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2. INTRODUCTION
2.1 Motivation

Honeywell Engines, Systems & Services (Honeywell), building on the technology
developed under the Quiet High Speed Fan contract (AOI 14, NAS3-27752) (Reference 1), has
designed and fabricated an advanced forward swept fan with the following characteristics:

1. Reduced noise at supersonic tip speeds, in comparison to current state-of-the-art fan technology
2. Improved aeroelastic stability within the anticipated operating envelope
3. Aerodynamic performance consistent with current state-of-the-art fan technology

2.2 Description of Work

2.2.1 Aerodynamic and Mechanical Design

Honeywell has completed a new design for the QHSF II (lower hub/tip ratio and higher
specific flow than the Baseline I fan). Aerodynamic and mechanical design studies were
conducted to allow for study of alternative fan blade and vane geometry.

Honeywell conducted an analytical Design of Experiments (DOE) of potential blade and vane
modifications with the goal of identifying a design that provides improved vibration response
while maintaining or improving aerodynamic and acoustic performance. The DOE included:
modifying the incidence of the forward-swept fan blades to improve aeroelastic response,
examining the sensitivity in performance with reduced levels of forward sweep at the rotor LE tip,
and modifying the geometry of 3-D aft-swept vanes including removal of scallop to improve
performance and reduce noise. A design was selected based on the results of the DOE study.
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Detailed aerodynamic analysis was performed at design and off-design speeds, using 2-D
axisymmetric streamline curvature analysis of the overall fan stage (rotor, stator, front frame), and
3-D viscous flow analyses for both isolated rotor and stator airfoils as well as combined stage
designs. Mechanical analyses of the redesigned fan blade attached to the existing disk and stator
vane was performed. An analysis of the rotor-stator-strut interaction was performed to assess the
risk of strut-induced fan rotor forced vibration. A comparison of the predicted aerodynamic
performance of the Quiet High Speed Fan I (QHSF II) to the original Quiet High Speed Fan
(QHSF I) and the corresponding baseline fans was performed.

Honeywell performed CFD analysis of the Baseline Il and QHSF II stator & strut
configurations at different stator clocking angles to determine the influence of stator
configuration on the rotor flow field. The aerodynamic design of the Baseline II stator was
modified as necessary to efficiently run with the QHSF II rotor.

2.2.2 Aeroelastic Analysis

Prior to the initiation of the QHSF II design and in collaboration with NASA, an aeroelastic
tool calibration study was conducted using the QHSF I result, which established the best
practices for flutter prediction using the TURBO aeroelastic analysis code. A baseline
aerodynamic solution for the QHSF I using the Average Passage / NASA (APNASA) CFD code
was prepared. A tip clearance sensitivity study was conducted. In collaboration with NASA,
Honeywell conducted a mode shape sensitivity study. NASA conducted a grid sensitivity study
and an inlet/exit boundary condition sensitivity study. Honeywell defined the part speed
geometry for the QHSF I, and NASA performed 3-D unsteady aerodynamic analyses of the
QHSF I along two speed lines (part speed and near design speed) using TURBO. NASA
assessed the impact of rig size differences on the aeroelastic response. In collaboration with
NASA, Honeywell prepared a summary of the tool calibration study results.

In collaboration with NASA, Honeywell conducted an aeroelastic evaluation of the DOE
design modifications and an aeroelastic analysis of the final redesigned configuration, and
provided a comparison of the predicted acrodynamic damping and flutter boundary with the
QHSF I and with the Baseline 1.

2.2.3 Acoustic Analysis

Honeywell evaluated the effect of the DOE blade design modifications on the rotor-stator
interaction tone duct mode noise levels at several part speed conditions using SOURCE3D. Predictions
of the interaction tone noise levels of the final design using SOURCE3D/TfaNSs, as well as
comparisons to the QHSF I and the Baseline I at the same operating conditions, were also prepared.

2.2.4 Blade and Vane Fabrication

Honeywell generated solid models and detail drawings of the QHSF II fan, stator, and stator
housing rings. Twenty-seven fan blades (22 + 5 spares) were machined from bar stock.
Acoustic ring signature and holography data on the blades to determine natural frequencies and
strain gage locations were produced. Honeywell installed strain gages on the blades using
traditional type strain gages. The wiring was run to dog-bone connectors on the front of the
blades. NASA mated the instrumented blades with the rotor and completed the strain gage
wiring into the existing hub and rotor.
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Honeywell fabricated a set of 55 (50 plus 5 spares) stator vanes each for both the QHSF II
and the Baseline II designs. Honeywell also fabricated the stator hub and tip mounting rings and
assembled the stators.

2.2.5 RigMoaodifications

Honeywell designed and procured additional 22” rig hardware as required by the new
Baseline II fan design. This hardware included the fan disk, spinner, front frame, and additional
stator assembly hardware. Honeywell made all modifications to existing rig hardware as
necessary to accommodate the new flow path. The front frame of the rig was modified to
accommodate hot wire/film probes to make flow measurements downstream of the vanes.
NASA provided the hot wire/film probes and supporting instrumentation.

3. AEROELASTIC TOOL VALIDATION
3.1 TURBO Modeling for QHSF |

The QHSF I design consists of 22 forward-swept inserted blades with a moderate aspect
ratio and state-of-the-art acrodynamic performance and operability (Reference 1 and 2). During
rig testing in a high-speed wind tunnel, the fan performed well at design speed (100 percent
speed), and was successfully throttled to the stall line. However, large vibratory responses due to
flutter were encountered just above the sea level static (SLS) operating line at several part-speed
conditions. The flutter mode was identified as the fundamental bending mode of the airfoil, in a
2 nodal diameter (ND) forward-traveling wave (FTW) pattern. The experimentally determined
flutter boundary is depicted in Figure 1.

———Rotor Map

—8—TURBO at 100% Speed
—#—TURBO at 85% Speed

—4&—TURBO at 75% Speed

Predicted Stall Line

100%

Rotor Pressure Ratio

Measured Flutter
Boundary

85%

SLS Op Line

ALT Op Line
75%

Inlet Corrected Flow (Ibm/s)

Figure 1. Flutter Boundary Based on Rig Testing and the Predicted Speed Lines From
TURBO.
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To help understand the reasons for the occurrence of flutter in this design, a detailed
computational assessment was undertaken using the TURBO code developed by Mississippi State
University (Reference 3 and 4) and NASA Glenn Research Center (Reference 5). TURBO is a 3D,
time-accurate unsteady, Reynolds-Averaged Navier-Stokes code with the ability to model rotating
or stationary blade rows, rotor-stator interaction, and blade motion. The approach followed for the
flutter analysis in TURBO consists of introducing the blade motion by physically deforming the
surfaces of the blade as defined by the mode shape at the prescribed vibratory frequency
(Reference 5). Phase lag boundary conditions (Reference 6) are used, which allow any desired
nodal diameter to be calculated with a single passage. The resulting aerodynamic work per cycle is
converted into a more meaningful damping value to determine stability of the blade motion. If the
damping is positive, the motion is stable. If the damping is negative, the motion is unstable and
flutter can occur. In this paper, damping values are reported in terms of critical damping ratio, C.
All structural analyses were conducted using the commercial finite element program ANSY'S
(Reference 7).

An aeroelastic tool calibration study was conducted using the QHSF I rotor geometry. The
test conditions were at an inlet total pressure of 14.3 psi and an inlet total temperature of 73°F.
Steady and unsteady flow computations were conducted for a total of three speed lines. The
correlation effort included 100 percent, 85 percent, and 75 percent speed lines. Recall that no
flutter was encountered during any testing at design speed, while the rig tests indicated
significant flutter response just slightly toward the stall side of the operating line at the two lower
speeds. Choosing these three speeds allows predictions along both stable and unstable speed
lines to be evaluated. Table 1 summarizes speeds of interest.

Tablel. Speedsof Interest for NASA Rig.

Corrected Physical
% Speed RPM RyPM
100 15357 15572
85 13053 13236
75 11518 11679

3.1.1 TURBO Grid

The baseline grid for TURBO was generated by MMESH and then smoothed using a Poisson
algorithm in CURVE2. The geometry used for this grid was based on the fully hot (100 percent
speed) airfoil shape. Later the grid was refined to be consistent with the actual speed line analyzed.

MMESH is a grid-generation code developed at NASA Glenn. It takes the airfoil geometry
and generates the three-dimensional computational grids for APNASA code (Reference 8).
CURVE2 is a Honeywell developed code. It takes the shear-H grid from MMESH and creates a
smooth and nearly orthogonal computational grid by solving Poisson equation for TURBO code.

