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Abstract 
A framework for the multiscale design and analysis of composite materials and structures is 

presented. The ImMAC software suite, developed at NASA Glenn Research Center, embeds efficient, 
nonlinear micromechanics capabilities within higher scale structural analysis methods such as finite 
element analysis. The result is an integrated, multiscale tool that relates global loading to the constituent 
scale, captures nonlinearities at this scale, and homogenizes local nonlinearities to predict their effects at 
the structural scale. Example applications of the multiscale framework are presented for the stochastic 
progressive failure of a SiC/Ti composite tensile specimen and the effects of microstructural variations on 
the nonlinear response of woven polymer matrix composites. 

Introduction 
The use of advanced composites (polymer matrix composites (PMCs), ceramic matrix composites 

(CMCs), and metal matrix composites (MMCs)) provides benefits in the design of advanced lightweight, 
high temperature, structural systems by providing an increase in specific properties (e.g., strength to 
density ratio) when compared to their monolithic counterparts. To fully realize the benefits offered by 
these materials, however, experimentally validated, computationally efficient, multiscale design and 
analysis tools must be developed for the advanced, multiphased materials of interest. Furthermore, in 
order to assist both the structural analyst in designing with these materials and the materials scientist in 
designing/developing the materials, these tools must encompass the various levels of scale for composite 
analysis as illustrated in Figure 1. 

These scales are the micro scale (constituent level), the mesoscale (laminate/composite and/or 
stiffened panel level) and the macro scale (global/structure level), and they progress from left to right in 
Figure 1. One traverses these scales using homogenization (moves right) and localization (moves left) 
techniques, respectively (Figure 2 and Figure 3); where a homogenization technique provides the 
properties or response of a “structure” (higher level) given the properties or response of the structure’s 
“constituents” (lower scale). Conversely, localization techniques provide the response of the constituents 
given the response of the structure. Figure 3 illustrates the interaction of homogenization and localization 
techniques, in that during a multi-scale analysis, a particular stage in the analysis procedure can function 
on both levels simultaneously. For example, in Figure 3, the constituents X and Y at Level 1, when 
combined (homogenized) become the constituent V (on Level 2) which is subsequently combined with W 
to produce U (the effective structure at Level 3). The reverse process is known as localization, in which 
the constituent level responses (Level 1) are determined from the structure level (Level 3) results. 
Obviously, the ability to homogenize and localize accurately requires a sophisticated theory that relates 
the geometric and material characteristics of structure and constituents.  

Additionally, Figure 3 illustrates that experiments (virtual or laboratory) performed at each level can 
be viewed either as exploratory or characterization experiments used to obtain the necessary model 
parameters for the next higher level. Alternatively, these tests can be viewed as/used to validate the 
modeling methods employed at the lower level. Figure 3 also illustrates the authors’ view that the term 
“multiscale modeling” should imply consideration of at least two levels of homogenization/localization or 
a minimum of three levels of scale. The rationale is that if analyses that consider only two levels of scale  
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Figure 1.—Illustration of associated levels of scale for multiscale composite analysis. 

 

 
Figure 2.—Homogenization provides the ability to 

determine structure level properties from constituent 
level properties while localization provides the ability to 
determine constituent level responses from structure 
level results. 

 

 
Figure 3.—Multilevel tree diagram illustrating three levels of scale and 

the role of testing for both validation and characterization. 
 
(rather than two homogenizations) are considered to be multiscale, many standard structural analyses 
would qualify. For instance, an elastic finite element model of a structure considers the materials with 
given elastic properties as Level 1 and the structural response as Level 2. Similarly, standard classical 
lamination theory considers the plies (with given elastic properties) as Level 1 and the laminate (with 
calculated ABD stiffness matrix) as Level 2. It is our position that the term “multiscale modeling” is 
intended to distinguish an analysis from such standard analyses that consider only two scales. Examining 
the recent literature in multiscale modeling revealed that a majority of authors have not applied this 
standard to their own work, as evidenced by the fact that 66 percent of the papers that were characterized 
by the authors as involving multiscale modeling considered only two scales (Ref. 1). 
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Numerous homogenization techniques (micromechanical models) exist that can provide effective 
composite properties. These range from the simplest, analytical approximations (i.e., Voigt/Reuss) to 
higher fidelity, more involved methods (e.g., concentric cylinder assemblage, Mori-Tanaka, Eshelby, and 
Aboudi’s generalized method of cells) to finally, fully numerical methods that are the most general and 
the highest fidelity yet the most computationally intense (e.g., finite element, boundary element, Fourier 
series). Each has its realm of applicability and advantages, however, many are unable to admit general 
user defined deformation and damage/failure constitutive models for the various constituents (i.e., fiber or 
matrix) thus limiting their ultimate usefulness, especially for high temperature analysis where nonlinear, 
time-dependent behavior is often exhibited.  

