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A Comparison of Combustor-Noise Models

The current status of combustor-noise prediction in the NASA Aircraft Noise Prediction Program (ANOPP)
for current-generation (N) turbofan engines is summarized. Best methods for near-term updates are reviewed.
Long-term needs and challenges for the N+1 through N+3 time frame are discussed. This work was carried out
under the NASA Fundamental Aeronautics Program, Subsonic Fixed Wing Project, Quiet Aircraft Subproject.

I. Introduction

The anticipated increase in future air traffic makes further reduction of subsonic transport-aircraft noise an imper-
ative. Currently, noise generated in the jet engine core by components such as the compressor, combustor, and turbine
can be significant contributors to the overall noise signature at low-power conditions, typical of approach flight. For
existing engines, core noise is typically dominated by jet and fan noise at high engine-power settings during takeoff.
However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction
methods are likely to increase the relative importance of core noise at all engine-power levels.1 Consequently, core
noise will need to be addressed in order to meet future aircraft noise-reduction goals. In fact, core noise may well set
a propulsion-noise floor limiting the effects of future fan and jet noise reduction techniques if not further controlled.
The present paper is concerned with combustor noise, which is a low-frequency contributor to the noise generated in
the turbofan engine core. It can be a significant aspect of the aft-quadrant overall noise signature at typical approach
conditions for today’s turbofan engines and it is predicted1 to make a significant contribution to all certification noise
levels for near-future engine designs.

Combustor noise can be of either the direct or indirect type. The noise frequency for either type is set by the
unsteady combustion process and the peak value is generally believed to fall in the range of 400–500 Hz. The unsteady
combustion process is the source of pressure, entropy, and vorticity fluctuations. A fraction of the pressure disturbances
are acoustic pressure fluctuations with the balance being hydrodynamical unsteadiness. The former is what is referred
to as direct combustor noise. Its spectrum can be modified by the combustor geometry as well as pressure feedback on
the unsteady combustion process itself. The direct combustor noise is reduced due to transmission effects during its
propagation through the turbine stages. The combustor entropy (temperature) fluctuations are convected downstream
with the local mean velocity and are converted to acoustic pressure fluctuations in the turbine and other regions where
flow properties change rapidly. This is the indirect process of turbomachinery combustor-noise generation. This is
potentially a very effective mechanism and occurs at all turbine stages. The indirect noise occurs in the same basic
frequency range as the direct noise, but their spectral-distribution shapes could be quite different and both are affected
by the propagation through the engine core. Figure 1 illustrates the dual paths of combustor noise. Note that the direct
and indirect noise contributions are correlated at the source because both are caused by the unsteady heat addition.
The relative importance of the two combustor-noise components is still an unresolved issue.2–7

Major advances in combustor-noise source modeling occurred during the 1970s and early 1980s and are dis-
cussed in the review chapter by Mahan and Karchmer8 and references therein. Semi-empirical relations that correlate
noise levels with engine operating parameters based on full-engine test data were mainly developed by aircraft en-
gine companies, often with support from Department of Transportation/Federal Aviation Administration (DOT/FAA)
or National Aeronautics and Space Administration (NASA). Significant development of diagnostic techniques also
took place during this time period. However, research resources were generally redirected towards the more pressing

† Associate Fellow AIAA

NASA/TM—2012-217671 1

Lennart S. Hultgren 
National Aeronautics and Space Administration 

Glenn Research Center 
Cleveland, Ohio 44135 



Figure 1. Dual paths for turbofan combustor noise

non-core noise issues in the late 1980s. Combustor noise, consequently, received very limited attention until the early
2000s when reduction techniques for jet and fan noise had further matured to a point, coupled with turbofan design
trends, where further noise reduction would require core noise to also be addressed. It was also realized at that time
that core noise was an important contributor to airport ramp noise due to auxiliary power units (APU).

Direct measurement of turbofan-engine combustor noise is difficult because of the presence of jet noise in the
frequency range of interest. Since flight effects reduce jet noise more than combustor noise, combustor noise can be a
significant contributor to aircraft in-flight noise but may be masked by jet noise under the corresponding static-engine
test conditions. To overcome this obstacle, researchers9–23 developed coherence techniques utilizing engine-internal,
as well as far-field, measurements to identify the far-field combustor-noise component. Modal analyses24–29were also
carried out to determine the source and propagation characteristics of combustor noise.

The current paper discusses several semi-empirical models for turbofan combustor noise. The three-spectrum
model proposed by Stone et al.30 for GE turbofan-engine combustor noise will be discussed and compared with
ANOPP predictions for several relevant cases. The connection to the work by von Glahn and Krejsa,31 Karchmer,24

and Royalty and Schuster29 will also be discussed.

II. Combustor-Noise Models

Semi-empirical models for the total acoustic power are, in general, developed based on physical considerations
with model coefficients/constants determined using isolated-component and static-engine test data. Then the far-field
directivity and universal spectral distribution are obtained empirically. In the case of full-engine tests, the measured
total far-field acoustic signature normally is adjusted by subtracting the low-frequency jet noise using an appropriate
model to reveal the core noise. This represents a weakness since combustor noise is not always a dominant noise
source at low engine-power settings.

A. Early Models

Huff et al.32 reviewed the early 1970s state-of-the-art in engine combustor-noise prediction and recommended an in-
terim semi-empirical method to provide such a capability for the NASA Aircraft Noise Prediction Program (ANOPP).33, 34

The proposed direct-combustor-noise method combined a General Electric35 developed formula for the total acoustic
power as a function of the engine operating condition, a Boeing36 obtained result for polar directivity, and a single-
peak spectral distribution based on the in-flight SAE ARP87637 jet-noise spectrum. As recommended in the Boeing36

work, Huff et al.32 suggested using a fixed peak frequency of 400 Hz. Emmerling et al.38 improved the General-
Electric model by correlating the combustor-noise attenuation by the turbine with the design-point work extraction
of the turbine and validated the resulting model using several sets of engine data. Ho and Doyle39 provided fur-
ther validation and discussion of this model (see also Mahan and Karchmer8). This simple direct combustor-noise
model38, 39 still forms the kernel of the ANOPP core-noise module and is referred to therein as the SAE method. The
current ANOPP module also contains a small-engine revision40 of this method (referred to as SmE herein) and an
intermediate-narrow-band method41 to account for tail-pipe resonances.

Also during the latter half of the 1970s, researchers at Pratt & Whitney5, 42 developed a semi-empirical prediction
method for direct combustor noise. They derived models for the total acoustic power level, turbine coupling/ trans-
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mission losses, and peak frequency; and they empirically determined model constants, the directivity pattern, and a
universal normalized spectral distribution using a range of burner-rig and full-scale static engine tests. Mathews et
al.5 also measured the dynamic temperature characteristics at the exit as well as inside of a burner in a rig experiment
to provide inputs for an existing Pratt & Whitney indirect combustor noise model.43 They found experimentally that
the unsteady temperature level (roughly 9 % at the exit) depended mainly on the total temperature increase across
the burner and that the corresponding length scales were approximately proportional to a burner flow rate parameter.
Based on these measurements and the prediction codes, they found that indirect combustor noise should be 18-22 dB
lower than direct noise in the absence of turbine attenuation.

There are similarities and differences between the General Electric and Pratt & Whitney direct combustor-noise re-
sults (see also discussion in Mahan and Karchmer8). In both, the total acoustic power level is proportional to the second
power of the combustor pressure and the second power of the temperature rise across the combustor (the Pratt & Whit-
ney model uses the air-fuel ratio which essentially is equivalent to the temperature rise). The combustor mass-flow rate
linearly affects the total acoustic power in the General-Electric model, whereas in the Pratt & Whitney formula it enters
through a burner-flow parameter to the fourth power. The Pratt & Whitney result also depends on burner-geometry
information such as the number of fuel nozzles and the burner cross-sectional area. Their formulas for turbine losses
are different but both are frequency independent. The latter fact implies that, in the absence of resonances, measured
spectra for burner-rig and full-engine static tests should be quite similar. Furthermore, their directivity patterns are
in good agreement and their single-peak universal spectral distributions are similar when frequencies are normalized
with the peak frequency. The peak frequency in the General-Electric model is always 400 Hz, but the correspond-
ing Pratt & Whitney formula involves burner design and geometry parameters. In general, each of these prediction
tools has shown good agreement with data from the engine manufacturer that developed the method, but not with data
from other companies. The need for distinct models may be caused by differences in burner design philosophy.44

Zuckermann44 summarized the history and results of the DOT/FAA sponsorship of core-noise research and provided
further comments. The report also pointed out the need for continued improvements in turbine-attenuation and indirect
combustor-noise source modeling.

B. Current ANOPP Models

For a static-engine test, the (dimensional) combustor-noise mean-square pressure in each 1/3-octave band (b) is given
by

< p2 >(b)=
ρ∞c∞ΠD(θ)S(fb)

4πr2s
(1a)

for both the SAE and SmE methods in ANOPP, wherers is the distance between the source and the observer andρ∞
andc∞ are the ambient density and speed of sound.D(θ) is a directivity function that depends only on the polar angle
θ and satisfies the normalization condition

∫ π

0

D(θ) sin θdθ = 2 . (1b)

S(fb) is a spectrum function satisfying
∑

b

S(fb) = 1 (1c)

andfb is the 1/3-octave-band center frequency.Π is the total acoustic power

Π =

∫

A

∑

b < p2 >(b)

ρ∞c∞
dA , (1d)

wheredA = r2s sin θdθdφ, with φ denoting the azimuthal angle. The sound pressure levelSPL(b) in an 1/3-octave
frequency band, the overall sound pressure levelOASPL, and the power levelPWL are given by

SPL(b) = 10 log(< p2 >(b) /p2ref ) , (2a)

OASPL = 10 log(
∑

b < p2 >(b) /p2ref ) = 10 log[ρ∞c∞ΠD(θ)/4πr2sp
2
ref ] , (2b)

PWL = 10 log(Π/Πref ) , (2c)
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wherepref = 2 × 10−5 Pa andΠref = 1× 10−12 W if SI units are used. The ANOPP formula for the total acoustic
power is

Π = 10K/10c2∞ṁcore

(

Tt,ce − Tt,ci

Tt,ci

)2 (
Pt,ci

P∞

)2

× FTA , (3a)

where the constantK = −60.53 . . . in the SAE method andK = −64.53 . . . in the SmE method.a ṁcore is the mass
flow rate into the combustor,Tt,ci andTt,ce are the total temperature at the combustor inlet and exit,Pt,ci is the total
combustor-inlet pressure, andP∞ is the reference (static) pressure. The reference state is ambient conditions, actual
or standard sea-level values.FTA is a turbine attenuation, or loss, factor and is given by35

FTA =

(

∆Tdes

T∞

)−4

, (3b)

where∆Tdes is the design-point temperature drop across the turbine andT∞ is the reference temperature. Note that
the acoustic transmission loss is independent of the engine operating condition. Eq. (3b) will be referred to as the
ANOPP-GE formula for turbine-transmission loss herein.

In the ANOPP intermediate-narrow-band method,41 the combustor-noise mean-square pressure,< p2 >(n), asso-
ciated with each narrow-band frequency range (n) is given by

< p2 >(n)=
ρ∞c∞ΠD(θ, fn)S(fn)

4πr2s
, (4a)

which is analogous to Eq. (1a), but with a directivity functionD(θ, fn) that now also depends on the narrow-band
center frequency,fn, in addition to the polar angle, and with a spectrum functionS(fn) that also can account for a
tail-pipe resonance. The productD(θ, fn)S(fn) satisfies a normalization condition equivalent to Eqs. (1b) and (1c),

∫ π

0

∑

n

D(θ, fn)S(fn) sin θdθ = 2 . (4b)

The total acoustic power is also here given by Eqs. (3a) and (3b). The narrow-band results are then summed up to
yield the customary 1/3-octave results in ANOPP, i.e.

< p2 >(b)=
∑

n∈b

< p2 >(n) . (5)

C. Turbine-Transmission-Loss Update

Figure 2. Honeywell TECH977 turbofan engine-internal sensors

Time-series data obtained from the NASA/Honeywell
Engine Validation of Noise and Emission Reduction
Technology program45 (EVNERT) was used by Hult-
gren46 to assess the turbine transfer of direct combustor-
noise and to recommend an update to the turbine-
attenuation formula used in ANOPP. This static-engine
test activity was carried out in Honeywell Aerospace’s
San Tan outdoor facility from 2005 to 2007. The pro-
gram used the Honeywell TECH977 research engine,
which is typical of a business-jet application in the
6,000–8,000lbs thrust class.

