduction cannot be attributed solely to radiation, however,
because convective heat would also be blocked from the fuel downwind from the fire.

Needle temperature.--In a second experiment, a 5-mil (.005-inch) chromel-alumel
thermocouple was placed inside the fascicles of a hollowed-out ponderosa pine needle; the
needles were held tightly around the thermocouple with fine thread wrapped around the fascicle
needle, The thermocouple inside the needle provided a temperature history of whatever heat
impulse was received by the needle. Because of the low mass of the needle and the small size
of the thermocouple, the temperature response was reasonably fast.
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The needle was placed on the surface of the fuel bed. In still air, any temperature rise
in the needle must be attributed to radiation because the induced airflow caused by the fire is
toward the fire; hence no convective heat could be carried from the fire to the needle.

Figure 10 shows the temperature rise of a needle which was placed 7 feet in front of the
fire. The ponderosa pine needle fuel bed was of standard size. The average flame height was
3.74 feet, Even though the instrumented needle was 7 feet from the end of the fuel bed where
the fire was ignited, the temperature began to rise immediately. when the fire had burned 6
inches into the bed and the flames were 1 to 2 feet high. The temperature continued to rise as
the fire burned closer and the temperature measured inside the needle passed the boiling tem-
perature of water when the fire was still 1 foot away, This test clearly shows that radiation
from the flame can preheat the needle while it is two flame lengths away. When it is close to
the fire, radiation from the fuel within the bed may also be contributing to the temperature rise,
The combined effect is sufficient to drive the moisture out of the fuel and raise the temperature
toward ignition point before the fire engulfs the fuel. The surface temperature of the needle
would be hotter than the temperature measured inside the needle, It is reasonable to assume
that products of pyrolysis would also be coming from the needle during the preheating.

A fire being driven by wind is more difficult to analyze because the airflow is from the
fire toward the unburned fuel. The needle temperature indicates gnly the total heating and can-
not separate the methods of heat transport. To make this sepdration, an aspirated thermo-
couple was placed just beneath the surface of the fuel next to the instrumented needle. To
assure rapid response, the aspirated thermocouple was made 1-mil wire; the housing was
3-mil brass shim stock covered with insulation. The tube with the thermocouple inside was
oriented vertically so that the thermocouple
would respond only to a small collimated
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If the temperature rise of the needle is to be attributed to convective heating from the air
passing over it, then the air temperature must be hotter than the needle. For this test a 1-mil
thermocouple was placed inside the needle--instead of the 5-mil used in the "no wind" test., The
needle was hollowed sufficiently to allow the thermocouple to be positioned just beneath the sur-
face., The needle and inlet to the aspirated thermocouple were placed 7 feet from the forward
edge of an 8-foot fuel bed. The bed was 3.5 feet wide and 3 inches deep with ponderosa pine
needles. The free-stream air velocity was 5 m.p.h., air temperature was 90° F., and rela-
tive humidity was 12,5 percent. Fuel moisture content was about 4 percent. Even though 1-mil
thermocouples were used in both the aspirated thermocouple and the needle, the response of the
needle thermocouple to heat impinging on the surface would be slower than that of the aspirated
thermocouple because of the time necessary for the heat to be conducted from the surface of the
needle to the thermocouple.

The temperature trace from the two thermocouples (fig. 11) shows that the air tempera-
ture began to rise almost immediately. The needle temperature began to rise when the fire was
still more than 6 feet away. Except for a dip in the curve when the fire was 1.5 feet from the
instruments, the air temperature remained higher than the needle temperature. If it is assumed
that the lag of the needle temperature was not enough to account for the difference in tempera-
tures, then the air temperature was indeed hotter than the needle and capable of transferring
heat to it. This test does not rule out radiant heat transfer because the needle temperature is
responsive to both types of heating. It would have eliminated convective preheating if the air
temperature had been cooler than the needle temperature.