An alternative approach to modeling composite structures, which circumvents the need for 
micromechanics, involves fully characterizing the composite material or laminate experimentally, which 
has the advantage of capturing the in-situ response of the constituents perfectly. However, such full 
characterization for all applicable temperatures and configurations (e.g., fiber volume fractions, tow 
spacing’s, etc.) can be expensive. In addition, composites are almost always anisotropic on this scale (i.e., 
laminate). Thus some needed properties can be virtually impossible to measure, and the development of 
realistic models that capture the nonlinear, multiaxial deformation and failure can be challenging (due to 
the anisotropy). Clearly, the physics of deformation and failure occur on the micro scale (and below), and, 
by modeling the physics at the micro scale, models for the monolithic, often isotropic, constituents can be 
employed. 

Recently, a comprehensive and versatile micromechanics analysis computer code, known as 
MAC/GMC (Ref. 2) has been developed at NASA Glenn Research Center based on Aboudi’s well-known 
micromechanics theories (Refs. 3 to 6). FEAMAC (the coupling of MAC/GMC micromechanics with the 
finite element analysis framework through user subroutines), HyperMAC (the coupling of MAC/GMC 
micromechanics with the commercial structural sizing software known as HyperSizer (Ref. 7)), and 
Multiscale Generalized Method of Cells (MSGMC, the recursive coupling of micromechanics with 
micromechanics) have begun to address the truly multiscale framework depicted in Figure 1. This 
software suite, known collectively as ImMAC (available from NASA Glenn), provides a wide range of 
capabilities for modeling continuous, discontinuous, woven, and smart (piezo-electo-magnetic) 
composites. Libraries of nonlinear deformation, damage, failure, and fiber/matrix debonding models, 
continuous and discontinuous repeating unit cells (RUCs), and material properties are provided. To 
illustrate the multiscale capabilities of the ImMAC framework, this paper focuses on the application of 
FEAMAC and MSGMC to model the stochastic progressive failure of a SiC/Ti metal matrix composite 
tensile specimen and to investigate architectural variability on the nonlinear response of woven PMCs. 

FEAMAC 
As shown in Figure 4(a), FEAMAC is the direct implementation of MAC/GMC unit cell analyses 

within structural finite element analysis (FEA). The software currently supports Simulia’s commercial 
finite element software package Abaqus (Ref. 8). The coupling is accomplished utilizing the Abaqus user 
subroutines, which enable the MAC/GMC code to be called as a library to represent the composite 
material response at the integration and section (used for through-thickness integration in shell elements) 
points in any element within the finite element model. Two- and three-dimensional continuum elements, 
as well as shell elements, are supported. Any nonlinearities due to local effects (e.g., inelasticity or 
damage) in the fiber/matrix constituents at any point in the structure are thus captured and homogenized, 
and their effects on the structure are manifested in the finite element model structural response at each 
increment of loading. 
 



NASA/TM—2012-217244 4 

(a)    (b)  
Figure 4.—(a) FEAMAC couples MAC/GMC with finite element analysis. (b)MSGMC recursively calls 

the generalized method of cells (GMC) to represent the behavior within the subcells of a RUC 
operating at a given level. 

MSGMC 
As shown in Figure 4(b), MSGMC (Ref. 9) implements the three-dimensional generalized method of 

cells (GMC) to represent the behavior of the subcells within GMC repeating unit cells. This can be 
performed an arbitrary number of times to represent an arbitrary number of scales in an integrated 
multiscale analysis. The methodology is ideal for analyzing woven and braided composites, where the 
behavior of the tows can be modeled with GMC operating within a subcell in an RUC representing the 
weave or braid. Similar to FEAMAC, any nonlinearity occurring at the lower scales will affect the global 
scale response. 

Results and Discussion 
Progressive Failure Analysis of a SiC/Ti Tensile Specimen 

The stochastic analysis of the fiber breakage dominated progressive failure process in a 
longitudinally-reinforced SiC/Ti MMC structures is examined using FEAMAC. In particular, we consider 
perhaps the simplest (yet extremely important) composite structure: an experimental tensile test specimen, 
shown in Figure 5. Such test specimens are critical to both materials scientists and structural engineers 
because they are used to evaluate material quality during development of materials and to characterize 
material model parameters needed for structural analysis. The design of test specimens is also known to 
be critical so as to ensure a uniform state of stress and strain in the gauge section, as well as consistent 
failure within the gauge section.  
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Figure 5.—NASA Glenn dog-bone test specimen. 

