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Alternate-Fueled Flight: Halophytes, Algae,  
Bio-, and Synthetic Fuels 

 
 R.C. Hendricks  

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

Abstract 

Synthetic and biomass fueling are now considered to be near-term aviation alternate fueling. The 
major impediment is a secure sustainable supply of these fuels at reasonable cost. However, biomass 
fueling raises major concerns related to uses of common food crops and grasses (some also called 
“weeds”) for processing into aviation fuels. These issues are addressed, and then halophytes and algae are 
shown to be better suited as sources of aerospace fuels and transportation fueling in general. Some of the 
history related to alternate fuels use is provided as a guideline for current and planned alternate fuels 
testing (ground and flight) with emphasis on biofuel blends. It is also noted that lessons learned from 
terrestrial fueling are applicable to space missions. 

Introduction 

These materials represent an update (to 2009) and additions to the Workshop on Alternate Fueling 
Sustainable Supply and Halophyte Summit at Twinsburg, Ohio, October 17 to 18, 2007 (ref. 1). 

In the brief discussion herein, we will look at reasons why halophytes and algae are being 
investigated as fuel, food, and energy sources.  

To produce biomass fuels, sources of carbon, hydrogen, oxygen, nutrients, and sunlight are required. 
Basically for fuels we need glucose, C6H12O6, or cellulose, (C6H10O5)n. 

In this respect (stoichometrically), glucose ties up six waters and six carbons for every unit of glucose 
produced. When the carbon input is from CO2, 

 
 12H2O + 6CO2  C6(H2O)6 + 6H2O + 6O2  

 
Cellulose ties up five waters and six carbons in form of a polymer: 
 

 2H2O + 6CO2  C6(H2O)5 + 7H2O + 6O2  
 
In round numbers, to make 2 kg of biomass one ties up about 1 kg of water and 3 kg of CO2 plus 

nutrients (fertilizer), which complicates matters. So to actually produce the biomass, in addition to water 
and CO2, one needs nutrients and photons (400 to 700 nm)—all in the proper proportions.  
 
 H2O + CO2 + NH3 + Photons  Biomass(CNxHyOz) + O2 

 
This elementary notion of conversion points out that sustainable biomass sources require sunlight, 

suitable “soils,” nutrients, CO2, water, symbiosis, and a lot of care—all of which become major concerns. 
How do we address these major concerns? Do we pump water from freshwater aquifers, use waste and 
brackish waters, use seawater, or what? Do we use open-air CO2 capture, exhaust stack capture, well 
capture, ponds, reactors, or what? Do we locate in hot dry, hot humid or cool, moist climates for growth 
or what? Do we pump water, CO2, or nutrients to the “fuel factory,” use conventional farming techniques, 
grow in vertical arrays, or what? Should we really process biomass into fuels at the expense of our food 
supply or what? Should we permit climate changing deforestation to produce biomass fuels or what? 
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While these questions are both scientific and political, they also require a paradigm shift in our production 
and use of energy, water, and food resources. 

From this very simple illustration of biomass needs, questions, and major concerns, we will show that 
common food crops and grasses (some also called “weeds”) have already been processed into aviation 
fuels in limited quantities. We then show why halophytes and algae are better suited as sources of 
aerospace fuels and transportation fueling in general. We will then provide some of the history related to 
alternate fuels use as a guideline to some current and planned alternate fuel testing, both ground and 
flight, with emphasis on blended biofuels.  

We will not discuss, to any extent, the coal-to-liquid (CTL) or gas-to-liquid (GTL) synthetic fueling 
processing to S8 (synthetic JP8 or now being referred to as synthetic paraffinic kerosene (SPK) and used 
interchangeably herein) or JP900 techniques, as these have been addressed (e.g., refs. 2 to 6).   

Glycophyte Crop and Grass Fuels 

Glycophytes are sweet water (freshwater) plants, and they represent common sources of food. 
UOP-Honeywell, University of North Dakota (UND), General Electric (GE), and Inventurechem 

(ref. 7) all have processing technologies to convert common food-based crops and grasses to biojet. Three 
of these (UOP, UND, and GE) were sponsored under DARPA proposal BAA06-43, for crop and weed 
conversion to JP8. These common crops include plant nuts, fruits, and seeds, for example, with palm oil, 
canola oil, and waste fats having potential for processing to S8 (synthetic JP8) (ref. 8). The same process 
could be applied to a variety of bio-oil-based feedstocks, yet sustainability, transport logistics, and costs 
require consideration. 

It appears that all cited processors have provided fuels to Boeing and the Air Force Research 
Laboratory (AFRL) for testing, most under the designation of fuel 1, 2, 3, and so forth. Jet fuels will 
benefit from commercialization of the Department of Defense (DOD) need for JP8 and S8. 

The major problems with glycophyte crop and grasses conversion to fuels are 
 
(1) Lack of sustainable sources, as assessments and processes assume feedstock availability 
(2) Lack of realistic business (commercialization) model for total biomass product 
(3) Competition with demands for (i) arable land that produces food and (ii) freshwater  
(4) Process is energy intensive 
 
Potentially sustainability and commercialization issues could be overcome, yet human energy, food, 

and water demands are inevitable sources of conflict with using crops for fueling.  

Halophytes, Algae, and Cellulosic Feedstocks 

In view of the competitive nature of glycophyte fuel sources with the Triangle of Conflicts (energy, 
water, and food), we seek alternatives in plants that thrive in brackish and saltwater with the ability to 
survive in arid lands. These represent major concerns that are raised in the Introduction. A nice summary 
is given by Whitfield (ref. 6). 