Note also the sharp increase in both
temperatures as the fire comes close and
the flame comes overhead, Boiling temper-

H ature of the needle was passed when the
||o° fire was about 8 inches from the needle.
| The chart did not extend to ignition temper-

480
460
4401
420

[ | ature of 608° F., but both temperatures

400 | were heading for it simultaneously. During
seor | this portion of the fire, the sporadic burn-
seor "IND ing at the surface was close upon the needle
o < and possibly touching it, The high tempera-
3201 | ture of the needle before the fire reached it
300 TXKKCOCCORRCRKREE | presents the possibility that preheating re-
zor / leases combustible gases ahead of the fire.
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SUMMARY OF DISCUSSION

The thermocouple inside the needle shows that preheating of the fuel begins at a consider-
able distance (two or more flame lengths) ahead of the fire. The temperature of the needle
passes boiling temperature of water before the fire reaches it. Heating in the absence of wind
must result from radiation because the direction of airflow is from the needle toward the fire.
In the presence of wind, preheating may be caused by both convection and radiation. Fires
burning in wind exhibit burning on the surface of the fuel ahead of the main flame front. This
burning is in gases which have accumulated there from an unknown source. Possibly these
gases may result from pyrolysis in the fuel ahead of the fire or from the combustion zone within
the flame.

The mechanism of fire spread in fine fuels may be described as a series of ignitions in
which the temperature of fuel ahead of the fire rises, slowly at first as the water is expelled
and then rapidly as the fire draws close. In a steady state fire, the fuel reaches pilot ignition
temperature simultaneously with the arrival of the fire,

CHARACTERISTICS OF RATE-OF-SPREAD CURVES

There has been considerable conjecture about the shape of the rate-of-spread curve in a
wind-influenced fire. Thomas and Pickard (19) have shown in crib fires that as windspeed in-
creases, its effect on rate of spread progresé_i?/ely decreases., They show that this effect of
windspeed appears to approach a limit as wind velocity increases. Byram et al. (6) at the
Southern Forest Fire Laboratory in Macon, Georgia, have shown a linear increase in rate of
spread as air velocity increases in crib fires. Velocities thus far tested have not been high
enough to indicate whether a limiting value will be approached. Our tests with two similar mat-
type fuel beds have produced curves that increase as wind velocity increases. Perhaps they too
will approach a maximum rate of spread at a higher velocity. It seems reasonable to assume
that an upper limit exists. For large outdoor fires, however, the upper limit may fall outside
the atmospheric range of wind velocities. Similarly, increasing rate-of-spread curves were
found in the lodgepole pine and Douglas-fir logging slash fires,® and by Fons (11) in outdoor
ponderosa pine fires. These curve shapes are shown in figure 12,

This diverse behavior may be explained by the surface area-to-volume ratio of the fuel
particles, o, and the porosity, A, of the fuel bed. Fine fuels, such as pine needles, have a
large surface-to-volume ratio. They have a short ignition delay time, and individual needles,
once ignited, sustain combustion. Emmons (9) shows how the surface-to-volume ratio is im-
portant in preheating fuel elements by radiation. A large value of o also facilitates better con-
vective heat transfer. Table 1 shows the rate of spread of several fuels having different values
of ¢ and A at the same air velocity and having nearly the same fuel moisture content. Recent
work at the laboratory indicates the burning characteristics may be related to the product of
the fuel particle surface area-to-volume ratio and the fuel bed porosity (cA). This is a non-
dimensional parameter. A plot of the data in table 1 vs. (oA) is shown in figure 13.

3
Anderson, Hal E., Arthur P. Brackebusch, Robert W, Mutch, and R. C. Rothermel.
Mechanisms of fire spread research progress report no. 2 (field study). U.S. Forest Serv.
Res. Pap. INT-28, 1966. (In-press.)

13




PINE NEEDLES
Figure 12, --Possible
= curve shapes for
['4 .
= f
174" STICKS rate of spread in
a wind as influenced
i by size of fuel
a particles.
W
o "
w 1/2" STICKS
g
@
AIR VELOCITY "U"
Table 1.--Fuel particle size and fuel bed porosity used in these and
other fire experiments
Fuel bed void : :
Fuel surface-
Fuel ' to-volume :  volume-to- : (o0 : RatU=
ue : . . surface area : : 600 ft./min.
ratio L1
ratio :
oft.?/f.° A% /i 2 Dimensionless  Ft. /min.
—3
White pine needles 2,790 6 X 10_ 16.7 12.0
Ponderosa pine needles 1,741 8.46 X 10__2 14.7 6.5
§-inch sticks 192 2.47 % 10_ 4.74 0.775
1.inch sticks 96 3.86 X 10 3.70 0.456
1
Meanings of the terms "compact-
ness, " "porosity," and the symbol A are
sometimes confused., The porosity of a
fuel bed is defined as the void volume of
the bed divided by the surface area of the 161
fuel in the bed and is represented by the 14

symbol A with the units ft.%/ft.?. Com-
pactness is the reciprocal of porosity.
The void volume of the fuel bed is the
total geometric volume minus the vol-