The engine-internal instrumentation in one of the
many EVNERT test configurations included high-
temperature pressure sensors with air cooling located in
a combustor ignitor port (one sensor) and at the turbine
exit (two sensors), see Fig. 2. The true combustion-noise turbine-transfer function was educed from the EVNERT
data by using a three-signal approach. Note that the true turbine gain factor is always underpredicted by a directly
measured one, using only two sensors, because of a positive bias error caused by the presence of pressure fluctuations
in the combustor that are uncorrelated with the combustor noise.46 The resulting gain factors were compared with

aThe SAE and SmE methods differ only by 4 dB in the acoustic power level.
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the corresponding constant values obtained from Eq. (3b) and a simplified8 Pratt & Whitney5, 42 acoustic-turbine-loss
formula,

FTA =
0.8ζ

(1 + ζ)2
, (6)

whereζ is the ratio of the characteristic impedances across the turbine, i.e.ζ = ρtecte/ρticti with ρ andc denoting
density and speed of sound, respectively, and the subscripts ’te’ and ’ti’ indicating turbine exit and inlet. Both
empirical formulas, (3b) and (6), are frequency independent. Hultgren46,b found that the gain factor obtained from
the simplified Pratt & Whitney formula (6) agreed better with the experimental results for frequencies of practical
importance.
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Figure 3. Total and combustor noise 1/3-octave SPL versus 1/3-octave center frequency in the 130o direction; symbols and solid lines—
data and ANOPP predictions from Ref. 23; dashed lines—ANOPP predictions modified to use the P&W turbine-attenuation from Ref. 46;
(a): 48 % corrected fan speed (flight idle); (b): 60 % corrected fan speed (approach); (c): 71 % corrected fan speed (cutback); (d): 87 %
corrected fan speed (takeoff)

Hultgren46 reexamined the far-field 1/3-octaveSPL results in the130o direction by Hultgren and Miles,23 for
the same EVNERT dataset as above, by applying a post-correction to the original ANOPP predictions for both the
total noise signature and the combustion-noise component. It was found that replacing the ANOPP-GE combustor-
noise turbine-attenuation function (3b) with the simplified Pratt & Whitney one (6) clearly improved the total-noise
predictions and also improved the combustion-noise predictions. The latter comparison was not as conclusive as the
former due to the inherent difficulty in extracting the combustion-noise component from the total noise signature.
However, the former would not be true if the combustion-noise component predictions had not been improved by the
attenuation-formula change.

bDue to a typographical error, the formula in Ref. 46 (Eq. 13) corresponding to Eq. (6) is inverted, but the computations therein are correct.
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Figure 3 shows the original23 far-field results in the130o direction as well as the effects46 on the ANOPP pre-
dictions by replacing the ANOPP-GE turbine-attenuation factor by the simplified Pratt & Whitney formula. The
1/3-octave sound-pressure-level (SPL) results are shown at the four engine power settings of 48, 60, 71, and 87 per-
cent corrected fan speed (flight-idle, approach, cutback, and takeoff conditions) for the 1/3-octave center frequency
range of 20 to 1000 Hz. The solid lines represent the original ANOPP 1/3-octaveSPL predictions for the total (black)
and combustion (red) noise. The black squares correspond to the total noise signature from the EVNERT experiment,
which is reasonably well predicted by the original ANOPP results (see Ref. 23 for details). The dashed curves rep-
resent the post-corrected46 ANOPP 1/3-octaveSPL predictions for the total (black) and combustion (red) noise using
the simplified Pratt & Whitney acoustic turbine-transmission formula (6) rather than the ANOPP-GE one (3b). It is
clear from panels (a)–(c) in Fig. 3 that the total noise signature is better predicted by the modified ANOPP results as
compared to the original ones.

D. A General Multi-Component Model

In general, there could be several independent combustor-noise sources. The (dimensional) combustor-noise mean-
square pressure in each 1/3-octave band can then, in line with Eq. (1a), be written as

< p2 >(b)=
ρ∞c∞

∑Nc

k=1 ΠkDk(θ, fb)

4πr2s
(7a)

for the static-engine-test case, whereNc is the number of independent noise sources andΠk andDk(θ, fb) denote the
total acoustic power and a combined directivity and spectrum function for thekth source. The overall mean-square
pressure is given by

< p2 >=
∑

b

< p2 >(b)=
ρ∞c∞

∑Nc

k=1 ΠkDk(θ)

4πr2s
=

ρ∞c∞ΠD(θ)

4πr2s
, (7b)

whereDk(θ) =
∑

b Dk(θ, f
(b)) is a directivity function for thekth component,Π =

∑Nc

k=1 Πk is the total combustor-
noise power, andD(θ) =

∑Nc

k=1 ΠkDk(θ)/Π is the overall combustor-noise directivity. BothDk(θ) andD(θ) satisfy
the normalization condition (1b).

E. Stone et al. Empirical Model

Stone et al.30 have developed a combustor-noise model based on an empirical fit of static-test data for four common
General-Electric turbofan engines (CF6, CF34, CFM56, and GE90) in current use. The core noise was extracted
from the experimental total far-field acoustic signature by a clever and iterative application of a jet-noise model.47, 48

For frequencies below the (lowest) turbine blade-passing frequency, they deduced that the combustor noise could
be described by a spectrum comprised of three components corresponding to the low-, mid-, and high-frequency
(∼ 1 kHz) peaks observed in the revealed core-noise spectrum. The contribution of each component to the total was
then correlated with the engine operational parameters.

Stone et al.30 presented their results in terms of formulas for the componentOASPL at the 90o polar angle

OASPLk(θ=90o) = Ck + 10
[

αk logQ− βk lognf − log(4πr2s)
]

, k = 1, 2, 3 , (8a)

where

Q = ṁcoreT
2
∞

(

Tt,ce − Tt,ci

Tt,ci

)2 (
Pt,ci

P∞

)2

(8b)

is the combustion-noise parameter recommended by Huff et al.,32 the subscriptk indicates combustor noise compo-
nent,nf is the number of fuel nozzles, andCk, αk, andβk are constants (Table 1). Thek = 1 through3 cases are
referred to as the low-, mid-, and high-frequency components, respectively. In regard to the parameternf in Eq.
(8a), the authors of Ref. 30 state that during their data reduction:“The fuel nozzle numbernf emerged as a possible
correlating parameter, but further analyses might yield better alternative approaches.”

The values of constantsαk andβk in Table 1 agree with the corresponding ones given in Ref. 30. However,
the constantsCk are modified here for two reasons. First, and the major reason, their formula (Ref. 30, Eq. 3)
corresponding to Eq. (8a) does not strictly represent the predicted componentOASPL at the90o polar angle. Their
quantityUOL, somewhat in contradiction to their nomenclature, represents only an intermediate result of the fitting
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Table 1. Modified Stone et al.30 Constants

k = 1 k = 2 k = 3

Ck 89.69 71.30 53.93

αk 0.7 1.0 0.9

βk 1.4 1.8 0.0

procedure and not the final result. To remove this artifact of their fitting procedure, and for clarity,(0.70, 0.01, 0.44)
should be added to their values. Second, for consistency with other formulas herein, the factor4π is explicitly used in
the spherical spreading term in Eq. (8a). This means that10 log(4π) ≈ 10.99 should also be added to the constants
to obtain theCk values used herein. Furthermore, note that the constantCk in Eq. (8a) depends on the units used,
i.e., the underlying formulation is not quite dimensionally correct. In addition, as the fitting parameterαk is changed,
the underlying dimension ofCk also changes.c The consequence of this is thatin Eqs. (8a,b), the source-to-observer
distance must be in ft, the mass flow rate must be in lbm/s, and the ambient temperature must be inoR. No other
equation in this paper has this type of restriction.

The component sound pressure levelSPL(b) in each 1/3-octave frequency band and componentOASPL are given
by

SPL
(b)
k = OASPLk(θ=90o) + Ik(θ, St

(b)
k ) , k = 1, 2, 3 , (9a)

OASPLk = OASPLk(θ=90o) + ∆OASPLk(θ) , k = 1, 2, 3 , (9b)

whereIk(θ, St
(b)
k ) is a directivity and frequency index (Tables 2–4),

∆OASPLk(θ) = 10 log

[

∑

b

10Ik(θ,St
(b)
k

)/10

]

, (9c)

andSt(b)k is a nondimensional frequency (Strouhal number), all for thekth component. The index functionIk(θ, St
(b)
k )

in Eq. (9a) is simply the component 1/3-octaveSPL normalized by the componentOASPL value in the 90o polar
direction. The Tables 2–4 correspond to the Tables I–III in Ref. 30 adjusted such that∆OASPLk(θ=90o) = 0. The
Strouhal numberStk for the three components are given by

St1 = fbd
(h)
cn /c∞ , (9d)

Stk = fbdc/cce k = 2, 3 , (9e)

whered(h)cn is the hydraulic diameter of the core nozzle,dc is the combustor diameter, andcce is the speed of sound
at the combustor exit. The authors of Ref. 30 state:“The characteristic lengths and velocities used in these Strouhal
relations may very well change if data for other engines over a wider range of correlating variables become available.
The selection of the currently used characteristic velocities and lengths was based simply on identifying a set that
approximately correlated engine-to-engine trends and the fairly small trends with engine power. No claim is made
that better relationships cannot be found with further study.”

The fit of the model to the extracted componentOASPL at 90o polar angle is reasonably good (Ref. 30, Fig. 12),
with only a few data points outside of±3 dB error bands. TheSPL-predictions for the low-, mid-, and high-frequency
components (Ref. 30, Figs. 13-15) are also reasonable (again using±3 dB as a measure), with the low-frequency
and high-frequency component predictions being the best and the least good, respectively. Stone et al.30 make the
following comment on the quality of their fit:“Since it is impossible to exactly determine the contribution of core
noise, statistical accuracy is evaluated on the basis of total noise at frequencies below blade passage. On this basis,
the prediction agrees with the data for the four GE engines exactly on average, with root-mean-square error of 1.7
dB.” The fit to the underlying data set is, in fact, remarkably good and is a testament to the well-honed modeling skills
of the investigators.

As an initial test of the applicability of the developed model to other turbofan engines, Stone et al.30 compared
predictions to available combustor-noise data, extracted using a three-signal source-separation method17 from static-
engine test data, for a Pratt & Whitney JT15D engine31 (Ref. 30, Fig. 19) and an Avco Lycoming YF102 engine17

cThis is not uncommon for empirical relationships used in engineering practice and does not limit the potential value for practical application.
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(Ref. 30, Fig. 20). For this type of validation testing, it is often difficult to obtain both the required noise and engine-
cycle data as well as sufficient engine-geometry information. Stone et al.30 had to estimate some of the geometric
parameters and assume the number of fuel nozzles for both engines—see their report for a discussion of the details
and possible impacts on their comparison. For the JT15D-engine and YF102-engine comparisons, the low-frequency
combustor-noise component predictions were reduced by 8 dB and 15 dB, respectively, to produce the results shown
in their figures. Even with these significant adjustments of the predictions, their results are only in“rough agreement”
with the experimental data, with differences well exceeding 3 dB for several frequencies. They indicate:“At present,
the reason for the substantial adjustment required for the level of the lowest frequency component is unknown. It will
probably be necessary to adjust both the jet and core noise models to improve the accuracy and generality of the
model. Differences for the other components may be due to approximations in the combustor parameters, including
frequency-scaling effects. Data from more engine geometries and manufacturers would be useful to resolve these
issues.”Contrary to their30 determination, it is concluded here that, at present, their model isnotcapable of predicting
the combustion noise associated with the two non-GE engines examined. Thus, for now, the use of the new Stone
et al.30 combustor-noise prediction method should be limited to situations involving only General-Electric turbofan
engines.

F. Previous Multi-Component Models

The combustor-noise data for the YF102 and JT15D engines, discussed above, as well as corresponding data for a
CF6-50 engine were further examined and correlated by von Glahn and Krejsa.31 The suggested correlations utilized
one, two, and four spectral segments to capture perceived peaks in the far-field combustor-noise spectra. Generally,
the sound pressure levels at the single-segment spectrum peak, the higher frequency two-segment spectrum peak, and
the two higher frequency four-segment spectrum peaks scaled with a heat-release parameter, as in the semi-empirical
models described above, whereas the low-frequency segments scaled with the combustor exit velocity to the fourth
power. They stated that the four-segment spectra provided the best overall fit to the data, but also that the two-segment
spectrum appeared to be a reasonable representation of the combustion noise. However, their data comparisons do
not generally show the expected 3 dB increase at the intersection of the multisegment spectra, which renders their
conclusions less clear. Nevertheless, their results show that the assumption of a single-peaked far-field combustion-
noise spectrum with the peak fixed at 400 Hz, as used in ANOPP, can be questioned.

Gliebe et al.49 also developed empirical combustor-noise correlations based on existing static-engine test data
for a selection of modern high-bypass-ratio engines. The data used was from General Electric CF6-80C2 and CFM
International CFM56-5B/7B engines equipped with single-annular combustors (SAC) and General Electric GE90 and
CFM56-5B/7B engines equipped with dual-annular combustors (DAC). They adopted the multi-element spectrum
ideas of von Glahn and Kresja31 and found that the best fits were obtained by using a three-segment spectrum (peaks
at 63, 160, and 630 Hz) for SAC engines and two spectral segments (peaks at 160 and 500 Hz) for DAC engines.