Of the Earth’s landmass, ~43 percent is arid or semi-arid, and 97 percent of the Earth’s water is 
seawater. Halophytes are salt-tolerant plants (micro and macro) that can prosper in seawater or brackish 
waters and are currently common feedstocks for fuel and food (fuel-food feedstocks) in depressed 
countries. Two types, broadly classed as coastal and desert, can be found in marshes, coastal planes, 
inland lakes, and deserts. Major arid or semi-arid halophyte agriculture problems include pumping and 
draining the required high volumes of irrigation water from sea or ocean sources. Also, not all arid or 
semi-arid lands are suitable for crops. Benefits of halophyte agriculture include freeing up arable land and 
freshwater resources, cleansing the environment, decontaminating soils, desalinating brackish waters, and 
carbon sequestration. Sea and ocean halophyte agriculture problems include storms, transport, and diffuse 
harvesting. Benefits include available nutrients along with ample water and sunlight. 
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in size to wheat seeds, are planted and harvested using conventional farm machinery with adjustments for 
planter plates and combine operating speeds. The oil content of seashore mallow is also similar to that of 
soybeans (about 18 percent) with fatty acid composition more like cottonseed.  

A very concise summary of the Gallagher and Seliskar halophyte work, background, halophytes 
merits, and recent successful harvest is seen on their one-page summary (fig. 5 in the appendix) (ref. 14) 
and a more complete discussion of the seashore mallow (KV) work is found in (ref. 15). See the 
appendix. 

In correspondence with Prof. Gallagher regarding seashore mallow, more agricultural details evolved. 
Considering about 13 percent scatter-loss before harvest, replicate plot yields were 14 bu/acre. This 
reasonably good yield was without irrigation on Delaware farmland at a time when the county agent 
estimate on soybeans without irrigation “at least a 75 percent reduction in normal yield” because of 2007 
summer drought. The previous year (2006), soybeans yielded about 40 bu/acre. Prof. Gallagher did not 
think KV would have benefited as much as beans with freshwater irrigation because of its drought 
tolerance. The KV would have benefited from salt-water irrigation for two reasons: (1) weed control and 
(2) a boost in growth from some salt. Very little fertilizer was used on the replicate plot in the spring so as 
to not encourage the weeds since farming was no-till and they did not have salt water to control the 
weeds. The older plants grow quickly in the spring, and the plant-canopy closes quickly. Except for the 
mare’s tail, which is roundup resistant, weeds really did not cause a lot of problems. 

An objective of growing seashore mallow is low-maintenance, twice-in-the-field equipment (plant 
and harvest) biomass production. Higher productivity can result from irrigation, monitoring, insecticides, 
and nutrient care.  

In the first year of Prof. Gallagher’s field trials, a single KV shoot emerges that fills out into multiple 
shoots the following year and eventually the rows become indistinguishable (ref. 13). 

The first time KV was planted, the soil was tilled before planting and eventually weeds took control. 
The next time, conventional no-till agriculture was practiced: weeds were just sprayed, and KV was 
planted in the spring. The second year for the no-till crop (Spring 2007), the KV was sprayed and a little 
fertilizer spun on just before the shoots broke the surface in late April. The next time Prof. Gallagher took 
machinery to the field, it was to combine (harvest). The third-year plant shoots look very promising and 
are becoming an established crop.  

 Prof. Gallagher feels that KV agriculture would thrive on the coastal plains and that the potential for 
rapid increase in yield from just simple (KV) selection is very good. Future work includes testing within 
and between the established lines and collecting more samples from the range of genotypes in the wild. 
When comparing soybeans grown in the 1950s to the modern beans, keep in mind that we do not want to 
go from today’s KV to a plant that needs the water, fertilizer, and insecticide pampering the sweet corn 
farms around Delaware require.  

Halophyte: Salicornia Bigelovii 

Salicornia bigelovii, a leafless annual salt-marsh plant with green jointed and succulent stems, is 
indigenous to the Arabian Sea coasts of Pakistan and India on the margin of salt lakes and Celon (Sri 
Lanka) (ref. 16), the U.S. Southwest, and other parts of the world. Similar varieties have been developed 
and are grown by Hodges (ref. 11) and Yensen (refs. 17 and 18). See also Hendricks and Bushnell (ref. 1) 
and reference 19.  

 Scalicornia bigelovii (author’s hybrid variety sos-10) seed collected from field trials in five areas on 
the Arabian Sea coast were processed by hexane extraction, producing 27.2 to 32.0 percent oil. The oil 
acid content is given in table I; it has a refractive index of 1.4680 and a density 0.9054 g/cm3. It can be 
seen many parameters were found to be quite compatible with those of safflower oil, which had slightly 
higher oil (4 percent), fiber (2 percent), and ash (0.5 percent), with 2 percent lower protein (ref. 16). The 
safflower seeds were from four different harvests (MSDS oil density, 0.921 g/cm3).  
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TABLE I.—PERCENTAGE ACID CONTENT OF SEED OILS 
[After ref. 16.] 

