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Modeling High Dependability Protocols and Architectures

This report documents an investigation into modeling high dependability protocols and some specific challenges that
were identified as a result of the experiments. The need for an approach was established and foundational concepts
proposed for modeling different layers of a complex protocol and capturing the compositional properties that
provide high dependability services for a system architecture. The approach centers around the definition of an
architecture layer, its interfaces for composability with other layers and its bindings to a platform specific
architecture model that implements the protocols required for the layer.

Challenges

The design of complex systems relies on the use of protocols for executing functions and coordinating system
operations and components. Protocols are often described in relatively simple terms, such as the Ethernet
communication protocol, where the intricate aspects are masked by the overall packaging of the protocol. In reality,
individual protocols can be very complex in nature, involving numerous steps that comprise the complete sequence
of behavior. When multiple protocols are combined into a composite, complex interactions are possible; some
desirable and others unwelcome. Protocol stacks are an example of the former while deadlocked systems are an
example of the latter.

Capturing and analyzing the low-level protocol services and their associated behavior within architecture description
languages, such as AADL [9][10], has proven challenging to date. Model based architecture design of highly
dependable and safety-critical systems is relatively new. The increased system complexity creates difficulties that
current techniques have yet to solve. Specifically, any architectural dependability analysis needs to be cognizant of
the protocol services and their respect fault masking, reconfiguration and failure modes. Previously, separate
modeling efforts have been used to assess these behaviors.

This report explores modeling and analysis of a specific highly dependable protocol and using the lesson learned to
propose new methods for capturing the salient properties of a representative set of protocols in an integrated
architecture framework that facilitates automated extraction from a unified model for analysis.

Experiences with Modeling and Analysis of Dependable Protocols

In complex communication protocols with many connections between distributed system components it is difficult,
if not impractical, for the designer to envision all the potential factors that can influence the dependability of the
network. At the network level, the basic concerns involve bit error ratios, arrival time assumptions of simultaneous
errors and adequate scheduling and load management algorithms. Higher level functions rely on distributed
communications to perform required operations and assumptions are implicitly made with respect to network and
messaging properties. If these assumptions are violated during run time operation, errors can leak throughout the
system and reach areas that were not designed to tolerate the harmful error effects. Furthermore, this leakage may
be manifested either as an active error that requires immediate attention or as a latent error that seeds conditions that
can infect state behavior and lead to unanticipated scenarios (e.g. simultaneous multiple errors) that cause system
failure.

Standard techniques typically aggregate the analysis at higher level system functions. Much of the impetus for this
approach was due to the observation that it is less expensive and more flexible to manage errors at higher levels of
the system, particularly those with modest response time requirements. This insight led to dynamic growth in the
field of highly available systems in commercial transaction processing in the late 1980s. This approach continued
with the advent of internet technologies and companies such as Google shunning rigorous fault tolerance for a
strategy of using server farms comprised of cheap replaceable components. The large commercial success of this
strategy left little room for the growth of networks that supported more rigorous fault tolerant architecture designs.



This trend is changing as distributed computer systems become integral parts of mission critical systems and
infrastructure. To date, fly-by-wire aircraft control systems have led the way in identification of challenge problems
and innovative solutions. Faster processors and communications have exponentially increased the possible
behaviors, both good and erroneous, that can happen in the response time window. Keeping track of all possible
system behaviors without a structured systems approach quickly equates to a problem of state explosion and
intractable conditions for analysis.

As noted above, the role of a communications network as the information backbone of a system makes it an ideal
candidate for analysis, especially when the sheer extent of connections to many critical parts of the system is
considered. By identifying the strengths and weaknesses of the network, the system architect can determine whether
sufficient capabilities exist or additional guards and protocols are needed to handle identified elements of risk.
Consequently, our goal in analysis of highly dependable protocols is to first examine the ability of a protocol to
suppress and mitigate error effects and, if not fully covered, to ascertain the extent of the propagation of error
effects.

As part of the work we investigated a network designed to address the challenges related to mission critical avionic
systems. Using the BRAIN (Braided Ring Availability Integrity Network) [11] protocol, we modeled the protocol,
examined error propagation and mitigation strategies and performed analysis on portions of the protocol. The
BRAIN is a fault tolerant time-triggered communication medium that is aimed at embedded, real-time systems. The
BRAIN was selected as a potential use case for modeling and analysis of fault tolerant systems on this effort and
may be used as part of the Asynchronous TMR case study effort.
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Figure 1 BRAIN Self-Checking Data Relay



The BRAIN uses several complementary fault tolerance protocols to perform reliable message delivery across the
network. These protocols provide services such as clock synchronization and clique resolution, message-based self-
checking pairs, data path integrity reconstitution and self-checking data relay among others. Each of these protocols
plays an important role in the ability of BRAIN to provide the overall fault tolerant characteristics of the network.
The fault tolerant protocol modeling and analysis effort focused on the Self-Checking Data Relay protocol (Figure
1) within BRAIN.

