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ABSTRACT

This report is an examination of special nonlinearities of
the Jeffcott equationy in rotordynamics. The iomediate
application of this analysis is directed toward understanding the
excessive vibrations recorded in the LOX pump of the SSME during
hot firing ground testing.

Deadband, side force and rubbing are three possible sources
of inducing nonlinearity in the Jeffcott equations. The present
analysis initially reduces these problems to the same
mathematical description. A special frequency, named the
nonlinear natural frequency, 1s defined and used to develop the
solutions of the nonlinear Jeffcott equations as singular
asymptotic expansions, This nonlinear natural frequency, which
is the ratio of the cross-stiffness and the damping, plays a
major role in determining response frequencies.

Numerical solutions are included for comparison with the
analysis. Also nonlinear frequency-reponse tables are made {or a
typical range of values,

Finally the regions of stability of these nonlinear problems
are bounded using inequalities of the system parameters.
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1. Introduction

Vibrations are inherent in rotating machinery., Mathematical
explanationg of vibrations began with Jeffcott's description of
the shaft's natural frequency of lateral vibration [5].
Unfortunately, Jeffcotts linear mcdel cannot account for all
frequencies that have been observed experimentally, In
particular, destructive vibrations have occurred in hot firing
ground testing of the LOX pump of the SSME with no clue to these
vibration's origins being offered by the linear model.
Specifically, examination of the power spectral density (PSD)
plots reveals unaccountable frequencies. Consequently, numerous
investigations have been undertuken to study such rotors and to

provide descriptions of the solutions of the two, coupled, .

second-order differential equations which describe the motion of
the rotor's center of mass, Following the early work in
totordynamics by Yomamoto [7)}, one introduces a nonlinearity to
the Jeffcott equations by idincluding the effect of bearing
clearance or deadband. In the pump, this deadband refers to the
load carriers (ball bearings) and physically describes the
clearance between the outer race of the bearing and the support
housing. The work of Yomamoto did not include cross-stiffness,
but a straight-forward derivation with this wmodification is
easily obtained. A more limiting gap in his work is the
assumption that the response is simply a perturbation of the
forcing function, This is tantamount to assuming that one always
has the graph of a circle as the solution. It is shown in this
report that this generally is not the case, Both empirical
results by Childs [1,2] and Gupta et al. [4] and numerical
solutions using the fourth order Runge-Kutta algorithm by Control
Dynamics Company [3] have been helpful in wunderstanding the
rotor's motion for the nonlinear problem, This report extends
the earlier work by using analytic expressions obtained from
singular asymptotic expansions (method of multiple scales) to
quantize the solution.

The primary objective of this report is to describe
analytically solutions of the nonlinear Jeffcott equations with
deadband (or an equivalent variation such as rubbing). To this
end emphasis is placed on determining which frequencies one
expects from the nonlinear problem, how these frequencies are
related to the pasrameters of the differential equations, and
where the solutions are stable.

Section Il 1is a heuristic development of responses to a
noanlinear system. This discussion is based on a numerical
solution and is intended to help develop some intuition about the
solution of the nonlinear problem.

Section III is the formal mathematical development of
analytic solutions. This section begins with the discovery of
the nonlinear natural frequency and proceeds to incorporate it in
an asymptotic expansion of the solution. This leads to
considering the two cases of resonant and nonresonant driving
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frequencies. Herein also lies an explanation of why one expects
the rotor's motion to be either a circle or an annulus,

Section IV <contains numerical examples which verify the
theoretical expansions., Typical frequency-~response descriptions
are also included in this part.

Section V discusses bounds for stability regions, This 1is
done with comparison lemmas for majorizing the nonlinear Jeffcott
equations.

Section VI concludes the report with a summary of the
report's applications and directions for future studies.
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2. Nondimensionslizstion and Heuristics

The linear Jeffcott equations which describe the displacement of the rotor

center from its equilibrium position in the inertial, Cartesian coordinate
system (y,2z) (each in meters) are these:

(1.) of=C y-K y-Qgz+muuw’ conwt

(2.) mZe-G 24Qg y-Kgz+nw® sinpt
wvhere the shaft of the rotor lies along the x-axis and

m = mass (kg.)

CS- seal damping (kg./s.)

Ksn seal stiffness (kg./s. %)

QS- cross-coupling stiffness of seal (kg./s.%)

U = displacement of the shaft center of mass from the
geometric center {(m.)

w = engular velocity of the shaft (rad./s.)

For the model toinclude bearing forces which hold the rotor in
position, one adds the terms '

~Kp(y-y 8/ AT 427 Y4ukg (2-28 / /Y7427 )
and

'UKB(Y-YG/JF +2z? )—KB(z—zleyzq-z! Y,
respectively, to right-hand sides of equations (1.) and (2.}

Here

5

)

bearing stiffness (kg./s.? )

cloarance or deadband between housing and bearing (m.)

