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ABSTRACT

This report is an e v)imination of special nonlinearities of
the Jeffcott equatione in rotordynamics. The immediate
application of this analys i s is directed toward understanding the
excessive vibrations recorded in the LOX pump of the SSME during
hot firing ground testing.

Deadband, side force and rubbing are three possible sources
of inducing nonlinearity in'the Jeffcott equations.	 The present
analysis	 initially	 reduces these problems	 to	 the	 same
mathematical description.	 A special frequency,	 named the
nonlinear natural frequency, is defined and used to develop the
solutions	 of the nonlinear Jeffcott equations as singular
asymptotic expansions.	 This nonlinear natural frequency, which
is the ratio of the cross — stiffness and the damping,	 plays a
major role in determining response frequencies.

Numerical solutions are included for comparison with the
analysis. Also nonlinear Frequency —reponse tables are made i'or a
typical range of values.

Finally the regions of stability of these nonlinear problems
are bounded using inequalities of the system parameters.
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1. Introduction

Vibrations are inherent in rotating machinery. Mathematical
e	 explanations of vibrations began with Jeffcott's description of

i	 the	 shaft's natural frequency of lateral 	 vibration	 [SJ.
Unfortunately, Jeffcott!s	 linear model cannot account for all
frequencies that have been observed experimentally. In
particular, destructive vibrations have occurred in hot firing
ground testing of the LOX pump of the SSME with no clue to these
vibration's	 origins	 being offered by the	 linear	 model.
Specifically, examination of the power spectral density (PSD)
plots reveals unaccountable frequencies. Consequently, numerous
investigations have been undertaken to study such rotors and to
provide descriptions of the solutions of the two, coupled,
second-order differential equations which describe the motion of
the rotor's center of mass.	 Following the early work in
rotordynamics by Yomamoto (7), one introduces a nonlinearity to

r7	 the Jeffcott equations by including the effect of bearing
clearance or deadband.	 In the pump, this deadband refers to the

7	 load carriers (ball bearings) and physically describes the
{	 clearance between the outer race of the bearing and the support

housing.	 The work of Yomamoto did not include cross-stiffness,
but a straight-forward derivation with this modification is
easily obtained.	 A more limiting gap in his work is the

j	 assumption that the response is simply a perturbation of the
forcing function. This is tantamount to assuming that one always

i has the graph of a circle as	 the	 solution.	 It	 is	 shown	 in	 this
report that	 this generally	 is	 not	 the	 case.	 Both	 empirical
results by	 Childs [1,2]	 and	 Gupta	 et	 al.	 [4)	 and	 numerical
solutions
Dynamics

using the
Company

fourth order	 Runge-Kutta	 algorithm	 by Control
[3]	 have	 been	 helpful	 in	 understanding	 the

' rotor's motion for the nonlinear	 problem.	 This	 report	 extends
the	 earlier work by	 using analytic expressions	 obtained	 from
singular asymptotic expansions	 (method	 of multiple	 scales)	 to
quantize the	 solution.

The primary objective of this report is to 	 describe
analytically solutions of the nonlinear Jeffcott equations with
deadband (or an equivalent variation such as rubbing). To this
end emphasis is placed on determining which frequencies one
expects from the nonlinear problem, how these frequencies are
related to the parameters of the differential equations, and
where the solutions are stable.

(	 ul
fi	 Section II is a heuristic development of responses to a

nonlinear system.	 This discussion is based on a numerical
j solution and is intended to help develop some intuition about the

solution of the nonlinear problem.

Section	 III	 is
analytic	 solutions.

the
This

formal
section

mathematical
begins with

development
the discovery

of
of

the nonlinear natural frequency and proceeds to incorporate it in
an	 asymptotic	 expansion of	 the solution. This	 leads to
considering	 the	 two cases of	 resonant	 and	 nonresonant driving

tt
9
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I
frequencies.	 Herein	 also	 lies	 an	 explanation of why one expects

i the rotor's motion	 to	 be either	 a	 circle or	 an annulus.

r Section	 IV	 contains	 numerical examples which	 verify	 the

a theoretical	 expansions.	 Typical	 frequency-response descriptions
are	 also	 included	 in	 this	 part.

Section	 V discusses	 bounds	 for	 stability	 regions. This	 is
i done with comparison	 lemmas for ma,jorieing	 the nonlinear Jeffcott

equations.

Section	 VI	 concludes	 the	 report with a summary	 of	 the
report's	 applications	 and	 directions	 for	 future studies.

I
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I
2.	 Nondimensionslizstion and Ileuristics

{	 The linear Jeffcott equations which describe the displacement of the rotor
center from its equilibriumposition in the inertial, Cartesian coordinate
system ( y,z) (each in meters) are these:

(1.) my -Cay -Kay-Qsz+muwzcovwt

(2.) mz•-Cg z+Qs y-K.z+muw z ainwt

where the shaft of the rotor lies along the x-axis and
,a

m n mass (kg.)

C
s - 

seal damping ( kg./s.)

K . seal stiffness ( kg./s.2)
s

Q s • cross-coupling stiffness of seal ( kg./s.2)

u . displacement of the shaft center of mass from the
a	 geometric center (m.)

W - angular velocity of the shaft ( rad./s.)

r	
For the model to include bearing forces which hold the rotor in
position, one adds the terms

- K B(Y-Y d/ Y2 +z 2 )+u KB (z-z6 //y +zz )

and
r

-yRB(Y -Y6/ }^ +z 2 ) - KB ( z - z 6//-Tii )-
respectively, to right-hand sides of equations (1.) and (2.)

Here

KB = bearing stiffness (kg./s. z )

6 = clearance or deadband between housing and bearing (m.)

P = coefficient of friction between housing and bearing (none).