Fatty 
acids 

Salicornia 
bigelovii 

Safflower Soybeana,b 
Commercial Refined 

C16:0 palmitic 7.52±0.24 
(7.00–8.50) 

6.70±0.25 
(6.03–7.81) 

11 11.76 

C18:0 stearic 1.45±0.07 
(1.24–1.69) 

2.50±0.10 
(2.05–3.00) 

4.1 4.64 

C18:1 oleic 13.42±0.56 
(12.33–16.83) 

12.30±0.70 
(9.50–15.70) 

22 24.98 

C18:2 linoleic ω6 75.50±2.04 
(74.66–79.49) 

78.00±3.50 
(73.60–80.04) 

54 55.41 

C18:3 linolenic ω3 1.98±0.09 
(1.50–2.30) 

 7.5 3.8 

areference 20, http://chinese-school.netfirms.com/soybean-composition.html, 
soybean commercial products. 

breference 21, http://www.scielo.br/scielo.php?pid=S0103-
90162005000300014&script=sci_arttext, soybean refined oil. 

 
 

Both salicornia bigelovii and safflower seed have greater oil content than cotton (15 to 24 percent) 
and soybeans (17 to 21 percent). Salicornia bigelovii saponin detoxification can be accomplished by 
pre-extraction soaking the seed in 1% NaOH permitting use of protein residual as animal feed.  

Sustainable Halophyte Grasses (Distichlis Spicata)  

Many arable land areas are at risk or affected by salinity, due to shallow or rising water tables, 
underground pumping, and climate changes. For example, in the year 2000 Australia had an estimated 
5.7 million saline-affected hectares, with potential to reach 17 million hectares (170 000 km2) by 2050 
(ref. 22). According to Sargeant, Tang, and Sale (ref. 23), these sites are generally regarded as degraded 
from a chemical and physical perspective, with high concentrations of dissolved salts within the root-
zone, and are commonly waterlogged. There are very few ways that landholders can use these degraded 
areas for commercial use. In most cases, they are abandoned and lost from the farming system. 

Distichlis spicata (fig. 2) is the only C4 species most suited to the high temperatures and high-
radiation regimes during the warm summer months of southern Australia (ref. 23). This species not only 
has the ability to grow and spread in saline waterlogged soils, but it also produces valuable green feed in 
moist saline discharge soils during the summer period. Such forage has real value for a mixed farming 
system.  

Sargeant, Tang, and Sale (ref. 23) have found that Distichlis spicata var. yensen-4a is sustainable in 
saline and seasonally waterlogged sites and becomes a productive option for landholders as a way of 
utilizing an otherwise abandoned unproductive land. They found significant improvements in soil 
conditions for Distichlis spicata (var. yensen-4a (NyPa Forage) is a halophytic pasture grass) growing in 
saline discharge. Fields planted 2 to 8 years were investigated at three different sites. The fields have been 
under landowner observation, where the largest improvements are found in the 8-year sward within soil 
depths of 0.1 m. Soil measurements included saturated hydraulic conductivity, water-stable aggregates, 
root length and dry weight, electrical conductivity, pH, and soil nitrogen and carbon. Results showed a 
12-fold increase in saturated hydraulic conductivity, with increases in both nitrogen and carbon without 
noticeable increases in salt accumulations in the rooting zones. The magnitudes varied between soil type, 
age topography of field. The baselines were adjacent no-grass zones.  

These improvements are consistent with the results of research conducted in Pakistan, where the salt-
tolerant Kallar grass (Leptochloa fusca) was shown to improve the physical properties of saline-sodic 
soils (refs. 25 and 26). 

Seashore saltgrass is also native to the United States. 
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numbers, 2 kg biomass requires 1 kg water and 3kg CO2 plus maybe up to 1 kg nutrient fertilizers 
(questionable). For complete capture and stoichiometric conversion, a natural-gas-fired 4000 mt-CO2/hr 
powerplant has the potential to produce 2660 mt biomass/hr while consuming 1330 mt water/hr 
(16 000 mt biomass, 7980 mt water, and about 8000 mt nutrients, assuming 6 hr/day production). 

In a Vertigro system, a flat-surface greenhouse is essentially turned into a series of vertical surfaces. 
Plants can be grown in containers attached to vertical transparent sheets suspended from an overhead 
conveyor system. In the algal growth system, the suspended sheets become vertical multipass horizontal 
tubular plastic-encased bioreactors. The fluid containing algae is pumped up, and it cascades down 
through the series of horizontal tubes with a high degree of mixing at the end turnaround and entry to the 
next horizontal passage. The arrays are spaced to allow maximum light penetration and flow rates, CO2, 
and nutrients adjusted to provide optimum algal growth. The algae are reported to consume up to 
90 percent their weight CO2 with 50 percent dried weight as lipid or oil content. The system conserves 
both land and water, as little or no water is lost to evaporation and is somewhat immune to foreign algal 
strains. Estimates are that a fully operational plant may produce to 4000 bbl bio-oil/acre/year, three orders 
of magnitude more than soybeans (refs. 32 and 33). A similar scaleable modular photobioreactor system 
concept is discussed by Kodner (ref. 34).  

The 2007 Algae Biomass Summit in San Francisco was like a road map of potential ways, along with 
partnerships, to make cellulosic and algal oils for processing into JP8 (ref. 35).  

Other Research and Developments 

North Carolina State University has developed a process to turn virtually any lipidic compound 
(e.g., algae) into fuels for aviation (includes oil from algae) (ref. 36). The process is licensed to 
Diversified Energy Corp. (ref. 37) of Gilbert Arizona. Principles in the North Carolina group include 
Profs. William Roberts, Henry Lamb, Larry Stikeleather, and Tim Turner of Turner Engineering in 
Carrboro, N.C. 

Aquaflow Bionomic Corporation (New Zealand) (ref. 38) harvests algae directly from settling ponds 
with significant oil yields. Similar efforts are found at Solix Biofuels and Colorado State University 
(ref. 39; see also ref. 40) for commercializing algae to biodiesel. Solix photobioreactors and ponds are 
based on the National Renewable Energy Laboratory (NREL) Aquatic Specie Program. Both Aquaflow 
and Solix should be massively scalable. 