1

H coefficient of friction between housing and bearing (none).

These bearing forces occur only when vy*+ z*y6; otherwise, they are zero.
Since y is nondimensional and typically small, one may regard it as zero
without affecting the qualitative results,

Equations (l.) - (2.) then become

(3.) ?+(Cs/m)f+(1/m)[&3+KB(1-5/r)]y+(Qslm)z=umzcoswt
(4.) E+(Cslm)£—(QS/m)y+(1/m)[KB+KB(1-ﬁlr)]z-uw’sinwt
wvhen r = f2+z° % ; otherwise, =0, Equations (3.) « (4.) cen be
put in nondimensional form using a displacement g and a frequency

g. Cne pair of candidetes for g and 0 would be g = 6, the
deadband size, and g? -uﬁ =K 4Ky ,. the natural frequency of the

R e 1 e ¢
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corresponding linear problem (g=U). Thus, using Yey/g, 2ez/g,
endt =ot, the dimensionless equations are these:

(5.) Y''+CY'+[A+k(1-A/R)Y+BZ=Ed? coBoT

(6.) 2''4CZ'-BY+[A+k(L- &/R))2=E¢? sindt

vhere prime dengtes differertiation  with respect to 1 and
C-Cs/mlou} A=Kg /m/ 0%, kmig /m/0°, B=Qg/m/0°, 8 =é/g, R=r/g, Emu/g,
and ¢ =u/ 0.

Equations (5.) =~ (6.) can be reduced to the following single
equation by defining WmY+iZ:

(7.) W''4CW'+ (A+k(1-p/| W|)-1B}W=E pZexp(i¢r)
Furthermore, the polar form of equations (5.) - (6.) is
(8.) R'"'"4CR'"+[A+k(1-8/R)=-(O ' )2 ]R=Ed?cos(dT~0)

(9.) RO"'"+(2R'+CR) @' =R[B~pk(1A/R))+E4? sin(pt -0)

vhere R=(Y2422)1/2and 0 sArctan (2/Y).

The nondimensional Jeffcott equations with deadband and mass
imbalance are 'easily solved numerically wusing 8 fourth-order
Runge-Rutta algorithm. If these solutions are then plotted and
analyzed 1in a pover spectral density (PSD) investigation, the
resulting graphs provide a direction for initial, analytic
descriptions. To this end, consider the following special case:

m.l. Uﬂ'l.sf.s
C=240, Q=200,000.
KS=0. §=,0000285
Kaal , 305, 000. w=500Hz2

The wunits wused are those given after equations (1.) - (2.) and

are only of interest in a relative sense. Thercfore, with
wo =(1,305,000)1/2 and & =».0000285 as the nondimensionalizing
parameters, the Jeffcott equations become

Y"+(Cs/l%) Y'+(l-1/R)Y+(Qs/ln§) Zel.5(a/ws )% cos(uw/ wo)T

Z2'"'=(C_/ w) z'-(QS/wg ) Y+(1-1/R) Z=l.5(w/wy )? sinCuw/ we)t
1/2 1/2 '

where T=w, t and R=(Y?*+Z 2) / =(y*+2?) / /6. Figure 1 shows the

motion for this case. The motion has become periodic for the

time interval (.5<¢=t<=1.s5.) shown. The graph of t vs. r = § R,

given i Figure 2, suggests that r has the form

r=.714.39cos720n t=ag+a,cos yr.

It is this form that leads one to consider approximating the
Jeffcott equations with

AP L I PN _— it w e e
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Y''eCY'4(1-1/(a  +a, cosyr ))Y+BZ=l.5¢? cosy ORIGINAL PAGE [§
Z''4C2'-BY+(1-1/(a #4a,cos Y1 ))Zm1.58? siner.  OF POOR QUALITY

Examination of the PSD ot R shows that R is actually an infinite
sum:;

Re § 8 cos k YT

k=0 kK
with 8, and a the dominant terms. The other coefficients
decrease exponentislly to zero as k-® Therefore, the
replecement of R with a, +a; cos yr is a reasonable
approximaetion, Furthermore, a; can be considered the averange

value of R. Since this value will be nonnegative, one may write:
I/R—I/(a° +a, cos YT )
~(1/8,) ¥ (-ax/ao)k(cosvr)k-
k=0

If the original infinite summation of R had been used, the above
series for 1/R would still be a summation of cos yr terms, but

with different coefficients.