These bearing forces occur only when 67_+_Z">6; otherwise, they are zero.
Since V is nondimensional and typically small, one may regard it as zero

4	 without affecting the qualitative results.
Equations (1.) - (2.) then become

(3.) y+(Cs / m)Y+(1/m) [ Its+KB(1-6 / r)]y +(Qs / m)z•uwzcoswt

(4.) z +(C a /m)z-(Q.1m)y+(1/m)[Ks +K B (1-6/r)]z•uW2 sinwt

[	 when r w hy—+"z-T)d; otherwise, Ka •0. Equations ( 3.) - (4.) can
put in nondimensional form using a displacement g and a frequei
c.	 One pair of candidates for g and o would be g . 6 , t
deadband size, and o2 .wo •K siKB,. the natural frequency of i

^	 3
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corresponding linear problem (6-U).	 Thus, using Y-y/g, Z-z/g,
ands -at, the dimensionless equations are these:

(5.) Y '' +CY'+(A+k(1-4/RJY+BZ.E02cosOT

(6.) Z " +CZ'-BY+(A+k(1-4/R)IZ-EO2sinOT

where	 prime denotes differentiation with respect to T and

	

t	 C-Cs /m /a , A-Ks /m / 02 , k ` KB / m/ o . B-Qs/ m/a=, 4 . 6 / g , R - r / g , E-u/g,
and 0 -u/o.

	

is	 Equations ( 5.) - (6.) can be reduced to the following single
equation by defining W-Y+iZ:

t(7.) W''+CW'+(A+k(1 -4/I WI)-iB)W-E0 2 exp(iOT )

Furthermore, the polar form of equations (5.) - (6.) is

(8.) R''+CR'+(A+k(1-4/R)-(0')21R-E 02 COS( OT-0)

(9.) R0''+(2R'+CR)0'-RIB-uk(1A/R)]+F.4 2 sin (OT -0)
3

where R . (Y 2 +Z 2 ) 1/2 and 0 -Arctan (Z/Y).

The nondimensional Jeffcott equations with deadband and mass
imbalance are easily solved numerically using a fourth-order
Runge-Kutta algorithm. If these solutions are then plotted and
analyzed in a power spectral density (FSD) investigation, the
resulting	 graphs provide a direction	 for	 initial,	 analytic
descriptions. To this end, consider the following special case:

M-1 .	 u-1.56
C-240.	 Q-200,000.
K .0.	 6=.0000285S

K B -1,305,000.	 w-50UHz

	

I	 The units used are those given after equations (1.) - (2.) and
are only of interest in a relative sense.	 Therefore, with
wo -(1,305,000) 1/2 and	 6 •.0000285 as the nondimensionalizing
parameters, the Jeffcott equations become

Y''+(C / wo) Y'+(1-I/R)Y+(Q /w o )	 Z-1.5(.J/wo ) 2 cos(w/ wo)TS	 s
Z"-(C s / W O ) Z'-(Qs / wa ) Y+(1-1/R) Z . 1.5(w/wo ) 2 sin ( w/wo)T

where T- wo t and R-(Y 2 +Z 2 )
1/2

=(y 2 +Z 2 )
1/2

/6.	 Figure 1 shows the
motion for this case.	 The motion has become periodic for the

	

Ell
	 time interval (.5<-t<-l.s.) shown. 	 The graph of t vs.	 r - 6 R,

given in Figure 2, suggests that r has the form

r-.71+.39cos720n t-ao+a2 COS YT.

It is	 this form that leads one to consider approximating the

	

i	 Jeffcott equations with

	

(

l	

k
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Y"+CY'+(L-1/(a 0 +a,cosy T ))Y+BZ.1.50 2 cos 01
Ottt6fNiU: PAGE R

Z"+C7.'-BY+(1-Mao +a l cos yT ))2 . 1.50 7 sinoT .	 OF POOR QUALIV

Examination of the PSD of R shows that R is nctuolly an 	 infinite
t	 sum:

R. I	 a cos k YT
k=0	 k

with	 a	 and	 a	 the	 dominant	 terms.	 The	 other	 coefficients
decrease	 exponentially	 to	 zero	 as	 k- m	 Therefore,	 the
replacement	 of	 R	 with	 a 	 +a l	 cos yT	 is	 a	 reasonable
approximation.	 Furthermore,	 ao	 can	 be	 considered	 the	 average
value	 of	 R.	 Since	 this	 value	 will	 be	 nonnegative,	 one	 may	 write:

i' 1/R-1/(a0	 +a 1 	cos YT )

-0/ao ) f	 (-a1/ao) It (cosyr )k.
k=0

If	 the	 original	 infinite	 summation	 of	 R	 had	 been	 used,	 the	 above
series	 for	 1/R	 would	 still	 be	 a	 summation	 of	 cos	 YT	 terms,	 but

with	 different	 coefficients.
I

Now consider	 a t /a 0	as	 an	 asymptotic	 expansion	 parameter	 c
Thus:

:
1/R-( 1/a 0) ( 1-	 eeos	 YT J+0( e' ).

This	 last	 lead	 to	 poorapproximation	 may	 ultimately
approximations	 for	 the	 magnitudes	 (but	 not	 the	 frequencies)	 of p

the Jeffcott	 solutions	 since	 higher	 (01)	 powers	 of	 cos	 yT
actually	 contribute	 to	 the	 coefficient	 of	 cos 0 T	 and	 cos	 yT

iTherefore,	 thu	 following	 derivation	 for	 a	 straightforward
asymptotic	 expansion	 may	 be	 used	 primarily	 for	 predicting

response	 frequencies,	 but	 will	 generally	 be	 poor	 for	 describing i

the corresponding magnitudes.

With	 this	 prelude,	 one	 replaces	 the	 nonlinearity	 1/R	 of	 the

Jeffcott	 equations with	 1/ao-	 Ecos	 YT and	 expands	 the	 solution as
" Y-Y	 + cY1 +0 (c' )	 and	 Z-Z0 +c 0 Z 1 +0 ( 0 ).	 The	 resulting	 low-order

pro^lems	 are	 these:

0(1):
Yo "+CYO 	'+(1-1/a 0 )Y	 +BZ	 -1.5	 1) 7 cosmT q

0	 0

Z0 "+C; ' -B c 
+(1 -1/a 0 )Z 0 -1.5	 02sinOT

^LI	 Y1 ''+Ci '+(1-1/ a 0 )Y +BZ I --(1/a 0 )(cos 
YT )Y0

71 ' ' +CZ 1 '-BY +(1-1/a 0 )ZI . -(1/a 0 )(sin yT )Z0
w

0	 5



The prescribed initial conditions are used with the zero-order
problem. The initial conditions for all higher-order problems are
all zero.