III. Combustor Modal Analysis

The essential ingredients in predicting combustor noise are: first, the understanding of the fluctuating pressure
and entropy fields, i.e., the source characteristics, inside the combustor and, second, their further propagation and
interaction with turbine stages through the turbofan core. Karchmer24 and Royalty and Schuster29 have documented the
modal structure of the unsteady pressure field in combustors. Karchmer’s24 rig-experiment utilized a ducted full-scale
YF102 annular-combustor, whereas Royalty and Schuster29 analyzed measurements in a real-engine environment.
Krejsa and Karchmer26 have documented the modal structure in the core nozzle of a turbofan engine. The combustor
unsteady entropy field and its propagation and interaction with the turbine are still areas of emerging understanding and
active research (eg. the propulsion-noise component of the NASA Fundamental Aeronautics Program Quiet Aircraft
Subproject).

In the rig experiment, Karchmer24 analyzed unsteady pressure data obtained from six probes arranged circumfer-
entially in the outer annular wall of the combustor liner at a single axial location for operating conditions roughly
corresponding to 30 through 60 percent YF102-engine power. For all conditions, his modal decomposition showed
that higher-order azimuthal modes were present in the combustor for frequencies higher than about 400 Hz and that
each mode, in sequence, dominated the spectrum near its estimated cut-on frequency (Ref. 24, Fig. 7). That is, suc-
cessive distinct portions of the pressure spectrum in the combustor could be uniquely identified with a single mode,
starting with the plane wave and followed in turn by modes with increasing azimuthal indexes. He concluded that
the basic source generating mechanism is relatively smooth and somewhat featureless, but that the annular geometry
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of the combustor is extremely effective in modifying the unsteady pressure spectrum in the combustor. Karchmer24

also carried out limited comparisons with existing far-field results11 from an YF102 turbofan engine and found rough
similarities between his isolated-component results and the full-engine measurements.

Royalty and Schuster29 analyzed the acoustic modes in the combustor for a particular EVNERT45 configuration of
the TECH977 turbofan engine in which the fan was replaced by a water brake in order to remove fan sources from the
total noise signature. The no-fan configuration could be operated up to a power setting corresponding to the approach
condition of 60 % corrected fan speed. The combustor internal instrumentation consisted of a circumferential array
of 16 equally-spaced pressure probes. They29 (see their Fig. 19) found that for low frequencies most of the acoustic
energy was associated with the plane wave (m = 0) mode, that the first circumferential mode (m = ±1) was dominant
in the frequency range of 500–1000Hz, and that higher circumferential modes (m = ±2, m = ±3, m = ±3, . . .)
sequentially became the most significant feature at successively higher frequencies, wherem is the azimuthal wave
number or mode order. One can observe in their figure that at 500 Hz, the plane wave mode is about 8 dB and 5 dB
below the total acoustic level at the 48 % and 60 % power settings, respectively. They also reported that the higher
modes (m 6= 0) were not present in the far-field data. It is concluded here that this indicates that the non-plane-wave
modes are cut-off in the turbine/duct downstream of the combustor for this particular engine. This is in agreement
with the results of Hultgren and Miles23 in which coherent combustor noise was only detected for frequencies less
than about 400+ Hz.

Krejsa and Karchmer26 documented the modal structure of the pressure field near the inlet and exit of the core
nozzle of an AiResearch Quiet-Clean-General-Aviation-Turbofan (QCGAT) engine for several operating conditions
using an array of five circumferentially spaced probes at each axial location. The QCGAT engine was derived from
the AiResearch TFE731-3 engine for use in the NASA QCGAT program50 to demonstrate the applicability of large
turbofan engine noise and pollution reduction technology to small general aviation turbofan engines. Their analysis
of the pressure data showed that the plane-wave mode was dominant at the very lowest frequencies and that, up to
the 1500 Hz upper limit of their analysis, the most recently cut-on azimuthal mode was dominant with increasing
frequency. The contribution of modes other than the dominant mode was usually small. At the core tailpipe exit, this
meant that the plane wave mode was dominant for frequencies below about 800–900Hz and that the first azimuthal
mode was dominant for higher frequencies.

As pointed out by Schuster and Lieber,41 these results24, 26 strongly suggest that resonances in the the combustor
and tailpipe play an important role in determining the peaks observed in external spectra. They remark that these peaks
arise from the modulation of a base spectrum due to the location of the source inside a partially confined geometry
consisting of the combustor, turbine, and exhaust nozzle. Further, the far-field spectrum can be thought of as the
product of a single peak broadband combustion noise spectrum, that is representative of the spectrum of an open
turbulent flame, and a spectral transfer function that is representative of the resonance and propagation effects in the
engine core and exhaust. They observe that this transfer function should depend on the duct geometry, gas properties,
and impedance conditions at system boundaries, and that“it is unrealistic to expect that a single transfer relation
will be generally applicable to the wide variety of combustor, turbine and exhaust geometries.”However, through an
analysis of narrowband acoustic data from turbofans, turboshafts, and auxiliary power units (APUs) manufactured by
Honeywell, they found that the far-field combustor-noise peak frequencies correlated strongly with the exhaust duct
length and mean exhaust duct sound speed according to plane-wave radiation from an unflanged circular pipe. This led
to the development and ultimate implementation of the intermediate-narrow-band model, briefly discussed in§ IIB,
into ANOPP.
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IV. Results

The three-spectrum model proposed by Stone et al.30 for GE turbofan-engine combustor noise is compared
with ANOPP-formula predictions for several relevant cases. The computations are carried out using MATLAB
scripts implementing Eqs. (1)–(3) and (6) for the ANOPP models and Eqs. (8) and (9) for the Stone et al. model.
The static-engine-test results are presented for a free-space virtual observer at a one-foot distance and are lossless,
i.e. atmospheric attenuation is not included in the predictions. The engine operational parameters are taken to corre-
spond to Rolling-Takeoff (RTO) power at Sea-Level-Standard 25oC (SLS+10K) conditions (warm day).

A. GE90-94B Predictions

Figure 4 shows the 1/3-octaveSPL spectra in the 90, 120, and 150 degree directions and theOASPL versus polar
angle for the takeoff condition (RTO-SLS+10K). The engine operational point corresponds to the related far-field
results presented in Figs. 10(c)–(e) and 11 of Ref. 30. The figure shows the contributions from the low-, mid-, and
high-frequency components as well as the total from the Stone et al. model, and the prediction using the SAE method
with the GE turbine-attenuation factor (SAE-GE).
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Figure 4. Comparison of one-foot loss-less combustor-noise predictions using the Stone et al.30 and ANOPP SAE-GE formulas for a
GE90-94B turbofan engine at Rolling Takeoff power and Sea-Level-Standard 25oC conditions; red, green, and blue lines—Stone method
low-, mid-, and high-frequency contributions; black lines—Stone method; dashed magenta lines—SAE-GE method; major tick marks on
vertical axis represent 10 dB increments; (a)–(c): 1/3-octave SPL versus 1/3-octave center frequency in the 90o, 120o, and 150o, directions;
(d): OASPL versus polar angle

A visual overview of the difference between the predictions is shown in Fig. 5 where side-by-side carpet plots of
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the 1/3-octaveSPL as function of frequency and polar angle are shown also for the takeoff condition. The left panel
in the figure shows the total Stone et. al. model result and the right panel shows the SAE-GE result.
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Figure 5. Predicted one-foot loss-less combustor-noise 1/3-octave SPL as function of 1/3-octave center frequency and polar angle for a GE90-
94B turbofan engine at Rolling Takeoff power and Sea-Level-Standard 25oC conditions; major tick marks on vertical axis represent 20 dB
increments; (a): Stone et al.30 method; (b): ANOPP SAE-GE method

As can be seen in Figs. 4 and 5, essentially the SAE spectral distribution is replaced by the more narrow mid-
frequency component distribution, with basically the same spectral-peak frequency, as well as with low- and high-
frequency components. The peak levels of the SAE prediction and the mid-level Stone et al. component are compara-
ble, with a difference of less than about 3 dB, which is also reflected in theirOASPL distributions shown in Fig. 4(d).
Because the high-frequency component has, clearly, a higher level than the other two components in the aft quadrant,
the total Stone et al.OASPL levels are higher compared to the SAE-GE prediction, with the peak being about 5 dB
higher. The total Stone et al.OASPL peak also occurs at a 10o more shallow angle with respect to the downstream
direction than the corresponding SAE-GE peak.

B. Energy Efficient Engine Predictions

The Energy Efficient Engine (E3) Program51–53 (late 1970s to mid 1980s) was a NASA funded effort to develop
technologies that would significantly reduce fuel consumption and operating costs of (then) future transport aircraft
engines. Both Pratt & Whitney and General Electric were major participants in this highly successful project. Both
companies initially conducted separate flight-propulsion-system design and analysis studies (see Ref. 51 for refer-
ences), but because of budget constraints only General Electric was selected to build a technology-demonstration en-
gine,54 for integrated core/low-spool testing, whereas the Pratt & Whitney effort was limited to component-technology
testing. The technologies developed during this program have been effectively adopted by the engine manufacturers.
In particular, the General Electric demonstrator engine, commonly referred to as the E3 engine, formed the kernel of
what eventually became their GE90 turbofan. Because the E3 engine can be thought of as part of the GE-turbofan
family, but was not part of the data fit in Ref. 30, it is a suitable candidate for the comparisons carried out here. In
addition, there are non-proprietary mean-flow properties available,d obtained through use of the Numerical Propulsion
System Simulation55 (NPSS) computer program, for the E3 engine.

Figure 6 shows the 1/3-octaveSPL spectra in the 90, 120, and 150 degree directions and theOASPL versus polar
angle for the takeoff condition (RTO-SLS+10K). The figure shows the contributions from the low-, mid-, and high-
frequency components as well as the total from the Stone et al. model, and the prediction using the SAE method
with the GE turbine-attenuation factor (SAE-GE). As can be seen in Fig. 6, the spectral-peak frequencies for the SAE
distribution and the more narrow mid-frequency component distribution are essentially the same, but their spectral
peak levels are not as close as in Fig. 4. TheOASPL levels of the SAE-GE method and the total Stone et al. prediction
are comparable in the aft quadrant. However, the latter has a slightly higher peak at a shallower polar angle due to

dClaus, R. W., Private Communication
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Figure 6. Comparison of one-foot loss-less combustor-noise predictions using the Stone et al.30 and ANOPP SAE-GE formulas for an
E3 turbofan engine at Rolling Takeoff power and Sea-Level-Standard 25oC conditions; red, green, and blue lines—Stone method low-,
mid-, and high-frequency contributions; black lines—Stone method; magenta lines—SAE-GE method; major tick marks on vertical axis
represent 10 dB increments; (a)–(c): 1/3-octave SPL versus 1/3-octave center frequency in the 90o, 120o, and 150o, directions; (d): OASPL
versus polar angle

contributions from the high-frequency component. The difference in the predictedOASPL levels in the 110o to 140o

polar angle range, which from a practical point of view is the important direction, is less than about 3 dB.

C. TECH977 Predictions

Figure 7 shows the 1/3-octaveSPL spectra in the 90, 120, and 150 degree directions and theOASPL versus polar
angle for the takeoff condition (RTO-SLS+10K). The figure shows the contributions from the low-, mid-, and high-
frequency components as well as the total from the Stone et al. model, and the prediction using the SmE method with
the PW turbine-attenuation factor (SmE-PW). Here, the SmE-PW spectral distribution is essentially mimicked by the
low-frequency component in the Stone et al. method. The peak levels are within about 6 dB of each other in the 120o

direction, but the peak of the low-frequency component occurs at one 1/3-octave frequency band lower than SmE-PW
peak does. TheirOASPL distributions are also quite similar, with values within 3 dB of each other, but the SmE-PW
peak occurs at a 10o less shallow angle (120o versus 130o) with respect to the downstream direction. The total Stone
et al.OASPL peak is also about 4 dB higher than the SmE-PW one. Figure 7 also shows that the spectral peaks of
the mid- and high-frequency components in the Stone et al. method predictions fall above 1 kHz, with levels at least
comparable to that of the low-frequency component. The implication from the Stone et al. method prediction shown
in this figure, i.e., that there would be a significant amount of combustor noise present for frequencies higher than
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Figure 7. Comparison of one-foot loss-less combustor-noise predictions using the Stone et al.30 and ANOPP SmE-PW formulas for a
TECH977 turbofan engine at Rolling Takeoff power and Sea-Level-Standard 25oC conditions; red, green, and blue lines—Stone method
low-, mid-, and high-frequency contributions; black lines—Stone method; dashed cyan lines—SmE-PW method; major tick marks on
vertical axis represent 10 dB increments; (a)–(c): 1/3-octave SPL versus 1/3-octave center frequency in the 90o, 120o, and 150o, directions;
(d): OASPL versus polar angle

1 kHz, is in direct contradiction with prior analyses22, 23, 29, 46of EVNERT TECH977 acoustic data. Even though there
are some uncertainties in the actual values used for the geometry parameters in Eqs. (9d) and (9e), to determine the
component Strouhal numbers, these are not large enough to invalidate the conclusion that the Stone et al.30 method is
not suitable for combustor-noise predictions for the Honeywell TECH977 research turbofan.