 
 
 

 
Figure 6.—Abaqus finite element mesh of the dogbone specimen and MAC/GMC RUC operating at 

each integration point. 
 
 

The SiC/Ti test specimen was modeled with a one-eighth symmetry finite element mesh. A 
monotonic longitudinal tensile load was applied in the form of an applied uniform displacement in the 
direction of the longitudinal axis (x1) of the specimen at a rate of 3×10-4 in./s. With a total of 300 Abaqus 
C3D8 (8-noded brick) elements in the mesh and eight integration points per element, the MAC/GMC 
micromechanics model is called as a user material (UMAT) subroutine 2400 times per time step in the 
FEAMAC simulation. This highlights the necessity for having such a computationally-efficient means as 
GMC of relating both the properties and the local stress/strain fields of the constituent phases of the 
composite to the effective properties and deformation response of its homogenized continuum 
representation. Note that, based on the mesh shown in Figure 6, along with the fiber diameter and 
composite fiber volume fraction, each element in the tensile specimen gauge section is sufficiently large 
to encompass approximately 25 fibers. 

On the local scale within the MAC/GMC input files, which define the composite material details, in 
addition to the geometry of the composite RUC, material properties for the fiber and matrix are required. 
The SiC fiber is treated as linearly elastic and isotropic while the TIMETAL 21S matrix is treated as 
viscoplastic and was simulated using the Generalized Viscoplasticity with Potential Structure (GVIPS) 
constitutive model (Ref. 10). The material properties of the constituents are given in Table 1 and Table 2. 
 

TABLE 1.—SCS-6 FIBER ELASTIC PROPERTIES 
Temperature  

(°C) 
E  

(GPa) 
ν α  

(1×10-6/°C) 
21 393 0.25 3.56 

316 382 0.25 3.72 
427 378 0.25 3.91 
538 374 0.25 4.07 
860 368 0.25 4.57 
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TABLE 2.—TIMETAL 21S MATERIAL PROPERTIES AND GVIPS MODEL PARAMETERS 
Temperature 

(°C) 
E 

(GPa) 
α 

(1×10-6/°C) 
κ 

(MPa) 
µ 

(MPa/s) 
B0 

(MPa) 
Rα 

(1/s) 
β 

23 114.1 7.717 1029 667.6 6.908×10-5 0 0.001 
300 107.9 9.209 768.4 137.8 1.035×10-4 0 0 
500 95.1 10.70 254.2 1.45×10-3 2.756×10-4 1.68×10-7 0 
650 80.7 12.13 5.861 6.19×10-9 5.870×10-4 1.00×10-6 0 
704 59.7 14.09 0.756 1.13×10-11 6.346×10-4 6.01×10-5 0 

Temperature-independent: ν = 0.365, n = 3.3, B1 = 0.0235, p = 1.8, q = 1.35 
 
 
The final ingredient to the multiscale FEAMAC progressive failure analysis of the TMC specimen is 

the stochastic failure response of the SiC fibers, as shown in Figure 7. Two approaches to modeling this 
stochastic behavior will be investigated and compared. The first relies on the stochastic Curtin fiber 
failure model (Ref. 11) and the second is based on a simple maximum stress failure criterion, which is 
deterministic when applied uniformly across the test specimen and stochastic when the strength is 
randomly distributed throughout the specimen. Both failure models are applicable only to the fiber 
subcell(s) within the RUC. The Curtin model predicts fiber stiffness degradation due to damage and 
complete failure of an effective, degrading fiber. Herein, upon complete failure using either the Curtin or 
maximum stress model, the fiber is given a negligible stiffness (0.0001 times its original stiffness). The 
employed Curtin model parameters (which are obtained from fiber strength statistics, see Figure 7) are the 
fiber gauge length, L0 = 1 in. (25.4 mm), fiber diameter, d = 0.0056 in. (142 µm), characteristic strength, 
σ0 = 609 ksi (4200 MPa), Weibull modulus, m = 10. The Curtin model requires one additional parameter, 
the fiber-matrix frictional sliding resistance, τ, which was taken as τ = 2.03 ksi (14 MPa) at 650 °C based 
on the work described in (Ref. 12). This value was backed out of GMC simulations such that good 
correlation was achieved with test data. Thus, because these simulations were based on GMC simulations 
for a single material point at a specific temperature, the applicability of this τ value in the simulations of 
the entire tensile specimen and at temperatures other than 650 °C is questionable. 

