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1. Introduction 

Brillouin scattering is one of the lowest order nonlinear effects that arises in optical fibers and it, 

thus, limits the transmitted laser power PL.  Above a threshold laser power, Pth, the Brillouin 

scattering becomes stimulated rather than spontaneous, and the Stokes backscattered power PS 

rises dramatically.  Various methods have been devised to increase the threshold.  In the present 

report, we analyze the effect of linearly sweeping the center frequency of the pump laser (while 

keeping its linewidth narrow) at a fast chirp rate  (in Hz/s).  To be effective, the chirp must be 

large enough that the pump laser gets swept out of the Brillouin gain bandwidth B within the 

transit time of the fiber, t
f
 = nL/c, where L is the length of the fiber, n is the core refractive index, 

and c is the speed of light.  That is, one requires  to be large enough that tf >> tc, where tc = 

Δν
B
/2.  Here we analyze values of  up to 1016 Hz/s, corresponding to the upper range of 

chirping that has been demonstrated to date for a diode laser by ramping its current. 

Section 2 explains how Brillouin scattering is simulated numerically in a fiber pumped by a 

chirped laser.  Section 3 then presents the simulation results for a 6-km fiber.  Such long fibers 

have a low threshold because Pth ≈ 21A/g0L in the unchirped case, where A is the modal area and 

g
0
 is the peak Brillouin gain coefficient.  Consequently, low laser powers can be used to 

experimentally verify the simulations.  Good agreement is found between theory and experiment.  

Next, section 4 presents results of the time-dependent simulations for a short fiber (L = 17.5 m) 

having characteristics similar to those used for high-power laser delivery.  Correspondingly 

larger chirps are needed to suppress stimulated Brillouin scattering (SBS) in this case.  The 

results are in good agreement with a simpler adiabatic model for the range of chirps explored. 

2. Theory for the Dynamic Simulations 

The Brillouin scattering is modeled by three complex coupled partial differential equations 

(PDEs): 
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Here, the laser electric field EL (z,t), Brillouin Stokes-shifted electric field ES (z,t), and density 

variation ρ(z,t) of the fiber from its mean value 0 depend on time t and longitudinal position z 

(varying from z = 0 at the front face of the fiber to z = L at the rear face).  The spectral full-

width-at-half-maximum (FWHM) of the spontaneous Brillouin peak is ΔνB.  For a silica fiber at 

an incident laser wavelength of L = 1.55 m, the index is n = 1.447, the mean density is 0 = 

2210 kg/m
3
, and the speed of sound is  = 5960 m/s (1).  The loss coefficient in the fiber is taken 

to be  = 0.2 dB/km = 0.0461/km.  The optic coupling parameter is 

 
0 L2n M




 


,

 (2) 

where the electrostriction coefficient for a silica optical fiber is  = 0.902 (2) and the polarization 

is presumed to be completely scrambled in the fiber so that M = 1.5 (3).  The acoustic coupling 

parameter is 

   
     

   
 , (3) 

where 0 is the permittivity of free space.  The Langevin noise source f (z,t) is delta-correlated in 

time and space such that (4) 

 ( , ) *( , ) ( ) ( )f z t f z t Q z z t t      
,
 (4) 

where the thermal phonons are described by the strength parameter 

 0 B
2

4 kT
Q

A

  




 . (5) 

Here, k is Boltzmann’s constant, T = 293 K is room temperature, and A is the fiber modal area. 

The three PDEs in equation 1 are solved by iterated finite-difference approximations on a grid of 

time and space points (5).  The spatial step size dz is chosen to be small enough that a factor-of-

two reduction does not change the final values in equation 7 by more than 10%.  The temporal 

step size is dt = n dz/c.  The boundary conditions are ES(L,t) = 0 and 

  
0

20
L

2
(0, ) exp /

P
E t i t nL c

nc A
  

 e
,
 (6) 

where P0 is the constant incident laser power at z = 0.  The imaginary part of the argument of the 

exponential gives the chirped phase, equal to the time integral of the change in the laser 

frequency at a rate of  in Hz/s, relative to the frequency at the rear face of the fiber at t = 0.  The 

three complex fields are first calculated across the fiber up to t = 20tf to ensure that the initial 

relaxation oscillations (6) have decayed away.  The equations are then iterated over five more 

transit times to acquire a statistical average.  The transmitted laser power PL and reflected Stokes 

power PS are computed by averaging over those additional steps, 
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    and      

 
               

  . (7) 

The results were checked by verifying that PL ≈ (P0 – PS)exp(–αL), and agreement was found to 

within about 1% for zero chirp. 

3. Dynamic Results for a Long Fiber Compared to Experiment 

Here we calculate PS as a function of P0 for a 6-km single-mode fiber.  The FWHM of the 

spontaneous Brillouin peak was measured to be ΔνB = 39 MHz using an optical spectrum 

analyzer (OSA).  Also, the fiber’s modal area was measured by scanning a razor blade across the 

beam in the far field of the exit face.  The mode field radius was then calculated to be r =  

4.55 m at the exit face. 

The reflectivity PS/P0 is plotted in figure 1 for both an unchirped and a chirped laser.  It 

approaches 100% for large incident powers, illustrating that Brillouin scattering limits the 

transmission through the fiber.  The threshold (defined as the incident power at which the 

reflectivity is equal to 1%) is approximately two orders of magnitude larger in the chirped case 

than in the unchirped case.  For incident powers well below threshold, the reflectivity levels off 

to a spontaneous value that is independent of chirp and is in good agreement with the 

experimentally measured value of R0 = (3.0 ± 0.5)  10
–6

, with no free parameters. 