V. Summary and Conclusions

A brief history of semi-empirical combustor noise modeling has been given. The current status of combustor-noise
prediction in NASA ANOPP has been described and near-term improvements have been discussed. The alternate
turbine-transmission factor, described in§IIC, will appear as a user selectable option in the combustor-noise module
GECOR in the next release of ANOPP and the Stone et al.30 method is scheduled to be implemented as a separate
ANOPP module later this year.e Based on the discussion and results presented herein, it is recommended thatthe
application of the new empirical Stone et al.30 combustor-noise prediction method be limited to situations involving
only General-Electric turbofan engines.

Further progress on an intermediate time frame is probably best achieved by following the research direction

eBurley, C. L., Private Communication
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of Schuster and Lieber,41 based partly on insights in Karchmer’s24 work, namely to develop better engine-transfer
functions for combustion noise rather than pursuing empirical multi-peak modeling activities that have less direct
connection to the underlying physics.

Because the impact of other propulsion-noise sources continues to be reduced due to turbofan design trends,
advances in noise-mitigation techniques, and expected aircraft configuration changes, the relative importance of core
noise is expected to greatly increase in the future. Combustor noise, an important core-noise component, needs to be
studied and mitigated in order to meet future noise goals. The noise-source structure in the combustor, including the
indirect one, and the effects of the propagation path through the engine and exhaust nozzle need to be better understood.
In particular, the acoustic consequences of the expected trends toward smaller, highly efficient gas-generator cores and
low-emission fuel-flexible combustors need to be fully investigated since future designs are quite likely to be outside
of the parameter space of existing (semi-empirical) prediction tools. This will require a concerted research effort
involving rig-testing at near-engine conditions, full-engine testing, high-fidelity simulations, as well as reduced-order
and multi-fidelity modeling activities. This will enable the required further development of propulsion-noise prediction
methods and core-noise mitigation technologies.
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Table 2. Modified Stone et al30 Low-Frequency Combustor-Noise Component (k=1) Distribution Index

logSt1 θ = 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0

-3.60 -59.70 -59.70 -59.70 -59.70 -59.70 -59.20 -58.70 -58.20 -57.20 -56.20

-3.50 -57.70 -57.70 -57.70 -57.70 -57.70 -57.20 -56.70 -56.20 -55.20 -54.20

-3.40 -55.70 -55.70 -55.70 -55.70 -55.70 -55.20 -54.70 -54.20 -53.20 -52.20

-3.30 -53.70 -53.70 -53.70 -53.70 -53.70 -53.20 -52.70 -52.20 -51.20 -50.20

-3.20 -51.70 -51.70 -51.70 -51.70 -51.70 -51.20 -50.70 -50.20 -49.20 -48.20

-3.10 -49.70 -49.70 -49.70 -49.70 -49.70 -49.20 -48.70 -48.20 -47.20 -46.20

-3.00 -47.70 -47.70 -47.70 -47.70 -47.70 -47.20 -46.70 -46.20 -45.20 -44.20

-2.90 -45.70 -45.70 -45.70 -45.70 -45.70 -45.20 -44.70 -44.20 -43.20 -42.20

-2.80 -43.70 -43.70 -43.70 -43.70 -43.70 -43.20 -42.70 -42.20 -41.20 -40.20

-2.70 -41.70 -41.70 -41.70 -41.70 -41.70 -41.20 -40.70 -40.20 -39.20 -38.20

-2.60 -39.70 -39.70 -39.70 -39.70 -39.70 -39.20 -38.70 -38.20 -37.20 -36.20

-2.50 -37.70 -37.70 -37.70 -37.70 -37.70 -37.20 -36.70 -36.20 -35.20 -34.20

-2.40 -35.70 -35.70 -35.70 -35.70 -35.70 -35.20 -34.70 -34.20 -33.20 -32.20

-2.30 -33.70 -33.70 -33.70 -33.70 -33.70 -33.20 -32.70 -32.20 -31.20 -30.20

-2.20 -31.70 -31.70 -31.70 -31.70 -31.70 -31.20 -30.70 -30.20 -29.20 -28.20

-2.10 -29.70 -29.70 -29.70 -29.70 -29.70 -29.20 -28.70 -28.20 -27.20 -26.20

-2.00 -27.70 -27.70 -27.70 -27.70 -27.70 -27.20 -26.70 -26.20 -25.20 -24.20

-1.90 -25.70 -25.70 -25.70 -25.70 -25.70 -25.20 -24.70 -24.20 -23.20 -22.20

-1.80 -23.70 -23.70 -23.70 -23.70 -23.70 -23.20 -22.70 -22.20 -21.20 -20.20

-1.70 -21.70 -21.70 -21.70 -21.70 -21.70 -21.20 -20.70 -20.20 -19.20 -18.20

-1.60 -19.70 -19.70 -19.70 -19.70 -19.70 -19.20 -18.70 -18.20 -17.20 -16.20

-1.50 -17.70 -17.70 -17.70 -17.70 -17.70 -17.20 -16.70 -16.20 -15.20 -14.20

-1.40 -15.70 -15.70 -15.70 -15.70 -15.70 -15.20 -14.70 -14.20 -13.20 -12.20

-1.30 -13.70 -13.70 -13.70 -13.70 -13.70 -13.20 -12.70 -12.20 -11.20 -10.20

-1.20 -11.70 -11.70 -11.70 -11.70 -11.70 -11.20 -10.70 -10.20 -9.20 -8.20

-1.10 -9.70 -9.70 -9.70 -9.70 -9.70 -9.20 -8.70 -8.20 -7.20 -6.20

-1.00 -10.80 -10.80 -10.80 -10.80 -10.80 -10.30 -9.80 -9.30 -8.30 -7.30

-0.90 -13.30 -13.30 -13.30 -13.30 -13.30 -12.80 -12.30 -11.80 -10.80 -9.80

-0.80 -17.30 -17.30 -17.30 -17.30 -17.30 -16.80 -16.30 -15.80 -14.80 -13.80

-0.70 -22.30 -22.30 -22.30 -22.30 -22.30 -21.80 -21.30 -20.80 -19.80 -18.80

-0.60 -28.30 -28.30 -28.30 -28.30 -28.30 -27.80 -27.30 -26.80 -25.80 -24.80

-0.50 -34.30 -34.30 -34.30 -34.30 -34.30 -33.80 -33.30 -32.80 -31.80 -30.80

-0.40 -40.30 -40.30 -40.30 -40.30 -40.30 -39.80 -39.30 -38.80 -37.80 -36.80

-0.30 -46.30 -46.30 -46.30 -46.30 -46.30 -45.80 -45.30 -44.80 -43.80 -42.80

-0.20 -52.30 -52.30 -52.30 -52.30 -52.30 -51.80 -51.30 -50.80 -49.80 -48.80

-0.10 -58.30 -58.30 -58.30 -58.30 -58.30 -57.80 -57.30 -56.80 -55.80 -54.80

0.00 -64.30 -64.30 -64.30 -64.30 -64.30 -63.80 -63.30 -62.80 -61.80 -60.80
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Table 2. Modified Stone et al30 Low-Frequency Combustor-Noise Component (k=1) Distribution Index, continued (1)

logSt1 θ = 90.0 100.0 110.0 120.0 130.0 140.0 150.0 160.0 170.0 180.0

-3.60 -56.20 -54.70 -53.00 -50.50 -46.90 -47.90 -50.90 -55.90 -60.90 -65.90

-3.50 -54.20 -52.70 -51.00 -48.50 -44.90 -45.90 -48.90 -53.90 -58.90 -63.90

-3.40 -52.20 -50.70 -49.00 -46.50 -42.90 -43.90 -46.90 -51.90 -56.90 -61.90

-3.30 -50.20 -48.70 -47.00 -44.50 -40.90 -41.90 -44.90 -49.90 -54.90 -59.90

-3.20 -48.20 -46.70 -45.00 -42.50 -38.90 -39.90 -42.90 -47.90 -52.90 -57.90

-3.10 -46.20 -44.70 -43.00 -40.50 -36.90 -37.90 -40.90 -45.90 -50.90 -55.90

-3.00 -44.20 -42.70 -41.00 -38.50 -34.90 -35.90 -38.90 -43.90 -48.90 -53.90

-2.90 -42.20 -40.70 -39.00 -36.50 -32.90 -33.90 -36.90 -41.90 -46.90 -51.90

-2.80 -40.20 -38.70 -37.00 -34.50 -30.90 -31.90 -34.90 -39.90 -44.90 -49.90

-2.70 -38.20 -36.70 -35.00 -32.50 -28.90 -29.90 -32.90 -37.90 -42.90 -47.90

-2.60 -36.20 -34.70 -33.00 -30.50 -26.90 -27.90 -30.90 -35.90 -40.90 -45.90

-2.50 -34.20 -32.70 -31.00 -28.50 -24.90 -25.90 -28.90 -33.90 -38.90 -43.90

-2.40 -32.20 -30.70 -29.00 -26.50 -22.90 -23.90 -26.90 -31.90 -36.90 -41.90

-2.30 -30.20 -28.70 -27.00 -24.50 -20.90 -21.90 -24.90 -29.90 -34.90 -39.90

-2.20 -28.20 -26.70 -25.00 -22.50 -18.90 -19.90 -22.90 -27.90 -32.90 -37.90

-2.10 -26.20 -24.70 -23.00 -20.50 -16.90 -17.90 -20.90 -25.90 -30.90 -35.90

-2.00 -24.20 -22.70 -21.00 -18.50 -15.00 -16.00 -19.00 -24.00 -29.00 -34.00

-1.90 -22.20 -20.70 -19.00 -16.50 -13.20 -14.20 -17.20 -22.20 -27.20 -32.20

-1.80 -20.20 -18.70 -17.00 -14.50 -11.50 -12.50 -15.50 -20.50 -25.50 -30.50

-1.70 -18.20 -16.70 -15.00 -12.50 -9.90 -10.90 -13.90 -18.90 -23.90 -28.90

-1.60 -16.20 -14.70 -13.00 -10.50 -8.40 -9.40 -12.40 -17.40 -22.40 -27.40

-1.50 -14.20 -12.70 -11.00 -8.60 -6.90 -7.90 -10.90 -15.90 -20.90 -25.90

-1.40 -12.20 -10.70 -9.00 -6.80 -5.40 -6.40 -9.40 -14.40 -19.40 -24.40

-1.30 -10.20 -8.70 -7.00 -5.10 -3.90 -4.90 -7.90 -12.90 -17.90 -22.90

-1.20 -8.20 -6.70 -5.20 -3.80 -2.70 -3.70 -6.70 -11.70 -16.70 -21.70

-1.10 -6.20 -4.90 -3.70 -2.70 -1.70 -2.70 -5.70 -10.70 -15.70 -20.70

-1.00 -7.30 -6.00 -4.70 -3.60 -2.50 -3.50 -6.50 -11.50 -16.50 -21.50

-0.90 -9.80 -8.50 -7.20 -6.10 -5.00 -6.00 -9.00 -14.00 -19.00 -24.00

-0.80 -13.80 -12.50 -11.20 -10.10 -9.00 -10.00 -13.00 -18.00 -23.00 -28.00

-0.70 -18.80 -17.50 -16.20 -15.10 -14.00 -15.00 -18.00 -23.00 -28.00 -33.00

-0.60 -24.80 -23.50 -22.20 -21.10 -20.00 -21.00 -24.00 -29.00 -34.00 -39.00

-0.50 -30.80 -29.50 -28.20 -27.10 -26.00 -27.00 -30.00 -35.00 -40.00 -45.00

-0.40 -36.80 -35.50 -34.20 -33.10 -32.00 -33.00 -36.00 -41.00 -46.00 -51.00

-0.30 -42.80 -41.50 -40.20 -39.10 -38.00 -39.00 -42.00 -47.00 -52.00 -57.00

-0.20 -48.80 -47.50 -46.20 -45.10 -44.00 -45.00 -48.00 -53.00 -58.00 -63.00

-0.10 -54.80 -53.50 -52.20 -51.10 -50.00 -51.00 -54.00 -59.00 -64.00 -69.00

0.00 -60.80 -59.50 -58.20 -57.10 -56.00 -57.00 -60.00 -65.00 -70.00 -75.00
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Table 2. Modified Stone et al30 Low-Frequency Combustor-Noise Component (k=1) Distribution Index, continued (2)

logSt1 θ = 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0

0.00 -64.30 -64.30 -64.30 -64.30 -64.30 -63.80 -63.30 -62.80 -61.80 -60.80

0.10 -70.30 -70.30 -70.30 -70.30 -70.30 -69.80 -69.30 -68.80 -67.80 -66.80

0.20 -76.30 -76.30 -76.30 -76.30 -76.30 -75.80 -75.30 -74.80 -73.80 -72.80

0.30 -82.30 -82.30 -82.30 -82.30 -82.30 -81.80 -81.30 -80.80 -79.80 -78.80

0.40 -88.30 -88.30 -88.30 -88.30 -88.30 -87.80 -87.30 -86.80 -85.80 -84.80

0.50 -94.30 -94.30 -94.30 -94.30 -94.30 -93.80 -93.30 -92.80 -91.80 -90.80

0.60 -100.30 -100.30 -100.30 -100.30 -100.30 -99.80 -99.30 -98.80 -97.80 -96.80

0.70 -106.30 -106.30 -106.30 -106.30 -106.30 -105.80 -105.30 -104.80 -103.80 -102.80