An error scenario was created and analyzed involving an AADL model of the BRAIN architecture using EDICT’s
error handling capabilities in order to evaluate the modeling capabilities and the ability of current modeling
techniques to capture the behavior of the fault tolerant services used in BRAIN. The error propagation scenario was
configured with a single value-symmetric error originating at the thread in a BRAIN node's host process. Mitigators
were deployed on both the left and right incoming link pairs of each Bus Interface Unit (BIU). Each mitigator had
the capability to detect data disagreement and perform one of two actions: (a) propagate the error, corresponding to
the case where the incorrect data propagated in on the skip link, or (b) tolerate and not propagate the error,
corresponding to the case where the incorrect data propagated in on the direct link.

Figure 2 An EDICT single-error propagation scenario on the BRAIN architecture.

In this analysis, the error was able to compromise every node and had the potential to go undetected (see Figure 2)
as expected because it was a source error without redundancy. Evaluation of these results demonstrated:



1) Validation of the concern relating to the potential for a network in a mission critical architecture to
propagate and infect many other parts of the system.

2) The ability of EDICT to sufficiently represent the structure of the BRAIN architecture.

3) The ability of EDICT to model the flow of errors through the structural paths.

The experiment did identify a deficiency in capabilities needed specify the dynamic behavior of the protocols
through AADL or existing EDICT extensions. Some aspects of the BRAIN protocols could not be accurately
modeled and represent future areas for developing new capabilities and analysis procedures.
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Figure 3 A mitigation scenario which assumes the error source is a skip link.

Figure 4 A mitigation scenario which assumes error source is a direct link.



The experiment also revealed several additional opportunities to improve EDICT error modeling capabilities by
enhancing the behavioral specifications for components and error effects. These areas include:

e  Component error mitigation models could be expanded to distinguish between the inputs over which the
mitigator is deployed. EDICT analyzers apply the same mitigation behavior regardless of whether an error
propagates via a direct or a skip link. Currently, to ensure that the correct result is covered in propagation
analysis both possibilities must be modeled as mitigation results. (See Figure 3 and Figure 4.) This
approach can be refined to make the error cases more understandable.

e Inthe BRAIN protocol, a single-error scenario involves disagreement between the node pair that originated
the data. This disagreement results in the data being flagged as untrusted. Currently, this is captured in
EDICT by creating a unique error semantic to represent flagged data or messages. The capability to
directly represent status flags in propagation could streamline modeling tasks. This would not affect
propagation paths, but could result in greater specificity in evaluation of error impact at components.

e  Propagation and arrival times are important in a synchronous protocol. EDICT’s current approach to error
propagation analysis models all possible arrival combinations. This provides coverage of all cases that
could result from a system’s timing characteristics without requiring error models to specify timing details.
The development of timing and behavior specifications in EDICT could allow further filtering of analysis
results. This would be especially beneficial in a system with high connectivity between nodes, such as
BRAIN.

e  Some mitigation is most naturally represented in terms of a component’s outputs rather than its inputs.
Outgoing mitigation in EDICT can currently be captured with a combination of input mitigators and error
transformations in component error models. Extending the current mitigation paradigm to apply to outputs
as well as inputs could simplify error mitigation modeling in the BRAIN architecture.

In addition to these considerations pertaining to single-error scenarios, we observed that a number of behavioral
aspects of BRAIN protocols are formulated in a manner that is best modeled by an approach using state machines.
These include policies intended to identify babbling nodes or other ongoing data problems. Enhancing EDICT error
handling capabilities with access to state-based behavioral models would allow analysis of these mitigation
protocols and many others.

As a result of these efforts it became clear that current modeling approaches for fault tolerant systems and protocols
are insufficient to represent the complexity of the many interdependent fault tolerant services that compose real
architectures. Due to the complex nature of the implementations and component specifications, the subtle aspects of
the protocols become “lost” in the overall architecture. It therefore becomes very difficult to determine what parts
of the architecture provide key elements of the services and how all the service operations interact in a composite
manner. This, in turn, causes difficulty in analysis since the problem cannot be properly decomposed, resulting in
models that are large, unwieldy and difficult to understand and analyze.

Approach

Having identified problems and highlighting the challenges, we propose foundational concepts for the way forward.
System architects rarely design complex architectures as a flat system but instead use abstractions to represent the
arrangement and nesting of concepts and functions. When design and analysis models are developed separately there
is no assurance that the modeling abstractions properly align with the perspective that system architects used in
system composition. Towards this end, standards, protocols, and layering techniques are used to enhance flexibility
and reduce complexity of designs. These elements must be considered in modeling representations and must be
captured to facilitate understanding and analysis. Current architecture modeling languages are able to capture the
structure of systems but do not do a good job of representing how the elements are composed to provide fault
tolerant system services to the applications.