Values for the tip clearance are based on measurements taken during the NASA 22” rig testing.
NASA provided the results, and values of interest are summarized in Table 2. There is significant
skew in the clearance, and modifications were made to the grid generator to allow the actual gap to
be modeled. However, the initial model uses the average of the leading and trailing edge gaps. Note
that the full physical clearance is modeled. Four cells (radially) are used for the tip gap.
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Table2. Tip Clearancesat Speeds of Interest for NASA Rig.

Location | 85% Speed | 75% Speed
Lead Edge 0.046 0.053
Mid Chord 0.033 0.040
Trail Edge 0.015 0.021

Average 0.031 0.037

The grid size was limited to the maximum size that would run on Honeywell workstations.
Parameters that describe the resulting grid are:

e  #axial cells (ni)= 121

e  #radial cells (nj) =51

e  # tangential cells (Nk) = 39
® leading edge (ile) =32

® trailing edge (ite) = 86

e  blade tip (jtip) = 47.

Following the practice recommended by Chen et al. (Reference 9), a utility program was used
to initialize the TURBO solutions by mapping an existing APNASA solution on a fine grid. This
initial solution is for a different speed, and actually for the 18” rig size. But this solution is still a
much better starting point than uniform flow, and so the convergence of the TURBO steady
solution should be much faster. Note that the original aerodynamic grid files and solutions are
flipped relative to the hardware (i.e., direction of rotation is opposite). To ensure consistency
between the CFD grid and the FEM mesh, the TURBO grid and initial solution were flipped after
the mapping procedure using a second utility program. This consistency of orientation (or rotation
direction) is required to allow mapping of mode shapes and other quantities between the
aerodynamic and mechanical domains. This final grid is shown in Figure 2.

Il
(I

TANE

MR

ULy |

|

Figure 2. Grid of the QHSF | Used for the TURBO Analyses.
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3.1.2 Inlet and Exit Profiles

The inlet and exit profiles of pressure, temperature, and flow angles which define the
boundary conditions for the steady CFD analyses are based on a combination of NASA rig
measurements, Honeywell rig measurements, and calculations from APNASA. The stations for
the inlet profile are a combination of spans from the NASA measurements and spans in the
APNASA input. The NASA data provides stations near the tip to specify the total pressure
losses, while APNASA provides those near the hub to account primarily for changes in radial
flow angle. The transition occurs just above 80 percent span.

The results from measurements in the NASA rig provided the inlet total pressure profile
near the tip, accounting for losses due to the inlet (bellmouth, etc). At the hub, no measurements
were available, so a computational estimate of the boundary layer as calculated by APNASA for
the analysis of the 18” rig is used. This hub boundary layer extends 1 percent into the flow field.
Two additional stations, at 0.5 percent and 1 percent span, were added to the APNASA stations
to permit this profile to be specified. At other spans, a constant value for total pressure was
assumed.

The inlet total temperature and tangential flow angle were assumed to be constant. The
radial flow angle was obtained from APNASA input. All the stations from the APNASA input
were used up to about 80 percent span, since the angle is nonzero up to this span. A value of 0.5
degrees was specified at 86.61 percent span to act as a transition. Beyond this span, the radial
angle was specified to be zero, and the span locations correspond to the NASA measurements.

The exit profile for the static pressure was based on work done earlier for the 18” rig.
Ideally, there would be measurements from the NASA tests, but no data was available between
the rotor and the stator. Data at the hub and case was available from the 18” rig tests. It was
assumed that this profile would be the same for both rigs. The work conducted previously
determined that the ratio of the tip static pressure to the hub static pressure was 1.1635. This was
found to be in reasonably good agreement with a TURBO analysis run using the assumption of
radial equilibrium. However, the experimental value was used for all TURBO analyses of the
NASA rig. These data are summarized in Table 3 and Figure 5.

3.1.3 QHSF I TURBO Solution

Most of the background information for the TURBO analysis has been specified previously.
However, key features are noted here. The initial TURBO steady analysis was set up following
Honeywell current best practices. This case provided a baseline for determining sensitivities to
alternative modeling approaches.

This first set of analyses focused on the 85 percent speed line, or 13236 RPM (physical). A
constant tip clearance of 0.031” was used, corresponding to 85 percent speed. Exit conditions
for the first analysis were arbitrarily selected to have the hub static pressure equal to the average
inlet total pressure. The tip static pressure was then determined by multiplying this value by
1.1635, to provide a profile consistent with experimental measurements. The initial flow field
was specified from a mapping of an existing APNASA solution. The TURBO grid and initial
flow field were then flipped to align the CFD grid with the hardware and the FEM mesh.
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Table 3. Inlet Profilesfor Total Pressureand Radial Flow Angle at 85% Speed.

85% Speed
Inlet Radial
Radius Span | Pt (norm) Pt (psi) Pt (Pa) Angle
1.900 0.0000 0.9434 13.491  93014.6 | 25.9995
0.0050 0.9853 14.090 97145.7 | 25.5192
0.0100 1.0000 14.300 98595.0 | 25.0388
0.0837 1.0000 14.300 98595.0 | 17.9586
0.1480 1.0000 14.300 98595.0 | 14.4816
0.1963 1.0000 14.300 98595.0 | 12.5103
0.2447 1.0000 14.300 98595.0 | 10.8811
0.2803 1.0000 14.300 98595.0 | 9.8474
0.3095 1.0000 14.300 98595.0 | 9.0772
0.3353 1.0000 14.300 98595.0 | 8.4482
0.3613 1.0000 14.300 98595.0 | 7.8559
0.4564 1.0000 14.300 98595.0 | 5.9715
0.5181 1.0000 14.300 98595.0 | 4.9274
0.5745 1.0000 14.300 98595.0 | 4.0614
0.6267 1.0000 14.300 98595.0 | 3.3188
0.6754 1.0000 14.300 98595.0 | 2.6660
0.7215 1.0000 14.300 98595.0 | 2.0797
0.7652 1.0000 14.300 98595.0 | 1.5506
0.8070 1.0000 14.300 98595.0 | 1.0716
9.666 0.8661 1.0000 14.300 98595.0 | 0.5000
9.804 0.8815 0.9999 14.299  98585.2 | 0.0000
9.946 0.8973 0.9998 14.297  98575.3 | 0.0000
10.099 0.9144 0.9996 14.294  98555.6 | 0.0000
10.257 0.9320 0.9993 14.290 98526.0 | 0.0000
10.398 0.9477 0.9990 14.286  98496.5 | 0.0000
10.552 0.9649 0.9834 14.063 96958.4 | 0.0000
10.710 0.9825 0.9461 13.529  93280.8 | 0.0000
10.788 0.9912 0.9302 13.302 91713.1 | 0.0000
10.828 0.9957 0.9140 13.070  90115.9 | 0.0000
10.867 1.0000 0.8800 12.584  86763.6 | 0.0000

QHSF Inlet Total Pressure Profile for NASA Rig

1.00 > >
0.90 -
0.80 -
0.70 -
0.60 -
0.50 -
0.40 -
0.30 -
0.20 -
0.10 -

0.00 \ *~—
0.85 0.90 0.95 1.00 1.05

Total Pressure

Span (%9

L 4

Figure3. Inlet Profilefor Total Pressureat 85% Speed.
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TURBO in the steady mode was then used to converge the flow field to the new boundary
conditions. This solution used 1000 iterations at a CFL number of 1000, utilizing the k-
turbulence model. The solution converged well, but there were some (very) minor oscillations in
the mass flow versus iteration that was damped out. The overall results from the solution are:

corr

(38.1869+38.1749
2

_1.457 _
pr = 4_9707 =1.501 (1)
n=0.9156

j(z.z)(1.o42) =87.531bm/s

3.1.4 Static Deflections

The tip deflections at speeds of interest were calculated for the QHSF I in NASA rig size
(22 diameter). These deflections were determined using nonlinear, large deflection static
analysis in ANSYS. The model, shown in Figure 4, includes pressure loads and temperatures
based on earlier CFD analysis at the Aerodynamic Design Point (ADP), or 100 percent speed.
Note that the gas loads were determined for an inlet total pressure of 12.5 psi, corresponding to
the Honeywell rig test, while the inlet total pressure in the NASA rig was 14.3 psi. These
calculations may be repeated with gas loads that reflect the true inlet pressure and the actual
speed, and perhaps even the position along the speed line. The results presented here are best
taken as an indication of the importance of each of these influences.

The deflections at the blade tip are summarized in Table 4, with the coordinate systems
shown Figure 5. The values tabulated are averages for the tip section of deflections along the
chord (ug), normal to the chord (uy), and rotation (¢). These average values are based on the
displacement of the nodes at the leading and trailing edges. For reference, the tip true chord is
4.586 inches, and the tip stagger (as measured from the axial direction) is -58.9°.