0.80 -112.30 -112.30 -112.30 -112.30 -112.30 -111.80 -111.30 -110.80 -109.80 -108.80

0.90 -118.30 -118.30 -118.30 -118.30 -118.30 -117.80 -117.30 -116.80 -115.80 -114.80

1.00 -124.30 -124.30 -124.30 -124.30 -124.30 -123.80 -123.30 -122.80 -121.80 -120.80

1.10 -130.30 -130.30 -130.30 -130.30 -130.30 -129.80 -129.30 -128.80 -127.80 -126.80

1.20 -136.30 -136.30 -136.30 -136.30 -136.30 -135.80 -135.30 -134.80 -133.80 -132.80

1.30 -142.30 -142.30 -142.30 -142.30 -142.30 -141.80 -141.30 -140.80 -139.80 -138.80

1.40 -148.30 -148.30 -148.30 -148.30 -148.30 -147.80 -147.30 -146.80 -145.80 -144.80

1.50 -154.30 -154.30 -154.30 -154.30 -154.30 -153.80 -153.30 -152.80 -151.80 -150.80

1.60 -160.30 -160.30 -160.30 -160.30 -160.30 -159.80 -159.30 -158.80 -157.80 -156.80

1.70 -166.30 -166.30 -166.30 -166.30 -166.30 -165.80 -165.30 -164.80 -163.80 -162.80

1.80 -172.30 -172.30 -172.30 -172.30 -172.30 -171.80 -171.30 -170.80 -169.80 -168.80

1.90 -178.30 -178.30 -178.30 -178.30 -178.30 -177.80 -177.30 -176.80 -175.80 -174.80

2.00 -184.30 -184.30 -184.30 -184.30 -184.30 -183.80 -183.30 -182.80 -181.80 -180.80

2.10 -190.30 -190.30 -190.30 -190.30 -190.30 -189.80 -189.30 -188.80 -187.80 -186.80

2.20 -196.30 -196.30 -196.30 -196.30 -196.30 -195.80 -195.30 -194.80 -193.80 -192.80

2.30 -202.30 -202.30 -202.30 -202.30 -202.30 -201.80 -201.30 -200.80 -199.80 -198.80

2.40 -208.30 -208.30 -208.30 -208.30 -208.30 -207.80 -207.30 -206.80 -205.80 -204.80

2.50 -214.30 -214.30 -214.30 -214.30 -214.30 -213.80 -213.30 -212.80 -211.80 -210.80

2.60 -220.30 -220.30 -220.30 -220.30 -220.30 -219.80 -219.30 -218.80 -217.80 -216.80

2.70 -226.30 -226.30 -226.30 -226.30 -226.30 -225.80 -225.30 -224.80 -223.80 222.80

2.80 -232.30 -232.30 -232.30 -232.30 -232.30 -231.80 -231.30 -230.80 -229.80 -228.80

2.90 -238.30 -238.30 -238.30 -238.30 -238.30 -237.80 -237.30 -236.80 -235.80 -234.80

3.00 -244.30 -244.30 -244.30 -244.30 -244.30 -243.80 -243.30 -242.80 -241.80 -240.80

3.10 -250.30 -250.30 -250.30 -250.30 -250.30 -249.80 -249.30 -248.80 -247.80 -246.80

3.20 -256.30 -256.30 -256.30 -256.30 -256.30 -255.80 -255.30 -254.80 -253.80 -252.80

3.30 -262.30 -262.30 -262.30 -262.30 -262.30 -261.80 -261.30 -260.80 -259.80 -258.80

3.40 -268.30 -268.30 -268.30 -268.30 -268.30 -267.80 -267.30 -266.80 -265.80 264.80

3.50 -274.30 -274.30 -274.30 -274.30 -274.30 -273.80 -273.30 -272.80 -271.80 -270.80

3.60 -280.30 -280.30 -280.30 -280.30 -280.30 -279.80 -279.30 -278.80 -277.80 -276.80

∆OASPL -3.500 -3.500 -3.500 -3.500 -3.500 -3.000 -2.500 -2.000 -1.000 0.000
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Table 2. Modified Stone et al30 Low-Frequency Combustor-Noise Component (k=1) Distribution Index, continued (3)

logSt1 θ = 90.0 100.0 110.0 120.0 130.0 140.0 150.0 160.0 170.0 180.0

0.00 -60.80 -59.50 -58.20 -57.10 -56.00 -57.00 -60.00 -65.00 -70.00 -75.00

0.10 -66.80 -65.50 -64.20 -63.10 -62.00 -63.00 -66.00 -71.00 -76.00 -81.00

0.20 -72.80 -71.50 -70.20 -69.10 -68.00 -69.00 -72.00 -77.00 -82.00 -87.00

0.30 -78.80 -77.50 -76.20 -75.10 -74.00 -75.00 -78.00 -83.00 -88.00 -93.00

0.40 -84.80 -83.50 -82.20 -81.10 -80.00 -81.00 -84.00 -89.00 -94.00 -99.00

0.50 -90.80 -89.50 -88.20 -87.10 -86.00 -87.00 -90.00 -95.00 -100.00 -105.00

0.60 -96.80 -95.50 -94.20 -93.10 -92.00 -93.00 -96.00 -101.00 -106.00 -111.00

0.70 -102.80 -101.50 -100.20 -99.10 -98.00 -99.00 -102.00 -107.00 -112.00 -117.00

0.80 -108.80 -107.50 -106.20 -105.10 -104.00 -105.00 -108.00 -113.00 -118.00 -123.00

0.90 -114.80 -113.50 -112.20 -111.10 -110.00 -111.00 -114.00 -119.00 -124.00 -129.00

1.00 -120.80 -119.50 -118.20 -117.10 -116.00 -117.00 -120.00 -125.00 -130.00 -135.00

1.10 -126.80 -125.50 -124.20 -123.10 -122.00 -123.00 -126.00 -131.00 -136.00 -141.00

1.20 -132.80 -131.50 -130.20 -129.10 -128.00 -129.00 -132.00 -137.00 -142.00 -147.00

1.30 -138.80 -137.50 -136.20 -135.10 -134.00 -135.00 -138.00 -143.00 -148.00 -153.00

1.40 -144.80 -143.50 -142.20 -141.10 -140.00 -141.00 -144.00 -149.00 -154.00 -159.00

1.50 -150.80 -149.50 -148.20 -147.10 -146.00 -147.00 -150.00 -155.00 -160.00 -165.00

1.60 -156.80 -155.50 -154.20 -153.10 -152.00 -153.00 -156.00 -161.00 -166.00 -171.00

1.70 -162.80 -161.50 -160.20 -159.10 -158.00 -159.00 -162.00 -167.00 -172.00 -177.00

1.80 -168.80 -167.50 -166.20 -165.10 -164.00 -165.00 -168.00 -173.00 -178.00 -183.00

1.90 -174.80 -173.50 -172.20 -171.10 -170.00 -171.00 -174.00 -179.00 -184.00 -189.00

2.00 -180.80 -179.50 -178.20 -177.10 -176.00 -177.00 -180.00 -185.00 -190.00 -195.00

2.10 -186.80 -185.50 -184.20 -183.10 -182.00 -183.00 -186.00 -191.00 -196.00 -201.00

2.20 -192.80 -191.50 -190.20 -189.10 -188.00 -189.00 -192.00 -197.00 -202.00 -207.00

2.30 -198.80 -197.50 -196.20 -195.10 -194.00 -195.00 -198.00 -203.00 -208.00 -213.00

2.40 -204.80 -203.50 -202.20 -201.10 -200.00 -201.00 -204.00 -209.00 -214.00 -219.00

2.50 -210.80 -209.50 -208.20 -207.10 -206.00 -207.00 -210.00 -215.00 -220.00 -225.00

2.60 -216.80 -215.50 -214.20 -213.10 -212.00 -213.00 -216.00 -221.00 -226.00 -231.00

2.70 -222.80 -221.50 -220.20 -219.10 -218.00 -219.00 -222.00 -227.00 -232.00 -237.00

2.80 -228.80 -227.50 -226.20 -225.10 -224.00 -225.00 -228.00 -233.00 -238.00 -243.00

2.90 -234.80 -233.50 -232.20 -231.10 -230.00 -231.00 -234.00 -239.00 -244.00 -249.00

3.00 -240.80 -239.50 -238.20 -237.10 -236.00 -237.00 -240.00 -245.00 -250.00 -255.00

3.10 -246.80 -245.50 -244.20 -243.10 -242.00 -243.00 -246.00 -251.00 -256.00 -261.00

3.20 -252.80 -251.50 -250.20 -249.10 -248.00 -249.00 -252.00 -257.00 -262.00 -267.00

3.30 -258.80 -257.50 -256.20 -255.10 -254.00 -255.00 -258.00 -263.00 -268.00 -273.00

3.40 -264.80 -263.50 -262.20 -261.10 -260.00 -261.00 -264.00 -269.00 -274.00 -279.00

3.50 -270.80 -269.50 -268.20 -267.10 -266.00 -267.00 -270.00 -275.00 -280.00 -285.00

3.60 -276.80 -275.50 -274.20 -273.10 -272.00 -273.00 -276.00 -281.00 -286.00 -291.00

∆OASPL 0.000 1.383 2.801 4.268 5.590 4.590 1.590 -3.410 -8.410 -13.410
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Table 3. Modified Stone et al30 Mid-Frequency Combustor-Noise Component (k=2) Distribution Index

logSt2 θ = 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0

-3.60 -176.31 -175.31 -174.31 -173.31 -172.31 -170.81 -169.81 -168.81 -168.31 -167.81

-3.50 -170.31 -169.31 -168.31 -167.31 -166.31 -164.81 -163.81 -162.81 -162.31 -161.81

-3.40 -164.31 -163.31 -162.31 -161.31 -160.31 -158.81 -157.81 -156.81 -156.31 -155.81

-3.30 -158.31 -157.31 -156.31 -155.31 -154.31 -152.81 -151.81 -150.81 -150.31 -149.81

-3.20 -152.31 -151.31 -150.31 -149.31 -148.31 -146.81 -145.81 -144.81 -144.31 -143.81

-3.10 -146.31 -145.31 -144.31 -143.31 -142.31 -140.81 -139.81 -138.81 -138.31 -137.81

-3.00 -140.31 -139.31 -138.31 -137.31 -136.31 -134.81 -133.81 -132.81 -132.31 -131.81

-2.90 -134.31 -133.31 -132.31 -131.31 -130.31 -128.81 -127.81 -126.81 -126.31 -125.81

-2.80 -128.31 -127.31 -126.31 -125.31 -124.31 -122.81 -121.81 -120.81 -120.31 -119.81

-2.70 -122.31 -121.31 -120.31 -119.31 -118.31 -116.81 -115.81 -114.81 -114.31 -113.81

-2.60 -116.31 -115.31 -114.31 -113.31 -112.31 -110.81 -109.81 -108.81 -108.31 -107.81

-2.50 -110.31 -109.31 -108.31 -107.31 -106.31 -104.81 -103.81 -102.81 -102.31 -101.81