First let us consider a simulation with no fiber failure as shown in Figure 8(a). The plotted von Mises 
stress field shows the stress concentrations that are inherent to dogbone type test specimens. Along the 
specimen edge, a strong minimum is observed at the start of the reduction section, whereas a milder 
maximum is present at the transition from the reduction section to the gauge section. Because it is 
relatively mild, this maximum is difficult to see in the figure, but as indicated, it is an absolute maximum 
at node 67, which is just above the transition to the gauge section. It is this structural level 
concentration that can lead to specimen failure outside the gauge section, which is why a large reduction 
radius (14.5 in.) was employed in the NASA Glenn specimen, thus making this concentration very mild. 
It has been shown that for smaller reduction radii, this concentration increases significantly (Refs. 13 and 
14). Even though the magnitude of this stress riser, as modeled, is only slightly higher than the stress 
magnitude in the gauge section, this will always be the location of simulated failure initiation if the fiber 
failure parameters are spatially uniform throughout the tensile specimen. 

The effect of the global stress riser can be seen in Figure 8(b) and (c), where the fiber damage 
progression is shown for the max stress and Curtin model simulations. Note that the fiber damage is 
quantified as a fraction of fiber damage within the elements; a fiber damage value of zero corresponds to 
an undamaged state, while a fiber damage value of 1.00 corresponds to complete failure of all fibers 
within an element. For the case in which we use the maximum stress criterion, the failure simulation is 
fully deterministic as fiber failure initiates at the stress riser and no statistical data related to the fiber 
strength are employed. If one uses the Curtin model, failure still initiates at the highest global stress raiser, 
but now the stochastic nature of the fiber failure process is captured at the local level through the fiber 
strength statistics incorporated within the model. Both fiber failure models exhibit similar damage zones 
and both simulations exhibit complete failure of the specimen within 1/10,000th of a second after initiation 
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of failure begins. This is despite the fact that the Curtin model simulates fiber stiffness degradation prior 
to failure while the max stress model does not. The Curtin model simulation does fail at a significantly 
lower overall stress than does that using the maximum stress criterion; see the composite stress-strain 
curves in Figure 9. However, these results are dependent on the chosen value of τ, the fiber-matrix 
frictional sliding resistance. A higher value of τ would shift the Curtin model failure predictions higher, 
closer to those of the max stress criterion. Note, the strain plotted in Figure 9 corresponds to a virtual 
extensometer measurement, that is, an average strain over the gauge length of the specimen as shown in 
Figure 8(c) (calculated as change in displacement divided by original length).  

 

 
Figure 7.—Fiber strength histogram for SCS-6 SiC fibers. The actual data is 

vendor-supplied (Ref. 15), while the simulated data refers to the distributed 
characteristic strength. Note, the fiber gauge length: L0 = 1 in. (25.4 mm) 
and diameter: d = 0.0056 in. (142 µm) are vendor supplied. 

 

 
Figure 8.—(a) Stress contours in the longitudinal 33 percent SiC/Ti-21S tensile specimen in a linear elastic 

simulation with no fiber failure indicating the maximum stress riser at node 67. Local fiber damage fraction as a 
function of time as fiber failure progresses within the longitudinal 33 percent SiC/Ti-21S specimen with spatially 
uniform fiber failure model parameters. (b) Max stress criterion. (c) Curtin model. 
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Figure 9.—Stress-strain curves assuming both spatially uniform and spatially 

random failure strengths for unidirectional, 33 percent fiber volume fraction, 
SiC/Ti21S composite specimen. 

 
 
 