Our strategy is to refine the overall modeling approach to enable the definition of architectural layers, methods for
layer composition and layer binding to system implementations. We begin by assuming the complexity of the
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protocol is such that a hierarchical set of relationships exist in the set of operations. This is true for distributed
systems that use messaging protocols where a hierarchical relationship exists between the message and physical
layers and the protocol operations that take place.

These architectural layers can be modeled individually along with their respective operations. However, in order to
model the composite protocol further details are necessary. These include facets related to requirements and
available capabilities to achieve the designated requirement. Specifically,

*  Binding - how a layer is connected to other layers through functions and properties and how the layer is
implemented by lower level specifications.

*  Fulfillment - how the layer provides the stated functions and properties.

In addition to the structural specification, there are both functional and non-functional properties associated with
each individual protocol. The resulting layer is the collective grouping of these properties. Analysis needs to be
performed on the layer specification to determine the degree of success in achieving the desired goals.

We will also assume that the properties required for these protocols have been correctly specified. It is beyond the
scope of this report to identify the steps to accurately determine these properties as derived from the higher level
system goals.

The specific set of properties that are required to elicit necessary architecture details for ensuring proper
composition of the overall architecture fall into the following two major categories:

*  Non-Functional properties that are qualitative in nature and define characteristics associated with the
delivered functionality. Examples of non-functional aspects include properties related to reliability,
availability, safety, security. Other examples of non-functional aspects to be considered involving
properties that can significantly impact architecture design and analysis include: scalability, flexibility,
integrity, interoperability.

e Functional properties that are quantitative in nature and define what functions an abstraction layer
delivers. Examples of functional aspects include properties related to communication, resource discovery,
synchronization, process group management, detection and reconfiguration, health monitoring, and
scheduling.

Composite Properties

Although it is argued that modeling systems hierarchically only makes the proofs for verification more difficult [2],
Lamport recognizes this is a reasonable position for systems with complete-specifications that describe all the

behaviors and the environment that provides the system context (using the notation in the form S /4 E, where S

describes the system and E the environment). When a component is reused in multiple ways, it becomes an open-
specification problem. In this case he points out that it is the specification of the component itself and not the
complete system containing it. The result is that, intuitively, the component’s specification asserts that it satisfies S
if the environment satisfies £. This suggests that the component’s open-system specification should be the formula

E =S.

Another challenge noted in [2] is that the state of practice is such that system designers rarely specify the system
abstractions and relationships with the necessary explicitness to enable modeling without significant interpretations
by the modeler. We note that even though time has passed since the author’s statement, it is still an existing
challenge today where not all facets of the system are concisely described to be easily modeled as layers. Therefore
when reusability of a layer is the goal, one of the results we aim to achieve is to show via analysis where the design
may require improvement as it relates to strong cohesion and loose coupling.

We have identified foundational concepts to build on and point to work in [3] as a good basis that has formally
represented concepts similar to those we will employ. Figure 1 illustrates a compositional method referred to as the
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extend-constrain-merge pattern. The goal of this technique is to facilitate separate specification of properties that
can then be used in compositional systems.
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Figure 5 The Extend-Constrain-Merge Pattern [5].

Step 0 defines a minimally-complex abstraction level called Component,,;, that reflects the minimum
data/constraints necessary to represent the high-level architecture as a set of components and also a maximally-
detailed abstraction of the Platform,,, underneath. Mapping,,;, extends the combination of Component,;, with
Platform,,,,. Step 1 adds a new requirement to extend the relation and Step 2 introduces constraints that affect the
mapping. Step 1-2 ensure requirements are formalized separately and in Step 3 they are composed to formalize their
interaction.

In our approach we use these concepts but with important adaptations. Portability and re-use across product lines
and projects are important aspects that must be supported by the approach. As a result we are investigating
architectures that may not yet be bound to physical platforms and are interested in representing the logical patterns,
hierarchies and associated behaviors in the architecture. Consequently, the concepts of components and platform are
too rigid for our needs. Instead, we use a logical layering approach where a component should be viewed as a
service or, in its most basic form, an operation. Instead of the platform, there would be another service (or
operations) that fulfill the requirements of the layer above. The mapping is equivalent to the binding procedure that
guarantees the two layers satisfy the requirements.

As we move forward in our research, we can then attach properties associated with the services. Individual services
can then be combined to established composite properties that are available to other calling services as shown in
Figure 6 and first presented in [14].
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Figure 6 Property Compositions

Layered Architectures

At a macro system perspective, layered architectures are becoming more commonplace as vendors successfully
segment the computing platform, both from a hardware and software perspective. Previous generations were
designed as monolithic systems with customized interfaces and limited functionality. Current generation of systems
utilize distributed computing with net-centric architectures and standards based components, providing increased
opportunities for segmentation of the computing space and creating new layers in the architecture.