"	 Thera is a circular argument involved here. 	 One is using
the answer,	 which was found numerically, 	 to solve the problem.

T	 Although this is unacceptable mathematics, 	 the results obtained
in this heuristic discussion are not derived solutions but only
suggestions of solutions.	 With this in mind, one proceeds to
solve the zero - and first-order problems.	 The zero-order

}	 problem has solutions of the form:

Y a -C ( T ) Sin BT +C 2 (T)COS BT+C 5 cosmT -C6sin,T

Z o -C 3 ( T )sinBT +C 
4 

(T )COS BT +C S SinmT +C6cosmT

where C 1 , C 2 , Co and C,, are all functions of time and all involve
decaying exponential functions.	 Thus, in steady-state

y 	 COS (r-r +mo)
r 5	,ss	 ^

-C sin( OT + ,p )
Z o ' SS	 7	 o

In the first-order problem, one is presented with the same
left-hand side as the zero-order problem. Thus, in steady-state
it is only the forcing function of the right-hand side that
provides non-trivial solutions. Hence, one finds combinations of

'	 the form cos YT ^os OT and sin •/T sin OT

d	
Thus, the steady-state solutions of the first-order problem

+	 should look like these:

Y 1 -C b tos( Ot Y ) T

Z 1 -C esin(ms Y) T

Since	 higher order	 problems contain right-hand sides of	 the	 form

(cos	 kyt) f(Yo,	 Z a ,	 Y 1 ,	 Z 1 ,	 . . . ,	 Yk,-1 Zk-1),

" it	 follows	 by	 induction	 on	 k	 that the kth-order steady-state
solutions	 contain	 terms	 of the	 form

Y 
	 - cos( o`- ky ) T

Z
	

- sin( 0`- kY) T

Finally,	 ne	 anticipates	 that	 they,	 p PSD of Y	 (	 or	 equivalently 7,)
will,	 show	 frequencies	 at	 0!	 ky	 This	 is verified in	 Figure	 3,

^w
which	 is	 the	 PSD of	 the	 (numerical) solution	 of	 the test	 problem.

(	 ORIGINAL' PAGE M
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3.	 General Theory	 ORIGINAL PAGE M
OF POOR QUALITY3.1	 Nonlinear	 Natural	 Frequency

Consider	 the	 homogeneous (E-0) equation	 corresponding	 to
equation	 ( 7 .).	 If	 this equation	 were	 also	 linear	 (A -0),	 then

4	 r exponentially	 growing	 or	 decaying	 solutions	 would	 generally
result	 for	 a	 given set of system parameters. 	 In the special case
that	 (9/C)'-A+k,	 a	 sinusoidal	 solution	 is obtained with	 frequency
B	 -B/C.	 To	 see	 this,	 consider	 the characteristic	 equation	 for
W- eX P( m t):

J
m2+Cm+(A+k-iBJ-O

m--C/2s (C'/4-A-k+iB}1/2--C/2'(C'/4-(B/C)'+iB)1/2

m--C/2ti(iC/2-B/C) 1/2 .-C-iB/C,	 iB/C.
M

In	 the	 nonlinear,	 homogeneous	 problem,	 k	 is	 replaced	 by	 k(1-A/R);
hence,	 if	 R	 is a	 constant,	 then	 there	 is	 a	 wide	 spectrum of	 R	 for
which	 (B/C)'	 may	 be	 A+k(1-A/R);	 i.e.,	 if d^

U A

(10.)	 A<(B/C)'<A+k,

then	 there	 is	 a	 constant	 value	 of	 R	 (with	 R>p	 )	 for	 which

t

(B/C)'	 -A+k( 1-A/R).	 This	 value	 of	 R	 is	 denoted	 by	 a	 and	 the
corresponding	 frequency	 by	 Bo	 -B/C.	 This	 frequency	 is	 labeled ^:j
the	 nonlinear	 natural	 frequency.	 Thus,	 whenever j+NA
Inequality	 (10.)	 is	 satisfied,	 equations	 (5.)	 -	 (6.)	 with	 F-0
have	 steady-state	 solutions	 Y-a	 cos(3oT )	 and	 Z-a	 sin	 (B0T)-j

The	 same	 results,	 can	 be	 found	 from	 the	 polar	 equations
-	 (9.)	 by	 assuming	 R	 and	 0'	 are	 constants.	 Then with	 EwO	 those
equations	 become f

(A+k(1-A/R)-(0')' } R -0 .	 C 0'-B•

Thus,	 30 -0'-B/C	 and	 a-R-kp/(A+k- 301).

Notice	 that	 00 -B/C<(A+k)1/2-wo,	 the	 dimensionless	 natural
frequency	 of	 the	 linear	 system.	 Thus,	 in	 considering	 the	 general
nonhomogeneous	 problem,	 it is necessary to be	 aware of	 these three
dimensionless	 frequencies:

the nonlinear	 natural	 frequency,

j ao	 -	 the	 natural	 frequency,

p	 -	 the	 driving	 frequency.

Either	 U 0	or	 wo	 is	 an	 appropriate	 choice	 for	 a	 the
nondimensionalizing	 frequency.	 Correspondingly,	 one	 would	 select

V , either	 a	 (with	 3 0 }	 or	 u	 (with	 wo )	 as	 the	 base	 displacement	 g.

7
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Ed	
One finol rearrangement of equation (7.) is made here to

emphasis the	 nonlinear	 natural	 frequency:

(11.) W '+CW'+KW-f(W)+E0 = exp(iC; )	
ORIGINAL PAGE MAv

where K- A+k(1-A/a)-IB and f(W)-kv (1 /!W1- 1/aJW.	 OF POOR QUALITY

iy	 3.2 Equivalent Problems.