~
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ume occupied by the fuel. The surface NEEDLES
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RELATION BETWEEN FIRE BEHAVIOR AND ENERGY RELEASE RATE

Fire increases the temperature of the air associated with it and thereby lowers its density.
Buoyancy causes the less dense air to rise and thus form the familiar convection column. If
wind is present, the vertical buoyancy forces compete with the horizontal wind force, and the
flame tilts away from the vertical, The amount of tilt depends on the relative magnitude of the
fire and wind forces. We are very much interested in the amount of tilt and the amount of heat
that is carried horizontally, because of the resultant preheating in the unburned fuel and the in-
crease in rate of spread (fig. 14). Unfortunately the vertical forces that a fire generates over
its entire area are difficult, if not impossible, to measure or compute. However, the energy
rates of the fire and wind can be measured and these energy values may help to explain fire
behavior.

The conservation of energy relationship for the fire may be written:
E potential = E combustion + E residue + E loss 9
where:

E potential = heat content of the fuel

E combustion = heat released by the fire

E residue = heét content of the unburned fuel and ashes

E loss = heat content of unburned fuel in the convection column.

Since the potential energy of the fuel is equal to the weight of the fuel multiplied by the heat
content per unit weight, the change in weight is proportional to the energy released by the fire.

A wt, =~ E potential — E residue = E combustion + E loss (10)
25
20
Z
H
~
[
il k1
o
i
&
o |0
W WHITE PINE
Figure 14.--Relation of flame w
=
angle and rate of spread = 5L PONDEROSA PINE
under influence of air /ﬂ
velocity. o®
0‘___._“1 . | .
o 5 10 1.5 20
TAN ¢

15




Fons (12) showed that under no-wind conditions E loss is approximately 5 percent of the

potential energy of the fuel.

Assuming that E loss remains small with wind, E combustion =

A wt. x heat content of fuel. Since we are interested in rate changes rather than total changes,
the rate of weight loss is used and gives the rate of combustion(B.t.u. per minute). The energy
release rate per unit area of burning fuel may now be defined as the equivalent unit energy re-
lease rate, ER, and is obtained by dividing the combustion rate by the combustion area.

Er

_ (Weight loss rate) (Energy equivalent of fuel)

(Combustion area)

B.t.u. /ft.% /min. (11)

The energy rate per unit area of the wind tunnel airstream equals the dynamic pressure times

the air velocity.

quantities:

Tan

where:

lalRS]
[t} i

1

Eg
J

flame angle
dynamic pressure of airstream lb, /ft.®

air velocity ft. /min.

equivalent unit energy release rate B.t.u. /ft.% /min.

mechanical equivalent of heat ft, 1b./B.t.u

The tangent of the flame angle should then be proportional to these two

(12)

Tan ¢ plotted against qU/ER] (fig. 15) is a straight line on log log paper, with no evidence
of dependence upon moisture or species for all conditions under which fires were burned. This
relation also shows a correlation to rate of spread when a sufficiently wide fuel bed is used.

IC’ v LB AL LJ LB RAL v LEERAAALER R A ] v ‘:
- | o—8—
z10 & '
- ‘a 3

a":p/ .
]
lo-7 A . | lijio-s ] Lt b 42 |i0-5 A A0 LA i0-4 A L_b

UNIT ENERGY RATE OF AIR STREAM

v

EQUIVALENT UNIT ENERGY RELEASE RATE OF FIRE Er
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also prove to be a valu-
able dimensionless param-
eter for scaling indoor
fires to outdoor fires.