 GreenFuel Technologies Corporation (ref. 41) and Arizona Public Service Company (APS) (ref. 42) 
were able to grow algae successfully at APS’s Redhawk natural gas power plant. GreenFuel Technologies 
also has an agreement with Institut fur Getreideverarbeitung Potsdam (ref. 43) Germany for algae 
production.  

 Trident Exploration Corp. (ref. 44) and Menova Energy Inc. (ref. 45), are to develop a 
photobioreactor. Menova systems are applicable to photovoltaic, solar thermal, or light piping. 

The National Science Foundation (NSF) has published a roadmap for the production of hydrocarbon 
biofuels, liquid transportation fuels derived from lignocellulosic biomass that are close analogs to their 
petroleum-derived hydrocarbon counterparts (refs. 46 and 47). 

The Bali Indonesia Red Cross volunteers are planting tens of thousands of mangroves to inhibit costal 
soil erosion (ref. 48). It would be good if the project also envisioned aqua- and agriculture similar to that 
of Hodges (ref. 11) to enhance regional development, conserve freshwaters, and provide energy and food 
to fracture the Triangle of Conflicts (energy, food, and water).  

Potential for Dead Sea and Death Valley Community Projects 

 Several prospective algae-oil consortiums are investigating the nutrient rich Sultan Sea in California 
for algae growth, there other areas that could benefit from seawater agriculture and aquaculture. Basically 
most areas near oceans or seas could benefit from the work of Hodges (ref. 11). 
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 A recent alliance between ICM Inc., and Coskata, Inc., has set an ethanol price target at $1/gal with 
plant production in 2010. Coskata (ref. 55) is a next-generation ethanol developer using biological 
fermentation technology, and ICM (ref. 56) designs and constructs commercial ethanol plants. The 
Coskata three-step conversion process turns cellulosic material and carbon based feedstocks into ethanol. 
The patents are claimed and may be similar to those issued to University of California (UC), Berkeley, 
and Evers Tech. Using patented microorganisms and efficient bioreactor designs, Coskata uses a unique 
three-step conversion process that turns virtually any carbon-based feedstock, including biomass, 
municipal solid waste, and other agricultural waste, into ethanol (ref. 57). See also cellulosic and 
processing work of Downing (ref. 58). 

Combining cellulosic feedstocks along with halophyte and algal feedstocks and their oils will enhance 
total energy cycle efficiencies and in some cases prove more efficient than delaying harvests to extract the 
oils. For example in a very wet or very dry season, seed oils may be too expensive to harvest yet biomass 
could salvage the agriculture expenses.  

Cellulosic and biomass conversion is being investigated by the Joint Bio-Energy Initiative (JBEI), a 
consortium of UC Berkeley, UC San Francisco, UC Davis, Stanford University, Lawrence Livermore 
National Laboratory, and Sandia National Laboratory with potential for State support (ref. 59).  

The Department of Energy- (DOE-) JEBI bio-energy proposal lead is Jay Keasling of the Lawrence 
Berkeley National Lab (LBNL). Prof. Keasling is director of Berkeley Lab’s Physical Biosciences 
Division and an expert in synthetic biology, and UC Davis’s Prof. Rodman is an expert on rice genome.  

The DOE also supports two other centers, the BioEnergy Research Center (Oak Ridge National 
Laboratory is the lead center) and the Great Lakes Bioenergy Research Center (University of Wisconsin-
Madison lead and with Michigan State University). 

The DOE’s Samuel Bodman feels these centers will provide cellulosic ethanol technology for 
standard crops, crop Stover and wastes by 2012 to decrease petroleum-based gasoline consumption by 
20 percent in 10 years (refs. 59 and 60). 

The JBEI research is housed within a single location with major objectives: development of 
feedstock’s, feedstock’s conversion to sugars and aromatics, conversion of sugar and aromatics to biofuel, 
data analysis and imaging, and experimental natural and synthetic biology. Major areas of investigation 
include plant cell synthesis (genomics, lignin polymerization, enzyme, and chemical depolymerization), 
pretreatment methods (lignocellulolytic enzymes microbial communities nurtured for degradation of 
lignin), conversion of sugar monomers from depolyermiztona or lignocellulosic biomass of selected 
feedstocks, and yeast pathways. 

Many of these areas are also being worked on at NREL; however, whereas ethanol is the initial fuel 
molecule of JBEI interest, butanol, isopentanol, hexadecane, and geranyl decanoate ester are potential 
substances for biodiesel and biojet fuel (refs. 59 and 60). 

The NREL is also developing processes and genetically engineered microorganisms to more 
efficiently convert starch, sugar crops (sugarcane), and cellulosic biomass principally to ethanol. In the 
presence of new catalysts, vegetable oils derived from high-lipid, genetically modified seed react with 
methanol or ethanol produce biodiesel. Other prolific biomass such as algae can also provide the oils that 
can be further refined to biojet (ref. 61).  