In
the	 form

this	 subsection	 the	 forcing	 function	 is	 assumed	 to	 have
F(w)	 exp(iwt),	 where	 F(w )	 >-0	 (or	 equivalently	 F(w)

and	 F is	 single-valued	 for	 w >-0.	 The	 following	 are	 special
cases	 of physical	 interest:

11s a. Mass	 imbalance.	 As	 discussed	 above,	 F(w)	 n uw2	for	 a
mass	 u.

b. Side	 Force.	 This	 force	 may	 be	 introduced	 into	 the
Jeffcott	 equations	 (1.)	 -	 (2.)	 as	 constant	 replacements
for	 the	 mass	 imbalance.	 In	 such	 cases;	 equation	 (7.)
becomes:

:
W''+CW'+(A+k(i- a/ IWI )-iB) W- uW/ 69'	 n constant.

is Thus,	 a	 side	 force	 is	 the	 special	 case	 F(w)-constant	 and
W -0.

T C. Rubbing.	 Rubbing	 contact	 between	 a	 rotor	 and	 its
r di, housing	 produces a Coulomb damping 	 force.	 This	 force
Iwould modify	 the original	 Jeffcott	 equations	 by	 the

addition	 of	 the	 terms:

K at (1-	 6/ r ) y - u K at (1-	 6/r)z+K	 -6 /r )Gst(1

/ r )Y/r)z+	 /r)CK at ( 1 -
Kat (

1 -and	 u	 6	 + R at ( 1 - 6 u 	6

respectively,	 to	 the	 right-hand	 sides	 of	 equations	 (1.)
-	 (2.).	 Here,	 G n constant-stator	 offset	 in	 the	 y-
direction,	 R at n stator	 stiffness	 and u	 -coefficient	 of
friction,	 which	 may	 not	 be	 small.	 As	 be	 ore	 these
forces	 2	 6.would	 be	 included	 only	 when	 r-(y2 +z2)'	 >	 On

t replacing	 y-G	 by	 y,	 equation	 (7.)	 (and	 corre5, pond ingly
its	 equivalent	 forms)	 again	 occurs	 but	 vith	 these
modifications:

1.	 i(-B)	 is	 replaced	 by	 i[-B+u 	(K st/g= )(1- A /R) J

2.	 the	 forcing	 function	 Ed e	exp(IOT	 )	 is	 replaced
by	 E 0' exp	 i	 OT )+(- wo	 / g2	 6 ).) ( G

If	 the	 mass	 imbalance	 term	 is	 omitted,	 then	 one	 may
regard	 the	 deadband	 with	 side	 force	 problem	 and	 the
rubbing	 problem as equivalent.	 Notice	 that	 the	 range of
values	 of	 the	 parameters	 for	 these	 two	 problem may	 not
be	 the	 dame	 since	 the	 rubbing	 problem	 includes	 the	 non-
negligible	 term	 u (K	 /g' )( 1-	 / r ).

at
i?
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ORIGINAL: PAGE IS
3.3 Method of Multiple Scales.	 OF POOR QUALITY

"	 Not	 consider a more formal development	 of	 analytic
Solutions.	 Straight-forward	 asymptotic expansions are not
general enough for thisg	 g	 problem since they always lead to a zero-
order approximation of the form:

W-M ex 1 BOT

C	
The heuristic example considered in section 2 suggests that
Bot	 must be replaced by B (T ) which is close to but not exactly

+i	 BoT.	 There are several methods of attacking such singular

g
robbl ms these are d scribed i Nu ffeh rr 66 o0 e method the
et,o^ of averaging, Is appropr^ete y For t6^'Jof^Cott equations

since it begins with the assupmtion that	 W = M (T ) exp (iB (T)) +
N exp ( i OT).	 Another method, multiple scales, is also appropriate

I	 because one can envision the action of the rotor being based on
two different time scales.	 The following development uses the
method	 of multiple scales. 	 The results are identical for the
method of averaging.	 In this subsection the forcing frequency

M m	 is restricted to differ from the nonlinear frequency B ; i.e.,
the problem is not resonant.	 Resonance,	 is dealt with in
the following subsection.

Instead of one time scale T, assume the problem depends on
many time scales:

a T o . T, T I . ET, TZ =E 2 T , ..
w

6	 Henceforth, only T and T are used. Let W (T ).W(T ,T ) .Wo(T0tTI)
+EW1 ( T o ,	 T1)+... 

o 
Equat1on ( 11.) becomes a partial Id ifferentiai

equation since

d/dT= ( a/3T o ) ( d% /dT )+( a/aTl)(dT, / d T) -Do+eDI

and ( d 2 /d r  )=(D +c D )_ .
o	 I

Thus, one finds

(12.) (D +ED	 (W +EWI+...)+C(D0+EDI)(W0 +E W1+...)
0	 1	 0

+K(Wo+EWI+...)=Ef(Wo+EWI+...)+E©Z exp( ii T0).

k'	 Equating like powers of c yields

I (13.) CO :Do 2 Wo+CDoWo+KWo . E0 2 exp(ioTo )•

1 
1=	 This is a linear problem with this steady - state solution

Wo =M exp(iB, T o )+N exp(i^To )

where N= EO 21 (- O 2 +iCO+K ) and M-M(TI ).	 To determine M one must
i rII	 examine	 the c -order problem and choose M to eliminate secular
C4!	 terms; see Nayfeh [6J:

11	
9
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ORIGINAL PAGE 15cl:D W 1 +CW I +KW	 2D o D 1 Wo -CD 1 Wo +f(W 0 ).	 OF POOR QUALIT.b

With L•kA/c	 the right-hand side of the last equation becomes

-21poM'exp(i(ioTO )-CM'exp(iRoTo )

+L(1/ IW O 1-1) (M exp(iQoTo )+N exp(i^T0)J

where	 IW o 1	 I M1 2 +INJ Z +MN	 exp(i(0-'uo )T,] +MN 	 exp(i(a, -m)T o])1/2

To	 avoid	 secular	 terms	 one	 requires,	 that	 the	 collective

coefficient	 of	 exp ( i8o To) be	 zero.	 Although	 an	 analytic	 solution
of	 the	 differential	 equation for	 M ( T 1 )	 has	 not	 been	 found, one

K
can	 qualitatively	 aasess M	 based	 on	 a	 similar	 problem	 ( van der
Pol'9	 equation)	 and	 specific	 numerical	 results	 ( presented	 in the

next	 section).