-2.40 -104.31 -103.31 -102.31 -101.31 -100.31 -98.81 -97.81 -96.81 -96.31 -95.81

-2.30 -98.31 -97.31 -96.31 -95.31 -94.31 -92.81 -91.81 -90.81 -90.31 -89.81

-2.20 -92.31 -91.31 -90.31 -89.31 -88.31 -86.81 -85.81 -84.81 -84.31 -83.81

-2.10 -86.31 -85.31 -84.31 -83.31 -82.31 -80.81 -79.81 -78.81 -78.31 -77.81

-2.00 -80.31 -79.31 -78.31 -77.31 -76.31 -74.81 -73.81 -72.81 -72.31 -71.81

-1.90 -74.31 -73.31 -72.31 -71.31 -70.31 -68.81 -67.81 -66.81 -66.31 -65.81

-1.80 -68.31 -67.31 -66.31 -65.31 -64.31 -62.81 -61.81 -60.81 -60.31 -59.81

-1.70 -62.31 -61.31 -60.31 -59.31 -58.31 -56.81 -55.81 -54.81 -54.31 -53.81

-1.60 -56.31 -55.31 -54.31 -53.31 -52.31 -50.81 -49.81 -48.81 -48.31 -47.81

-1.50 -50.31 -49.31 -48.31 -47.31 -46.31 -44.81 -43.81 -42.81 -42.31 -41.81

-1.40 -44.31 -43.31 -42.31 -41.31 -40.31 -38.81 -37.81 -36.81 -36.31 -35.81

-1.30 -38.31 -37.31 -36.31 -35.31 -34.31 -32.81 -31.81 -30.81 -30.31 -29.81

-1.20 -32.31 -31.31 -30.31 -29.31 -28.31 -26.81 -25.81 -24.81 -24.31 -23.81

-1.10 -26.31 -25.31 -24.31 -23.31 -22.31 -20.81 -19.81 -18.81 -18.31 -17.81

-1.00 -20.31 -19.31 -18.31 -17.31 -16.31 -14.81 -13.81 -12.81 -12.31 -11.81

-0.90 -16.31 -15.31 -14.31 -13.31 -12.31 -10.81 -9.81 -8.81 -8.31 -7.81

-0.80 -14.31 -13.31 -12.31 -11.31 -10.31 -8.81 -7.81 -6.81 -6.31 -5.81

-0.70 -15.01 -14.01 -13.01 -12.01 -11.01 -9.51 -8.51 -7.51 -7.01 -6.51

-0.60 -16.91 -15.91 -14.91 -13.91 -12.91 -11.41 -10.41 -9.41 -8.91 -8.41

-0.50 -19.81 -18.81 -17.81 -16.81 -15.81 -14.31 -13.31 -12.31 -11.81 -11.31

-0.40 -23.81 -22.81 -21.81 -20.81 -19.81 -18.31 -17.31 -16.31 -15.81 -15.31

-0.30 -28.81 -27.81 -26.81 -25.81 -24.81 -23.31 -22.31 -21.31 -20.81 -20.31

-0.20 -34.11 -33.11 -32.11 -31.11 -30.11 -28.61 -27.61 -26.61 -26.11 -25.61

-0.10 -39.71 -38.71 -37.71 -36.71 -35.71 -34.21 -33.21 -32.21 -31.71 -31.21

0.00 -45.71 -44.71 -43.71 -42.71 -41.71 -40.21 -39.21 -38.21 -37.71 -37.21
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Table 3. Modified Stone et al30 Mid-Frequency Combustor-Noise Component (k=2) Distribution Index, continued (1)

logSt2 θ = 90.0 100.0 110.0 120.0 130.0 140.0 150.0 160.0 170.0 180.0

-3.60 -167.81 -167.31 -166.81 -166.31 -165.81 -167.31 -169.51 -171.71 -173.91 -176.11

-3.50 -161.81 -161.31 -160.81 -160.31 -159.81 -161.31 -163.51 -165.71 -167.91 -170.11

-3.40 -155.81 -155.31 -154.81 -154.31 -153.81 -155.31 -157.51 -159.71 -161.91 -164.11

-3.30 -149.81 -149.31 -148.81 -148.31 -147.81 -149.31 -151.51 -153.71 -155.91 -158.11

-3.20 -143.81 -143.31 -142.81 -142.31 -141.81 -143.31 -145.51 -147.71 -149.91 -152.11

-3.10 -137.81 -137.31 -136.81 -136.31 -135.81 -137.31 -139.51 -141.71 -143.91 -146.11

-3.00 -131.81 -131.31 -130.81 -130.31 -129.81 -131.31 -133.51 -135.71 -137.91 -140.11

-2.90 -125.81 -125.31 -124.81 -124.31 -123.81 -125.31 -127.51 -129.71 -131.91 -134.11

-2.80 -119.81 -119.31 -118.81 -118.31 -117.81 -119.31 -121.51 -123.71 -125.91 -128.11

-2.70 -113.81 -113.31 -112.81 -112.31 -111.81 -113.31 -115.51 -117.71 -119.91 -122.11

-2.60 -107.81 -107.31 -106.81 -106.31 -105.81 -107.31 -109.51 -111.71 -113.91 -116.11

-2.50 -101.81 -101.31 -100.81 -100.31 -99.81 -101.31 -103.51 -105.71 -107.91 -110.11

-2.40 -95.81 -95.31 -94.81 -94.31 -93.81 -95.31 -97.51 -99.71 -101.91 -104.11

-2.30 -89.81 -89.31 -88.81 -88.31 -87.81 -89.31 -91.51 -93.71 -95.91 -98.11

-2.20 -83.81 -83.31 -82.81 -82.31 -81.81 -83.31 -85.51 -87.71 -89.91 -92.11

-2.10 -77.81 -77.31 -76.81 -76.31 -75.81 -77.31 -79.51 -81.71 -83.91 -86.11

-2.00 -71.81 -71.31 -70.81 -70.31 -69.81 -71.31 -73.51 -75.71 -77.91 -80.11

-1.90 -65.81 -65.31 -64.81 -64.31 -63.81 -65.31 -67.51 -69.71 -71.91 -74.11

-1.80 -59.81 -59.31 -58.81 -58.31 -57.81 -59.31 -61.51 -63.71 -65.91 -68.11

-1.70 -53.81 -53.31 -52.81 -52.31 -51.81 -53.31 -55.51 -57.71 -59.91 -62.11

-1.60 -47.81 -47.31 -46.81 -46.31 -45.81 -47.31 -49.51 -51.71 -53.91 -56.11

-1.50 -41.81 -41.31 -40.81 -40.31 -39.81 -41.31 -43.51 -45.71 -47.91 -50.11

-1.40 -35.81 -35.31 -34.81 -34.31 -33.81 -35.31 -37.51 -39.71 -41.91 -44.11

-1.30 -29.81 -29.31 -28.81 -28.31 -27.81 -29.31 -31.51 -33.71 -35.91 -38.11

-1.20 -23.81 -23.31 -22.81 -22.31 -21.81 -23.31 -25.51 -27.71 -29.91 -32.11

-1.10 -17.81 -17.31 -16.81 -16.31 -15.81 -17.31 -19.51 -21.71 -23.91 -26.11

-1.00 -11.81 -11.31 -10.81 -10.31 -9.81 -11.31 -13.51 -15.71 -17.91 -20.11

-0.90 -7.81 -7.31 -6.81 -6.31 -5.81 -7.31 -9.51 -11.71 -13.91 -16.11

-0.80 -5.81 -5.31 -4.81 -4.31 -3.81 -5.31 -7.51 -9.71 -11.91 -14.11

-0.70 -6.51 -6.01 -5.51 -5.01 -4.51 -6.01 -8.21 -10.41 -12.61 -14.81

-0.60 -8.41 -7.91 -7.41 -6.91 -6.41 -7.91 -10.11 -12.31 -14.51 -16.71

-0.50 -11.31 -10.81 -10.31 -9.81 -9.31 -10.81 -13.01 -15.21 -17.41 -19.61

-0.40 -15.31 -14.81 -14.31 -13.81 -13.31 -14.81 -17.01 -19.21 -21.41 -23.61

-0.30 -20.31 -19.81 -19.31 -18.81 -18.31 -19.81 -22.01 -24.21 -26.41 -28.61

-0.20 -25.61 -25.11 -24.61 -24.11 -23.61 -25.11 -27.31 -29.51 -31.71 -33.91

-0.10 -31.21 -30.71 -30.21 -29.71 -29.21 -30.71 -32.91 -35.11 -37.31 -39.51

0.00 -37.21 -36.71 -36.21 -35.71 -35.21 -36.71 -38.91 -41.11 -43.31 -45.51
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Table 3. Modified Stone et al30 Mid-Frequency Combustor-Noise Component (k=2) Distribution Index, continued (2)

logSt2 θ = 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0

0.00 -45.71 -44.71 -43.71 -42.71 -41.71 -40.21 -39.21 -38.21 -37.71 -37.21

0.10 -51.71 -50.71 -49.71 -48.71 -47.71 -46.21 -45.21 -44.21 -43.71 -43.21

0.20 -57.71 -56.71 -55.71 -54.71 -53.71 -52.21 -51.21 -50.21 -49.71 -49.21

0.30 -63.71 -62.71 -61.71 -60.71 -59.71 -58.21 -57.21 -56.21 -55.71 -55.21

0.40 -69.71 -68.71 -67.71 -66.71 -65.71 -64.21 -63.21 -62.21 -61.71 -61.21

0.50 -75.71 -74.71 -73.71 -72.71 -71.71 -70.21 -69.21 -68.21 -67.71 -67.21

0.60 -81.71 -80.71 -79.71 -78.71 -77.71 -76.21 -75.21 -74.21 -73.71 -73.21

0.70 -87.71 -86.71 -85.71 -84.71 -83.71 -82.21 -81.21 -80.21 -79.71 -79.21

0.80 -93.71 -92.71 -91.71 -90.71 -89.71 -88.21 -87.21 -86.21 -85.71 -85.21

0.90 -99.71 -98.71 -97.71 -96.71 -95.71 -94.21 -93.21 -92.21 -91.71 -91.21

1.00 -105.71 -104.71 -103.71 -102.71 -101.71 -100.21 -99.21 -98.21 -97.71 -97.21

1.10 -111.71 -110.71 -109.71 -108.71 -107.71 -106.21 -105.21 -104.21 -103.71 -103.21

1.20 -117.71 -116.71 -115.71 -114.71 -113.71 -112.21 -111.21 -110.21 -109.71 -109.21

1.30 -123.71 -122.71 -121.71 -120.71 -119.71 -118.21 -117.21 -116.21 -115.71 -115.21

1.40 -129.71 -128.71 -127.71 -126.71 -125.71 -124.21 -123.21 -122.21 -121.71 -121.21

1.50 -135.71 -134.71 -133.71 -132.71 -131.71 -130.21 -129.21 -128.21 -127.71 -127.21

1.60 -141.71 -140.71 -139.71 -138.71 -137.71 -136.21 -135.21 -134.21 -133.71 -133.21

1.70 -147.71 -146.71 -145.71 -144.71 -143.71 -142.21 -141.21 -140.21 -139.71 -139.21

1.80 -153.71 -152.71 -151.71 -150.71 -149.71 -148.21 -147.21 -146.21 -145.71 -145.21

1.90 -159.71 -158.71 -157.71 -156.71 -155.71 -154.21 -153.21 -152.21 -151.71 -151.21

2.00 -165.71 -164.71 -163.71 -162.71 -161.71 -160.21 -159.21 -158.21 -157.71 -157.21

2.10 -171.71 -170.71 -169.71 -168.71 -167.71 -166.21 -165.21 -164.21 -163.71 -163.21

2.20 -177.71 -176.71 -175.71 -174.71 -173.71 -172.21 -171.21 -170.21 -169.71 -169.21

2.30 -183.71 -182.71 -181.71 -180.71 -179.71 -178.21 -177.21 -176.21 -175.71 -175.21

2.40 -189.71 -188.71 -187.71 -186.71 -185.71 -184.21 -183.21 -182.21 -181.71 -181.21

2.50 -195.71 -194.71 -193.71 -192.71 -191.71 -190.21 -189.21 -188.21 -187.71 -187.21

2.60 -201.71 -200.71 -199.71 -198.71 -197.71 -196.21 -195.21 -194.21 -193.71 -193.21

2.70 -207.71 -206.71 -205.71 -204.71 -203.71 -202.21 -201.21 -200.21 -199.71 -199.21

2.80 -213.71 -212.71 -211.71 -210.71 -209.71 -208.21 -207.21 -206.21 -205.71 -205.21

2.90 -219.71 -218.71 -217.71 -216.71 -215.71 -214.21 -213.21 -212.21 -211.71 -211.21

3.00 -225.71 -224.71 -223.71 -222.71 -221.71 -220.21 -219.21 -218.21 -217.71 -217.21

3.10 -231.71 -230.71 -229.71 -228.71 -227.71 -226.21 -225.21 -224.21 -223.71 -223.21

3.20 -237.71 -236.71 -235.71 -234.71 -233.71 -232.21 -231.21 -230.21 -229.71 -229.21

3.30 -243.71 -242.71 -241.71 -240.71 -239.71 -238.21 -237.21 -236.21 -235.71 -235.21

3.40 -249.71 -248.71 -247.71 -246.71 -245.71 -244.21 -243.21 -242.21 -241.71 -241.21

3.50 -255.71 -254.71 -253.71 -252.71 -251.71 -250.21 -249.21 -248.21 -247.71 -247.21

3.60 -261.71 -260.71 -259.71 -258.71 -257.71 -256.21 -255.21 -254.21 -253.71 -253.21