Many of the production processes are self-limiting in that they develop inhibitors (too much alcohol) 
or byproducts that are toxic to the conversion of cellulosic ethanol, requiring significant investments in 
research. Biochemical pretreatment methods include hydrolysis and fermentation, which involve 
chemicals, enzymes, and fermentative microorganisms. The thermochemical processes requires catalysts 
and process optimization tradeoffs between pressure and temperature, for example, in hydrolyzing 
hemicellulose, where in a dilute acid pretreatment is used to fracture the sheath that surrounds the 
cellulose and lignin. A proper mix of enzymes can enhance the process in treating stover for example and 
new yeasts are now available (ref. 62). The Biomass Refining Consortium for Applied Fundamentals and 
Innovation (CAFI) shares production information (refs. 63 and 64). Among the new tools being 
developed is a molecular dynamic biomass model (cellulose-cellulase system) based on surface imaging 
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visualizing the biomass structure and near-infrared spectroscopy to provide biomass composition 
(ref. 62).  

With such recent advances in cellulosic wastes conversion, it is suggested that local biomass and 
alternate fueling journals be closely monitored along with the activities of Atlantic Greenfuels (ref. 1). 

The lessons we learn in synthetic and biomass developments for terrestrial fueling, including water 
conservation and food production, are applicable to space missions, where very harsh environments will 
require processing and reprocessing of wastes as sources of energy. While we have much to learn even 
about our own Earth habitat, knowing how to use algae, halophytes, and symbiotic bacteria (e.g., 
cyanobacteria) on space missions will enable greater mission independence and potential for survival 
(perhaps even a space colony?). Such efforts require experimentation and mission demonstrations some of 
which could be carried out by the NASA Life Science Group (ref. 65). We suggest a close partnership 
with these groups in order to integrate knowledge gained in alternative fueling for aviation.  

Dr. Nicholas Yensen, in conjunction with Agriculture Research Services U.S. Salinity Laboratory of 
the United States Department of Agriculture and NyPa International, has assembled a searchable database 
of halophytes and salt-water plants and their uses (ref. 66). The Web site also contains an information 
section with a wealth of resource books and papers. Other biomass oils and productions characteristics are 
provided in references 67 and 68. 

Whitfield (ref. 69), summarizing the Future Fuels Aviation Conference in London on April 14 and 15, 
2008 (ref. 70), breaks down the fueling issues according to consumer (upper), supplier (middle), and 
producer (lower), (table II) The roles played by each are in turn driven by consumer demands, some of 
which are illustrated in table III. Consumer demands reflect those of the public community as a whole and 
in this case in response to climatic changes associated with environmental affects of aviation emissions. 

We now turn our attention to applications of alternative fueling with respect to aviation and will 
provide some background and recent, current, and planned activities.  
 
 

TABLE II.—ALTERNATE FUELING: ROLES OF CONSUMERS, SUPPLIERS, AND PRODUCERS 
Tier Represented by State 

Upper Airlines, aircraft manufacturers and those 
representing demand 

A straight forward role of encouragement, 
facilitation, and leadership. 

Middle Those at the interface: fuel developers and 
converters, engine companies, and the 
certification community 

Under stress, being pressured from both sides to 
deliver, each with roles to play in an old game being 
played with new players, and possibly new rules. 

Lower Feedstock suppliers Keen to offer their proposals—but seeking 
agreement that their product is sustainable 

  
 

TABLE III.—ROLES OF CONSUMER DEMANDS REFLECT PUBLIC  
COMMITMENT TO CLIMATE CONTROL 

Criteria KLMa Virginb 
Water No use of drinking water Should not divert water away from food 

agriculture or drinking water 
Deforestation No deforestation or forced relocation of people Should not lead to deforestation  
Soil No soil degradation Should apply sustainable agronomy principles 

(e.g., equivalent of FSCc) 
Land and food No competition with food or use of arable land  Should not conflict with staple food crops  
Other No negative influence on biodiversity Should have lower life cycle carbon emissions 
aRefers to KLM Royal Dutch Airlines, reference 71, http://www.klm.com/travel/klm_splash/splashpage.html. 
bRefers to Virgin Atlantic (Airlines), reference 72, http://www.virgin-atlantic.com/en/us/index.jsp. 
cFSC is Forest Stewardship Council, reference 73, www.fsc.org. 
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Alternative Fueling Demonstration Projects 

The use of alternate fueling is neither new nor novel, yet the feedstock and fuel conditioning can be. 
Prior to the discovery of cheap oil, synthetic fuels and lubricant plants dotted the U.S. eastern landscape. 
In the late 1930s, the war machines realized the necessity of secure sustainable fueling and developed 
new processes for making synthetic fuels based on ample supplies of coal. Synthetic fuels have been used 
to power both piston and gas-turbine engines. The point is that synfuels powered aircraft over 60 years 
ago without adverse effects, but the “know-how” technology has been lost.  

Historical Ground and Flight  

Prior to the 1860s, some 50 coal-to-liquid (CTL) fuel plants produced oil, gas, grease, and waxes for 
Americans. Boston had five low-temperature carbonization (LTC) plants. The Titusville Drake well in 
1859 ushered in cheap oil, however, that by 1873 forced the CTL plants to shut down (refs. 74 and 75). 

Von Ohain’s 1939 He.S3B jet engine was designed for gasoline, whereas Whittle’s 1941 
(Gloster/Whittle) engine used illuminating kerosene. Some advocates claimed that jet engines could run 
on any fuel from whiskey to peanut butter (oil) (refs. 76 to 78). (See also recent biofueled jet flight, 
ref. 79.) 

In early 1944, 25 synfuel plants produced more than 124 000 barrels per day largely from coal. By 
February 1945, however, that level had “bombed” to 620 bbl/day. Ninety-two percent of Germany’s 
aviation gasoline came from synthetic fuel plants. 

In 1944, General George Patton used ersatz gasoline (substitute gasoline), synthetic fuel 
manufactured from coal, to operate his armored vehicles (ref. 80). 