Figure 15.--Dependence
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energy rate of fire
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The flame angle and the rate of spread have been shown to depend upon the combustion
rate per unit area of the fire. Similarly, ER can be shown to be dependent upon wind. Figure
16 shows a reduction of En as air velocity increases. An analysis of variance did not indicate
a significant difference in ER for the fuel moistures used in these experiments. The independ-
ence of ER to fuel moisture is less obvious in the absence of wind. Without wind, the flame
depth is shallow, and edge effects are stronger. Further testing with a wider range of fuel
moisture and a better determination of combustion area may show a dependence of Ep upon fuel
moisture.

A simple regression analysis of Ep on U produces the equations:

ponqerosa pine Ep = ﬁ—gﬁ— (13)

white pine Er = FO-”()?)_{S)BTJ_ (14)
where:

ER = equivalent unit energy release rate B.t.u./ft.g/min.

U = air velocity ft./min.

Further study is needed to develop a hypothesis that will relate ER to fuel bed loading, fuel
particle size, fuel bed compactness, and air velocity.
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A cursory look at fires would not indicate that ER should decrease as air velocity in-
creases. In mat-type fuel beds, this decrease is explained by the fact that as air velocity in-
creases, combustion area increases faster than total heat release from the fire. It is true that
total heat output of the fire, after first decreasing slightly, increases with additional air veloc-
ity; but at the same time the fire is burning over a much larger area and not burning as deep- -
thereby lowering the heat output per unit area. In fuel beds such as ours, that are restricted
in width, the combustion area is directly proportional to flame depth, where flame depth is the
distance from the leading edge of the fire to the rear of the fire front. The fire front does not
include residual burning behind the main fire. The relation between flame depth and rate of
spread is shown in figure 17. In this figure, moisture and wind influences have already shown
their effect on rate of spread, and they are not apparently separable. :

While flame depth is increasing, the vertical depth of burn into the fuel bed is decreasing.
At 704 ft./min. (8 m.p.h.)unburned needles could be found in the lower layers of the ponderosa
pine fuel beds. Unburned needles could not be found when air was moving slower. Data on
burning depth are presented only in the data summation tables of this paper, pages 31-34.

If the fuel bed porosity, A, were high enough to permit burnout of fuel to the full depth
even in very high air velocities, combustion rate might increase faster than flame depth and Eg
would not decrease as air velocity increases. Again, the need for more research on fuel bed
parameters A and ¢ becomes apparent.

FIRE CHARACTERISTIC CURVE

The preceding discussion has shown a relation between the rate of unit energy release of
the fire and the resulting flame angle in the presence of wind. This relation indicates that if
ER is large the flame will not be tipped and rate of spread will be small. As wind increases,
the flame tips, and rate of spread increases as Ep decreases. A plot of rate of spread versus

28r ® PONDEROSA WHITE
26 PINE PINE
046%M.C.  055%MC
24} 8 73%MC. O8B%MC
€96%MC.  ©11.6%MC
22 f
20}
u ‘BT
= 16}
14}
X
A °
[
o 10k n/
g 8} Figure 17.--Influence of
Z st ./. moisture and air
sl J@ )/o velocity on rate of
2 f /go/o spread and flame
depth.
o 1 i i 4 I 1 1 ) | A L '

0O 2 4 6 8 I0 12 14 16 18 20 22 24 26 28
RATE OF SPREAD "R" FT/MIN
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E, confirms this and produces the fire characteristic curve shown in figure 18. Fires that
have a very low and nearly constant rate of spread, a large ratio of flame length to flame depth,
and a high unit energy release rate are at one end of this curve. These characteristics are
similar to those of a fire storm, which is a high-intensity stationary fire. At the other end of
the curve are fires that show a very rapid rate of spread, a low ratio of flame length to depth,
and a low but nearly constant rate of unit energy release. These are the characteristics of
runaway fires that burn in fine light fuels. This curve illustrates the rapid increase in rate of
spread that results when the convection column weakens and tips because the unit energy
release rate is low.

The knee of the curve (transition zone) marks the area of minimum values for several
important fire characteristics--including flame length, total energy release rate, and the peak
irradiance (measured by an overhead radiometer). Presence of the transition zone may reflect
a change in the mechanism of rate of spread as was discussed earlier (see figures 8 and 9).