∆OASPL -8.500 -7.500 -6.500 -5.500 -4.500 -3.000 -2.000 -1.000 -0.500 0.000
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Table 3. Modified Stone et al30 Mid-Frequency Combustor-Noise Component (k=2) Distribution Index, continued (3)

logSt2 θ = 90.0 100.0 110.0 120.0 130.0 140.0 150.0 160.0 170.0 180.0

0.00 -37.21 -36.71 -36.21 -35.71 -35.21 -36.71 -38.91 -41.11 -43.31 -45.51

0.10 -43.21 -42.71 -42.21 -41.71 -41.21 -42.71 -44.91 -47.11 -49.31 -51.51

0.20 -49.21 -48.71 -48.21 -47.71 -47.21 -48.71 -50.91 -53.11 -55.31 -57.51

0.30 -55.21 -54.71 -54.21 -53.71 -53.21 -54.71 -56.91 -59.11 -61.31 -63.51

0.40 -61.21 -60.71 -60.21 -59.71 -59.21 -60.71 -62.91 -65.11 -67.31 -69.51

0.50 -67.21 -66.71 -66.21 -65.71 -65.21 -66.71 -68.91 -71.11 -73.31 -75.51

0.60 -73.21 -72.71 -72.21 -71.71 -71.21 -72.71 -74.91 -77.11 -79.31 -81.51

0.70 -79.21 -78.71 -78.21 -77.71 -77.21 -78.71 -80.91 -83.11 -85.31 -87.51

0.80 -85.21 -84.71 -84.21 -83.71 -83.21 -84.71 -86.91 -89.11 -91.31 -93.51

0.90 -91.21 -90.71 -90.21 -89.71 -89.21 -90.71 -92.91 -95.11 -97.31 -99.51

1.00 -97.21 -96.71 -96.21 -95.71 -95.21 -96.71 -98.91 -101.11 -103.31 -105.51

1.10 -103.21 -102.71 -102.21 -101.71 -101.21 -102.71 -104.91 -107.11 -109.31 -111.51

1.20 -109.21 -108.71 -108.21 -107.71 -107.21 -108.71 -110.91 -113.11 -115.31 -117.51

1.30 -115.21 -114.71 -114.21 -113.71 -113.21 -114.71 -116.91 -119.11 -121.31 -123.51

1.40 -121.21 -120.71 -120.21 -119.71 -119.21 -120.71 -122.91 -125.11 -127.31 -129.51

1.50 -127.21 -126.71 -126.21 -125.71 -125.21 -126.71 -128.91 -131.11 -133.31 -135.51

1.60 -133.21 -132.71 -132.21 -131.71 -131.21 -132.71 -134.91 -137.11 -139.31 -141.51

1.70 -139.21 -138.71 -138.21 -137.71 -137.21 -138.71 -140.91 -143.11 -145.31 -147.51

1.80 -145.21 -144.71 -144.21 -143.71 -143.21 -144.71 -146.91 -149.11 -151.31 -153.51

1.90 -151.21 -150.71 -150.21 -149.71 -149.21 -150.71 -152.91 -155.11 -157.31 -159.51

2.00 -157.21 -156.71 -156.21 -155.71 -155.21 -156.71 -158.91 -161.11 -163.31 -165.51

2.10 -163.21 -162.71 -162.21 -161.71 -161.21 -162.71 -164.91 -167.11 -169.31 -171.51

2.20 -169.21 -168.71 -168.21 -167.71 -167.21 -168.71 -170.91 -173.11 -175.31 -177.51

2.30 -175.21 -174.71 -174.21 -173.71 -173.21 -174.71 -176.91 -179.11 -181.31 -183.51

2.40 -181.21 -180.71 -180.21 -179.71 -179.21 -180.71 -182.91 -185.11 -187.31 -189.51

2.50 -187.21 -186.71 -186.21 -185.71 -185.21 -186.71 -188.91 -191.11 -193.31 -195.51

2.60 -193.21 -192.71 -192.21 -191.71 -191.21 -192.71 -194.91 -197.11 -199.31 -201.51

2.70 -199.21 -198.71 -198.21 -197.71 -197.21 -198.71 -200.91 -203.11 -205.31 -207.51

2.80 -205.21 -204.71 -204.21 -203.71 -203.21 -204.71 -206.91 -209.11 -211.31 -213.51

2.90 -211.21 -210.71 -210.21 -209.71 -209.21 -210.71 -212.91 -215.11 -217.31 -219.51

3.00 -217.21 -216.71 -216.21 -215.71 -215.21 -216.71 -218.91 -221.11 -223.31 -225.51

3.10 -223.21 -222.71 -222.21 -221.71 -221.21 -222.71 -224.91 -227.11 -229.31 -231.51

3.20 -229.21 -228.71 -228.21 -227.71 -227.21 -228.71 -230.91 -233.11 -235.31 -237.51

3.30 -235.21 -234.71 -234.21 -233.71 -233.21 -234.71 -236.91 -239.11 -241.31 -243.51

3.40 -241.21 -240.71 -240.21 -239.71 -239.21 -240.71 -242.91 -245.11 -247.31 -249.51

3.50 -247.21 -246.71 -246.21 -245.71 -245.21 -246.71 -248.91 -251.11 -253.31 -255.51

3.60 -253.21 -252.71 -252.21 -251.71 -251.21 -252.71 -254.91 -257.11 -259.31 -261.51

∆OASPL 0.000 0.500 1.000 1.500 2.000 0.500 -1.700 -3.900 -6.100 -8.300
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Table 4. Modified Stone et al30 High-Frequency Combustor-Noise Component (k=3) Distribution Index

logSt3 θ = 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0

-3.60 -199.24 -198.64 -198.04 -197.44 -196.84 -196.14 -195.44 -195.24 -194.84 -194.04

-3.50 -193.24 -192.64 -192.04 -191.44 -190.84 -190.14 -189.44 -189.24 -188.84 -188.04

-3.40 -187.24 -186.64 -186.04 -185.44 -184.84 -184.14 -183.44 -183.24 -182.84 -182.04

-3.30 -181.24 -180.64 -180.04 -179.44 -178.84 -178.14 -177.44 -177.24 -176.84 -176.04

-3.20 -175.24 -174.64 -174.04 -173.44 -172.84 -172.14 -171.44 -171.24 -170.84 -170.04

-3.10 -169.24 -168.64 -168.04 -167.44 -166.84 -166.14 -165.44 -165.24 -164.84 -164.04

-3.00 -163.24 -162.64 -162.04 -161.44 -160.84 -160.14 -159.44 -159.24 -158.84 -158.04

-2.90 -157.24 -156.64 -156.04 -155.44 -154.84 -154.14 -153.44 -153.24 -152.84 -152.04

-2.80 -151.24 -150.64 -150.04 -149.44 -148.84 -148.14 -147.44 -147.24 -146.84 -146.04

-2.70 -145.24 -144.64 -144.04 -143.44 -142.84 -142.14 -141.44 -141.24 -140.84 -140.04

-2.60 -139.24 -138.64 -138.04 -137.44 -136.84 -136.14 -135.44 -135.24 -134.84 -134.04

-2.50 -133.24 -132.64 -132.04 -131.44 -130.84 -130.14 -129.44 -129.24 -128.84 -128.04

-2.40 -127.24 -126.64 -126.04 -125.44 -124.84 -124.14 -123.44 -123.24 -122.84 -122.04

-2.30 -121.24 -120.64 -120.04 -119.44 -118.84 -118.14 -117.44 -117.24 -116.84 -116.04

-2.20 -115.24 -114.64 -114.04 -113.44 -112.84 -112.14 -111.44 -111.24 -110.84 -110.04

-2.10 -109.24 -108.64 -108.04 -107.44 -106.84 -106.14 -105.44 -105.24 -104.84 -104.04

-2.00 -103.24 -102.64 -102.04 -101.44 -100.84 -100.14 -99.44 -99.24 -98.84 -98.04

-1.90 -97.24 -96.64 -96.04 -95.44 -94.84 -94.14 -93.44 -93.24 -92.84 -92.04

-1.80 -91.24 -90.64 -90.04 -89.44 -88.84 -88.14 -87.44 -87.24 -86.84 -86.04

-1.70 -85.24 -84.64 -84.04 -83.44 -82.84 -82.14 -81.44 -81.24 -80.84 -80.04

-1.60 -79.24 -78.64 -78.04 -77.44 -76.84 -76.14 -75.44 -75.24 -74.84 -74.04

-1.50 -73.24 -72.64 -72.04 -71.44 -70.84 -70.14 -69.44 -69.24 -68.84 -68.04

-1.40 -67.24 -66.64 -66.04 -65.44 -64.84 -64.14 -63.44 -63.24 -62.84 -62.04

-1.30 -61.24 -60.64 -60.04 -59.44 -58.84 -58.14 -57.44 -57.24 -56.84 -56.04

-1.20 -55.24 -54.64 -54.04 -53.44 -52.84 -52.14 -51.44 -51.24 -50.84 -50.04

-1.10 -49.24 -48.64 -48.04 -47.44 -46.84 -46.14 -45.44 -45.24 -44.84 -44.04

-1.00 -43.24 -42.64 -42.04 -41.44 -40.84 -40.14 -39.44 -39.24 -38.84 -38.04

-0.90 -37.24 -36.64 -36.04 -35.44 -34.84 -34.14 -33.44 -33.24 -32.84 -32.04

-0.80 -31.24 -30.64 -30.04 -29.44 -28.84 -28.14 -27.44 -27.24 -26.84 -26.04

-0.70 -25.24 -24.64 -24.04 -23.44 -22.84 -22.14 -21.44 -21.24 -20.84 -20.04

-0.60 -20.04 -19.44 -18.84 -18.24 -17.64 -16.94 -16.24 -16.04 -15.64 -14.84

-0.50 -15.94 -15.34 -14.74 -14.14 -13.54 -12.84 -12.14 -11.94 -11.54 -10.74

-0.40 -13.04 -12.44 -11.84 -11.24 -10.64 -9.94 -9.24 -9.04 -8.64 -7.84

-0.30 -12.04 -11.44 -10.84 -10.24 -9.64 -8.94 -8.24 -8.04 -7.64 -6.84

-0.20 -12.34 -11.74 -11.14 -10.54 -9.94 -9.24 -8.54 -8.34 -7.94 -7.14

-0.10 -13.34 -12.74 -12.14 -11.54 -10.94 -10.24 -9.54 -9.34 -8.94 -8.14

0.00 -15.54 -14.94 -14.34 -13.74 -13.14 -12.44 -11.74 -11.54 -11.14 -10.34
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Table 4. Modified Stone et al30 High-Frequency Combustor-Noise Component (k=3) Distribution Index, continued (1)

logSt3 θ = 90.0 100.0 110.0 120.0 130.0 140.0 150.0 160.0 170.0 180.0

-3.60 -194.04 -192.54 -190.84 -189.04 -187.64 -191.14 -193.64 -195.64 -197.64 -199.64

-3.50 -188.04 -186.54 -184.84 -183.04 -181.64 -185.14 -187.64 -189.64 -191.64 -193.64

-3.40 -182.04 -180.54 -178.84 -177.04 -175.64 -179.14 -181.64 -183.64 -185.64 -187.64

-3.30 -176.04 -174.54 -172.84 -171.04 -169.64 -173.14 -175.64 -177.64 -179.64 -181.64

-3.20 -170.04 -168.54 -166.84 -165.04 -163.64 -167.14 -169.64 -171.64 -173.64 -175.64

-3.10 -164.04 -162.54 -160.84 -159.04 -157.64 -161.14 -163.64 -165.64 -167.64 -169.64

-3.00 -158.04 -156.54 -154.84 -153.04 -151.64 -155.14 -157.64 -159.64 -161.64 -163.64

-2.90 -152.04 -150.54 -148.84 -147.04 -145.64 -149.14 -151.64 -153.64 -155.64 -157.64

-2.80 -146.04 -144.54 -142.84 -141.04 -139.64 -143.14 -145.64 -147.64 -149.64 -151.64

-2.70 -140.04 -138.54 -136.84 -135.04 -133.64 -137.14 -139.64 -141.64 -143.64 -145.64

-2.60 -134.04 -132.54 -130.84 -129.04 -127.64 -131.14 -133.64 -135.64 -137.64 -139.64

-2.50 -128.04 -126.54 -124.84 -123.04 -121.64 -125.14 -127.64 -129.64 -131.64 -133.64

-2.40 -122.04 -120.54 -118.84 -117.04 -115.64 -119.14 -121.64 -123.64 -125.64 -127.64

-2.30 -116.04 -114.54 -112.84 -111.04 -109.64 -113.14 -115.64 -117.64 -119.64 -121.64

-2.20 -110.04 -108.54 -106.84 -105.04 -103.64 -107.14 -109.64 -111.64 -113.64 -115.64

-2.10 -104.04 -102.54 -100.84 -99.04 -97.64 -101.14 -103.64 -105.64 -107.64 -109.64