Since	 M ( T 1 	)	 is	 complex,	 it	 may	 be	 written as

q^ M(T, )° P( T 1 ) exp [ i B( Ts ) ] .	 Thus,

'st ^

W'o-P(T 1 ) exp(i6oTo+iR(Ts)]+ N 	 exp (iQTo)	 or,	 assuming	 R (T 1 )	 is
analytic	 near	 t=0,	 1b .p(T 1 ) cxp[i ( bo 4 ER1 ) T +... ]+N	 exp (i.^T)• Thus
the	 fundamental	 frequency of	 the	 nonlinear	 problem	 is	 not	 g

°
but.

d	 Ro+ G 1 +...;	 however,	 p	 must	 reduce	 to	 Eo	 when	 U 2 =0. This
frequency	 shift can account	 for	 the	 phenomenon of "tracking" that
has	 been	 observed	 experimentally	 ( 2).	 Similarly,	 the	 frequency
Y =' - p o	 that	 appears	 in -	 th	 expression	 for	 IW o I	 should
considered	 as	 Y 4- G. 	 Then	 1/ TWAl	 shows all	 fre q uencies nY

be
and

11
	 Wo/I W	 shows all frequencies nY±:s, 	 for n=0,1,... This suggests
 that	 has a complex Fourier series of the form:

n•	 s  exp(inYTO.
1

Another factor of M must	 also	 be	 included	 since	 numerical
examples	 show that M30 if	 E0 2 is	 greater	 than	 some	 fixed	 value.
This	 is	 sir : ilar to the behavior	 of	 the	 van	 der	 Pol	 oscillator;
see	 (6].	 ?'.sus, one may speculate	 that M has a	 factor	 of	 the	 form
F- 1/(1+exp(- nT	 )] where n	 =n( E0 2).	 This	 would	 imply	 that	 F -	 1
as	 T-'O0 	 when n >b and F - 0 as	 T- m wher.	 n <0.	 Thus,	 M	 looks	 like:

1/(l+exp(-nTI )]E	 sn exp(inYTI).

PSD plots of R show only frequencies of nY while plots of Y show
frequencies of p and nYzp.

3.4 Resonance.
q

The resonance problem 3=w can be handled in a manner quite
similar to the nonresonance case. The approximation 0 =1+a E is
made where E is the nundimensional mass causing the imbalance and
Qo is the nondimensionalizing frequency. With the same multiple
scale expansion as before, one finds the following two low-order
problem:

[^!
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j 0(1):	 a 2 w e / a T 1 2 + C(	 3W p/ 	 3To )+[1-1 / a-iBIWo- 0
ORIGINAL PAGE 15

3 with the solution W o -m(T )(axp(iTo),	 OF POOR QUALM
a

1

0(E):	 3 2 W I / a T^ 2 + C(	 3W	 aTo )+( 1-1/a-iBJW I	+23 1 	W O / 3 T o	 3T	 +I/ j

C(3 W	 /	 ,TI )- ( 1/E)(1/ ^W,1 - 1/a)W o +	 exp(iT a )	 exp(io	 T1).

Elimination	 of	 the	 secular	 terms	 of	 the latter equation	 requires

0--21	 M'exp(iT,)-CM'	 exp(iT O )+(1/E)(1/M-1/a)M exp(iT o )	 +

9 ((('''I exp(ioT d	 exp(iT o)
t

or	 with	 M	 n 	 m(T I )	 exp(i a ( TI ))

(21+C)(m'+i a'm)-(m/E)(1/m-1/a)+ 	 exp(ia T l )	 exp(-in	 )., ^	 F

Now	 let	 V - o T I - a	 separate	 real	 and	 imaginary	 parts,	 square
both	 sides	 of	 the	 two	 resulting	 equations	 and	 add	 to	 find	 the

steady-state	 solution	 (m'-0- a '): .E

m 2 (1/a 2 -4	 a /a+a 2 (c2 +4)) +m(-2/a+4	 a )-0.

This magnitude result, 	 a quadratic equation,	 is identical	 to that
of	 YomPmoto	 (7) although	 the expansion	 there	 is with	 the	 base
exp(1 0 	 To ). Gf

W-m	 exp(i(T,+ a))

where m	 is	 found	 above and	 the	 frequency	 is

(d/dt) ( To+a )-(d / dt)(t+ aEt- y ).

But	 d	 y,/dt-0.	 Thus,	 the	 frequency	 is	 l+ cE-	 0.	 This	 phenomenon
is	 often	 referred	 to	 as	 entrainment;	 i.e.,	 the	 nonlinear
frequency,	 4,	 is	 entrained	 by	 the	 forcing	 frequency, w

I

$.

I
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OF, POOR ,	 K4.	 Examples.	 QV LrM

This section contains three numerical examples of 	 the theory
i presented	 in Section	 3.	 The	 first example shows how the solution

changes	 for	 a fixed forcing frequency	 but	 increasing	 forcing
magnitudes.	 Example	 2	 is	 similar	 to the	 first example	 but with a
different	 set of	 parameters.	 Example 3 is a frequency-response

s	 ' illustration	 of	 variations	 in	 the	 forcing	 frequency	 and
corresponding responses.

i

a Example	 1.	 In	 this example the system constants used	 are
these:	 u -0,	 m-1	 lb.- s. 2	/in.,	 C	 -240	 lb.-s./in.,	 R	 -0.,
R b-1,305,000	 lb ./in.,	 -200,000	 lb.^in.,	 6 =.0000285	 in.s	 and
w -500	 Hertz-1000	 n re	 ./s.	 Thus,	 8 0	-833.33	 rad./s.	 and
a-,000060915	 in.	 The system is made nondimensional	 using a	 for
the	 g-displacement	 and	 6•	 for	 the	 o-frequency.	 With	 these
choices,	 the	 constants	 of	 this	 equation:

W, ,+CW'+[k(1- A / I W I )-iB]W°EO Z e xp ( i mx)

have these	 values:	 C-.2886	 k-1.8792.	 A -.467865,	 B-.288,	 and
0-6 n/ 5 .