Now consider 31/30 as an asymptotic expansion parameter ¢ .
Thus:

1/R=(1/a )(1- ecos Y1]+0(c?),

This last approximation may ultimately lead to poor
approximations for the magnitudes (but not the frequencies) of

the Jeffcott solutions since higher (k>1) powers of cos yr1
actually contribute to the coefficient of cos 0 1 and <cos YT .
Therefore, the following derivation for s straightforward
asymptotic expansion may be wused primarily for predicting
response frequencies, but will generally be poor for describing

the corresponding magnitudes,

With this prelude, one replaces the nonlinearity 1/R of the

Jeffcott equations with 1l/a - gcos yr and expands the solution as

YuY, + €Y, +0(c? ) and Z=2 +c 2 +0(e?). The resulting low-order
pro%lems are these: 1

0(1):
'T4CY, '+(1—1/a°)Y°+BZ°=1.5 ¢?cosdt

z, ''+CZ '-BY +(1-1/a )2 =1.5 ¢ singt

Y "+Cﬂ '+(1—1/a°)Y +BZin-(1/ao)(cos TT)YO
Z, ''+CZ,'-BY +(1-1/an)21=-(1/a°)(51n'fT)Z°

s 43253 opremermr
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The prescribed jnitisl conditions are used with the zero-order
problem. The initisl conditions for all higher-order problems are
all zero.

There 1is8 a circular argument involved here. One is using
the angswer, which was found numerically, to solve the problem,
Although this is unacceptable mathematics, the results obtained
in this heuristic discussion are not derived solutions but only
suggestions of solutions. With this in mind, one proceeds to
solve the 2zero - and first-order problems, The zero-order

problem has solutions of the form:
Y =C (7)singy +Cz(1)coa &r+C5cos¢1 -C sin¢t
1
ZO-C!(T)sinBT +Ck(r)cos Bt +C, 8in¢T +C, ros¢T

where C,, C,, C, and C, are all functions of time and all involve
decaying exponential functions. Thus, in steady-state

Y., S-C7cos(¢r+¢o)

=C si +
20355 78 n(¢T ¢0)

In the first-order problem, one is presented with the same
left-hand side as the zero-order problen. Thus, in steady-state
it 1is only the forcing function of the right-hend side that

provides non-trivisl solutions. Hence, one finds combinations of
the form cos yr 208 ¢t and sin y1 sin ¢t .

Thus, the steady-stete solutions of the first-order problem
should look like these:

Y,=C cos{ s y)t
Z,=C sin( ¢t v) <

Since higher order problems contain right-hand sides of the form
(cos kyt)f(Y,, Z,, Y,, Z,, ..., Yk-l ' Zk_t).

it follows by induction on k that the kth-order steady-state
solutions contain terms of the form

Yk “cos( ¢+ ky )t
Zk"sin(¢: ky )t
Finally, one enticipates that the PSD of Y ( or equivalently Z)

will show frequencies at ¢+ ky . This is verified in Figure 3,
which is the PSD of the (numerical) solution of the test problem.

ORIGHVAL PAGE IS
6 OF POOR QUALITY
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3. General Theory ORIGINAL PAGE 1%

3.1 Nonlinear Natursl Frequency OF POOR QUALITY

Consider the _homogeneous (E=0) equation corresponding to
equation (7.). If this equation were slso linear (4 «0), then

exponentially growing or decaying solutions would generally
result for a given set of system parameters. In the specisl case
that (B/C)?=A+k, & sinusoidal solution is obtained with frequency
8 =B/C. To see this, consider the characteristic equation for

Waexp(m 1)
o2 +Cm+{A+k-1B]=0
Ba-C/2¢ (C2/4-A-k+1iB )2 ucC/2£(C? /4-(B/C)?418) /2
me-C/2: i {iC/2-B/C)'/? a—c-1B/C, iB/C.

In the nonlinear, homogeneous problem, k is replaced by k(1-4/R):
hence, if R is a constant, then there is a wide spectrum of R for
which (B/C)? may be A+k(l-A/R); i.e., if

(10.) A((B/C)ziA+k.

then there is & constant value of R (with R>A ) for which
(B/C)? wA+k(1-A/R). This value of R is denoted by a and the
corresponding frequency by §, =B/C, This frequency is labeled

the nonlinear natural frequency. Thus, whenever
inequality (10.,) is satisfied, equations (5.) - (6.) with E=OQ
have steady-state solutions Yea cos(3,7v ) and Z=a sin (@e1).

The same results can be found from the polar equations (8.)
- (Y.) by essuming R and O' are constants, Then with E=0 those

equations become
[A+k(1-p/R)=-(0')? ]JRaQ, C @ 'wB.
Thus, g, =0"'=B/C and as=R=kp/(A+k- 3,%).

Notice that g, -B/C((A+k)1/2=ug. the dimensionless natural
frequency of the linear system, Thus, in considering the genersl
nonhomogeneous problem, it is necessary to be aware of these three
dimensionless frequencies: '

3; —- the nonlinear natural frequency,
Jg =~ the natural frequency,
4 - the driving frequency,
Either 3, or g is an appropriate choice for a , the

nondimensionalizing frequency. Correspondingly, one would select
either a (with Bo ) or u (with w, ) as the base displacement g.