From a perspective within a layer, the context, semantic meaning and architecture quality become important as well.
When a layer is meant to be used at the lowest level, such as a device driver, this implies a certain context if the
layer is to be used successfully. The highest layers are structured to provide domain and application portability
across a variety of underlying implementations. Layers in between can have a more uncertain context unless placed
in well-defined service architecture such as Autosar or FACE. Regardless of the type of layer, the semantic
meaning of the interface is important as well as the degree of non-functional qualities that are supported.

The overall composition of dependable systems therefore necessitates an order to the reasoning of how properties
are integrated to realize the target objective. Our approach of identifying property compositions in conjunction with
delineations of architecture layers allows an inventory of logical concepts that can be analyzed and checked to
determine if the system meets the declared goal. Our goal at this time is to develop approaches for modeling and
analyzing these layers and not their optimal synthesis.

10



The Architecture Layer Concept

Each layer is expected to be a self-contained entity so that it is possible to model an architecture layer without
requiring a complete model or understanding of the overall system architecture. Using Lamport’s terminology, this
is an open-specification problem. For example, vendors like Honeywell may want to provide a communication
layer that will be used in another company’s system architecture. The architecture layering approach will allow the
communication layer to be defined and evaluated with a logical description of the protocols and a set of layer
bindings that define the functions and properties provided by the layer and the requirements the layer has for use.

Functions Properties

Provides Composition Binding

Constriants
Allocation Binding

Mapping

Requires Composition Binding

Functions Properties

Figure 7 - Architecture Layer Concept

The architecture layer is defined by a set of public interfaces and an internal specification. The public interfaces are
decomposed into two types:

e  Composition Binding Interfaces — These interfaces allow the layers to be composed into a layer architecture
that defines the system functions and how they interrelate.

e Allocation Binding Interfaces — These interfaces allow the layer to be bound to a detailed platform
implementation model that describes how the layer is implemented in a system.

The Compositional Binding Interfaces enable the layer to define both the functions and properties that are provided
and the functions and properties that are required by the layer from other architecture layers. The Requires/Provides
relations specified at the layer boundaries make it possible to integrate layers into an overall architecture and
evaluate the composition of the architecture before the system is constructed.

* Requires: Layers specify what is required for the layer to provide its properties
*  Provides: Specify the properties that the layer provides

These interfaces will form the basis for formal composition of the layered architecture through matching of Provides
and Requires interfaces when layers are bound together.

The Allocation Binding Interfaces define how the layer can be bound to an implementation in a platform specific
architecture model. These interfaces are used to express the mapping of the layer protocol specification elements to
the platform architecture components that define how the protocols will be implemented in a system architecture. In
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addition to the mapping of protocol elements there are also constraints that can be expressed. These constraints
define limitations on the implementation of the protocol that must be adhered to by the platform architecture model.
An example of such a constraint is that all participants in the protocol must be allocated to independent fault
containment regions for failure independence. In addition to these types of structural constraints the interface may
also specify performance or behavior related constraints.

The public interfaces of the layer are supported by an internal specification of the layer functionality. The internal
specification is a description of the structure and behavior of the protocols that supply the layer properties in an
implementation independent fashion. These models contain only the level of detail required to express the protocols
and perform the required level of analysis and verification of the protocol logic.

Modeling Abstractions

The system modeling concepts can be extended to contain two primary levels of abstraction: 1) the Layer Model and
2) the Platform Architecture Model as would be available in a completely specified system. The Layer Model
defines the architecture layers and compositional structure for obtaining the overall functionality required in the
system. The Platform Architecture Model needs to capture the details of the hardware and software architecture
description used to implement the system. Figure 8 diagrams the two levels of modeling and the key bindings
between the modeling elements.

Layer Model

Compositional
Bindings

[E——

Allocation
Binding

Platform Architecture Model

—————

Figure 8 - Model Abstractions

12



Information related to the compositional bindings is captured to define the relations within the layer model. These
bindings are used to define how the layers are composed and how the properties for fault tolerance are built up
through the layers.

The next step requires capture of the allocation bindings that are used to bridge the models by specifying how the
platform independent layer internal specifications are mapped to the platform specific Platform Architecture Model.
In addition to the mapping, these bindings specify constraints on the platform architecture that must be met in order
for the layer to provide its specified properties.

The modeling concepts and binding types that are the backbone of our approach are shown in Figure 9 in the context
of a high level illustrative example. As illustration of how this technique can be used is shown on the left hand side
of the figure where a set of architecture layers are depicted and which are used to compose the WWTG’s Reliable
Platform functions as applied to Virginia Class Submarine Ship Control System. On the right hand side, the lowest
two layers are illustrated in the layered modeling concept with both compositional bindings between architecture
layers and allocation bindings between a layer and an idealized platform architecture model.