Figures 4 and 5 show changes in the solution Y vs.	 Z as E assumes
the	 values 100n /( 10001) a for n-0,1,...,7. The	 graphs	 are
plotted for	 .2 < t(, .5s. The initial circle	 ( for E-0) opens into an
annular region,	 vhi.ch becomes larger and	 thicker as E increases
until	 a ( transition) value of E occurs and	 the	 coefficient	 of
exp(iBT) becomes zero. Thus, W-N	 exp ( iOT), a	 circle of	 radius

I N I .	 As E increased beyond this transition value, the solution
remains a circle ( figure 2.d) with radius	 I N I	 Em2/(- @Z+iC
+k(1- A/I N I)- 1B ) I.

The	 nonlinear	 natural	 frequency	 8 0	 is the	 angular
frequency	 of the circle when E-0, 	 but	 this frequency	 increases as
E	 increases.	 This	 tracking phenomenon	 is displayed in	 the PSD
plots of	 figures 6 and	 7 using	 the dimensional frequency 	 s.. In

- these	 figures	 only	 the	 120 - 180	 Hertz	 range	 is	 shown. At
E-7/10 , 000tr z a,	 there	 is	 no	 frequency	 in	 this	 range;	 instead, the
circle	 is	 tranversed at	 the	 forcing	 frequency, w.

Figure	 8,	 a	 typical	 full	 PSD	 plot,	 is	 the case
1 E-4/10 , 000?T	 a.	 As	 shown earlier,	 one expects f e uencies of
t` wand	 g to appear,	 as well as harmonica of nytB	 w^ia a	 y-w -B

and	 n-1,	 2,...	 Thus,	 with	 8 -150	 Hertz,	 and	 w-500 Hertz, one
predicts	 that	 the PSD	 plot will exhibit	 peaks at	 150,	 200, 500,

F
550, 850,	 900 .... Hertz.	 Figure	 8	 confirms	 these	 predictions.

rr
Example 2.	 In this example, the system constants from

CDC[ 31 are these: v -0, m-.20422 lb.-s? /in., C -200 lb.-s./in.,
Ks -200,000 lb./in.,	 Rb -1,000,000 lb./in.,	 w -500	 Hertz,
Q -C w/2 lb./in., and	 6 -.0005 in.	 Thus,	 B -250	 Hertz =
5s00ns rad./s. and a-.0007183 in. Figure 9 summarizes changes in
Y vs.	 Z as E varies by 250n/(1000n) 2 a, n-0, 1,...,4.	 These

12
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	 URIGINAL PAGE mgraphs are plotted for .45<t<_.5s.
POOR QURLM.Yj

	aj	 In general,	 if the time interval is sufficiently large, the
plots of annular regions will be completely filled (visually if

	

^	 not mathematically).	 However, when the ratio of 8 toy is p/q

	

dt	 for small, positive integers p and q, 	 then the curve actually
falls on itself as time evolves and some attractive patterns
appear.	 Figure 9.d is a case where 6/y°5/4, and the picture

tr would look essentially the same whether shown for .45<t<.5s.
(actual) or for .45<t<50s. On the other hand, figure 6.c is more
typical and would show a black annulus for .45<,t<50s.

Example 3.

As described above, one expects either a circle or an
annulus at each fixed forcing frequency m. Furthermore, near
resonance one always finds a circle since the characteristic
frequency is entrained by the forcing frequency. Considering;
that the forcing function is a continuous function of this
frequency 0 , it follows that the solution is a circle or an
annulus over an interval of the ^ -axis and that the number of

i

	

	
transitions between the two shapes is finite over a bounded
portion of the positive 0 -axis.

TABLES I, II,	 and III illustrate these results for the

	

a	 problem with these parameter values:

I
C °240

s	
./ wo	 6 °.0000285

	

a	 Q 
s
°200,000	 / wa	 F =0.5, 1.0, or 1.5

K °0.	 K =1,305,000. = wz

	

n	 s	 s	 o

Tables I,	 II, and III are for the three cases E=0.5, 1.0, 1.5,
respectively.	 In	 all three cases, wo	is used as	 the
nondimensionalizing frequency. Each of the three tables
describes the response curve by listing the radius of circles or
the inner and outer radii for annuli. Furthermore, the frequency
Y	 JS-wl	 is given for annuli.	 The values listed for 0	 are
every 0.1 except when

1. more	 refinement is required to bound	 better the
transition point

2. less refinement is needed because of small variation in

the response at different frequencies.

Particular attention should be paid to Table III since this table
i	 shows three different regions in which the circle appears as the

solution. The first two.tables contain only one such region.

1 ^` 13

tl



ORItifNAL' PAGE 15

5. Stability.	 OF POOR QUAUM

To examine questions of stability for the nonlinear Jeffcott
equations, it is helpful to use the ;:ollowing complex form:

w+81 +[KB +K a (1- 6/r)-i% ]w-F( u,w)

where w-y+iz.	 Since the solution's stability is determined by
the corresponding homogeneous equation, one has

id+Ca w+[%+ Ka (1- 6/r)- iQa]w -0.

Furthermore, if a solution becomes unbounded then r > r o for all
constants r o . Thus, as a comparison one may consider

w+8w+[KB +K s (1— 6/ro ) — iQs]w-0.

;i	 Solutions of this equation are of the form w-exp(Mt). Hence:

m 2 +C am+[% +K s (1— 6/ro)— iQa] -0.

The stability question is reduced to determining whether Re(m)<,0.
But

m s /2 ± [(Cs /2) z — KB - Ka (1- 6/ro)+IQa]1/2

and

Re(m)--Ca /2 ±Re[C a I /4-KB -K a (1-6 /r )+I%]1/2
0

--Ca
	 z
/2 tRe[C +iC ]1/2

i 

where

3	 C1- a z/4-K B Ks (1- 6 /r )a
C =Q_ .

z

In this modified form, the stability question becomes this:

Solutions are stable if and only if Re(C 1 +iq )1/2<Ca/2.