7
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One final rearrangement of equation (7.) is made here to
emphasin the nonlinear natural frequency:

(11.) W''4CW'exWaf(W)+Ed exp(ieT ) ORIGINAL PAGE 1§
vhere x =A+k(1-8/a)~1B nnd £(W)=k 5 [1/' W]|-1/a]V. OF POOR QUALITY

B

ey

3.2 Equivalent Problems.

In rhis subsection the forcing function is assumed to have
the form F(w) exp(iwt), where F(w ) >=0 (or equivalently F(w) ¢ni)
and F 1is single-valued for w >=0, The following are specisl
cases of physical interest:

actatl)g
R

‘E\nvr!
L=

a, Mass imbalance,. As discussed above, F{w) =uw? for a
mass .
i
l: b Side Force. This force may be introduced into the
' Jeffcott equations (1.,) -~ (2.) as constant replacements
» for the mass imbalance, In cuch cases, equation (7.)
i becomes:

pary

W' +CW' '+ {A+k(1- o |W|)-1iB}We yu7 ¢ ¢ = constant.
Thus, a side force is the special case F(w)=constant and
wal,

Rubbing. Rubbing contact between a rotor and its
housing produces a Coulomb damping force. This force
would modify the original Jeffcott equations by the

addition of the terms:
Kst(l— 6/r)y—;JKst(l- o/r)z+Kst(l-6 /r)G
(1- &/r)z+y Kst(I' §/r)G

;-«,-w! E. ..,_:“: !....I ! I
(2]

K l1- r+ K
and u st( s/r)y+

st
- respectively, to the right-hand sides of equations (1l.)
g: (2.). Here, Gmuconstant=mstator offset in the y-
' direction, ., sstator ostiffness and y mscoefficient of

friction, uhig% may 0ot be small. As be ore these
forces would be included only when rs(y* +2 ) 256, On
replacing y-G by y, equation (7.) (and correspondingly
its equivalent forms) agein occurs but vith these
modifications:

=

1. i[-B) is replaced by i[-B+u (K /gz)(l— A/R))

TRl
i 1)

2. the forcing function E¢ expﬁi@f ) is replaced
by E ¢? exp%i o1 de(~w? /g® )(G/ &)

If the wmass imbalance term is omitted, then one may
regard the deadband with side force problem and the
rubbing problem as equivalent. Notice that the range of

values of the parameters for these two problem may not
E’ be the uame since the rubbing problem includes the non-
negligible term y (K /g (1-2a/
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3-3 Method of Multiple SCﬂlesu OF POOR QUAL“
Nor consider a wmore formal <development of analytic
solutions, Straight-forwvard asymptotic expansions are not

general enough for this problem since they always lead to s zero-
order approximation of the form:

WaM exp(1BoT )+N exp(i ¢1 ).

The heuristic example considered in section 2 suggests that
B, must be replaced by 3 (1) which is close to but not exactly

8,7 - There are several methods of attacking such singular
" thod the
gg?ﬁ% mSét 592333135? dfgcgégggpggagéyfg¥ LEJ'Je?Pgot?e equétious
since it begins with the assupmtion that W =M (t ) exp (if (1)) +
N exp (1 #1). Another method, multiple scales, is also appropriate
because one can envision the action of the rotor being based on
two different time scales, The followinyg development uses the
method of multiple scales. The results are identical for the
nethod of averaging. In this subsection the forcing frequency
¢ 1is restricted to differ from the nonlinear frequency 8 | i.e.,
the problem is not resonant, Resonance, & = 3, is dealt with in
the following subsection.
Instead of one time scale T, assume the problem depends on
many time scales:

T,=7 T, =€1, T, seT, ...
Henceforth, only T, and T, are used. Let W(r )=W(T°.T =W, (T,,1,)
+eWL (T, T )+... Equatfon (11.) becomus a partisl Gifferential
equation since

d/dr=(3/3T )(dT /dr)+(3/2 T, )(dT,/d 1)=D, +€D
and (d’/d12)=(Do+cbl)2.
Thus, one f{inds
(12.) (b +enl)’ (W +eW 4. )4C(D + €D ) (W 4EW, +...)

+ x(wo+ewl+...)=e£(w°+eﬂ +...)+E¢2exp(hbT°).

Equating like powers of g yields
(13.) €° :Dy? Wo+CD, Wy +kWym Edexp(i¢T, ).
This is a linear problem with this steady-state solution

W, =M exp(iB, T )+N exp(i¢To)
where N= E¢%/ (- ¢* +iCqo+x ) and M=M(T, ). To determine M one must

examine the ¢ -~order problem and choose M to eliminate secular
terms; see Nayfeh [6]:
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With LekA/k , the right-hand side of the last equation becomes
~24po M'exp (18, T, )-CHM'exp(iBeTo )
+L(L/ Wol=1) (M exp{iBeTo )+N exp{id T,y) )

where |W |=(|M|? +|N|? +N exp(i(6-84 )T, )+MN exp[i(g, -)T ,J}'/°

To avoid secular terms one requires that the collective
coefficient of exp(iB, Ty) be zero. Although an analytic solution
of the differential equation for M(T,) has not been found, one
can qualitatively assess M based on a similar problem (van der
Pol's equation) and specific numerical results (presented in the

next section).