This example reflects a compositional layering approach to architecture and how dependable system services can be
built up through this organized integration of layers.
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Clock Synchronization

Application Group

Architecture layer

System Group
i Reliable Point- int .
Frame Component ReqU"'eS elavie OI— tp-Pcln - PI'OVIdeS
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— Architecture | Binding
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Reliable Platform Architecture Layers .
System Architecture
Component [ Group

Figure 9 - Illustrative Layer Architecture Example

Figure 9 also illustrates the binding of an architecture layer, through an Allocation Binding, to a Platform
Architecture Model that specifies how the layer will be implemented in a given system architecture. In this case the
Allocation Binding specifies a structural mapping to the Network component along with a structural constraint that
the component provides three independent data paths from source to destination.

Defining Architecture Layers

Abstractions are important to simplifying the understanding and management of the vast amount of details involved
in large system architectures. The challenges for the full scale system problem are related to addressing the
concerns and preferences of the variety of stakeholders and how they exert influence over the design and acceptance
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of the system. Our current task focuses on modeling a single layer therefore managing abstractions for complete
system architectures is beyond the scope of this effort. Even so, we would still expect the concepts presented here
would scale accordingly when modeling a complete architecture. For this single layer study, we focus on
stakeholders that participate in the design and verification phases.

Consequently, the starting point would be a representative layer somewhere in the middle of the architecture
“sandwich”. Using traditional design practices, this layer would comprise many specific details that would not need
to be understood or conveyed to a higher level function in the system architecture. An example would be a
communication service that is callable by higher level applications, such as one based on the BRAIN
communication protocol.

Such a service would be defined by declaring: (a) services performed by the designated layer, (b) the elements of the
architecture to be included for its instantiation, and (c) the protocols used at this abstraction level. The first item
provides the specification of the services that are available to be called. The second defines the required
configuration for the service to exist and be available. The third specifies the protocol to be used when calling the
service. These elements are directly supported though our approach using a) Compositional Bindings, b) Allocation
Bindings and c) layer internal specifications.

Although these steps appear intuitive and might be expected from a sound engineering design, it is surprising how
often they are casually documented and not fully analyzed in a full architectural context. Our goal is to capture the
required information, perform checks that flag inconsistencies, gaps and poor abstractions early in the design and
analysis phases rather than deferring their detection to the system integration phase. Our goal is to enhance early
detection of defects and reduce the cost and effort of producing this documentation, especially in a way that is easily
communicated to many system stakeholders.

Granularity of Architecture Layers

The proper granularity of layers can be determined by examining whether the abstraction first appropriately hides
the right amount of information. First order checks can be performed by looking at the interfaces and dependencies
among layers to ensure a clean and complete interface. Additional checks can assist in assessing whether the
abstraction has the proper granularity for the required usage in a given system context. For example, if a call is
made to a large (heavyweight) service when only a small operation is required, it may levy unnecessary
requirements and introduce timing delay and some refactoring may be recommended [4].

Using a communication service as an example, if a higher layer call only requires unreliable messaging, a reliable
messaging service would be overweight and a finer grained set of services would be preferred that allowed both
types. Another example would be a heavyweight communication service with an abstraction that begins at the
callable service interface (message level) and ends with the inclusion of the physical medium. Alternatively, a finer
grained communication service could be specified that separates the logical messaging protocols from the physical
media access in a way that enables various combinations for implementing an overall communication service with
multiple layers.

When developing multiple layers that work together, it is the objective that each abstraction is cleanly defined so
that all embedded operations, components and policies are within the logical boundaries of the abstraction.
Exceptions should be analyzed to determine the risks and potential mitigation strategies available to eliminate the
condition.

Finally, when multiple abstractions are defined, the goal is to ensure that they properly fit within the correct context
of the architecture. For example, an abstraction layer at a higher level should not unnecessarily over-specify details
that should be decided at a lower level. In this sense, logical abstractions should be disconnected from the need to
know specific logical refinements and physical implementation of services or operations it calls.
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Layer Composition

The arrangement of multiple layers into larger systems is a compositional challenge that has been a central problem
in computer science since the 1960s[1]. Initially, the focus was placed on developing local operating systems with
modularity so that could be customized as needed for different product families or applications. With the
development of microprocessors and plug-and-play hardware, great effort was invested to further identify ways that
operating systems could be layered and further modularized. Distributed systems also required a more expansive
abstraction beyond the context of a single processor and the idea of distributed services took root. With the dawn of
the internet, Global Grid and cloud computing the collective set of abstractions became more logically oriented to
service abstractions and deferring the details of physical implementation to late binding at run-time.