In November 1943, Congressman Jennings Randolph flew from Morgantown West Virginia to 
Washington, DC, in a synfueled airplane inaugurating a U.S. synfuels program in 1944 (ref. 80). 

In 1944, Whittle’s kerosene fueling approached standardizing with the specification for JP–1 with  
–60 °C freezing point. Because of the limited availability of such fuels, mixtures of naphtha and kerosene 
distillates came into use and eventually evolved into military JP8+100 and commercial Jet-A. 

JP–7 is an example of a nondistillate blended fuel (ref. 81). It is a very clean blend of hydrocarbons, 
low in aromatics (typically 3 percent), with a low vapor pressure and excellent thermal oxidative stability 
and nearly devoid of the sulfur, nitrogen, and oxygen impurities. The mixture consists of alkanes, 
cycloalkanes, alkylbenzenes, indanes/tetralins, and naphthalenes, with addition of fluorocarbons to 
increase its lubricant properties. With <3 percent highly volatile aromatics like benzene or toluene, 
triethylborane (TEB) has to be injected through the engine and afterburner in order to light-off the 
combustor.  

Recent Flight  

Prof. Expedito Parentee, Tecbio, Fortaleza Brazil, from 1980 to1984—The first applicability trials 
using biodiesel and the development of PROSENE, an alternative combustible lipofuel (vegetable oil) 
used as an alternative to aviation kerosene. The first flight was taken using pure biokerosene in an 
EMBRAER turbobiokerosene turboprop-powered aircraft, between the cities of São José dos Campos dos 
and Brasíília. This accomplishment was considered to be of strategic national interest, and the results 
could not be published (ref. 82).  

Dr. Max Shauck (at that time, the Baylor Institute Director) reported that in the 1990s, Baylor 
University in Texas Institute for Air Science flew a Beech King Air turboprop for 60 hr with a Pratt & 
Whitney Canada PT6A running a 20:80 blend of biodiesel and kerosene and the other, 100 percent Jet-A. 
The aircraft was flown to 25 000 ft (7600 m) and appeared to have no problems (ref. 83).  

In response to the 1980s oil embargo, South Africa picked up the German Fischer-Tropsch (FT) 
technology, and Sasol became the leading producer of synfuel from coal and more recently from gas. 
South African Airlines used blended fuels, and international aircraft flying in and out of Johannesburg 
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Airport were refuelled with 18 to 25 percent blends and in some cases to 50 percent of Jet-A and synfuel. 
There are no reported (public) maintenance or aircraft limitations due to the fueling regime.  

Cliff Moses, Southwest Research Laboratories, has tested Sasol synjet and found these fuels to 
behave similar to Jet A and certification to be eminent (ref. 84). On April 12, 2008, Sasol Ltd. received 
approval from the global aviation fuel specification stakeholders to supply airlines at 100 percent CTL 
synjet fuel. Sasol’s high-temperature Fischer-Tropsch (HTFT) is used to convert coal into four primary 
streams: isoparaffinic kerosene; heavy naphtha kerosene with 10 percent aromatics; light distillate #1 with 
24 percent aromatics; and naphtha #2 with 39 percent aromatics. Synjet is low in sulfur (<5 ppm) with 8 
to 25 percent aromatics (to protect fuel line sealing) (refs. 85 to 87). Aircraft ground emissions testing is 
planned for 2008 to 2009. (Note that the military specification MIL–DTL–83133F approves both CTL 
and GTL fuels, see below.) 

See also the subsequent section on Airbus-Quatar Airways flight test where GTL fuel was used. 
On 11 April 2008, military fuel specification MIL–DTL–83133F (ref. 88) was released, which 

specifically states in section 3.1.1 “….up to 50 volume % of the finished fuel may consist solely of 
Synthetic Paraffinic Kerosene (SPK) derived from a Fischer-Tropsch (FT) process meeting requirements 
of Appendix A….” The blend is designated as JP8/SPK. The specification allows for SPK to be derived 
from a FT process without feedstock restraints, which is important for fuel suppliers for two reasons: 
(1) feedstocks could include GTL and CTL, as well as ShaleTL, TarSandTL, and biomass as long as the 
liquid fuel satisfies the FT requirements and meets the specifications set forth in MIL–DTL–83133F, 
Appendix A; and (2) commercial aviation has a propensity to follow military designations because many 
of the engines have similar cores. The downside of this is it will be difficult to certify other fuels and 
engine configurations and aircraft that would use these fuels.  

While commercial aviation could adapt MIL-DTL-83133F, currently (2008) there is no world-wide 
consensus on specifications on alternate fueling for commercial aviation. Roots for the alternate fueling 
for commercial aviation program grew out of discussions between NASA and Boeing. Subsequently, 
FAA and Boeing inaugurated meetings that later became the Commercial Aviation Alternate Fuels 
Initiative (CAAFI) group (ref. 89), which is also supported by military aviation.  The Air Transport 
Association of America’s (ATA) Earth Day release underscores its commitment and principles for the 
adoption of alternative fuels (see also Whitfield (ref. 69) and tables II and III) while entrusting CAAFI as 
the focal point to address sustainable secure fuel supplies with price stability (ref. 90). 

 Current and Planned Testing 

First certification of Synthetic Fuel JP8 Blends: On August 8, 2007, a B52H was certified to fly on 
JP8 + synjet blends (50:50). There are engine and aircraft maintenance records but unavailable. (For 
reports contact William Harrison and James “Tim” Edwards, Edwards, James T Civ USAF AFMC 
AFRL/RZTG, AFRL Wright Patterson Airforce Base, Ohio (James.Edwards@WPAFB.AF.MIL). 