Since H(Ti ) is complex, it may be written as
M(T, )= o(T, Jexp[4 (T, )]. Thus,

Womd (T Jexp[iBo T o+iB (T ) ]+N exp(i¢T o) or, assuming 8 (T ) is
analytic near t=0, W =p(T Jexp[i(Bo+eBi)r+...]+N exp(iyr). Thus
the fundamental frequency of the noalinear problem is not g = but
B = B,4uB, +...; however, @ wmust reduce to g when pg¢° =0, This
frequency shift can account for the phenomenon of "tracking" that
has been observed experimentally [2]. Similarly, the frequency

=¢ -8, that appears in. the expression for |W,| should be
considered as Y =9- 6. Then I/ngl shows all frequencies ny and
Wo/| W,| shows all frequencies ny::, for n=0,1,..,. This suggests
that M has a complex Fourier series of the form:

ne & s, exp(inyT1).

Another factor of M must also be included since numerical
examples show that M0 if £¢? is greater than some fixed value.
This 1is sirilar to the behavior of the van der Pol oscillator;
see [6]. Tlius, one may speculate that M has a factor of the form
Fel/[l+exp(-nT, )] where n an( E¢?). This would imply that F - 1
as T-° when n>d and F~+0 as t+=wher n<0. Thus, M looks like:

1/[1+exp(-nT1)]f %Iexp(anl).

n=—x ,

PSD plots of R show only frequencies of ny while plots of Y show
frequencies of ¢& and n y:8.

3.4 Resonance.

The resonance problem 3=w can be handled in a manner quite
similar to the nonresonance case. The approximation ¢ =l+uo E is
made where E is the nundimensional mass causing the imbalance and
B 1s the nondimensionalizing frequency. With the same multiple
scale expansion as before, one finds the following two low-order

problem:

10
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0(1): W,/ 3T 4C( aW / 3T, )#[1-1/a-4BIW =0 bl PAGE 1§
with the solution ¥ =n(T )exp(iT ), OF POOR QUALITY
0(E): azwll aT=2+C( aw J 3'1'0)4-[1-1/8—18]\\'l +23% W,/ aTo BR +
C(a W / T%Tl)-(l/E)(l./Wu]-l/a)W° + exp(iTo) exp(io T ).
Elimination of the secular terms of the latter equation requires
Ou-2i M'exp(iT )-CM' exp(iT, }+(1/E)(1/M-1/a)M exp(iTo) +
exp(ich) exp(iT )
or with M = m(T,) exp(ia (T ))
(2i4C)(m'+i o '®)=(m/E)(1/m-1/2)+ exp(i 0 T,) exp(-ia ).

Now let ¥ =0T,-, separate real and imaginary parts, square
both sides of the two resulting equations and add to find the

steady-state solution (n'=0=qy '):
m2{1l/a2-4 g /a+02 (2 +4))+m(~-2/a+b g )=0,

This magnitude result, a quadratic equation, is identical to that
of Yomemoto [7) although the expansion there is with the base

exp(i¢ T, ).
Wem exp(i(T,+a))
where m is found above and the frequency is
(d/_dt)(Tdi-a )=(d/dt)(t+ cEt- p ),
But d y/dt=0. Thus, the frequency is 1+ gF= ¢. This phenomenon

is often referred to as entrainment; i.e., the nonlinear
frequency, 8, is entrained by the forcing frequency, w.

11
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4. Examples. OF. POOR QUALITY,

This oection contains three numerical examples of the theory
presented in Section 3. The first example shows how the solution
changes for a fixed forcing frequency but increasing forcing
magnitudes. Example 2 is similar to the first example but with a
different set of parameters. Exsmple 3 is a frequency-response
illustration of varistions in the forcing frequency and
corresponding responses,

e BRI ol o

Example 1. In this example the system constants used are
these: y =0, m=]l lb.-s.? /in., =240 1b,-s./1in. Ks 0.,
Kb-l.305,000 1b./in., =200,000 1b, ?in.. § =, 0000285 in., and
w =500 Hertz=1000 g rad./s. Thus, g, =833.33 rad./s. and
a=,000060915 in, The system is made nondimensionel using a for
the g-displacement and g for the g -frequency. With these
choices, the constants of this equation:

W'U4CH ' +[k(1- o / |W] )-1B]W=E¢? exp(i ¢1)

havivthese values: C=.288, k=1.8792, A =».467865, B=,288, and
¢-6 5 .