At this point it is worthwhile to summarize the process involved in the FEAMAC simulation results 
(see for example Figure 8 and Figure 10). Global incremental displacement loading is applied on the 
specimen, and Abaqus solves the structural problem to determine the stress and strain fields throughout 
the specimen. The strains and strain increments at each integration point are then passed to MAC/GMC 
(through the Abaqus UMAT subroutine), which performs a micromechanics analysis given the composite 
local geometry and constituent properties. Within MAC/GMC, the integration point strains are localized 
to the level of the fiber and matrix constituent subcells (see Figure 6), which allows determination of the 
viscoplastic behavior of the matrix and the damage/failure behavior of the fiber. The local response of the 
fiber and matrix subcells are then homogenized within MAC/GMC to obtain new stresses and a new 
stiffness matrix (which may have changed due to the imposed strain increment and additional damage 
accumulation) for the composite at each particular integration point. This information is passed back to 
Abaqus (through the UMAT subroutine), which then imposes the next increment of the applied global 
loading. This multiscale approach enables the effects of damage, failure, and inelasticity, and the 
associated redistribution of stresses within the RUC, to impact the global specimen response. When a 
particular integration point experiences fiber failure its stiffness is significantly reduced, which causes it 
to shed load to the surrounding integration points that remain intact and may cause failure to progress, as 
shown in Figure 8. It should be noted that complete fiber failure through the specimen, as depicted in 
Figure 8, does not truly represent complete separation in the simulation because matrix material subcells 
remain intact within the RUCs (see Figure 6). A matrix failure criterion could be added to the simulation 
within MAC/GMC to model complete failure. However, since the tensile failure of longitudinal SiC/Ti 
specimens is known to be dominated by fiber failure, this was not done here as the current results are 
expected to be representative. 

It is clear from Figure 8 that the multiscale stochastic FEAMAC simulation of the SiC/Ti specimen 
has predicted failure outside of the gauge section, which does not typically occur with the NASA Glenn 
MMC tensile specimen. This shortcoming is due to the inappropriate implementation of the fiber strength 
variability exclusively at the local level (i.e., uniform spatial variation of strength). In order to more 
realistically simulate the SiC/Ti tensile specimen progressive failure, it is necessary to account for the 
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realistic fiber strength distribution on the structural level. This was accomplished by varying the max 
stress criterion in one case and the Curtin model parameters (an obvious choice being the characteristic 
strength, σ0) in the other case, over the specimen geometry. Providing different elements with different 
values of these model parameters, in essence, enables the elements to damage and fail at different local 
fiber stress levels.  

To distribute the characteristic strength spatially, 30 user materials were associated with the finite 
element mesh of the composite specimen. Each material was defined by a MAC/GMC input file with a 
different σ0 value chosen according to the vendor-supplied fiber strength histogram shown in Figure 7. 
This was accomplished by determining the number of user materials having σ0 values in each 50 ksi 
range (see the horizontal axis of Figure 7) in order to provide a good match with the actual fiber strength 
distribution (as shown in Figure 7). If only one material’s σ0 value was located within a particular 50 ksi 
range, the characteristic strength was chosen as the middle of that range. Otherwise, the characteristic 
strength values for the materials were evenly distributed within the applicable 50 ksi range. As shown in 
Figure 7, the 30 σ0 values provide an excellent match with the actual fiber strength histogram. When 
considering the Curtin model, the other important parameter that must be considered to obtain the correct 
fiber strength statistics is the Weibull modulus, m, as this affects the shape of the fiber strength 
distribution. Immediately, one might consider using a constant value of m for all values of σ0, yet when 
summing over all fibers, this did not reproduce the correct overall fiber strength distribution. If however, 
each user material was allowed to have a distinct Weibull modulus value, one could obtain the correct 
distribution. Consequently, a simple computer program was written to optimize the Weibull modulus 
values in order to provide the best correlation of the combined fiber strength distribution of all 30 user 
materials with the actual fiber strength distribution. 

Now, with these 30 user materials (represented by 30 MAC/GMC input files) whose Curtin model 
data (or maximum strength criterion data, depending upon which failure model one chooses to employ) 
cumulatively represent the fiber strength statistics accurately, the 300 elements within the specimen were 
randomly distributed to the user materials (with ten elements per material, all ten having identical 
properties). The random distribution was accomplished via a simple computer program. The resulting 
distribution of maximum characteristic strengths (i.e., σ0) over the specimen geometry is shown in 
Figure 10 (left most figure). This idealization (i.e. spatially varying fiber strength distribution) was 
subjected to the identical simulated tensile test considered previously in the non-distributed case. Results 
for the progressive failure simulation of the spatially distributed maximum fiber strength statistics 
specimen are given in Figure 10. In this simulation, failure initiated (see Figure 10 snapshot (a)) not at the 
stress concentration (i.e., node 67, see Figure 8(a)), but rather within the gauge section in an element that 
happened to be assigned a low characteristic strength (see the blue element in the left most Figure 10). 
Subsequently, progressive failure across the specimen occurred in 0.68 s (see snapshots (b) through (e) in 
Figure 10). The global stress-strain curve responses for the both the Curtin and maximum stress model 
predictions are shown in Figure 9 for both uniform and spatially varying cases. Clearly, the peak stress 
value (ultimate strength) in both of these predicted stress-strain curves are significantly lower than the 
previous uniformly (or non-distributed) case; in that the distributed Curtain model simulation predicts an 
ultimate strength of 210 ksi (1451 MPa) compared to a value of 264 ksi (1822 MPa) for the non-
distributed simulation, while the maximum stress criterion simulation predicts, an ultimate strength of 
217 ksi (1494 MPa) compared to a value of 313 ksi (2155 MPa) for the non-distributed simulation. Note 
how both spatially distributed simulations, regardless of the failure model used, provide similar (less than 
3 percent difference) results; as both are now stochastic in nature due to the random spatial variation of 
fiber strength. Furthermore, random failure locations within the gauge length can be obtained by creating 
different actualizations (i.e., new random assignments of fiber strengths within the various 30 bins); 
which agrees qualitatively with numerous experimental results obtained at NASA Glenn as shown in 
Figure 11.  
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Figure 10.—Global fiber strength distribution contour 