A total of 5 cases were run. First, the effect of the gas loads was isolated. Then, analyses at
100 percent and 85 percent speed were conducted, both with and without gas loads. From the
results, note that the stagger increases with speed. The effect of the gas loads is fairly small,
only about +0.2° (at either speed), and acts to reduce the amount of change in the stagger.
Relative to the fully hot shape at 100 percent, the blade rotates +0.4° at the 85 percent speed
condition, and this is in the direction of reducing stagger.
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Figure4. ANSYSModd of Full Blade.

TE X

Figure5. Coordinate Systemsfor Static Blade Deflections - the View |s Radially Inward.

A new steady TURBO solution for the 22” rotor blade for part speed analysis was
developed. The solution grid is for the actual blade-shape at 85 percent speed (rather than fully
hot) and includes the skewed tip gap based on the NASA measurements. A grid file, steady
TURBO solutions for fac=1.00, steady input files, unsteady input files, and mode shape files for
several nodal diameter patterns were provided to NASA. Figure 6 shows a comparison of the
calculated 85 percent speed line performance as compared to the measured performance in the
18” rig.
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Table 4.

Static Tip Deflections as a Function of Speed and Gas L oads.

Phys Speed | % Speed Gas L oads U (in) Up (in) ¢ (deg)
0 0 ADP 0.068 -0.177 1.166
15572 100 no -0.090 0.325 -2.720
15572 100 ADP -0.073 0.290 -2.573
13236 85 no -0.084 0.296 -2.390
13236 85 ADP -0.062 0.251 -2.182
2.1
201 Final Rotor Map
' —— Stability Line
1.9 - —8— TURBO 85% - Fully Hot, Avg Gap
TURBO 85% - Part Speed Geom, Skewed Gap
1.8 4
§=
§ 1.7 105%
g 1.6 100%
w0 97.5%
&
& 157 95%
§ 1.4 90%
@)
o
1.3 4
1.2 4
75%
1.1 A 70%
N1c=50% 55%  60% 65%
10 T T T T T T
40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0

Inlet Corrected Flow (Ibm/s)

Figure 6. The Steady TURBO Analysisof the QHSF | in NASA 22" Rig Sizefor the 85%
Speed Line Using Actual Blade Shape and Tip Clearance |s Compared to the
Fan Map Extrapolated From 18" Rig Data.

3.2 Tip Clearance Sensitivity

The importance of tip clearance effects on the predicted stability boundary was quantified
for the QHSF I correlation effort. Related studies on the Baseline I fan indicated a significant
effect of tip clearance on aerodynamic damping, and so it was initially thought to be crucial to
model the gap accurately for the present correlation effort.

During the initial analysis of the QHSF I in the 18” rig size, a detailed parametric study of the
effects of the tip clearance was performed. While the study was conducted at the 18” rig size
rather than the 22” size, the chosen 85 percent speed line is consistent with the analysis for the 22”
rig. Three different tip gaps were used: the nominal physical value of 0.039”, a tighter gap of
0.010”, and a nearly limiting case of 0.002”. Note that the latter two values were chosen arbitrarily
to span the tip gaps of interest. Unexpectedly, this study indicated little effect of the tip gap on
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either the steady flow field or the aerodynamic damping. The damping at two steady conditions
along the 85 percent speed line is presented in Figure 7. The drop in damping as the tip gap is
tightened is fairly significant for the peak efficiency condition. There is still a noticeable drop at
near stall conditions, but the change in damping is only slightly more than 0.1 percent. The range
of gaps considered is considerably larger than would actually need to be considered.

A second result is obtained indirectly from the work done to date on the 22 rig. On the
original “100 percent Geometry” analyses, the average tip clearance calculated from
experimental measurements was used. For the subsequent “85 percent Geometry” analyses, the
skewed tip gap as actually measured in the rig was accurately modeled. Results from these sets
of analyses show only minor differences, as has been previously documented. The conclusion is
that the skew in the tip gap has little influence. While this conclusion is somewhat contaminated
by the fact that both the blade geometry as well as the tip gap were changed at the same time, the
chance that each is a significant influence and just happen to cancel each other out is remote.

The conclusion is that the tip gap must be modeled with reasonable accuracy for the QHSF
I, but it is not a strong driver on the blade’s stability. Note that this conclusion does not agree
with the stability trends of other fan blades analyzed recently at Honeywell, such as the Baseline
I fan. The root cause for the difference may lie in the basic geometry of the QHSF I design.
Figure 8 compares the static pressure field for the Baseline I fan and the QHSF 1. Both of these
plots are for a radial station near the tip (but below the tip gap) at near stall conditions. As the
plots indicate, the pressure across the blade tip is significantly less in the QHSF I design due to
the shock still being captured in the passage due to the forward sweep. It is this pressure
difference that will be the driving mechanism for tip leakage flows, and determine the
importance of the tip gap. With less of a pressure difference, the QHSF I has a lower sensitivity
to clearance effects.

15
—&— Peak Efficiency
—— Near Stall
S 10
(@)}
c
o
g
0.5
o}
g -
0.0

0.000 0.010 0.020 0.030 0.040

Clearance Gap (in)

Figure 7. Changein Aerodynamic Damping as a Function of Tip Clearance. These Results
Were Obtained From the Analysis of the 18” Rig at 85% Speed for the 2 Nodal
Diameter Forward Traveling Wave.
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m 2500 m 2500

I 500

500

Baseline | QHSF I

Figure 8. Comparison of the Static Pressure Fields of the Baselinel Fan and the QHSF 1.
The Differencein Pressure Acrossthe Blade Tip Is Significantly Larger for the
Baseline|l Fan and, asa Result, ThisDesign IsMore Sensitiveto Changesin Tip
Clearance. These Sections Are Slightly Below the Blade Tip, at 85% Speed,
Near Stall Conditions.

3.3 Mode Shape Sensitivity

The sensitivity of the TURBO results to the assumptions used is the mode shape
calculations was evaluated. The first mode vibration shapes with the following hub boundary
conditions were calculated with ANSYS:

® Root fixed in all directions

®  Dovetail fixed in all directions

®  Dovetail fixed in local normal direction

®  Disk cyclic symmetry

The results of each of the analyses are presented in Figure 9 to Figure 12.
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ANSYS 5.6.2
DEC 5 2001
15:15:25
WODAL SCLUTION
STEP=1

SUB =1
FREQ=342.067
USUM (AVG)
R2¥2=0
PowerGraphice
EFACET=1
AVRES=Mat

DMK =97.955
SME =97.955

10.3884
21.768
32.652
43.536
.42

65.304
76.188
87.071
97.955

IRINIRCEE

Figure9. TheQHSF | ANSYSAirfoil Only AnalysisWith Root Fixed in All Directions
Calculated a First Mode Frequency of 342 Hz.

BNSYS 5.7.1
DEC 5 2001
15:22:56
NODAL S0LUTION
STEP=1

8UB =1
FREQ=316.213
USUM [AVG)
REYS=0
PowerGraphics
EFACET=1

Ni0CEa00N

90011

Figure10. The QHSF | ANSY S Airfoil and Platform Analysis With the Dovetail Fixed in
All Directions Calculated a First M ode Frequency of 316 Hz.
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ANSYS 5.7.1
DEC 5 2001
15:21:58

NODAL SOLUTICH
STEP=1

SUB =
FRE(Q=303.843
UsUM [AVG)
RSYS=0

AVRES=Mat

OO0

2

s

Figure1l. The QHSF I ANSYSAirfoil and Platform Analysis With the Dovetail Fixed in
L ocal Normal Direction Calculated a First Mode Frequency of 304 Hz.

HNODAL SOLUTION AN
DEC 6 2001

e 10:05:29

FREQ=284.345 PLOT NO. i

Nodal Dia= 2

TS [AVG)

RSYs=0

M =23.169

MK =73.169

0 5.149 10.297 15.446 20.584
2.574 7.723 12.872 18.02 23.169

Figure12. The QHSF | ANSYSAirfoil, Platform & Disk Analysis With Disk Cyclic
Symmetry for the Nodal Diameter = 2 Case Calculated a First M ode Frequency
of 285 Hz.
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The effects of changes in mode shape on TURBO aerodynamic damping was examined.
Figure 13 shows the results for the viscous, 85 percent speed, near-stall, 2 nodal diameter
forward travelling wave case using 5 different mode shape models from ANSYS. Very small
differences in the calculated aerodynamic damping are seen. Figure 14 shows that a similar
trend can be seen for calculations at all inter-blade phase angles. During design iterations, it will
be possible to use the simpler airfoil-alone model to calculate mode shapes for TURBO
aeroelastic analysis.