Figures 4 and 5 show changes in the solution Y vs. Z as E assumes
the values 100n/(l000™° & for n=0,1,...,7. The graphs are
plotted for ,2<t<¢.5s. The initial circle (for E=0) opens into an
annular region, which becomes larger and thicker as E increases
until a (transition) value of E occurs and the coefficient of
exp(ipr) becomes zero. Thus, W=N exp(i¢r), a circle of radius
N|. As E increased beyond this transition value, the solution
remains a ecircle (figure 2.d) with radius |N| =|E¢¥ (- ¢* +4iC ¢
+k{1-8/]N )-1B) .

= R ey =

The nonlinear natural frequency B8y is the angular
frequency of the circle when E=0, but this frequency increases as
E increases. This tracking phenomenon is displayed in the PSD
plots of figures 6 and 7 using the dimensional frequenty g. In
these figures only the 120~180 Hertz range 1is shown, At
E=7/10,000n%a, there is no frequency in this range; instead, the
circle is tranversed at the forcing frequency, w.

= —‘:J [ el | R |

Figure 8, a typical full PSD plot, is the case
7 E=4/10, OOON a., As shown earlier, one expects frequencies of
4 wand B to appear, as well as harmonics of ny:@ ﬁ 3 y=w -f

and n=1, 2,... Thus, with g =150 Hertz, and w=500 Hertz, one
predicts that the PSD plot will exhibit peaks at 150, 200, 500,

[} 550, 850, 900,...Hertz. Figure 8 confirms these predictions,
Example 2. In this example, the system constants from
(' CC[3] are these: =0, m=,20422 1lb.-s.2 /in,, C =200 1lb.-s./in.,
LI K =200,00C 1b. /in., K, =1,000,000 1lb./in. w =500 Hertz,
=C W2 1b./in. , and §°=.0005 in. Thus, g =250 Hertz =
¥ 5% rad. /s. and a=,0007183 in, Figure 9 summarizes changes in
iﬁ vs. Z as E varies by 250n/(10007)% a, n=0, },...,4. These

e —— g e
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grophs are plotted for .45¢t<.3s. ORIGHNAL PAGE I8
= C™ POOR QUALITY,

In general, 1f the time interval is sufficiently large, the
plots of annular regions vill be completely filled (visually if
not mathematically),. However, when the ratio of B to y is p/q
for small, positive integers p and q, then the curve actually
falls on itself a5 time evolves and some attractive patterns
appear, Figure 9.d is a case where B8 /y=5/4, and the picture
would look essentially the same whether shown for ,45<¢t<¢.5s.
(actual) or for .45<¢t<¢50s. On the other hand, figure 6.c is more
typical and would show a black annulus for .&5<p5505.

Example 3.

As described above, one expects either a circle or an
annulus at each fixed forcing frequency ¢. Furthermore, near
resonance one always finds a circle since the characteristic
frequency s entrained by the forcing frequency. Considering
that the forcing function is a continuous function of this
frequency ¢ , it follows that the solution is a circle or an
annulus over aa interval of the ¢ -axis and that the number of
transitions between the two shapes is finite over a bounded
portion of the positive ¢ -axis.

TABLES I, 1II, and III illustrate these results for the
problem with these parameter values:

Cs=2&0./wo § =.0000285
Q4=200,000 . / W F =0.5, 1.0, or 1.5
K =0. K =1,305,000, = 4?
8 ) 0
" Tables I, II, and III are for the three cases F=0.5, 1.0, 1.5,
respectively. In all three cases, w, is wused as the
nondimensionalizing frequency. Each of the three tables

describes the response curve by listing the radivs of circles or
the inner and outer radii for annuli. Furthermore, the frequency
vy = |B-w| is given for annuli, The values listed for ¢ are
every 0.1 except when

1. more refinement is required to bound better the
transition point

2. less refinement is needed because of small variation in
the response at different frequencies.

Particular attention should be paid to Table III since this table
shows three different regions in which the circle appears as the
solution. The first two .tables contain only one such region.

13
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5. Stability. OF POOR QUALITY

To examine questions of stability for the nonlinear Jeffcott
equations, it is helpful to use the iVollowing complex form:

if+cs u'+[KB+KB(1- §/r)-1iQ JwaF(u,w)

where w=y+iz, Since the solution's stability is determined by
the corresponding homogeneous equation, one has

mcs w‘+[KB+ Ks(l- G/r)-iqs]w-o.

Furthermore, 1f & solution becomes unbounded then r > r, for all
constantg r . Thus, as a comparison one may consider

w+C8 w+[l{B+KB(1- §/r, )-1QS]w-0.

Solutions of this equation are of the form w=exp(Mt). Hence:
2 1- - =0.
m +Csm+[l% +Ks( 5/rn) iQs] 0

The stability question is reduced to determining whether Re(m)<O0.
But

me=C /2 + [(C /2)2-K -K (1- &/r )+iQ ]1/2
> s B s 0 S5

and
o 2 14 v o _ 1/2

Re(m) Cs/2 :Re[CS l4 KB Ks(l 8 /r0 )+iQS}

=-C_/2 sRe[C +iC ]2
5 1 2
where
= 2 - - -

C1 Cs /4 KB Ks(l 6/rn)

Cza% .
In this modified form, the stability question becomes this:

Solutions are stable if and only if Re(C,+iC )1/2<Cs/2.