plot; (a) to (e) cumulative fiber subcell failure contours 
at simulation times of 63.40, 63.93, 63.95, 64.06, and 
64.08 s, respectively (Note that the black lines denote 
the beginning of the transition region from the end of 
the gage section to the end of the specimen).  

 

 
Figure 11.—(a) Picture of the failure location of six test specimens and (b) to (g) Cumulative fiber 

subcell failure contour plots showing probabilistic nature of the simulated fiber failure location 
from six separate actualizations (simulations). Note that the black lines denote the beginning of 
the transition region from the end of the gage section to the end of the specimen once again. 
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To assess the quantitative accuracy via comparison with experimental results, three additional factors 
are accounted for in the FEAMAC simulation: (1) local fiber strength variation within the RUC, (2) 
incorporation of residual stresses due to specimen heat treatment/consolidation, and (3) shifted fiber 
strength due to fiber length scale. In order to account for the local fiber strength distribution within the 
RUC, an RUC containing 25 subcells (see insert in Figure 12) was utilized. Furthermore each fiber 
subcell was randomly assigned a different strength while maintaining that the average of these fiber 
strengths equals the specific fiber strength assigned to the RUC. Recall that the 30 RUCs (10 elements per 
RUC) are randomly assigned throughout the 300 element mesh in order to capture the global fiber 
strength distribution. This enables each integration point to experience a progressive failure which in turn 
enables an even more gradual failure evolution than if one utilizes only a global fiber strength 
distribution, with one fiber per RUC at an integration point. Incorporation of residual stresses (which are 
key for accurate predictions of metal matrix composites failure response) is accomplished by imposing 
the complete thermomechanical loading cycle for a given specimen. A 16 hr cool down from a uniform 
900 °C (assumed stress-free) heat treatment temperature to room temperature (23 °C), was simulated 
followed by an unconstrained temperature rise to 650 °C over 5 min. The temperature was then held 
constant while a monotonic uniaxial tensile loading, at a displacement rate of 3×10-4 in/s, was applied 
until complete fiber failure was achieved. The predicted tensile response of a 25 percent fiber volume 
fraction SiC/Ti titanium matrix composite (TMC) test specimen at 650 °C is shown in Figure 12, given 
the vendor supplied strength distribution of Figure 7, which is also shown as the black line (λ = 1.0) in the 
insert of Figure 12. Clearly, this curve agrees well with the experimental data provided, except it appears 
to suffer premature fiber failure since it significantly under predicts the specimen UTS.  

To compensate for this premature failure, we must account for the disparity between the gage length 
of the fiber specimens used to conduct the fiber strength tests (L0 = 1.0 in) and the characteristic length 
needed to develop full fiber loading in the FE model (calculated to be L= 0.091 in. from shear-lag 

 
 

 
Figure 12.—Composite stress-strain response for randomly distributed, maximum stress 

failure criterion simulations (black and blue lines) compared to experimental data (red 
square symbols) at 650 °C. 
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calculations (Refs. 16 and 17)). Consequently, a new set of fiber strength bins were generated using a 
modified Weibull distribution, shifted to account for this change in length ratio (this ratio is defined as 
lambda, or L/L0 (Ref. 11)): 
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The original and shifted Weibull distributions (failure probability distribution) are illustrated in the 
lower right insert in Figure 12. These new fiber strength RUCs were then used to simulate the same 
thermomechanical loading cycle described previously, the result of which is depicted by the blue line in 
Figure 12. Clearly, this new simulation captures the experimental data response extremely well including 
the UTS of this test. Note however, that the strain to failure is over predicted; as expected since no failure 
criterion was applied to the matrix subcells, so that upon complete failure of the fiber subcells matrix 
inelastic flow is unconstrained.  