O Baseline blade
model

O Linear geometry
effects

& Normal dovetail
constraint

O Cyclic-symmetry -0,22%
analysis

O Airfoil-only -0_12%
model

0.00% 0.10:‘/0 O.ZO‘I%] 0.30%

Aero-damping (%)

Figure 13. Resultsof the TURBO Mode Shape Study Show Little Sensitivity to the
Assumptions Used for Calculation of the M ode Shapes.

Inviscid, 85% Speed, NS, Mode 1

8.00 ~+- Airfoil onl
S pz

Nodal Diameter

Figure 14. The Full Blade Model Showed Little Differencein Aerodynamic Damping as
Compared to the Airfoil Only Model.
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3.4 Boundary Condition Sensitivity

Because previous studies have shown a high sensitivity to inlet total pressure profile effects
and especially the shroud inlet boundary layer (Reference 10), care was taken in the analysis to
accurately capture this profile and account for changes with speed. To determine the
significance for the present fan design, the analysis was re-run with a uniform inlet profile and
also by specifying radial equilibrium at the exit rather than the experimentally-obtained exit
profile of static pressure. In Figure 15, the dashed line indicates the damping at different
positions along the 85 percent speed line using the experimental profiles. The triangles denote
solutions with other assumptions for the inlet and exit profiles, and are seen to lie very near the
dashed line. These results indicate that the profile changes do affect the damping to a small
degree, but are attributed primarily to the change in position on the fan map.

0.016
i B Inlet/Exit profile fac=1.01
0.014 Koof
A Other boundary conditions (peak-eft) ,a
0.012 A s
= P .
£ 0010 | Lt
E- radial equilibrium L’
= 0.008 A LT
L
& 0.006 - e
ol uniform inlet L7
0.004 1 A
> 44 ~~ . .
0.002 fac=1.08 i M w uniform inlet &
. (near-stall) w radial equilibrium
0.000 . i . : :
76 78 80 82 84 86 88

Inlet corrected flow

Figure 15. Changestothelnlet and Exit Pressure Profiles Have Only a Minor Effect on
the Predicted Damping.

3.5 Part Speed Geometry Sensitivity

One detail of the analysis that was initially thought to be crucial for accurate predictions of
the flutter boundary was the use of part speed geometry. The airfoil geometry was updated at
each speed to reflect the actual deflections due to the speed and other loads. This refinement is
in contrast to simply using the fully hot design shape for all speeds. To evaluate whether this
refinement is necessary, the analysis at 85 percent speed was repeated using the fully hot (100
percent speed) geometry. Results demonstrate that the effect on the damping calculation is small
over the entire ND range. The fan map shown in Figure 16 indicates that the change in steady
solutions is also fairly minor, while the resulting extrapolation of the flutter boundary is slightly
affected but not substantially. The impact of using part-speed geometry is minimal and is of
importance only in cases that require the very highest accuracy in the prediction of the flutter
boundary, such as a final design verification or a correlation effort.
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= Rotor Map

—4—TURBO at 85% Speed - Fully Hot Geometry

—l—TURBO at 85% Speed - Partspeed Geometry

Predicted Stall Line

Predicted Flutter
for Fully Hot Geometry

Measured Flutter
/ Boundary

SLS Op Line

1 ALT Op Line

Rotor Pressure Ratio

Predicted Flutter
for Partspeed Geometry

85%

75%

Inlet Corrected Flow (Ibm/s)

Figure 16. Effect of Part-Speed Geometry on Steady Solutions and Flutter Boundary.
3.6 Comparison With QHSF | Data

A TURBO part-speed geometry analysis, with the 85 percent speed geometry and skewed
tip gap, was completed for 85 percent speed line for the QHSF I rotor. Figure 17 shows the
convergence of aerodynamic damping with cycle count for the near-stall condition for various
nodal-diameter modes. It can be seen from the picture that all modes were adequately
converged.

Figure 18 shows a plot of the aerodynamic damping as a function of the nodal diameter
number of the traveling wave. It can be seen that the location of the minimum damping is
consistent with the measured results and the use of the 85 percent vs. 100 percent hot shape
geometry had little effect on the results.

Figure 19 shows the 18”-fan operating map scaled to 22" size, the predicted steady speed
line from TURBO at 85 percent, and the projected location of aeroelastic instability from
TURBO. The predicted instability agrees well with the measured instability line.

To help understand the reasons for the change in damping when approaching stall, the
distribution of damping on the surface of the blade was considered. Figure 20 shows the damping
distribution at the least stable nodal diameter, ND (+2) at 85 percent speed. Correlating this plot
with that for Mach number distribution, we find that regions of significant damping are strongly
tied to shock location. At peak efficiency (PE) conditions, the passage shock runs roughly from
mid-chord of the pressure surface to near the trailing edge of the suction surface of the adjacent
blade. This is demonstrated in Figure 20a by the Mach number contours in the blade-to-blade view
at 90 percent span. (The shock locations have been highlighted in this plot.) From Figure 20b, a
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significant region of positive damping is associated with the shock on the pressure surface, while
Figure 20c shows a region of negative damping associated with the shock on the suction surface.
For near-stall (NS) conditions, Figure 20d gives the shock location at 90 percent span. Figure 20e
shows that as the shock moves forward the positive damping region follows it and is now at the
blade leading edge. The suction surface plot in Figure 20f indicates that the de-stabilizing region
has moved forward from the trailing edge to mid-chord, and has grown in strength relative to PE
conditions. It is interesting to note that the loss of stability in throttling from PE to NS is due to
nearly equal changes in damping on each surface. Similar plots for the most stable ND (11), not
included here for brevity, indicate the de-stabilizing regions of Figure 20 become stable, while
stable regions become more stable and larger in extent.

0.10
—8— (OND_zeta —®—)ND_zeta
0.09 4AND zeta —B—6ND_zeta
—&— 1IND zeta —%—-6ND_zeta \A__‘___‘._.‘—A———A—-—A—A——A—n
0.08
0.07
g
5 0.06
S L
8 0.05 W
o
T 004
0.03 .\l/-\l—\.\.\.
0 0 0 - —— —— —a—N
0.02
0.01 [
b
0.00 w T T T T T :
0 2 4 6 8 10 12 14 16

cycle

Figure17. The TURBO Calculation Near Stall for the 100% Speed L ine Shows Good
Conver gence on the Aerodynamic Damping.
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Figure19. TURBO Predicted the 85% Speed Line Instability Point With Reasonable

NASA/CR—2012-217451

Accuracy.

19



Stabilizing De-Stabilizing

(a) PE, Mach at 90% Span (b) PE, Pressure Surface  (c) PE, Suction Surface

(d) NS, Mach at 90% Span (e) NS, Pressure Surface  (f) NS, Suction Surface
Figure 20. Distribution of Aerodynamic Damping on Blade Surfaces.

The QHSF I rotor aeroelastic behavior at 75 percent speed was calculated with TURBO.
Inviscid analysis was used to screen the important inter blade phase angles (IBPA) and modes.
Viscous analyses were performed at the IBPAs where the damping was low in the inviscid
analysis. Results are shown in Figure 21 for both the peak efficiency (PE) and near stall (NS)
points. A reasonable prediction of flutter boundary was obtained, though not as good as 85 percent
speed. Mode 1 was predicted as critical, but mode 3 damping was always extremely low.
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0.0001 -
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Nodal Diameter

(b) Mode 3 (first torsion)
Figure21l. TURBO Damping Resultsfor the QHSF | on the 75% Speed Line.

Figure 22 provides a summary of the stability line calculations for the two part speed cases.

The 100 percent speed line performance map was generated with TURBO-AE by the NASA
Glenn staff. The calculated map differences are consistent with differences observed for stage data
between the 22-inch and 18-inch scale rigs as shown in Figure 23. These results are consistent
with the previous analysis from the 75 percent and 85 percent speed lines and Honeywell’s
experience. This difference in not considered an issue considering the analysis accuracy.
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The flutter prediction for 100 percent speed line was completed with TURBO-AE by the
NASA Glenn staff. Mode 1 analyzed for several nodal diameter patterns. It was determined that
the 2 nodal diameter pattern was least stable near stall, whereas the 0 nodal diameter was least
stable near the peak efficiency point as shown in Figure 24. Extrapolation of the data showed
that the predicted flutter boundary was beyond the stall line, consistent with the measured data.
To determine if the difference in the predicted vs. measured flow made a difference in the flutter
prediction, the speed line calculated by TURBO-AE at 100 percent speed was shifted to match at
the peak efficiency point (see Figure 25). Even after accounting for the shift in performance
map, the predicted flutter boundary lies beyond stall line.
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4. EVALUATION OF QHSF | TEST DATA

4.1 Evaluation of Performance Differences Between the 18” and 22" Rig Testsof the QHSF |

An attempt was made to derive a rotor-only performance map of the 22 QHSF I rig, since the
rotor performance was not directly measured in the test. It was thought that data from the 18” rig
could be used to estimate the rotor-only performance from the 22” test. An assessment of the
differences between the QHSF I aerodynamic performance in the Honeywell 18” rig (Reference 1)
and the NASA 227 rig (Reference 11) tests was conducted. This assessment was motivated by the
differences in aeroelastic performance of the 18 and 22” rig tests of the QHSF I as summarized in

Table 5.