This is the only curve that could be found that relates rate of spread of both fuels to a
common parameter along the same line. Each point on the curve represents a single velocity
at which all values of fuel moisture for that velocity are averaged. The effects of varying size
of the fuel particles and configuration of the fuel bed upon this curve will be very interesting
to see. '

DIFFUSION FLAME ANALYSIS

The general principles of diffusion flame theory presented by Thomas (18, 20) applied to
fires in mat-type fuel beds (2, p. 18) if the characteristic length, D, in equation (15) is revised
to equal the distance from the front of the fire to the rear:

B AIR VELOCITY
o | punaway FT/MIN.
< AY FIRES
PONDEROSAY 32 © WHITE
20} PINE A 264 PINE
z = 4400
s & 7047 E, EXTRAPOLATED
S FROM EQUATIONS 13814
“sk
&
2 ]
w
Figure 18.--Fire char- & 'O &
M (%]
acteristic curve re- u
. ° -TRANSITION ZONE
lating rate of spread W
. . = 5}
and equivalent unit 33 =
energy release rate. \ FIRE_STORMS
) 1 I 1 1 L _o— —=°
o] 500 1000 1500 2000 2500 3000 3500

EQUIVALENT UNIT ENERGY RELEASE RATE "E, BTU/MIN./FT?
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L m” - -
£ m?) (15)
o (gD)?
where:
L = flame length in feet (distance from base to tip of fire)
D = flame depth in feet
m' = unit mass flow rate in lbs./min./ft.2
—2 3
0 = air density (8.1 X 10 1Ibs./ft. )
g = gravitational constant (1.152 X 10° ft./min.g).

To represent the orifice diameter, we used flame depth rather than some equivalent
dimension based on the square root of flame depth multiplied by fuel bed width. The value of
m' (mass flow rate of combustion gases per unit area) was determined {rom the weight loss
data in much the same manner as the equivalent unit ecnergy release rate Eg was computed.
When results of this analysis were compared to the relation developed by Thomas' equation
(16), they showed good correlation (fig. 19).

. 7061
= 4p) @m0

p(gD)?2

o|

(16)

The dimension of flame depth appears to be the correct measure to use, and radial symmetry
is unnecessary. For our fuel beds the numerical values on both sides of the equation increased
as moisture content increased,
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Thomas extended his work to include the influence of air velocity; we checked our data

against his analysis. The values for each moisture level were averaged at each air velocity.
The relations tested were of the form:

£ (U2)O.ll _ (m") n
D gD o (gD)? “

These were compared to Thomas' results (fig. 20). A slight difference is evident between white
pine and ponderosa pine fires, but a single line can approximate the relation for both fuels. The
equation of this line, plotted from our data, is:

L
D “gb T (18)

whereas Thomas obtained this equation:

0,48
L (UE)O‘ll B

_ (m") 19)
D gb o(gD)? o

The difference apparent between the two sets of data may be attributed to differences in meas-
urement techniques, or possibly to variations in size of fuel particles.

A series of outdoor fires was studied in prepared fuel beds of logging slash during the
summer of 1962 (2, p. 18). The fuel was lodgepole pine and Douglas-fir needles, and branch
wood up to 2 inches in diameter. The fuel beds, 6 feet wide by 60 feet long, were ignited at one
end. We recorded data similar to those recorded for the laboratory fires.
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The outdoor fires were checked by the diffusion flame analysis for wind to determine their
correlation with laboratory fires. Since the actual rate of weight loss could not be measured,
we used maximum burning rate to compute mass flow rate of the combustion gases. The mass
flow rate was determined from the equation:

W, R

m" = ——OD— Ibs. /ft.2/min. ' (20
where:
- i : 2
W, = loading in lbs. /ft.
R = rate of spread in ft./min.
D = flame depth in feet

The relation given /in equation (17) was applied and the data were plotted (fig. 21).

The field data (fig. 21)/fe11 to the right of the pine needle laboratory data and Thomas'
1-inch stick data 7 This was expected because all the fuel was assumed to be contributing to the
mass flow rate m" in the fire front. In a heterogeneous fuel bed the fine fuels ignite first and
therefore contribute most heavily to the fire front. If the fine fuels up to one-fourth inch in

diameter are assumed to be supporting the initial flame size, then m" is reduced to a value

that alines the field data with the laboratory pine needle data. If all the fuel up to one-half

inch in diameter is assumed to be contributing, then the field data aline with Thomas' 3-inch
crib data.