The following lemmas are useful for bounding the value of Qs/C s
in order to find stable solutions.

(.	 Lemma 1 .	 Re(C 1+ iC , ) 1/2 e(^C1 /2)1/2 [ (1+(C z /C1 ) ; ) 1/2 y 
1 

1 /
2 where	 the

minus sign is used for C 1 <

D	 Proof: Case C < 0. C 
1 
< 0 implies IC

1 ' 
=-C	 Then:

7	
' 
	 1

(]	 Re(C +i.0 
z ) 

1/2
^;	 1 

H	
=(CL +C2 ) 1 /4 cos[1/2	 Atan(Cz/- IC1^)]

LJ
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-(C 2 +C 2 	 )1/4 cos[ ( n -e) /2]2	 ORIGINAL PAGE 15
where e - Atan(C 2 /I C	 OF POOR QUALITY1 I)

-( C 2 +C2	 )1/4 sin e/2)

" -(C2 +C2	 )1/4	 [(1-cose)/21, 1/2

vi
-(C 2

1
+C2	 )1/4	 (1/2)1/2[1_10	 I/(C 2 	+C 2 	 )1/2]1/2

-1/21/2
2	 1	 1	 2

( 
(C 2 +C 2 ) 1/2 _ 

IC Z I ] 
1/2

-( 1011 /2)1/2 ((1+(C2/CZ)2)1/2 _ 1] 1/2

Case	 c 1 >0. C	 >0	 implies	 C -1 C I	 Then
1	 1	 1

Re(C +iC	 )/2
1

-(C 1
2

+Cz	 1/4cos(1/2	 Atan(C2 /IC1I)]
)

_ =(C2 +C 2 	) 1/4 [(1+cos	 Atan	 C	 /IC	 1)/2]1/2

-(C 1 1/4[(1
+1C11 

/(C 2 +C 2	 ) 1/2)/2)1/2+CZ
-1/2

) 	

11/2[ (C 2 +C 2 ) 1/2 +	 C	 ] 1/2
11	 2	 1It

-( IC11
/2)1/2 [ (1+(C 2 /C	 )+l ]1/21 ) 2

gI Lemma	 2.	 If ( Q s / Cs ) 1 0K	 ,	 then	 for	 all	 6 <r o<

+^+ Re(C1+iC2)1 /2<C	 /2.s
z Proof: Case	 C 1 <0.	 If	 C Z CU,	 then	 ICZ 1 = —C1'

G
(Qs/ s ) 2	 <KB

-KB<-(Qs/C s)2

-(K s +K B0- 6 /r0 ))	 < -K B <	 -(Qs /Cs)2

"
C1=(Cs /2)2-(Ks+KB(1- 6/r	 <	 (Cs/2)2-(Qs/5)2o ))

3. - 1011	 <	 (C g -4Q	 /4C 2s 2 )

-4C 2	 I	 <C°	 -4Q21s	 s	 s
.. 4Q	 < Cs"+4Cs2	 I Cs2	 1 1

j 4(Qs2 + C	 <	 Cs ° +4Cs 2	 I C 1 1 +4 IC1121 2 )

4 (Qs 2 + C 1 2 )	 <	 ( s1 +21C11)2

2 1 C 1 I [ 1 +(Q /C1 )2 	 ] 1/2	 <	 Cs2 +21 C1I
[1+(Q /C1) 2]1/2	 <	 C s /2101 1	 +1

15
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r 1 1 /2([1 +(Qs /C 1 )x ]1/2 _1) < Cax A

( IC11 
/2) 1/2 ([1+(Q a /C 1 ) x )1/2 -1) < Cs /2.

But by Lemma 1, the last left-hand side is Re ( C 1+iC 2 ) 1/2 Thus,

Re(C1+iC2)1/2 < C
s
 /2.

Case C 1 >0. This case is identical to the previous argument
except that one has + 1 C1j instead of -IC1 l on the fifth line of
the inequalities and thereafter the corresponding term switches
signs.

Lemma 3.	 If ( Q a /C s ) 2 > K B +K a, then for all 6< . r 0 < m

Re( Cl+iC2)1/2 > 
C /2.

Proof: After noting

(Q s /Cs ) x > KB +K s > P +K,( 1 - 6/r a)

one has

-KB- 
s
( 1- 6 /r o ) > -(Q s /C d2

and

C 1 --K$ Ks (1- 6/r0) + (C2/2) 2 > ( Cs /2) 2 - (Q s /C s)2

The remaining step-ps in the derivation are identical to Lemma 2
for both cases 

f12 
C1 except that the inequalities are reversed.

Thus, Re(C 1 +iC 2 )	 > Cs/2.

Figure 10 summarizes the stable and unstable regions as
functions of (Q /C )2 for the linear and nonlinear homogeneous
problems. In %hi g figure, there is only one point, on the
(Q /Cs ) 2 -axis at which oscillations may occur for the linear
prosblem. For the nonlinear case, oscillation, and hence
transition between stable and unstable still occurs at only one
point on the (%/C,)'-axis, but that point may be anywhere
between K B and KB+

s

[.

l^
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6.	 Conclusions

This	 report has shown how vibrations at	 frequencies	 which
are	 unexplainable
Jeffcott models which

by linear	 theory can be expected in	 nonlinear
consider	 deadband,	 side forces or	 rubbing.

These	 frequencies and their	 regions of stability are bounded	 by
parameters	 of	 the differential	 equations.	 Although	 the
asymptotic analysis is weak in quantizing exactly the frequencies
and	 the corresponding magnitudes,	 there exists simple numerical
methods	 which may be employed	 for	 the	 desired	 precision.	 The
analysis,	 then, serves as	 a	 guide	 in	 locating	 nonlinear
vibrations,	 which the numerical	 techniques	 then find accurately.
This will apply to systems of higher degrees of	 freedom as well.