Table5. The Summary of Aeroelastic Results I dentify the Differ ences Between the 18" and

22" Rigs.

Speed

HON (18" diam)

NASA (22" diam)

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%
100%

Mode at 860 Hz (system umbrella mode?) response >1000
ue. Occurs near stall.

Mode at 860 Hz (system umbrella mode?) response >600
ue. Occurs above op line.

Responses in 125-350 ue range in Modes 2 & 3.

Mode 2 NSV predominates.

Mode 2 NSV up to 900 ue near op line at 737 Hz. Increase
to 72% speed resulted in rapid onset of flutter in Mode 1,
with amplitudes exceeding 2000 ue at 350 Hz.

Mode 1 flutter up to 2000 ue on op line in 2 ND FTW. At
lower pressure ratio, modes 1, 2 and 3 all exhibit moderate
levels of NSV (125-450 ue).

Mode 1 flutter just above op line, in 2 ND FTW. Lewels are in
500 ue range at steady state data point, higher transiently.

Mode 1 flutter above op line. 2 ND FTW. Lewels reach 700
ue at 385 Hz at steady state data point, higher transiently.
Mode 1 flutter above op line. 2 ND FTW.

Mode 1 flutter above op line. 2 ND FTW.
Reached predicted stall line.

Reached predicted stall line.

Reached stress limits before hitting predicted stall line. No
component of flutter (all forced response / SFV).
Reached stress limits before hitting predicted stall line.
component of flutter (all forced response / SFV).
Reached stress limits before hitting predicted stall line.
component of flutter (all forced response / SFV).
Reached stress limits before hitting predicted stall line.
component of flutter (all forced response / SFV).

No
No

No

Mode 3 (926 Hz) NSV identified during data reduction, 3 ND
FTW. Lewels are low, up to 130 ue-SA. Forced response
from 1/rev up to 200 ue.

Mode 1 flutter identified during data reduction, 2ND FTW.
Lewels are low, up to 70 ue-SA. Owerall signal dominated by
forced response from 1/rev, up to 180 ue.

Mode 1 flutter observed at 308 Hz, up to 497 ue-SA. 2 ND
FTW. Forced response from 1/rev up to 240 ue.

Reached stress limits before hitting predicted stall line. No
component of flutter (all forced response / SFV).

Reached predicted stall line.

Reached predicted stall line.

Figure 26 is the full map of the work characteristics of the 18" and 22" QHSF I fan rigs and
Figure 27 is a detail of the 100 percent speed line. The work characteristics are different
between the two fans, which verifies the rotor is setting the choke flow. It is possible that as the
back-pressure was lowered, the rotor work, efficiency, and pressure ratio became low enough to
send the stator enough corrected flow that it choked as well. Unfortunately, the stator choke
behavior cannot be proven from the data.

The performance differences are consistent with aeroelastic differences, which may suggest
a different hot running shape between the 18” and 22” blades. Also, it is noted that for the two
rigs to operate at the same operating line, the 18" rig is running further from choke and most
likely at higher incidence levels. This difference in incidence levels may explain the changes in
aeroelastic behavior.
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There does not appear to be an effective way to get to the 22" rotor-only performance by
extracting the stator performance from the overall stage performance. Stator loss buckets are
typically defined based on incidence or inlet corrected flow. Stator loss data is not available for
the 22" rig, and it would be questionable to assume that the 18 and 22 vanes are the same and
back out the rotor from the stage. It would have to be assumed that the loss buckets are a
function of exit corrected flow (instead of inlet conditions) and there is no way to quantify this
error. Also, the stator performance is a function of the span-wise distribution of loss. It is likely
that since the rotor performance is different, the stator inflow was not the same. It would be a

significant effort, using several non-quantified assumptions, to derive a 22" rotor-only
performance map.

0.24 ! ‘ 100 - x
0.2 # 22" Rig Data From NASA 975 4 m‘k&“ 132 x
' x 18", speed corrected & scaled to 22" LA % 3(09 ;;(
*
8 * x
0.2 **8"‘ % x 105
0.18 e.’% Yo ;’"
* %
0.16 A .*‘X
- tw Xy ‘5&
O 0.14 - X, %
) * x
"’&‘ 85
0.12 XX
& 80
| 3
0.1 Nm,% 75
0.08 - e, 0
"%,‘w‘ 65
o~
0.06 b . % sg| 60
%04y B
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WCc (22 in scale)

Figure 26. A Comparison of the 18" and 22" Rig Data Shows Differencesin the Fan Stage
Work Performed.
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Figure 27. Detailed Examination of the 100% Speed Line Shows That the 18" QHSF |
Reached a Higher Choked Mass Flow Than the 22" QHSF I.

In order to resolve the question of geometric scaling and potential “non-linear” effects on the
hot shape deflection pattern of the blade, a full blade ANSYS model was run. Both the 22”” and
18” rig sizes were assessed, with the geometry scaled using an available command in ANSYS. All
analyses were at 100 percent speed, with the speed for the two rig sizes adjusted by the inverse of
the geometric scale factor. Both linear and nonlinear analyses were conducted, as well as cases
with and without gas loads and temperatures (i.e., speed only). The linear cases were run primarily
as a check on the scaling operation, since these results must scale by definition. Cases without gas
loads were run with uniform room temperature. Cases with gas loads were run with the
aerodynamic design point (ADP) pressure distribution and a radial temperature profile
corresponding to these conditions. Note that the identical pressure distribution and temperature
profile was applied to both rig sizes.

The results for six analyses are tabulated in Table 6. The physical displacements (the
magnitude of the displacement, in inches) at the tip leading edge (LE) and trailing edges (TE) are
provided for each run, and then these are normalized by the tip radius of each rig size. The
resulting normalized values for corresponding loadings are identical. While only the tip
displacements are summarized here, other locations on the airfoils also exhibit the same behavior.
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Table 6. Effect of Geometric Scaling on Hot Blade Shape. Table Lists Displacementsat LE
and TE of Tip for Several Loading Alternatives. The Displacementsfor Each Rig
Size, When Normalized by Tip Radius Are ldentical for Corresponding Cases.

Rig Size Gas Temps | Solution Dispat | Dispat Tip | Norm Norm
L oads TipLE, in TE, in Disp LE | Disp TE
22 no RT linear 2.1233 1.2328 .1930 1121
22 no RT nonlinear 0.4428 0.2410 .0403 .0219
22 ADP ADP nonlinear 0.4004 0.2068 .0364 .0188
18 no RT linear 1.7131 0.9946 .1930 1121
18 no RT nonlinear 0.3573 0.1944 .0403 .0219
18 ADP ADP nonlinear 0.3230 0.1669 0364 0188

The conclusion from this study is that the identical hot shape will result from identical cold
shapes if the only change is a geometric scaling. This result is true even when pressure and
temperature loading is included.

Note that the relationships between physical and corrected conditions change under
different ambient conditions. The deflection of the blade is driven by the physical conditions.
So if the two rigs were run to the same corrected conditions at different ambient conditions, there
would be a difference in the loads. This difference in ambient conditions, though, would have to
be quite large to significantly affect the hot shape.

Also note that this study did not attempt to address the issue of whether the actual hardware
used in each rig deflects as intended. The deflection of each size could be affected significantly
by the conformance of those blades to the intended (and analyzed) nominal shape. In order to
conduct such a study, detailed geometric measurements of representative sample blades in each
scale would be needed, and then new ANSYS models constructed.

4.2 Evaluation of the Acoustic Results of the 22" Rig Test of the QHSF |

An assessment of the noise data from the QHSF 22” rig wind tunnel test was conducted.
The purpose of this assessment was to identify the acoustic benefits (and problems) of the QHSF
I design and to validate the design process for the QHSF II design. Figure 28 shows the
summary of the results of the QHSF I far field noise measurements (Reference 12). Also shown
on the figure are the Baseline I results and the later measurements of the Baseline I fan rotor and
the QHSF I stator.