Recursive Multiscale Analysis of a Woven Polymer Matrix Composite 

In this study, MSGMC is used to examine the effects of architectural parameter variations on the 
response of woven PMCs. As illustrated in Figure 13, the analysis considers four physical length scales 
from the fiber/matrix constituents (microscale) to the RUC representing the tow (mesoscale) to the RUC 
of the weave (macroscale) to an assembly of nine RUCs (structural scale). This would normally indicate 
three separate homogenizations to span the four scales, but actually, an additional intermediate 
homogenization is performed when using MSGMC to analyze woven or braided composites. This 
involves a separate through-thickness homogenization within the macroscale, which has been shown to 
improve the model’s predictions (see Ref. 19 for details). Thus, the analyses at the structural scale involve 
four homogenizations while those at the macroscale involve three. The architectural parameters that were 
varied at the mesoscale (fiber packing arrangement and fiber volume fraction within the tows) and the 
macroscale (tow aspect ratio) are also shown in Figure 13. 

For these analyses an AS-4/3501-6 material system with an overall fiber volume fraction of 
60 percent was assumed. The properties of the constituent materials are shown in Table 3. The fiber is 
treated as linearly elastic while the matrix is modeled as elastoplastic using classical plasticity with 
exponential isotropic hardening of the form, 

 ( ) ( )e 1pA
p Y

H
A

− εκ ε = σ − −   (2) 

where ( )pκ ε  is the isotropic strain hardening rule, pε  is the equivalent plastic strain, and the material 

parameters are σY (yield strength), H (initial post-yield modulus), and A (exponent) (see Ref. 20 for 
details). To study the effects of architectural and material variation on the macroscale response, a full 
factorial set of numerical simulations were conducted. The parameters varied are shown in Table 4 and 
are depicted in Figure 13. The three architectural parameters varied are tow volume fraction, tow aspect 
ratio (width divided by thickness, as shown in Figure 13) and fiber packing arrangement. All other 
parameters in the analysis were kept constant. The tow volume fraction and fiber packing arrangement are 
both considered mesoscale attributes because their geometrical properties are involved in the mesoscale 
concentration matrix. The tow aspect ratio is considered a macroscale property because it is taken into 
account in the macroscale concentration matrices. The tow volume fraction was varied among 0.62, 0.65, 
and 0.70. These three values were chosen based on common experimental values for PMCs. The tow 
aspect ratio was chosen to be 9, 18, or 36. A value of 9 is typical of CMCs, 18 is typical of PMCs, and 36 
was chosen as an upper bound. Two different fiber packing arrangements were considered, square and 
hexagonal, as both exhibit different responses. Although most PMCs exhibit random packing, square and 
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TABLE 3.—AS-4/3501-6 CONSTITUENT PROPERTIES 

 EA  
(GPa) 

ET  
(GPa) 

vA vT GA  
(GPa) 

σY 
(MPa) 

a H  
(GPa) 

AS-4 225.0 15.0 0.2 0.2 15.0 N/A N/A N/A 
3501-6 4.2 4.2 0.34 0.34 1.56 71 100 1.5 

 
TABLE 4.—PARAMETERS VARIED IN MULTISCALE ANALYSES 

Microstructural parameter Relevant length scale Values 
Tow volume fraction (Vtf)  Meso 0.62, 0.65, 0.70 
Tow packing Meso Hexagonal, Square 
Tow aspect ratio (AR)  Macro 9, 18, 36 

 

 
Figure 13.—Multiscale analysis methodology with architectural effects being varied as 

shown at the meso and macroscales.  
 

 (a)  (b)  
Figure 14.—Weave macroscale RUCs, (a) plain and (b) 5HS. 

 
hexagonal packing are both reasonable approximations of this. The full factorial simulations were 
executed for both the tension and shear response and were also performed for two macroscale weave 
types: plain weave and 5-harness satin (5HS) weave (see Figure 14). The full factorial simulations for 
both responses and weave types resulted in a total of 72 cases analyzed. In each of these cases, the overall 
volume fraction of the woven composite was kept constant so that the results are comparable. 