This demonstrates a possible use for the diffusion flame characteristic equation provided
the size classification of the fuel is known. When this is known, the burning rate per unit area,
or mass flow rate, can be determined. If forest fuel can be classified so that loading and size
percentages are known, estimates of mass flow rate (m") and equivalent unit energy release
rate (ER) can be made. If ER can be so estimated for outdoor fires, it may be possible to
relate fires of different sizes with the fire characteristic curve (fig. 18).
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SUMMARY AND CONCLUSIONS

Our studies of the effects of fuel moisture and wind upon the rate of fire spread in ponder-
osa pine and white pine needle fuel beds have shown the following:

1. As wind increased, the fire spread at an increasing rate,
2, The fire was carried in the surface fuel particles.,

3. Flame depth increased and vertical depth of burn decreased as windspeed increased,
4, In the absence of wind, rate of spread decreased linearly as fuel moisture increased.

Additional experiments were conducted to aid in explaining how fire is propagated. For
these, a thermocouple was placed inside a needle to register changes in temperature. These
experiments showed the following; :

1. The thermocouple began to show rise in temperature when the fire was still two flame
lengths away.,

2, Temperature inside the needle became higher than that for the boiling point of water
before the fire reached it.

3. In the absence of wind, the initial rise in temperature must be due to radiation from
the overhead flame because of the large distance from the fire and because air is flowing
toward the fire, not away from it.

4, When the fire draws close to the needle, radiation from within the fuel bed may also
contribute to the temperature rise.

5. In the presence of wind, the air temperature at the surface of the fuel bed was found
to be hotter than the fuel; therefore, both convective heating and radiant heating can contribute
to the rise in temperature of the fuel particles,

6. Inthe presence of wind, combustible gases may form on the surface of the fuel bed
ahead of the main flame front. The exact source of these gases is not known. These gases
seem to be ignited periodically by the fire and to sweep ahead of the main fire front along the
surface of the fuel, They appear to play a major role in the mechanism of fire spread in the
presence of wind,

Results of this study of the effect of wind upon rate of spread in fine fuels do not corre-
spond to rekults of other studies that used cribs made of dimensioned sticks., Possibly this may
be explained by differences in the fuel particle size, o, and fuel bed porosity, A. There was a
correlation between rate of spread and the product of ¢ and A,

These studies revealed the importance of the equivalent unit energy release rate, Rate
of spread plotted against equivalent unit energy release rate produces a curve on which the
average values of both fuel types fall, This curve clearly demonstrates the characteristics of
a fire; therefore it is named the fire characteristic curve. Fires having low rates of spread
and high rates of energy release are at one end of the curve and have many characteristics of a
fire storm, Fires with rapid rates of spread and low, nearly constant, energy release values
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are at the other end of the curve and have the characteristics of runaway fires. The knee of the
‘curve represents a transition zone in which the mechanism of spread is changing from the no-
wind to the wind model. Several important parameters reach minimum values at the transition

zone.

Diffusion flame analysis that Thomas used on crib fires was applicable to mat-type fuel

bed fires if flame depth was used in place of equivalent orifice diameter. The use of this
analysis may enable us to predict burning rates of outdoor fires from their flame dimensions.

(1)

(2)

3)

(4)

(5)

(6)

(7)

(8)

)
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APPENDIX A

Definition
area of combustion at surface of fuel
rate of weight loss (burning rate)

depth of flame zone from leading edge of fire to
trailing edge of fire front

equivalent unit area energy release rate

low heat of combustion value of fuel

peak overhead irradiance

total radiant heat received during passage of the flame
irradiance to a point 18 feet forward of the fire

mechanical equivalent of heat

flame length from midpoint of flame depth to tip of flame

vertical height of flame tip above fuel surface
unit mass of air |
fuel moisture content

unit mass of convection column gases

total heat release rate

rate of spread at any condition

relative humidity

rate of spread in absence of wind

rate of spread in ponderosa pine needles

rate of spread in white pine needles

ambient temperature

burn thickness

velocity of air

velocity of convection column

unit area loading of ovendry fuel

acceleration due to gravity

mass flow rate of combustible gases per unit area
dynamic pressure of air stream

residence time of flaming zone at any point in fuel bed
void volume per unit of fuel surface area

air density

fuel particle surface area per unit volume

deflection angle of flame from vertical

Measure
2
ft.

lbs. /min.

ft.
B.t.u./ft.a/min.
B.t.u./lb.
B.t.u. /ft.2/HR
B.t.u./ft.®
B.t.u./ft.®/HR
ft. 1b./B.t.u.
ft.

ft.