The QHSF I successfully reduced interaction tone noise for both rotor-stator and rotor-strut
interaction. This tone reduction is responsible for up to 6 EPNdB reduction at higher fan tip
speeds. Figure 29 presents a spectrum comparison showing the effect.
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Figure29. At Supersonic Tip Speeds, the Primary Noise Reduction Wasin the Blade
Passage Tone (13831 Rig RPM, 131 Degrees From the Inlet).

4.2.1 V072 Validation

A check was performed to see if V072 is a reliable prediction tool. The V072 predictions
were assumed to be conservative for the original design because of the inaccurate loss profile of
the Baseline I fan. Actual reductions in tones were greater than those predicted, and the general
trends predicted by V072 were confirmed by test data. Figure 30 shows the results for the
forward arc and Figure 31 shows the results for the aft arc.
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4.2.2 Broadband Noise Source

An unknown broadband noise source was identified in the QHSF I data that must be
identified and eliminated for the redesign as shown in Figure 32. The LDV data in Figure 33
was taken during the test and shows a flow separation on the QHSF I rotor blades at 9510 RPM.
The data at higher rotor speeds show little separation.

4.2.3 Comparison With CFD

The first study performed was a comparison of the measured wake structures of the
Baseline I and QHSF I rotors at the LDV plane, at 81.4 percent and 90.1 percent corrected fan
speed. The position of the LDV plane downstream from the rotor trailing edge is shown for both
rotors in Figure 34.

The wake structure in the flow path cross-section was compared graphically, using the
FIELDVIEW program. As shown in Figure 35, at both speeds, the wakes from the Baseline I
and the QHSF I rotors have a similar slope throughout the inner span region. However, in the
outer span region, the QHSF I wake displays more tangential lean. This increase in lean is a
result of the increased distance between the rotor trailing edge and the LDV plane in the outer
span region, due to the forward sweep of the QHSF I rotor. The wake rotates further tangentially
through this additional axial distance, in effect having more lean than the wake in the inner span
region, at the LDV plane. The aft sweep and lean of the stator leading edge further enhance this
effective “lean” of the rotor wake. As a result, the QHSF I rotor wake traverses the stator
leading edge much more slowly than does the Baseline I rotor wake. This behavior serves to
reduce the rotor-stator interaction tone noise.

In addition to examining the graphical representation of the wake structure using the LDV
data, a more detailed study of the wake profiles was conducted with the LDV measurements.
Wake width and depth were compared for the Baseline I and QHSF I rotors at 81.4 percent and
90.1 percent corrected fan speed, for three selected span-wise positions (38 percent, 57.4 percent,
and 78.8 percent of the rotor trailing edge span). The wake profiles were normalized by the free
stream resultant velocity, and were shifted tangentially, to overlap for comparison purposes. The
wakes at 81.4 percent and 90.1 percent corrected fan speed are shown in Figure 36 and Figure 37,
respectively. At 38.0 percent span, the Baseline I and QHSF I wakes display very similar
profiles, because the distance from the trailing edge to the LDV plane is essentially identical.
Moving out to 57.4 percent span, the depth of the wake is greatly reduced for the QHSF I rotor
and the width is increased, due to the increased distance from the rotor trailing edge. This trend
continues at 78.8 percent span; however, while the wake is only slightly evident at 81.4 percent
speed, it maintains more strength at 90.1 percent speed.

Clearly, the QHSF I rotor wake exhibits less strength over the outer portion of the span at
the LDV plane, due to the increased distance from the rotor trailing edge. This behavior is
further enhanced at the stator leading edge, and serves to reduce the impact of the rotor-stator
interaction tone noise.
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The LDV data were also compared to the CFD data. Comparisons of the overall wake
structure at same downstream plane were made for both the QHSF I and Baseline I rotors. The
operating line points were analyzed at the corrected fan speeds shown in Table 7. The CFD
predictions were taken from the DAWES analyses performed as part of QHSF I design activity.
In the inner span region at the LDV measurement plane, the slopes of the wakes of the QHSF I
and Baseline I rotors are similar. In the outer span region, the QHSF I wakes display more
tangential lean at LDV plane. This difference is due to the increased distance between rotor
trailing edge and the LDV plane resulting from the forward sweep of the QHSF I rotor. The
wakes rotate further tangentially through the additional axial distance, producing more lean than
the wakes in the inner span region. The CFD predictions of the rotor wake structure at the LDV
plane appear to be in good qualitative agreement with the LDV data as shown in Figure 38 to
Figure 41.

Table 7. The Available Corrected Fan Speedsfor the LDV Measurementsand CFD
Analyses Were Matched as Closely as Possible.

Baselinel Fan QHSF |
LDV Data CFD Analyses LDV Data CFD Analyses
81.4% 81.4% 80%
85%
90.1% 90.1% 90%
(Sideline) (Sideline)

Baseline | Fan
LD

12,500 RPM

V = Auxial Velocity
Downstream of Rolor

(a) LDV - 81.4% Speed

Baseline | Fan

- B5), Speed

CFD = Axial Velocity
Downstream of Rotor

(b) CFD — 85.0% Speed

Figure 38. A Good Comparison I's Seen Between the Measured and Calculated Rotor
Wakesfor the Baselinel Fan at a Typical Cutback Takeoff Condition.
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LDV A CFD
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Downstream of Rotor Downstream of Rotor 600.0

v 1 P Tes 18] y
: f 20 200.0

(2) LDV - 90.1% Speed (b) CFD — 85.0% Speed

Figure39. A Good Comparison I's Seen Between the M easured and Calculated Rotor
Wakesfor the Baselinel Fan at a Typical Full Power Takeoff Condition.

QHSF | = 12,500 RPM 700.0 QHSF| = BOY, Speed
LDV — Axial Velocity CFD = Axial Velocily .
Downstream of Rotor Downstream of Rotor I

(a) LDV — 81.4% Speed (b) CFD — 80.0% Speed

Figure40. A Good Comparison Is Seen Between the M easured and Calculated Rotor
Wakesfor the QHSF | at a Typical Cutback Takeoff Condition.
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GHSF | = 13,800 RPM HSFI = 90% Speed

LDV —= Axial Velocity CFD = Axial Velocity

Downstream of Rotor 500.0 Downstream of Rotor

(a) LDV —90.1% Speed (b) CFD —90.0% Speed

Figure4l. A Good Comparison |I's Seen Between the Measured and Calculated Rotor
Wakesfor the QHSF | at a Typical Full Power Takeoff Condition.

4.3 Evaluation of the Rotor/Strut Interaction

During QHSF I testing, rotor-strut interaction tones were observed at 90 percent speed for
the Baseline I fan, but were not present for the QHSF I fan (Reference 13). Figure 42 shows
typical circumferential mode results from those measurements. Both the Baseline I fan and the
QHSF I have 22 fan blades and 10 struts. Therefore, the expected rotor/strut circumferential
modes are

(...-18,-8,2,12,22, ...)

It was proposed that the difference in stators might have impacted strut-induced pressure
disturbances at the rotor exit. A rotor-stator-strut interaction study was conducted to

e identify pressure disturbances upstream of the stator that could be produced by the strut

e identify any differences in pressure distribution from one strut passage to the next, due to
the differing relative position of stators vs. struts for each strut passage over 180 degrees

e qualitatively assess any differences between the pressure distributions upstream of the
Baseline I and QHSF I stators
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(b) QHSF I

Figure42. Acoustic Modal Measurementsin the Aft Fan Duct With a Rotating Rake Show
Significant Rotor Strut Tonesfor the Baselinel Fan.

CFD analyses were performed with the Fluent® CFD code for the two fan configurations:
e Baseline I Stator + Strut

e QHSF I Stator + Strut

The strut geometry was identical for both studies. The upstream boundary conditions were
taken to be the QHSF I rotor exit conditions from 18” rig test data at 90 percent corrected speed
on the standard sea level operating line. Predicted static pressure fields were examined upstream
of stators. The actual configuration of both fans was 52 stator vanes and 10 struts; therefore, by
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applying periodic boundary conditions on a 26 vane and 5 strut model, a full flow field was
evaluated. Diagnostic runs were also made with an approximate model consisting of 5 vanes and
1 strut. Table 8 provides a summary of the analysis runs performed.

Table8. Summary of CFD Models Run in the Rotor/Strut Potential I nteraction Study.