The incremental development of these concepts has provided some important principles and lessons learned:

P1 Requirements should flow downward.

PI1.1 A higher abstraction level declares what it needs as a requirement.
P2 Aspect Qualities should flow downward (e.g. safety).

P2.1 A lower level abstraction declares what it can provide.

P2.2 Declarations identify properties with conditions that are assumed.
P3 Computational/Information properties flow upward.
P4 Constraints can flow in both directions.

P4.1 Each level may have a design space that introduces a constraint.

P4.2 The Architecture design effort identifies where these spaces overlap (preserved design space) or
do not (eliminated design space).

These principles indicate that there is a flow of constriants between the layers which represent the downward flow of
both functional and non-functional (qualities) requirements and the upward flow of component properties that
represent their capabilities. These notions are captured by the Compositional Bindings in our approach.

Layer composition is facilitated through a set of layer interfaces we refer to as Compositional Bindings as we
outlined earlier in the Architecture Layer Concept section of this report. The compositional bindings are used to
describe the functional and non-functional properties that are provided by the layer and similarly the properties
required by the layer. The composition of layers is then achieved through a binding/matching process where the
compositional bindings between two layers are evaluated for consistency and correctness to ensure that the
requires/provides relations between the layers are properly satisfied.

In order to fully represent these bindings, the development of a Domain Specific Language (DSL) is necessary to
capture the properties that are essential for composition of fault tolerant systems and provide the formal foundation
on which analysis of the properties can be performed [5]. There are active research projects [12] [13] that are
developing domain specific methods for the representation of requirements and constraints over system architectures
and these will serve as useful starting points for a DSL that can capture layer properties.

Layer Bindings

Allocation Bindings are used to specify how the platform independent internal layer specifications are mapped to the
platform specific Platform Architecture Model. The bindings provide two sets of relations that are critical for
evaluating the implementation of a layer in a platform architecture model:

1. Layer Mapping — The layer mapping specifies how the structural elements of the layer are mapped to
architecture components.

2.  Mapping Constraints — The constraints specify any structural or behavior constraints that must be satisfied
in order for the platform architecture to properly implement the layer.
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These two portions of the allocation binding work in tandem to provide a full description of how the layer is bound
to the system architecture implementations and the set of constraints that the platform architecture must meet when
that binding is fulfilled. The definition of these binding components allows for a structure that enables architects to
capture specifications associated with the bindings and for automated analysis to be performed to check for the
satisfaction and integrity of the binding.

Layer Mapping
The layer mapping defines how a layer is bound to a platform specific architecture model that implements the layer

protocols. The mapping defines where the elements in the layer protocol description are realized and executed in a
platform architecture model such as AADL.

The Layer Mapping must provide traceability between both the structural and behavioral aspects of the layer and the
platform specific architecture model.

e Structural — traceability relations that associate the architectural components that participate in the layer
and the interfaces and flows they use to communicate.

o Participant Mapping — define where the layer participants are implemented in the platform
architecture. These elements of the layer specification must be mapped to active components in
the platform model such as threads, process or devices.

o Message Mapping — define where the message interactions defined for the layer protocol are
implemented and the architecture paths that are used. These elements will be mapped to items
such as component interfaces for architecture flows in the platform model.

e Behavioral — traceability relations that link layer behavioral specifications with component level behaviors.

o The layer internal specifications will define the platform independent behavior that is required to
provide the layer properties. These behaviors must also be adhered to / exhibited by the platform
architecture model components. This mapping may be implicit through the structural aspects of
the allocation binding but this aspect is important in the validation of the overall allocation
binding.

The Layer Mapping provides a mechanism to easily identify the architectural components that play a role in
implementing the layer and providing the serivces specified by the layer. This addresses a critical deficiency in
current approaches where distributed protocols and the services they provide cannot be easily distinguished within
the architectural model.

Mapping Constraints

As part of the allocation binding the layer may require certain constraints be placed on the structural and behavioral
aspects of the layer mapping. These constraints are intended to capture and specify conditions that must exist in the
platform architecture model for the allocation binding to be valid.

The constraints can be similarly defined into two general categories:

e Structural — specifications that constrain the structural mapping or the relations between structural
elements of the platform model. These constraints deal with structural aspects of the platform model such
as components and interfaces and their arrangement. The types of constraints that can be specified deal
with issues such as number of components, separation/fault independence, component type, interface
arrangement and connectivity, etc.

o Behavioral — the behavior aspect of the constraints governs requirements related to the behavior of the
components and interfaces that are specified in the layer mapping. The behavioral constraints will govern
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issues such as: required state behavior, event sequences, schedule or periodicity, interface timing (delay,
jitter), etc.

Automated checking can be implemented to ensure that the constraints are met by the layer mapping and the
attributes of the platform architecture.