The following lemmas are useful for bounding the value of QS/Cs
in order to find stable solutions.

1/2 1/2

[(1+(C2/C1):)1/2t 1] “where the

Lemma 1. Re(cl+1cﬂ)”2=(|clb/2)
minus sign is used for ¢ <0

Proof: Case C < 0. C < 0 iwmplies 1C ) =-C . Then:
Re(C +iC, y1/2
a(C? +C% )1/% cos[1/2  Atan(C,/- I, ])]
2
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=(€] +C M cosl(n-9)/2) ORIGINAL PAGE 15
where 0 = Atan(Czllcl]) OFf POOR QUALITY
~(c? +c? /¥ sin(a/2)
(€ +c? Y'Y [(1-cos g)/2) 12
- s & (1/2)1/2[1_1(:1',“:. w2 y172 y1/2
a1/21/2 ((c vc? )12 1c,|17/2
=CIc, | /2)12 [Q1e(c, /c )2 )1/2 11 1/
Case c >0. c1>0 implies c‘=|c1| . Then
Re(C +4C 2_)”2
=(C? 402 y V4eost1/2 atan(C,/|C |)]
=(C} +C2 ) V4 (l+cos Atan C /| C |)/2]1/2
=(C? +C? ) 1’1*[(1+|c:11 /(c? +C! )12y 7272
_1/2 1/2[(Ci e )12, | 172
=16, 1 /2)'2 tasce, rc )?re11M2,
Lemma 2. If (Q_/C j’CK;, then for all & ¢r < =,
Re(c1+icz‘)1/2<cs/2.
Proof: Case C <0, If C <O, then [C,|=-C,.
(Q_/c )2 <K
-KB<—(QS/C S)z
-(R_+K (1-6 e )) < ~Kg < -(Q/C )"
C =(C_/2) % (K 4R, (1- §/r )) < (€, /2)*-(Q_/C )?
~1C ] < (c; -aqsz)/ac;
-4C 2 L | < et -4Q?
4Q 2 < Ctwic? e
A(QSZ+C12) < Cs“ +ACS" |c11+4 |Cl[2
4(Q 2 +C12) < (C? +2|C )
21C,] [14+(Q /C, ¥ 1172 ¢ C2 42| G|
[14+(q /¢,) 2112 < ¢ 2/21G| +1

15
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. 1/2¢114ce /C 022 C1y < c.? /4 QU

Cleal 72)2 ([1ecQ s 022 -1y < ¢ /2,
But by Lemma 1, the last left-hand side isRe(Cﬂdczflz. Thus,
Re(C, +1C,)1/2 ¢ ¢ g2
Case C;, >0, This case is identical to the previous argument
except that one has + | C,| instead of -|C,| onr the fifth line of
the 4inequalities and thereafter the corresponding term switches
signs.
\ _
Lemma 3. If (QS/CS) > KB+KS. then for all 6§nro< ®
Re(Cy+1C,) "2 > ¢ /2.
Proof: After noting
2 . -
(Qg/G )* > Kp+k o > Ky +K (1= 5/r )
one has
¥ - _ _ 2
KB g (1 Glro) > (QS/CS)
and
== - - 2 532 _ 2
Com-K =K (1~ 8/ro) + (C/2)* > (C_/2)*-(Q/C )
The remaining steps in the derivation &re identical to Lemma 2
for both cases,ﬂ& C, except that the inequalities are reversed.

Thus, Re(C,+iC,) > C /2

Figure 10 summarizes the stable and unstable regions as.
functions of (Q /C.)* for the linear and nonlinear homogeneous

problems. %hi§ figure, there 1is only one point on the
(Q /Cs ) 2—ax:Ls at which oscillations may occur for the linear
%lem. For the nonlinear case, oscillation  and hence

t:ansitlon between stable and unstable still occurs at only one
point on the (qk/C ) 2-axis, but that point may be anywhere
between KB

16
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6. Conclusions

This report has shown how vibrations at frequencies which

are wunexplainable by linear theory can be expected in nponlinear
Jeffcott models which consider deasdband, side forces or rubbing.
These frequencies and their regions of stability are bounded by
parameters of the differential equations, Although the
asymptotic analysis is wesk in quantizing exactly the frequencies
and the corresponding megnitudes, there exists simple numerical
methods which may be employed for the desired precision. The
analysis, then, serves as 8 gulde 1in locating nonlinear
vibrations, which the numerical techniques then find accurately.
This will apply to systems of higher degrees of freedom as well.