-2.00 -98.04 -96.54 -94.84 -93.04 -91.64 -95.14 -97.64 -99.64 -101.64 -103.64

-1.90 -92.04 -90.54 -88.84 -87.04 -85.64 -89.14 -91.64 -93.64 -95.64 -97.64

-1.80 -86.04 -84.54 -82.84 -81.04 -79.64 -83.14 -85.64 -87.64 -89.64 -91.64

-1.70 -80.04 -78.54 -76.84 -75.04 -73.64 -77.14 -79.64 -81.64 -83.64 -85.64

-1.60 -74.04 -72.54 -70.84 -69.04 -67.64 -71.14 -73.64 -75.64 -77.64 -79.64

-1.50 -68.04 -66.54 -64.84 -63.04 -61.64 -65.14 -67.64 -69.64 -71.64 -73.64

-1.40 -62.04 -60.54 -58.84 -57.04 -55.64 -59.14 -61.64 -63.64 -65.64 -67.64

-1.30 -56.04 -54.54 -52.84 -51.04 -49.64 -53.14 -55.64 -57.64 -59.64 -61.64

-1.20 -50.04 -48.54 -46.84 -45.04 -43.64 -47.14 -49.64 -51.64 -53.64 -55.64

-1.10 -44.04 -42.54 -40.84 -39.04 -37.64 -41.14 -43.64 -45.64 -47.64 -49.64

-1.00 -38.04 -36.54 -34.84 -33.04 -31.64 -35.14 -37.64 -39.64 -41.64 -43.64

-0.90 -32.04 -30.54 -28.84 -27.04 -25.64 -29.14 -31.64 -33.64 -35.64 -37.64

-0.80 -26.04 -24.54 -22.84 -21.04 -19.64 -23.14 -25.64 -27.64 -29.64 -31.64

-0.70 -20.04 -18.54 -16.84 -15.04 -13.64 -17.14 -19.64 -21.64 -23.64 -25.64

-0.60 -14.84 -13.34 -11.64 -9.84 -8.44 -11.94 -14.44 -16.44 -18.44 -20.44

-0.50 -10.74 -9.24 -7.54 -5.74 -4.34 -7.84 -10.34 -12.34 -14.34 -16.34

-0.40 -7.84 -6.34 -4.64 -2.84 -1.44 -4.94 -7.44 -9.44 -11.44 -13.44

-0.30 -6.84 -5.34 -3.64 -1.84 -0.44 -3.94 -6.44 -8.44 -10.44 -12.44

-0.20 -7.14 -5.64 -3.94 -2.14 -0.74 -4.24 -6.74 -8.74 -11.14 -13.14

-0.10 -8.14 -6.64 -4.94 -3.14 -1.74 -5.24 -7.74 -9.74 -12.64 -14.64

0.00 -10.34 -8.84 -7.14 -5.34 -3.94 -7.44 -9.94 -11.94 -15.44 -17.44
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Table 4. Modified Stone et al30 High-Frequency Combustor-Noise Component (k=3) Distribution Index, continued (2)

logSt3 θ = 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0

0.00 -15.54 -14.94 -14.34 -13.74 -13.14 -12.44 -11.74 -11.54 -11.14 -10.34

0.10 -19.14 -18.54 -17.94 -17.34 -16.74 -16.04 -15.34 -15.14 -14.74 -13.94

0.20 -23.64 -23.04 -22.44 -21.84 -21.24 -20.54 -19.84 -19.64 -19.24 -18.44

0.30 -29.64 -29.04 -28.44 -27.84 -27.24 -26.54 -25.84 -25.64 -25.24 -24.44

0.40 -35.64 -35.04 -34.44 -33.84 -33.24 -32.54 -31.84 -31.64 -31.24 -30.44

0.50 -41.64 -41.04 -40.44 -39.84 -39.24 -38.54 -37.84 -37.64 -37.24 -36.44

0.60 -47.64 -47.04 -46.44 -45.84 -45.24 -44.54 -43.84 -43.64 -43.24 -42.44

0.70 -53.64 -53.04 -52.44 -51.84 -51.24 -50.54 -49.84 -49.64 -49.24 -48.44

0.80 -59.64 -59.04 -58.44 -57.84 -57.24 -56.54 -55.84 -55.64 -55.24 -54.44

0.90 -65.64 -65.04 -64.44 -63.84 -63.24 -62.54 -61.84 -61.64 -61.24 -60.44

1.00 -71.64 -71.04 -70.44 -69.84 -69.24 -68.54 -67.84 -67.64 -67.24 -66.44

1.10 -77.64 -77.04 -76.44 -75.84 -75.24 -74.54 -73.84 -73.64 -73.24 -72.44

1.20 -83.64 -83.04 -82.44 -81.84 -81.24 -80.54 -79.84 -79.64 -79.24 -78.44

1.30 -89.64 -89.04 -88.44 -87.84 -87.24 -86.54 -85.84 -85.64 -85.24 -84.44

1.40 -95.64 -95.04 -94.44 -93.84 -93.24 -92.54 -91.84 -91.64 -91.24 -90.44

1.50 -101.64 -101.04 -100.44 -99.84 -99.24 -98.54 -97.84 -97.64 -97.24 -96.44

1.60 -107.64 -107.04 -106.44 -105.84 -105.24 -104.54 -103.84 -103.64 -103.24 -102.44

1.70 -113.64 -113.04 -112.44 -111.84 -111.24 -110.54 -109.84 -109.64 -109.24 -108.44

1.80 -119.64 -119.04 -118.44 -117.84 -117.24 -116.54 -115.84 -115.64 -115.24 -114.44

1.90 -125.64 -125.04 -124.44 -123.84 -123.24 -122.54 -121.84 -121.64 -121.24 -120.44

2.00 -131.64 -131.04 -130.44 -129.84 -129.24 -128.54 -127.84 -127.64 -127.24 -126.44

2.10 -137.64 -137.04 -136.44 -135.84 -135.24 -134.54 -133.84 -133.64 -133.24 -132.44

2.20 -143.64 -143.04 -142.44 -141.84 -141.24 -140.54 -139.84 -139.64 -139.24 -138.44

2.30 -149.64 -149.04 -148.44 -147.84 -147.24 -146.54 -145.84 -145.64 -145.24 -144.44

2.40 -155.64 -155.04 -154.44 -153.84 -153.24 -152.54 -151.84 -151.64 -151.24 -150.44

2.50 -161.64 -161.04 -160.44 -159.84 -159.24 -158.54 -157.84 -157.64 -157.24 -156.44

2.60 -167.64 -167.04 -166.44 -165.84 -165.24 -164.54 -163.84 -163.64 -163.24 -162.44

2.70 -173.64 -173.04 -172.44 -171.84 -171.24 -170.54 -169.84 -169.64 -169.24 -168.44

2.80 -179.64 -179.04 -178.44 -177.84 -177.24 -176.54 -175.84 -175.64 -175.24 -174.44

2.90 -185.64 -185.04 -184.44 -183.84 -183.24 -182.54 -181.84 -181.64 -181.24 -180.44

3.00 -191.64 -191.04 -190.44 -189.84 -189.24 -188.54 -187.84 -187.64 -187.24 -186.44

3.10 -197.64 -197.04 -196.44 -195.84 -195.24 -194.54 -193.84 -193.64 -193.24 -192.44

3.20 -203.64 -203.04 -202.44 -201.84 -201.24 -200.54 -199.84 -199.64 -199.24 -198.44

3.30 -209.64 -209.04 -208.44 -207.84 -207.24 -206.54 -205.84 -205.64 -205.24 -204.44

3.40 -215.64 -215.04 -214.44 -213.84 -213.24 -212.54 -211.84 -211.64 -211.24 -210.44

3.50 -221.64 -221.04 -220.44 -219.84 -219.24 -218.54 -217.84 -217.64 -217.24 -216.44

3.60 -227.64 -227.04 -226.44 -225.84 -225.24 -224.54 -223.84 -223.64 -223.24 -222.44

∆OASPL -5.200 -4.600 -4.000 -3.400 -2.800 -2.100 -1.400 -1.200 -0.800 0.000
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Table 4. Modified Stone et al30 High-Frequency Combustor-Noise Component (k=3) Distribution Index, continued (3)

logSt3 θ = 90.0 100.0 110.0 120.0 130.0 140.0 150.0 160.0 170.0 180.0

0.00 -10.34 -8.84 -7.14 -5.34 -3.94 -7.44 -9.94 -11.94 -15.44 -17.44

0.10 -13.94 -12.44 -10.74 -8.94 -7.54 -11.04 -13.54 -15.54 -19.74 -21.74

0.20 -18.44 -16.94 -15.24 -13.44 -12.04 -15.54 -18.04 -20.04 -25.54 -27.54

0.30 -24.44 -22.94 -21.24 -19.44 -18.04 -21.54 -24.04 -26.04 -31.54 -33.54

0.40 -30.44 -28.94 -27.24 -25.44 -24.04 -27.54 -30.04 -32.04 -37.54 -39.54

0.50 -36.44 -34.94 -33.24 -31.44 -30.04 -33.54 -36.04 -38.04 -43.54 -45.54

0.60 -42.44 -40.94 -39.24 -37.44 -36.04 -39.54 -42.04 -44.04 -49.54 -51.54

0.70 -48.44 -46.94 -45.24 -43.44 -42.04 -45.54 -48.04 -50.04 -55.54 -57.54

0.80 -54.44 -52.94 -51.24 -49.44 -48.04 -51.54 -54.04 -56.04 -61.54 -63.54

0.90 -60.44 -58.94 -57.24 -55.44 -54.04 -57.54 -60.04 -62.04 -67.54 -69.54

1.00 -66.44 -64.94 -63.24 -61.44 -60.04 -63.54 -66.04 -68.04 -73.54 -75.54

1.10 -72.44 -70.94 -69.24 -67.44 -66.04 -69.54 -72.04 -74.04 -79.54 -81.54

1.20 -78.44 -76.94 -75.24 -73.44 -72.04 -75.54 -78.04 -80.04 -85.54 -87.54

1.30 -84.44 -82.94 -81.24 -79.44 -78.04 -81.54 -84.04 -86.04 -91.54 -93.54

1.40 -90.44 -88.94 -87.24 -85.44 -84.04 -87.54 -90.04 -92.04 -97.54 -99.54

1.50 -96.44 -94.94 -93.24 -91.44 -90.04 -93.54 -96.04 -98.04 -103.54 -105.54

1.60 -102.44 -100.94 -99.24 -97.44 -96.04 -99.54 -102.04 -104.04 -109.54 -111.54

1.70 -108.44 -106.94 -105.24 -103.44 -102.04 -105.54 -108.04 -110.04 -115.54 -117.54

1.80 -114.44 -112.94 -111.24 -109.44 -108.04 -111.54 -114.04 -116.04 -121.54 -123.54

1.90 -120.44 -118.94 -117.24 -115.44 -114.04 -117.54 -120.04 -122.04 -127.54 -129.54

2.00 -126.44 -124.94 -123.24 -121.44 -120.04 -123.54 -126.04 -128.04 -133.54 -135.54

2.10 -132.44 -130.94 -129.24 -127.44 -126.04 -129.54 -132.04 -134.04 -139.54 -141.54

2.20 -138.44 -136.94 -135.24 -133.44 -132.04 -135.54 -138.04 -140.04 -145.54 -147.54

2.30 -144.44 -142.94 -141.24 -139.44 -138.04 -141.54 -144.04 -146.04 -151.54 -153.54

2.40 -150.44 -148.94 -147.24 -145.44 -144.04 -147.54 -150.04 -152.04 -157.54 -159.54

2.50 -156.44 -154.94 -153.24 -151.44 -150.04 -153.54 -156.04 -158.04 -163.54 -165.54

2.60 -162.44 -160.94 -159.24 -157.44 -156.04 -159.54 -162.04 -164.04 -169.54 -171.54

2.70 -168.44 -166.94 -165.24 -163.44 -162.04 -165.54 -168.04 -170.04 -175.54 -177.54

2.80 -174.44 -172.94 -171.24 -169.44 -168.04 -171.54 -174.04 -176.04 -181.54 -183.54

2.90 -180.44 -178.94 -177.24 -175.44 -174.04 -177.54 -180.04 -182.04 -187.54 -189.54

3.00 -186.44 -184.94 -183.24 -181.44 -180.04 -183.54 -186.04 -188.04 -193.54 -195.54

3.10 -192.44 -190.94 -189.24 -187.44 -186.04 -189.54 -192.04 -194.04 -199.54 -201.54

3.20 -198.44 -196.94 -195.24 -193.44 -192.04 -195.54 -198.04 -200.04 -205.54 -207.54

3.30 -204.44 -202.94 -201.24 -199.44 -198.04 -201.54 -204.04 -206.04 -211.54 -213.54

3.40 -210.44 -208.94 -207.24 -205.44 -204.04 -207.54 -210.04 -212.04 -217.54 -219.54

3.50 -216.44 -214.94 -213.24 -211.44 -210.04 -213.54 -216.04 -218.04 -223.54 -225.54

3.60 -222.44 -220.94 -219.24 -217.44 -216.04 -219.54 -222.04 -224.04 -229.54 -231.54

∆OASPL 0.000 1.500 3.200 5.000 6.400 2.900 0.400 -1.600 -4.054 -6.054
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