M odéel Céll count Comment

1.5M 26 stator, 5 strut
. 33 M 26 stator, 5 strut

Basdine! 4.9M 26 stator, 5 strut, 1 adaptation on Ps gradient
19M 5 stator, 1 strut
19M 26 stator, 5 strut

QHSF | 33 M 26 stator, 5 strut . .
5.4M 26 stator, 5 strut, 1 adaptation on Ps gradient
22M 5 stator, 1 strut

Figure 43 shows the CFD geometries that were used for the 5 strut models. Periodic
boundary conditions were applied to be consistent with the full 360-degree fan configuration as
shown in Figure 44. The unstructured grid used to perform the analysis is shown in Figure 45.

Fan exit Bypass exit Fan exit Stators
Pressure Inlet Stators yp Pressure Inlet 26 equally spaced Bypass exit

26 equally spaced Pressure outlet Profiles for
o Massflow outlet BC Total pressure

Total Temperature
Flow Direction

Pressure outlet

- Massflow,outlet BC
—

Profiles for
Total pressure
Total Temperature

Flow Direction

Core exit
Pressure outlet
Massflow outlet BC

Core exit
Pressure outlet
Massflow outlet BC

struts ¥ Bypass
Core Core struts
struts struts
(a) Baseline I Fan (b) QHSF I

Figure43. CFD Modelsfor the Rotor/Strut Interaction Study Modeled 26 Vanes, 5 Struts,
and the Split Flow Path.
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Figure44. A Periodic Boundary Condition Was Used to Model the Total 360 Degree

Flowfield.
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Figure45. An Unstructured Grid Was Used to Model the Rotor/Strut Interaction

Flowfield (QHSF I)
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The contour plots in Figure 46 and Figure 47 show that there is more static pressure
variation at the rotor exit and in the mid-region between the rotor and stator for the Baseline I fan
than the QHSF 1. To further visualize the variation in static pressure between the two fans, the
static pressure results were plotted at several data planes. Figure 48 and Figure 49 show the
location of the data planes for the two fans. Figure 50 show overlays of circumferential cuts of
the two-stator systems to demonstrate the difference in the stator configurations for the two fans.

-0.90

I -0.96
=

7

-1.50
(Ps - Pt~ fan—exit)

Pt-fan—exit - Ps~ fan—exit

(a) Rotor Exit (b) Mid Region

Figure 46. Pressure Coefficient Contours Between the Rotor and Stator Have Been
Produced From the Fluent® CFD Analysisfor the Baseline |l Fan.
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(Ps - I_:)t- fan—exit)

Pt-fan—exit - Ps~ fan—exit
(a) Fan Exit (b) Mid Region

Cp=

Figure 47. Pressure Coefficient Contours Between the Rotor and Stator Have Been
Produced From the Fluent® CFD Analysis for the QHSF I.

Data Planes

Reng = 0.386m —

Riup = 0.219m

-0.252m -0.200m
-0.290m -0.225m

Figure 48. Data Planes Were Selected for Comparison of Circumferential Static Pressure
Profiles (Baseline |l Fan).
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— Data Planes (equidistant with Baseline | Fan)

Rgpg = 0.386m

R = 0.219m -

hub

4
|

Figure49. Data Planes Were Selected for Comparison of Circumferential Static Pressure
Profiles (QHSF I).

R=0.350m

Figure50. Circumferential Cuts Show the Relative Positions of the Baseline | and QHSF |
Vanesat Various Radii (QHSF | Shown in Black).
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Significant differences in the stator geometries occur out near the tip. Data comparisons
were performed at the radii shown in Figure 51. Figure 52 and Figure 53 show the
circumferential variation of the static pressure for the QHSF I and Baseline I fans at 3 different
axial positions for the two radii. It is clear from the data that the Baseline I fan has more static
pressure variation than the QHSF 1. This evidence suggests that the cause of the rotor strut

interaction tones is the rotor responding to the variation of the potential pressure field of the
struts.

(a) R=0.350m (b) R=0.375m

Figure51. Data Comparisons Emphasize Two Radii Near the Vane Shroud (QHSF |
Shown).
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5. QHSF || DESIGN
5.1 Approach for the QHSF Il Design

The QHSF II design will be developed using an analytical Design of Experiments (DOE) to
define an optimum rotor and stator system. The interdisciplinary process being used is described
in Figure 54. The DOE outline is:

e  Blade Forward Sweep

— Axial and tangential sweep components coupled

— Key outputs: Acoustics, Aeroelastics, Aerodynamics
e  Blade Tangential Lean

— Optimized independent of selected axial sweep

— Key outputs: Acoustics, Aeroelastics, Mechanical
e  Blade Thickness Distribution

— Key outputs: Aeroelastics, Mechanical, Aerodynamics
e  Stator Optimization

— Sweep & Lean

— Key outputs: Acoustics, Aerodynamics, Mechanical
®  Rotor Incidence

— Key outputs: Aerodynamics, Aeroelastics
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Solutions

Geometry Input

Xcg distribution
Ycg distribution
Tmax location

Thickness — > DOE :
Tip slope AnaIyS|S
Beta angles

Chord
Thickness

» Design of Experiments (DOE) achieves a solution
in less time/cost which satisfies multiple criteria.

» DOEs are selected to determine main effects and
interactions between factors.

Figure54. An Interdisciplinary Process Has Been Defined for the Design of the QHSF I1.
5.2 Rotor Stacking Design of Experiments

The first DOE for the QHSF II fan rotor determined the blade forward sweep stacking. The
configurations are assumed to have equal axial and radial center of gravity (Xcg and Ycg) offsets
to facilitate evaluating multiple configurations. Four parameters are used to define the blade
stacking as shown in Figure 55. Table 9 summaries the 25 cases for DOE 1.

A number of dependent variables (Y-factors) have been defined for DOE 1. These
quantities will be used to evaluate the merits of the various configurations in the DOE and point
to the possible go-forward designs for the DOE 2. Table 10 to Table 13 summaries the factors
for DOE 1.
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Table9. Summary of the Casesfor DOE 1.

HIGHLIGHTED CASES ARE PART OF THE PARTIAL FACTORIAL RUN FIRST

StdOrder RunOrder CenterPt Blocks xcg45  delslope65 delslope75  delslopel00
1 1 1 1 -0.1 -7 -3 -2
2 2 1 1 0.2 -7 -3 -2
3 3 1 1 -0.1 7 -3 -2
4 4 1 1 0.2 7 -3 -2
5 5 1 1 -0.1 -7 7 -2
6 6 1 1 0.2 -7 7 -2
7 7 1 1 -0.1 7 7 -2
8 8 1 1 0.2 7 7 -2
9 9 1 1 -0.1 -7 -3 10
10 10 1 1 0.2 -7 -3 10
11 11 1 1 -0.1 7 -3 10
12 12 1 1 0.2 7 -3 10
13 13 1 1 -0.1 -7 7 10
14 14 1 1 0.2 -7 7 10
15 15 1 1 -0.1 7 7 10
16 16 1 1 0.2 7 7 10
17 17 0 1 0.05 0 2 4 CENTER POINT
18 18 2 -0.1 0 2 4 N
19 19 2 0.2 0 2 4
20 20 2 0.05 -7 2 4
21 21 2 0.05 7 2 4 AXIAL
22 22 2 0.05 0 -3 4 POINTS
23 23 2 0.05 0 7 4
24 24 2 0.05 0 2 -2
25 25 2 0.05 0 2 10 _J

NASA/CR—2012-217451 58



Table 10. Acoustic Y-Factorsfor DOE 1.

Y -factor Data type

delz 50 Axial distance RTE — VLE midspan

delz 100 Axial distance RTE — VLE tip

dB des Interaction noise sound power level

eff swp des Rotor LE effective sweep

% c 50 des Passage shock loc. Design Nc, 50% span
% c 60 des Passage shock loc. Design Nc, 60% span
% ¢ 70 des Passage shock loc. Design Nc, 70% span
% c 80 des Passage shock loc. Design Nc, 80% span
% c 90 des Passage shock loc. Design Nc, 90% span
% c 95 des Passage shock loc. Design Nc, 95% span
dB 89 Interaction noise sound power level

eff swp 89 Rotor LE effective sweep

% c 50 89 Passage shock loc. 89% Nc, 50% span
% ¢ 60 89 Passage shock loc. 89% Nc, 60% span
% c 70 89 Passage shock loc. 89% Nc, 70% span
% c 80 89 Passage shock loc. 89% Nc, 80% span
% c 90 89 Passage shock loc. 89% Nc, 90% span
% ¢ 95 89 Passage shock loc. 89% Nc, 95% span

Table11l. Aerodastic Y-Factorsfor DOE 1.