The United States Air Force (USAF) plans tests with C17 and other aircraft in a manner similar to 
B52H fight and ground tests with certification of all aircraft by 2010 on blended fuels; the B52H is 
powered by Pratt & Whitney TF33 engines (refs. 79, 83, and 91 to 96). (Recall that commercial flights in 
and out of Johannesburg have flown uncertified synthetic-Jet-A blends for many years.)  

 First Biofueled Jet Flight 

On October 2, 2007, Green Flight International’s Chief Pilot Carol Sugars and Douglas Rodante 
successfully completed the world’s first biofuel jet aircraft flight (ref. 79). The test program included 
various blends of Jet-A and biofuel up to 100 percent biofueling. They flew their L–29 aircraft at 25, 50, 
and 100 percent biofuel to 17 000 ft (5.18 km) without difficulties. The Czechoslovakian L–29 is a retried 
military aircraft. The powerplant, Motorlet M-701C, is an early-generation single-stage centrifugal 
compressor and single-stage axial-flow turbine capable of operating on different fuels including heating 
oil (refs. 92 to 94). The L–29 airframe underwent recent certification along with a new engine (25 hr). 
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The aircraft has heated fuel tanks that maintained 24 °C with an environmental ambient at –4 °C; an 
additive to the fuel enhanced the margin of safety by 20 °C. The biofuel was recycled restaurant oils 
consisting of assorted cooking oils such as canola, sunflower, palm, soy, and so forth (ref. 95) with no 
reported flight difficulties, yet the time at 17 000 ft (5.180 km) was short. The fuels were preblended and 
loaded into the aircraft. The fuel filtering indicators, indicative of fuel plugging, never even blinked.  

One of the major issues, as with the B–52 flights, centers on sealing. Rubber “O” rings are used in the 
fuel pump, and neoprene is used in some lines. Here the issues are degradation and lack of aromatics for 
swelling, which are added to synfuels to maintain seal swell. Fuel leaks can lead to fires in areas not 
covered by extinguishing equipment or air fire-walls in military aircraft. These issues are being watched 
carefully as will be fuel injector coking and component wear.  

In general, biofuels and blends are more viscous than Jet-A, and at power levels less than 55 percent 
the L–29 combustors ran rich with higher smoke emissions. Ground and flight testing on the L–29 was 
carried out at 25, 50, and 100 percent biofueling where it was noted that smoke emissions increased with 
increased biofueling. These results differ from those cited by Dr. Max Shauck (ref. 83) for the  
PWC–PT6A Beech King Air: Shauck noted a decrease in smoke with increase in biodiesel. These 
inconsistencies may be due to the fuel refining, Shuck’s biodiesel and Sugars-Rodante’s recycled 
restaurant oil. In an effort to operate the L–29 with a lower fuel-to-air ratio (f/a) at low power, the fuel 
nozzles will be changed with smaller injection holes. Future flight plans call for a U.S. cross-country 
flight in early November 2007, followed by an around-the-world flight of 22 000 miles, most likely in a 
Learjet or Gulfstream.  

At the Paris Air Show, CFM displayed their CFM56–7B green engine program with methyl ester fuel 
blends (no hard data has been released). The CFM56–7B used on the Boeing 737 models has had an 
initial test in which it ran off a mixture of 30 percent biofuel (methyl ester) and 70 percent standard jet 
fuel (refs. 96 and 97). 

On October 22, 2007, a C–17 Globemaster III took off from Edwards Air Force Base in California on 
a successful 4-hr flight using a blend of synthetic and JP8 fuels. This is the first time a C–17 using PW 
2040 engines has flown using a FT JP8 fuel blend in all four tanks. On October 19, 2007, the C–17 flew 
with the fuel blend in one tank to validate engine and fueling performance. The C–17 and PW 2040 
turbofan engines are similar to the PW 2037 commercial turbofan-engines used in the Boeing 767, for 
example. The mission included ground operation of the auxiliary power unit and evaluations over the  
C–17 operational envelope (ref. 98). The synfuel was supplied by Shell UK. Shell’s commercial  
low-temperature FT GTL plant at Bintulu, Malaysia, open in 1993, produced 14 700 barrels per day (in 
2005) of high-quality liquid products (ref. 99). 

The USAF is still on track for fleet certification by first quarter 2008, with all USAF aircraft certified 
by 2011. Note that 50-50 blends provide sufficient aromatics from the JP8 to contain fuel swell. (The 
alternate fuel specification is now at 8 percent aromatics, and it may be relaxed if 100 percent synfuel 
tests prove satisfactory.)  

The AFRL Arnold Air Force Base in Tullahoma, TN, is also planning testing sequence with alternate 
fuels. 

Pratt & Whitney (Florida) and NASA will be in a co-operative venture to test engines with blended 
fuels. “Flight International” reports that NASA Glenn is going to purchase a PWC308 engine for 
synthetic fuels testing. The basic engine configuration is a single-stage fan, driven by a three-stage  
low-pressure turbine, supercharging a four-stage axial, single-stage centrifugal high-pressure compressor, 
driven by a two-stage high-pressure turbine. An annular combustor is featured. Some versions have an 
unmixed exhaust, but the PW306 and PW308 (7 klbf, fan diameter 33.2 in.) include a forced mixer. A 
full-authority digital engine control (FADEC) system is incorporated. Applications of the 300 series 
include the Learjet 60, Cessna Citation Sovereign, Gulfstream G200, Hawker 1000, Dassault Falcon 7X, 
Fairchild-Dornier 328JET, and White Knight Two (ref. 100). 
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Commercial Alternate Fueled Flight Tests 

Boeing and Virgin Atlantic Fuels plan a 747 test scheduled for 2008 with biofuel to be selected. 
Initially, one engine will be run on alternate fuel (refs. 101 and 102). Boeing and Air New Zealand have 
also scheduled similar 747 tests in 2008 with biofuel to be selected (ref. 103).  