In studying the Jeffcott rotor with deadband or rubbing end
sinusoidal forcing (including constant side force), one nmust
consider these three frequencies: (a) the forcing frequency w3
(b) the natural frequency, w, , of the associated linear problem
(deadband= § =0); and (c) the nonlipear natural €£frequency By o
The frequency y depends only on the forcing function; w, depends
only on the system parameters; B , with its base value B, ,
depends on both the forcing function and the system parameters.
For a specific set of equation parsmeters, one can find this
nonlinear natural frequency 8, as the ratio of cross-stiffness to
damping and then use it with the (linear) natural frequency to
bound the frequencies 8.

For a8 given system and a nonzero, external, sinusoidal
force, the y-z response is either a <circle at the forcing
frequency or an annulus composed of the {(major) frequencies W and
g as well as the (minor) harmonic frequencies n(w-8) +8, for
positive integers n.

There are many unanswered questions that remain, First,
this report has failed to cast this problem as one in bifurcation
theory, If such a characterization is achieved in the future,
one may expect a more fundamental understanding of the mechanics
of the nonlinear solution as well as the fringe benefits that
accompany all advanced, well-developed theories.

It would also be nice to know, for & given set of
parameters, the exact frequency values at which the response
switches between circles and annuli. Based on similar results
for the van der Pol oscillator, these transition points should
exist as analytic expressions thereby avoiding numerical
iterations.

The asymmetric stiffness problem, which many reports have
hypothesized as being the culprit of instability, 4is vastly more
complex than the symmetric case, Preliminary Runge~Kutta
solutions show not only that the circle/annulus plots become
elliptic and occur with their axes rotated with respect to the y,
z axes, but that there may be other shapes and more than one

17
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transition point to consider. These problems, however, greatly
extend the model's mimcry of an observed rotor's behavior.

This report is algo limited to single forcing functions.

Realirtically, one must consider multiple forcing functions.
Here eagain, superposition will fail for the nonlinear problenm
although it may be a first approximation, Certainly, hermonics
(sums and differences of driving frequencies) may eppear and
could possible dominate. These problems appear to introduce no
new theory, but do increase the computational complications.

Stability for all these problems remsins the central focus.,
Even in the symmetric nonlinear problem with a single driver, it
is still an open question of whether the response may move from
an annulus to a circle (or vice versa) when it is perturbed.
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f TaBLE 1 OF POOR QUALITY,

¥ E = 0.5

{ $ Shape Radius (radii) vy (Hz.)

i (Circle/Annulus)
0.0 C 2.137 -

i: 0.1 A 2.130 - 2.145 115
0.2 A 2.105 - 2,169 97

- 0.4 A 1.959 - 2,305 61

5; 0.5 A 1.747 - 2.470 41

" 0.53 A 1.618 - 2,549 34
0.54 C . _

§' 0.6 ¢ 1:8%3 -

g 0.7 C 2.441 -
0.8 C 3.656 -

- 0.9 C 6.954 -

gw 0.92 C 8.249 -
0.93 A 1.212 - 4.018 13

. 1.0 A 1.369 - 3.230 40

g; 1.2 A 1.551 - 2,858 81 .

* 1.4 A 1.643 - 2,822 116~

- 1.6 A 1.648 - 2,748 154

g’ 1.8 A 1.694 - 2.633 160

" 2.0 A 1.804 - 2.679 222
2.2 A 1.939 - 2.830 263

- 2.4 A 1.993 - 3,162 294

g“ 2.6 A 1.632 - 3.125 333
2.8 A 1.533 - 2.864 370

i. 3.0 A 1,528 - 2,769 410
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x (Circle/Annulus)
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TABLE Il OF POOR QUALITY,
E=1,0
Radius (radii) vy (Hz.)
2.137 -
2,073 - 2,201 98
1.767 - 2.463 60
1.737 - 2.48B6 58
1.3¢98 -
1.650 -
2.118 -
4,548 -
9.174 -
18.524 -
10.436 -
.872 - 2.033 12
1.003 - 4,194 68
1.145 - 3,972 96
1.431 - 3,839 - 145
1.151 -~ 3.283 185
1,341 - 3,296 222
1.598 - 3.499 256
1.871 - 3.932 286
1.732 - 4,456 322
1,062 - 3,745 357
.981 - 3,390 400
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TngElI; I OF PUOR QUALITY,

Shape Radius (radii) Y(Hz.)
(Circle/Annulus)

2.137 -
2,040 - 2,230 96
1.885 - 2,371 78
1,755 - 2,476 68

1.364 -

1.449

2,398

5,427

11.269
27.247
25.102
19,448
2.585
2,028
.337 -~ 4,628 99
.529 - 4,832 100
.837 - 4,660 139
.359 - 3.832 172

1.717 -

1,709 -

1.676 -

.100 - 3,121 195
496 - 3,282 217
1.062 - 4,076 250
1.496 - 4.564 286
1.692 - 5,341 312
.222 - 3,987 359

1,565 -

1.560 -

1.555 -

OO 22> 0002000000000 0 > O
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