The typical simulated stress-strain curves for a plain weave composite subjected to tensile and shear 
loading are shown in Figure 15, where a single RUC of the composite (i.e., macro response) has been 
considered. For illustrative purposes, only one architectural parameter, namely, the tow aspect ratio, was 
varied. Clearly this variation has a significant effect on the macroscale tensile response, but little effect on 
the shear response. The full factorial parameter variation results for the macroscale analyses are presented 
in Figure 16, with each curve on each chart representing a particular set of architectural parameters. It is 
apparent that there is a significant amount of variation at the macroscale caused by varying the 
architectural parameters even though the overall fiber volume fraction of the composite is kept constant. 
The architectural parameter variation caused approximately three times more macroscale variation in the 



NASA/TM—2012-217244 14 

(a)  (b)  
Figure 15.—Typical macroscale (a) tensile and (b) shear deformation response for a plain weave composite, given a 

tow volume fraction of 65 percent, hexagonal fiber packing within the tows, and varying the tow aspect ratio from 9 
to 36. 

 
 

 

  
Figure 16.—Macroscale tensile response (top row) and shear response (bottom row) for all architectural variations, 

for a plain weave (left column) and 5HS weave (right column). 
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composite tensile response compared to the shear response (as measured by standard deviation). 
However, the variation in the shear stress-strain curves was still appreciable. Further, examination of 
individual stress-strain curves revealed that decreasing tow volume fraction has the same effect as 
increasing tow aspect ratio, an increase in modulus and strain energy (area under stress-strain curve). 
Also, the hexagonal RUC at the mesoscale was more compliant and exhibited more plasticity than the 
square RUC for equivalent volume fractions.  

To examine the structural scale, the effects of parameter variation on the response of nine (3×3) 
macroscale RUCs was studied (see Figure 13). Each of the RUCs composing the 3×3 RUC at the 
structural scale is comprised of a macroscale RUC with a set of architectural parameters chosen at random 
from the permutations considered in the macroscale architectural study. For example, one RUC might 
have a 62 percent tow volume fraction with an aspect ratio of 18 and square packing and another could be 
completely different. Each architectural parameter was randomly selected for each RUC, without 
imposing any probabilities on the parameters. Thirteen cases (realizations) were run for each structural 
RUC in order to achieve a broad spectrum of combinations. The results for all 13 cases are shown in 
Figure 17. It is important to note that the variance is greatly reduced when compared to that observed in 
the macroscale plots. The maximum standard deviation at the macroscale was 15 percent compared to a 
mere 2 percent at the structural scale, Consequently, it appears that the effects of lower scale variations 
are diminished after one or two higher length scales of homogenization. Thus one must be cautious in 
attempting to draw conclusions regarding the impact of variability observed at a given scale on the 
behavior at higher scales. 
 

  

 
Figure 17.—Structural (3x3 RUCs) tensile response (top row) and shear response (bottom row) for all 

architectural variations, for a plain weave (left column) and 5HS weave (right column). 
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Conclusions 
NASA Glenn Research Center’s ImMAC software suite provides an integrated multiscale framework 

for the design and analysis of composite materials and structures. FEAMAC calls the GMC 
micromechanics methods to represent the nonlinear composite constitutive response at the integration 
points (and section points) within an Abaqus finite element analysis. MSGMC calls GMC 
micromechanics recursively such that at any scale, the GMC subcells may be occupied by an effective 
composite material. GMC’s ability to localize and homogenize extremely efficiently enables these types 
of integrated multiscale analyses where nonlinear deformation and damage models for the constituents 
drive the nonlinear response at the structural scale. Furthermore, because the nonlinear deformation and 
damage is handled at the constituent scale, complex, multiaxial, anisotropic models, which would be 
needed at the composite scale, can be avoided. 

Examining the response of a SiC/Ti tensile specimen using FEAMAC, it was shown that 
incorporating stochastic features at the proper scale (spatially random at the local/global level) enables the 
use of a simple failure model (e.g., max stress criterion). The model was shown to predict realistic gauge 
section failure and accurate deformation response and failure load level in the specimen. MSGMC was 
used to model the nonlinear deformation response plain weave and 5-harness satin graphite/epoxy 
composites. The effects of tow fiber volume fraction, tow fiber packing arrangement, and tow aspect ratio 
were shown to be significant when examining the nonlinear response of a single RUC. However, when 
the response of a structure (idealized with nine RUCs) is modeled, the effects of such variations are 
greatly reduced. It is also noteworthy that the presented structural MSGMC simulations involve four 
homogenizations across five levels of scale. 
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