In studying the Jeffcott rotor with deadband or rubbing and
sinusoidal forcing (including constant side force), one must
consider these three frequencies: ( a) the forcing frequency w
(b) the natural frequency, w o , of the associated linear problem

m	 (deadband- 6 -0); and (c) the nonlinear natural frequency	 Bo
The frequency w depends only on the forcing function; wo depends
only	 on the system parameters; 	 B ,	 with its	 base	 value	 Bo
depends on	 both the	 forcing function and	 the system	 parameters.
For	 a	 specific set of equation	 parameters, one can	 find	 this

°
nonlinear
damping

natural frequency Bo	 as	 the ratio
and	 then	 use	 it with	 the	 (linear)

of cross -stiffness to
natural frequency 	 to

bound the frequencies	 B

FGr a given system and a nonzero, external, sinusoidal
force, the y-z response is either a circle at the forcing
frequency or an annulus composed of the (major) frequencies w and
B as well as the (minor) harmonic f.requencies n(w - 9) ± B, for
positive integers n.

There are many unanswered questions that remain.	 First,
this report has failed to cast this problem as one in bifurcation
theory. If such a characterization is achieved in the future,
one may expect a more fundamental understanding of the mechanics
of the nonlinear solution as well as the fringe benefits that
accompany all advanced, well-developed theories.

It would also be nice to know, for a given set of
parameters, the exact frequency values at which the response
switches between circles and annuli. Rased on similar results
for the van der Pol oscillator, these transition points should
exist	 as	 analytic expressions thereby avoiding	 numerical
iterations.

The asymmetric	 stiffness	 problem,	 which many reports	 have
hypothesized as	 being	 the	 culprit	 of	 instability, is vastly	 more
complex than	 the	 symmetric	 case.	 Preliminary Runge-Kutta
solutions show	 not	 only	 that	 the circle/annulus plots	 become
elliptic and occur with their axes rotated with respect to	 the	 y,

axes, but	 that	 there may	 be other shapes and more than	 one

ii

z

i.^
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transition point to consider.	 These problems, however, greatly
extend the model's mimcry of an observed rotor's behavior.

This report is also limited to single forcing functions.

Realistically, one must consider multiple forcing functions.
-^	 Here again, superposition will fail for the nonlinear problem

although it may be a first approximation.	 Certainly, harmonics
L1'	 (sums and differences of driving frequencies) may appear and

could possible dominate.	 These problems appear, to introduce no
new theory, but do increase the computational complications.

Stability for all these problems remains the central focus.
Even in the symmetric nonlinear problem with a single driver, it
is still an open question of whether the response may move from
an annulus to a circle ( or vice versa) when it is perturbed.

11,
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TABLE I	
OE POOR QUALITY,

E - 0.5

Shape Radiu s 	 (radii) y(Hz.)E

(Circle / Annulus)

0,0 C 2.137 -
0.1 A 2.130	 -	 2.145 115

! 0.2 A 2.105	 -	 2.169 97
0.4 A 1. 959	 -	 2.305 61
0.5 A 1.747	 -	 2.470 41

E 0,53 A 1.618	 -	 2.549 34
0.54
0.6 C 1.833
0,7 C 2.441
0.8 C 3.656 -
0.9 C 6.954
0.92 C 8.249 -
0,93 A 1.212	 -	 4.018 13
1,0 A 1.369	 -	 3.230 40
1.2 A 1.551	 -	 2.858 81 _- h=

" 1.4 A 1.643 -	 2.822 1T8	
-t 1.6 A 1.648	 -	 2.748 154

1.8 A 1.694	 -	 2.633 190
2.0 A 1.804	 -	 2.679 222

3 2,2 A 1.939	 -	 2.830 263 :t
2.4 A 1.993	 -	 3.162 294
2.6 A 1.632	 -	 3.125 333

?
a

2.8 A 1.533	 -	 2.864 370
3.0 A 1.528	 -	 2.769 410
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ORIGINAL PAGE IS
TABLE II	 OF POOR QUALITY,
E -	 1,0

Shape Radius	 (radii) y(Hz.)
(Circle/Annulus)

0 .0 C 2.137 -
0.2 A 2.073	 -	 2.201 98
0.4 A 1.767	 -	 2.463 60
0.41 A 1.737	 -	 2.486 58
0.42 C 1.398 -
0.5 C 1.650 -
0.6 C 2.118 -
0.8 C 4.548 -
0.9 C 9.174 -
0.97 C 18.524 -
0.99 C 10.436 -
1.0 A .872	 -	 2.033 12
1.2 A 1,003	 -	 4.194 68
1.4 A 1.145	 -	 3.972 96
1.6 A 1.431	 -	 3.839 145
1.8 A 1.151	 -	 3.283 185
2.0 A 1.341	 -	 3.296 222
2.2 A 1.598	 -	 3.499 256
2.4 A 1.671	 -	 3.932 286

?2.6 A 1.732	 -	 4,456 322
2.8 A 1.062	 -	 3.745 357
3.0 A .981	 -	 3.390 400

a
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ORIGINAL PAGE fb

6 IIITABLE
L	 OF. POOR QUALITY.

R	 1, 5

ii 0 Shape Radius	 (radii) y (Hz .)
(Circle/Annulus)

0.0 C 2.137 -
4, 0.2 A 2.040 -	 2.230 96

0.3 A 1.885	 -	 2.371 78
0.35 A 1.755	 -	 2.476 68
0.36 C 1.364 -

' 0.4 C 1.449
0.6 C 2.398 -
0.8 C 5.427 -

i t^ 0.9 C 11.269 -
0.98 C 27.247 -
0.99 C 25.102 -

r w 1.0 C 19.448 -
'_ 1.2 C 2.585 -

1.38 C 2.028
1.39 A .357	 -	 4.628 99
1.4 A .529 - 4.832 100

i 1.6 A .837 - 4.660 139
€j 1.77 A .359	 -	 3.832 172

{ p 1.78 C 1.717 -
1.8 C 1.709 -
1.91 C 1.676 -
1.92 A .100	 -	 3.121 195
2.0 A .496	 -	 3.282 217

Gf 2.2 A 1.062	 -	 4.076 250
2.4 A 1.496	 -	 4.564 286
2.6 A 1.692	 -	 5.341 312
2.8 A .222	 -	 3.987 359
2.81 C 1.565 -
2.9 C 1.560 -

k, 3.0 C 1.555 -

1]
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