Layer Modeling

Architectural Layers provide a powerful abstraction for the composition of dependable systems and are useful for
capturing critical aspects of the design. These abstractions must be realized in an engineering tool with interfaces to
standardized architectural specification languages and analysis techniques to have a positive impact on engineering
practice. The Error Detection, Isolation and Containment Types (EDICT) tool is a system architecture modeling and
analysis tool that is capable of accommodating the architecture layer concepts. In terms of realizing an architecture
layer in EDICT, our approach is to continue to expand our Architecture Framework paradigm to integrate the layer
concepts with the rest of the architectural context. An architecture layer model defines the internals of a given of a
given layer and supports the public interfaces of the layer.

A layer may be modeled in a number of different ways depending on the granularity of representation desired and
the nature of the analysis to be performed at this level of abstraction. With respect to layer modeling, we explore
here the notion of a model that consists of a Component Model and a Behavior Model.

The layer concept that is presented here can support both top-down and bottom-up modeling approaches. The top-
down approach focuses first on the independent definition of a layer and then addresses issues related to the
Allocation Bindings and how the layer is implemented in a system. The bottom-up approach utilizes the layer to
capture and aggregate the behavior and interfaces of a set of existing architecture components to specifically identify
architectural layers and the services and properties they provide to the system. This section outlines the essential
modeling elements that are required to support both of these approaches for layer definition.

Structural Model

The purpose of a layer’s component model is to establish the structural aspects of the layer. This structural
definition includes specifications of both the concrete interfaces of the layer as well as the abstract specification of
required and provided properties.

Service Specification

The Service Specification captures information related to the general nature of the service. This includes the
category of service (schedule run-time, library, etc.), the intended deployment characteristics (singleton, distributed,
etc.), and the selection of a service type that might result in the need for additional information (file system,
communication protocol, computational algorithm, etc.). In addition, deployment constraints (in the form of
properties) are also specified here. For example, if a service is distributed, the specification can include whether or
not there is a minimum dispatch requirement.

Functional Interface Specification

This specification describes the concrete interactions that the layer either:

a) Requires — In order for it to function properly, and
b) Provides — to clients of the service.

The required interactions fall into two categories. The first are those interactions that are required with other layers
in order to support the layer in question and allow it to fulfill its obligations. The second are those interactions with
layer component peers in those cases were the service is a distributed. To this end, the interface specifications may
have properties associated with them to designate them as being sourced from another layer or from a peer of the
same layer.
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These interfaces must be further defined through the association with a Data Specification in EDICT’s Data Library.
This will facilitate the accurate binding of the interface to a physical interface in the System Architecture model.

Property Specifications

This specification describes the properties that the services either:

a) Requires — In order for it to function properly, and
b) Provides — to clients of the service.

There may be cases, especially with regard to non-functional properties (levels of dependability or security, etc.),
where the properties may have conditions associated with them. They are not simply Boolean in nature (property
present, property not present), but rather the property can change over time (even while the layer remains in the
same state) as the result of layer configuration changes. This is especially true with distributed protocols used to
define a layer, in which, for example, the degree of fault resilience depends on the number of peers currently
participating in delivering the layer services [8].

Behavior Model

The purpose of a layer’s behavior model is to capture the way in which the layer will behave and respond to
stimulus over time. The behavior definition of a given layer will be based on a state machine. The state machine
will serve as a framework for capturing two aspects of behavior:

»  State Behavior - Describes what a layer does in a defined state, including interactions with
externals that are of concern.

*  Transition Behavior - Describes how a layer transition between states, including those stimulus
that trigger transitions.

The state machgine specifiocations will be augmented with scheduling requirements that describe the scheduling
characteristics that are required for the modeled behavior to operate. Furthermore, there will be a top-level
specification of the behavior definition’s “boundary interface.” This specification will facilitate the binding of a
given behavior model to a given service/layer component that is being designed.

State Behavior Modeling

There are numerous considerations that must be accounted for in modeling state behavior. We must first consider
whether or not the state represents functionality that is stateful or stateless. The behavior of stateless states is
governed exclusively by external stimuli. The behavior of stateful states can be more complex, as internal
conditions may govern behavior as well as external stimuli.

The second consideration lies in whether or not a given state machine is abstract vs. concrete. Concrete state
machines will be used to represent “real” functionality and protocols that operate within the system. Abstract state
machines will allow us to reflect system-level properties outward for use in analysis and design verification.
Abstract state machines can be related to each other hierarchically, mirroring the hierarchical nature of architecture
models at higher levels of abstraction (system, logical, etc.).

Each state in the state machine will also support representations of run-time logic. This could be as simple as one or
more guard definitions that contain simple functions for governing state transitions, or references to statements that
could facilitate automated generation of verification tool formalisms or source code segments.