 

Figure 1.  Brillouin reflectivity versus incident power for both an unchirped ( = 0) and a chirped (at  =  

10
14

 Hz/s) laser pumping a long fiber. 
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To directly compare these results to the experimental data, the total backscattered power is next 

plotted in figure 2 as a function of P0.  This backscattered power is the sum of the Brillouin 

Stokes power PS and the Rayleigh power PR = 2.3  10
–4

 P0.  The Rayleigh backscattered power 

was determined from low-power measurements with an optical spectrum analyzer.  There is 

reasonable agreement between theory and experiment. 

 

Figure 2.  Comparison of the simulated and experimental (7) total backscattered power for the unchirped and 

chirped laser sources. 

The peak value of the Brillouin gain coefficient is 

 
2

0 2
0 L B

2
g

nc M



  


 ,

 (8) 

which equals 6.4  10
–12 

m/W for the parameters given above.  This value is a factor of 2 smaller 

than what is typically measured for fibers (8), possibly because of inhomogeneous broadening of 

the spontaneous Brillouin peak.  According to equation 8, it is only the product g0ΔνB that should 

be the same for all polarization-scrambling silica fibers pumped at 1.55 m and not their 

individual two values. 

The power spectral density (in dBm/Hz) of the reflected Stokes electric field ES (0,t) was 

computed as a function of frequency for each simulation run, and plotted up to the Nyquist 

limiting frequency.  Lineshape functions were then fit to these spectra.  The resulting FWHM are 

plotted as the blue dots in figure 3 for the long fiber at an incident laser power P0 of 1 mW, well 

below threshold, for four different chirps.  At the two lower chirps  of 10
10

 and 10
12

 Hz/s, the 

lineshapes were found to be Lorentzian, whereas at the two higher chirps of 5  10
12

 and  
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10
13

 Hz/s the lineshapes were Gaussian.  The continuous red curve is a plot of the broadening 

expected in a simple model, namely 

 B /nL c     
,
 (9) 

which fits the simulation results to within the error bars on the fitted widths. 

 

Figure 3.  FWHM  of the Brillouin peak as a function of the chirp  on a semilog scale. 

4. Dynamic Results for a Short Fiber Compared to Other Models 
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spontaneous Brillouin FWHM of ΔνB = 20 MHz (corresponding to a peak Brillouin gain of g0 = 
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parameters are taken to be the same as those listed in sections 2 and 3.  The reflectivity is plotted 

in figure 4 for seven different values of the chirp  in Hz/s. 

 

Figure 4.  Brillouin reflectivity for a laser beam having a linear chirp  ranging between 10
10

 and 10
16

 Hz/s that is 

incident on a short fiber. 

Well below threshold, the reflectivity has a constant value of R0 ≈ 5  10
–10

 independent of chirp 

and pump power.  Jenkins’ heuristic steady-state model (1) for the buildup of the spontaneous 

Stokes wave from thermal noise predicts that it should scale linearly with the effective 

absorption length of the fiber, [1 exp( )] /L L


    , and be independent of B, 

 
2 2

0 2 2 2
0 L

2 kT L
R

Mn A
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  
 . (10) 

This equation implies R0 ≈ 3  10
–9

, which is only a factor of 6 larger than our simulation value.  

Similar agreement is found for the long fiber in section 3—equation 10 predicts R0 ≈ 9  10
–6

, 

whereas figure 1 has a low-power reflectivity of R0 ≈ 2  10
–6

. 

The curves in figure 4 cross the 1% reflectivity line at the threshold incident laser powers, Pth.  

Those crossing points are plotted in figure 5 as the blue dots.  At the maximum chirp of  

10
16

 Hz/s, the threshold has increased by a factor of 50 compared to an unchirped pump source. 
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Figure 5.  Threshold power Pth as a function of the chirp  on a semilog scale. 

In figure 5, the threshold power scales linearly with the chirp  above 10
14

 Hz/s.  One expects the 

threshold to increase as tf/tc, where the fiber transit time is tf = nL/c and the time required for the 

pump laser to chirp out of the Stokes bandwidth is tc = ΔνB/2.  Combining a resonant 

integration of this adiabatic increase (7) with the familiar factor of 21 for the unchirped threshold 

value of g0PLL/A, one obtains 
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th 1

0 f c

/21

tan ( / )

t tA
P

g L t t
 . (11) 

Equation 13 is plotted as the red line in figure 5.  The agreement with the time-dependent 

simulations is excellent, with no freely adjustable parameters.  One can easily verify by graphing 

both sides that 

 f c f
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2tan ( / )

t t t
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for values of tf/tc ranging from 0 to 6, thereby showing that equation 9 is consistent with the 

adiabatic model on which equation 11 is based. 
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5. Conclusion 

Time-dependent numerical simulations show that SBS in optical fibers can be suppressed by 

linearly chirping the pump laser center frequency.  One significant advantage of this method 

compared to competing techniques that broaden the pump laser with white noise is that a narrow 

linewidth is maintained at any given instant, enabling coherent combination of the outputs of 

several such fiber lasers to scale up to higher powers.  Linear chirping enables a mismatch in the 

length of one such amplifier relative to another to be compensated by shifting the frequency at 

the input to that particular fiber using a modulator. 

These dynamic simulations are in good agreement with experimental results for a 6-km fiber in 

the laboratory.  The simulations should, therefore, also be valid for a short 17.5-m fiber having 

characteristics appropriate to high-power laser delivery systems.  The time-dependent computer 

results for such a short fiber are in good agreement with a simpler adiabatic model, thereby 

validating use of that model to predict the performance of chirped fibers without requiring the 

demanding computer overhead of the full time-dependent calculations. 
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