1b. /ft.®
percent

1b. /ft.°
B.t.u./lb.
ft./min,
percent

ft. /min.
ft./min.

ft. /min.

°F.

ft.

ft./min.
ft./min.

Ib. /ft.?
ft./min.?
lb./ft.2 /min,
1b. /ft.®

min,

fe.% /5 —

Ib. /fc.®

T

degrees




APPENDIX B

INFLUENCE OF SURFACE FLOW OF WIND UPON RATE OF SPREAD

A series of preliminary fires in the wind tunnel was used to check instrumentation and
experimental techniques. During these tests the fire spread four to seven times faster in the
first half of the fuel bed. The flames were tipped considerably farther in the first 4 feet; this
indicated a stronger influence of the wind upon this portion of the fire.

In a smoke test, a tight rolling vortex was observed over the first 2 feet of the fuel bed;
its diameter gradually increased, and the vortex dissipated over the last 4 feet of the bed. The
boundary layer was investigated with a constant-current hot wire anemometer. The hot wire
confirmed the visual observations of the smoke and showed the vortex formation, breakup, and
dissipation (fig. 22). The center of the vortex gradually rose from 1 inch at fuel bed station,
0.5 foot to 3 inches at station 1.0 foot, and to 5.0 inches at station 2,0 feet. During this time
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Figure 22.--Surface layer turbulence over ponderosa pine needle fuel bed at free-
stream air velocity of 3 m.p.h.
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thé@neter of the vortex grew larger until at 4.0 feet it no longer held any well-defined shape
and broke up. At 5, 6, and 7 feet the air motion appeared to be random; and the turbulence
level, which had been as high as 50 percent, decreased to 25 to 30 percent at 7 feet.

These measurements were made over the fuel bed in the absence of any fire and, of
course, the same turbulence pattern would not exist if the fuel bed were burning. The meas-
urements do show, however, that when the fuel bed is ignited at station zero, the free-stream
air velocity extends down to the surface of the fuel bed and can tip the weak flame almost 90°
over the unburned fuel. The free-stream air velocity is then dominant over the flame until the
energy output of the fire builds up and straightens the flame. This did not occur until the fire

was well into the fuel.

The solution to the problem was to lift the free-stream air velocity above the surface of
the fuel at station 0.0 by placing a trip fence or spoiler across the fuel bed 1 foot ahead of the
fuel bed. The trip fence was 1-5/8 inches high and induced a turbulent boundary layer which
was surprisingly uniform over the entire length of the fuel bed. Results of a hot wire tur-
bulence survey with the spoiler in place (fig. 23) showed that beyond 2 feet the vortex appears
to have dissipated and the maximum turbulence levels are about 30 percent.
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Fuel beds burned behind the spoiler produced a uniform rate of spread from 2 feet to 7.5

feet.

figure 24, All wind tunnel data presented in this report were taken with the spoiler in place,

Figure 24, --Effect of
surface layer tur-
bulence on rate of
spread with and
without a spoiler.
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Typical rate of spread data for fires burned with and without the spoiler are shown in
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Headquarters for the Intermountain
Forest and Range Experiment Station
are in Ogden, Utah. Project headquar-
ters are also at:

Boise, Idaho

Bozeman, Montana (in cooperation
with Montana State University)

Logan, Utah (in cooperation with
Utah State University)

Missoula, Montana (in cooperation
with University of Montana)

Moscow, Idaho (in cooperation with
the University of Idaho)

Provo, Utah (in cooperation with
Brigham Young University)



“The Forest Service of the U.S. Department
of Agriculture is dedicated to the principle of
multiple use management of the Nation’s
forest resources for sustained yields of wood,
water, forage, wildlife, and recreation. Through
forestry research cooperation with the States
and private forest owners, and management
of the National Forests and National Grass-
lands, it strives — as directed by Congress —
to provide increasingly greater service to a
growing Nation.”
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