Transition Behavior Modeling

The critical aspect to modeling the transition behavior of a state machine is in capturing the friggers of state
transitions. There are two sources of state transition triggers that we consider:
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1. Internal Decision/State Change - Internal processing taking place within a stateful state concludes that
conditions exist to trigger a transition.

2. External Stimulus - The arrival of an external stimulus (date message, event, etc.), or the detection of a
monitored condition.

There are several categories of external stimuli that could trigger a state transition. The first is the arrival of a
message or event received from another run-time component in the system. Note that this component could be a
peer (replica instance) of the given state machine in question. Such interaction between peers is typically required to
implement a distributed service or protocol.

While data/event arrival represents a direct external stimulus, there are also a series of indirect stimuli to be
considered. These take the form of monitored conditions that may trigger a state change. For example, a state
machine may monitor a property that is provided by another component. Should the property’s disposition change
(provided or not provided) a transition may be appropriate. State changes in lower level state machines might be
monitored by higher level state machines, so that when a lower level service moves into a certain state conclusions
might be drawn by an abstract state machine at a higher level (thus causing a transition at that higher level).

Scheduling Requirements

The processing that is performed while in a given state might be of an order of complexity that it must be
sequenced/scheduled in order to accurately reflect over-all behavior.

Boundary Interface

The interface of the state machine must be rigorously defined to facilitate the binding of the state machine to a given
layer model that is being developed. The boundary interface specification will allow EDICT to automate the
process of checking intended state machine connectivity.

Layered Architecture Application

As part of the development of this modeling approach we are applying the layered architecture method to a set of
challenge problems. These efforts will help to refine the method and determine the modeling techniques that will be
used to capture layer behavior, composition bindings and allocation bindings.

As we apply our approach to the challenge problems we should be able to:

° Elicit information in a structured, iterative manner.

° Analyze whether layers are reasonably/sufficiently/correctly specified with respect to declared
properties and flows using lightweight, semi-formal and formal techniques.

e  Provide capability to extract information for analysis by additional formal tools and ensure the results
are properly placed back in the correct architecture context.

These capabilities are essential for performing analysis of existing architecture in addition to composition of new
dependable system architecture. The method allows for step-wise structured decomposition and analysis of the
problem domain and provides an integration path where the results from formal analysis of fault tolerant algorithms
and protocols can be placed into the context of a system design in a concrete way. This coupling of the formal
mathematical models and the system architecture specification provides a new a powerful approach that will
enhance the design and verification process and the applicability of formal methods to architecture composition.
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The initial application of the method and modeling techniques has been applied to the protocol suite that composed
the Reliable Optical Bus (ROBUS) [6][7] architecture and the asynchronous triple modular redundant (TMR)
system that is defined in the asynchronous case study. We also plan to apply the method to the BRAIN networking
architecture to supplement out initial analysis of the protocols through error propagation that was described earlier in
this paper.
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Figure 10 - ROBUS Protocol Layers

Our preliminary work on applying the method to dependable architectures has resulted in an initial decomposition of
architecture layers and their dependencies that will eventually be defined through composition bindings. In Figure
10 and Figure 11 preliminary layer specifications for ROBUS and for the asynchronous case study are depicted.
These breakdowns show the architecture layers that we have defined and the dependencies between the layers that
have been identified. In these diagrams the dependencies are shown as directional arrows, but in the future these
will be decomposed into compositional binding such that the provides / requires relations are explicitly specified and
matched.
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Figure 11 Asynchronous Case Study Architecture Layers

We will continue to breakdown the sample architectures as we evolve the modeling concepts and the methods for
applying them. The initial results demonstrate that we have been able to determine layer decompositions for each of
the architectures and give clarity to the services that are supplied by the architecture and how they are related. These
types of abstractions and relations are missing from traditional Architecture Description Languages and we believe
that further development of this approach is warranted.

Conclusions

The design of complex systems relies on the use of protocols for executing functions and coordinating system
operations and components. Capturing and analyzing the low-level protocol services and their associated behavior
within architecture description languages, such as AADL, has proven challenging to date.

We have developed a foundational approach for modeling layers of protocols that can be composed to provide high
dependability services for a system architecture. The approach centers around the definition of an architecture layer,
its interfaces for composability with other layers and its bindings to a platform specific architecture model that
implements the protocols required for the layer. Our approach of composing layered architectures allows inventory
of logical concepts and properties established in the design through the explicit specification of the functions and
non-functional properties that the layers provide. These layer specifications are used to compose the overall layer
architecture to meet the system requirements for dependability and safety.

The approach allows for incremental validation of layer behaviors and property fulfillment through the use of formal
analysis tools on the layer internal protocol specifications and verification of the protocol implementation in the
architecture deployment model. These techniques for capture and modeling of highly dependable protocols and
architectures in which they are used provide rich source or analysis of system dependability properties and improved
capabilities necessary for V&V of dependable and safe systems.
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