On February 24, 2008, Virgin Atlantic became the first commercial carrier to fly on biojet fueling of 
one of four GE CF6-80C2B5F turbofan engines. The fuel blend was 80 percent Jet-A and 20 percent 
processed babassu nut-coconut oils (Parente biojet) provided by Imperium Renewables (ref. 104) and was 
based on the work of Parente (ref. 82). Ground tests to 60 percent Jet-A and 40 percent biojet showed no 
discernable problems (ref. 105). The 747–400 flew from London Heathrow to Amsterdam Schiphol 
(320 km or 200 miles), reaching altitudes of 25 000 ft (7.6 km) in 40 min. Full-up-engine tests are 
planned in 2008. The collected flight data will be analyzed to assess engine performance, emissions, and 
maintenance issues (ref. 106). Engine alternate fueling tests with algae oils processed to biojet are 
anticipated to occur in 2008 (ref. 105), and Continental and General Electric plan CFM56–7B biofuel 
flight testing with 737 aircraft in 2009 (ref. 107). 

Air New Zealand 747 testing in 2008 will be more directed toward fuel sustainability issues. Air New 
Zealand engines are usually Rolls-Royce RB211–524H turbofan engines (ref. 108). 

On October 31, 2007, Qatar Airlines announced it would fly on “natural gas,” which is most likely 
Shell GTL. 

On February 1, 2008, an Airbus A380 flew from Bristol to Toulouse (a 3-hr flight) on one of four 
Rolls-Royce Trent 900 engines fueled with 50 percent Jet-A and 50 percent Synjet to assess the 
environmental impact of alternative fuels. The GTL synthetic fuels program is part of a November 2007 
fuels consortium agreement between Airbus, Qatar Airways, Qatar Petroleum, Qatar Fuels, Qatar Science 
& Technology Park, Rolls Royce, and Shell International Petroleum Company. The goal is regulatory 
approval of 50:50 blended fueling by 2009 with 100 percent GTL fueling by 2013 (ref. 109). 

JP8 represents about 60 percent of the DOD fuel consumption, and with rising fuels costs the USAF 
estimates cost increases of at least $60 million/$bbl-oil-increase. The DOD is currently (2008) committed 
to alternate fuels, and in March 2008 the B1B flew supersonic on a 50:50 blend (50 percent JP8 and 
50 percent Synfuel), emphasizing that commitment.  

Fuel 100, low-lead (LL) aviation fuel (avgas), has been a stable, dependable piston-engine aircraft 
fuel and the only allowable fuel approved by the FAA that contains carcinogenic tetra-ethyl lead. A 1990 
memo states the lead is to be phased out. The FAA has certified a blended fuel, AGE85 (85 percent 
ethanol and 15 percent high-octane petroleum (not specified)), for use in several Cessna models with 
Continental engines (ref. 110). The FAA also approved AGE85 for the Piper Pawnee powered by 
Lycoming IO–540 engines, (ref. 111). Ethanol-fueled cropdusters have logged thousands of hours in 
Brazil (ref. 112). 

The piston engine fuel market is 600 to 700 million gallons per year and will require sustainable 
secure supply of the AGE85 fuel to become effective. 

Summary 

Halophytes and algae are fast becoming biomass plant matter of interest in aviation fueling studies. 
The potentially high oil yields of algae are up to 150 times that of soybeans and advanced halophytes 
promise yields beyond soybeans on saltwater- (or brackish-water-) irrigated, otherwise arid land, 
conserving both freshwater and arable crop lands. 

Synthetic fueling has been used for many years and was heavily used during wars. The most recent 
application is with South African Airlines and all commercial flights out of Johannesburg, where blends 
up to 30 percent have fueled commercial aircraft without noted detrimental effects. A commercial flight 
demonstration with one of four engines operating on blended synthetic fuels (50% synthetic: 50% JetA) 
has been accomplished. The United States Air Force has certified the B52H (turbojet engines) to fly on 
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blends of 50 percent synthetic fuel and 50 percent JP8 and has flown the C117 on the same fueling blends 
(turbofan engines). 

Biofuels derived directly from waste oils have been used to fuel the L–29 bioflight. However, 
normally these triglyceride fuels, biodiesel, must be processed with freezing point suppressants to enable 
them to withstand the low temperatures of high-altitude flying. Several commercial flight demonstrations 
with one of four engines operating on blended biojet fuel (20 percent) with 80 percent JetA have been 
accomplished. Other follow-up flight demonstrations are eminent.  

A series of laboratory and flight testing demonstrations are planned. These tests are designed to 
validate the usefulness of biofuels and synthetic fuel blends with petroleum-based fuels in commercial 
aviation. The major impediment at this point in time is a secure, sustainable, renewable economically 
beneficial supply of these fuels. 

Developments for synthetic and biomass terrestrial fueling, including water conservation and food 
production, are applicable to space missions where very harsh environments will require processing and 
reprocessing of wastes as sources of energy. While we have much to learn even about our own Earth 
habitat, knowing how to use algae, halophytes, and symbiotic bacteria (e.g., cyanobacteria) on space 
missions will enable greater mission independence and potential for survival. 
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