Y -factor Datatype

Damping - extrapolated to stall line scalar for each speedline

Damping - massflow at flutter boundary scalar for each speedline

Damping - flutter margin relative to PE scalar for each speedline

Damping - critical nodal diameter scalar for each speedline

Reduced frequency, mode 1 spanwise distrib for each steady condition
Reduced frequency, mode 2 spanwise distrib for each steady condition
Reduced frequency, mode 3 spanwise distrib for each st eady condition
Twist/flex ratio spanwise distrib for each steady condition
Incidence spanwise distrib for each steady condition
Relative Mach spanwise distrib for each steady condition
Optional:

Shock location (as % chord) spanwise distrib for each steady condition
Shock strength (as delta p) spanwise distrib for each steady condition
Separations (location, size) spanwise distrib for each steady condition
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Table 12. Aerodynamic Y-Factorsfor DOE 1.

Y-factor Datatype

We Inlet Wc at Peak Efty

Eff Rotor Peak Effy

PR Rotor PR at Peak Effy

Ws50 Wennerstrom shock loss @ 50% span
Ws70 Wennerstrom shock loss @ 70% span
Ws80 Wennerstrom shock loss @ 80% span
Ws90 Wennerstrom shock loss @ 90% span
Ws100 Wennerstrom shock loss @ 100% span

Table 13. Mechanical Y-Factorsfor DOE 1.

Y -factor Datatype

psmax max pressure surface stress

ssmax max suction surface stress

plemax max leading edge PS stress 4-100% span
slemax max leading edge SS stress 4-100% span
umax tip max tip deflection

u tiple tip leading edge deflection

freq 1 frequency margin mode 1

freq 2 frequency margin mode 2

freq 3 frequency margin mode 3

fec 1 placement of 2/rev crossing mode 1

fec 2 placement of 4/rev crossing mode 2

fo dam fold-over damage

An extensive evaluation of the acoustic, aerodynamic, mechanical and aeroelastic
properties of the 25 configurations was performed. The data were all collected into the
MINITAB® software to perform regression, analysis of variance, and sensitivity studies. The
rotor blade stacking was particularly sensitive to five key parameters:

®  Total sound power in the first two harmonics of the rotor/stator interaction noise at 89
percent speed as calculated by SOURCE3D (RSI 89 T)

e  Maximum Mach Number relative to the blade leading edge at 89 percent speed as
calculated from the mean streamline method (max mrn)

®  Fold over damage to the blade from a bird impact at 100 percent speed as calculated
by the NOSAPM program (FO Damag)

e  Total fan weight flow at the design point as calculated by the inviscid TURBO-AE (Wc)

e  Maximum leading edge stress at 100 percent speed as calculated with ANSYS

Maximum leading edge stress was later dropped from the analysis when it was determined
that it could be easily controlled with small changes in Ycg. Table 14 shows a summary of the
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sensitivity study from MINITAB®. The results show that the optimum acoustic, mechanical,
aerodynamic, and aeroelastic design is one that has the stacking initially aft for the inboard part
of the blade, and then curving forward at the tip, corresponding to Case 14. Figure 56 shows the
blade stacking profile as compared to the most aft swept (Case 1), the most forward swept (Case
16), the QHSF I, and the Baseline I sweep distribution. It can be seen from the figure that the
slope of the blade near the tip approaches the original QHSF1 design, but the blade as less
forward sweep inboard to meet mechanical requirements. Figure 57 shows how the fold over
damage criterion had a significant impact on the optimum design selection. Figure 58 shows the
decrease in the leading edge shock strength as the forward sweep is increased.

The go-forward design of the rotor was selected to be Case 14a. Case 14a is the optimum
configuration from DOE I that was subsequently optimized for Ycg offset in ANSYS to
minimize leading edge stress and blade normal Mach number. Figure 59 shows an overlay of the
QHSF I fan and the Case 14a fan.

Table 14. Summary of the Sensitivity of the Four Key Parametersto the Rotor Blade
Stacking.

xcg45s delslope65 delslope75 delslopel00
D 0.20 7.0 7.0 10.0

Cur [-0.10] [-6.9996] [7.0] [10.0]
0.52118 |4 -0.10 -7.0 -3.0 -2.0

Optimal

RSI 89 T
Minimum
y =131.7204
d = 0.46851

max mrn
Minimum [~ -
y =1.2341
d = 0.10594

FO Damag
Targ: 0.850
y = 0.8782
d = 0.92051

Wc
Targ: 245.0
y = 242.6147
d =0.93723
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Figure59. Comparison of the Go-Forward Rotor Blade Design to the QHSF I.

The TURBO code in the inviscid mode was used to evaluate the aeroelastic stability of the
25 configurations for DOE 1. The surprising result was that the instability point was relatively
insensitive to the blade rotor blade stacking. Figure 60 shows the variation in the calculated
instability point for the 25 configurations.

To assess the acoustic impact of changes in rotor stacking, SOURCE3D predictions were
generated for the 25 DOE configurations at 89 percent and 100 percent speed. Figure 61 shows
the overall sound power at the blade pass and twice blade pass tone for each of the
configurations at 89 percent speed.
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Figure 61. TheLogarithmic Sum of the Sound Power Levelsfor the Rotor-Stator
Interaction Noise at 89% Speed Shows Significant Variation for Range of DOE
Parameters.

5.3 Aeroelastic Verification of the Case 14a Rotor Design

Confirmation runs for the Case 14a rotor with TURBO in the viscous mode. The
aeroelastic behavior of the rotor at 60 percent, 70 percent, 89 percent, and 100 percent was
determined to verify the stability of the design throughout the fan operating range.

The steadystate solutions, including the results from both NASA and Honeywell, are shown
in Figure 62. All NASA and Honeywell runs are TURBO viscous results at 89 percent speed.
There are 3 points on the map based on Honeywell’s results: Pexit=14.0, 14.7, and 14.9. The
points at Pexit=14.0 and 14.9 are fully converged, but Pexit=14.7 was only run 500 iterations.
Both Honeywell and NASA results show a consistent trend along the speed line.

For the unsteady analyses, Honeywell used values of Pexit of 14.7 and 14.9 while NASA
used Pexit of 14.28 and 14.84. NASA ran 12 vibratory cycles and Honeywell ran 20 cycles
starting from the steady state solutions. All NASA and Honeywell unsteady runs are fully
converged according to the convergence history of damping. The extrapolation to obtain the
mass flow at zero damping, given in Figure 63, shows some difference between Honeywell and
NASA results. In the large part, this is because the damping is relatively high (all above 0.5), so
that the extrapolation to zero damping is quite sensitive. If the damping is small (below 0.2), the
extrapolation will not be this sensitive. Figure 64 shows the damping extrapolation with pressure
ratio. The pressure ratio is not as sensitive as the mass flow because at near stall conditions the
speed line is almost flat on the mass flow vs. pressure ratio map (Figure 62).
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Figure 64. Damping Extrapolation With Pressure Ratio (pr) I's Shown at 89% Speed for
the Case 14a Rotor.

Sensitivity studies were conducted with TURBO to determine the influence of reduced
frequency and twist to flex ratio on the flutter boundary. The geometry of Case 14a at 89 percent
speed was used as the test case. Two operating points, Pexit=14.7 and Pexit=14.9 (fac=1.05 and
1.0643), were used to predict the flutter boundary. Six nodal diameters (0, 2, 4, 6, -2, and —4)
were run for each operating point to obtain the least stable nodal diameter.

The reduced frequency of the Case 14a rotor at 87.5 percent span is 0.3423 and 0.3442 for
Pexit values of 14.7 and 14.9, respectively. For frequency sensitivity analyses, two reduced
frequency cases are run: half and double Case 14a. All other parameters including pressure ratio
and mode shape remain the same. The damping plotted in Figure 65 indicates that it is more
stable when the reduced frequency is increased. The extrapolation of the damping with pressure
ratio given in Figure 66 shows a similar situation.
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Figure 65. Frequency Sensitivity: Damping Extrapolation With Mass Flow Rate (m) Is
Shown at 89% Speed for the Case 14a Rotor.
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Shown at 89% Speed for the Case 14a Rotor.
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Two new mode shape files were created for the twist-to-flex ratio sensitivity analyses. The
twist-to-flex ratio of zero is pure bending at 87 percent span while the twist-to-flex ratio of
infinity is pure torsion. The amplitude of the movement of airfoil at each span-wise location is
similar to the Case 14a, which has a twist-to-flex ratio of approximately 0.4. With reduced
frequency fixed, Figure 67 and Figure 68 show that it is more stable when twist-to-flex ratio is
small. This aeroelastic sensitivity study has quantified the sensitivity of acrodynamic damping to
changes in the frequency and the mode shape, which will be useful in assessing the design trade-
off during the QHSF II design effort.
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Figure 67. Twist-to-Flex Ratio Sensitivity: Damping Extrapolation With Mass Flow Rate
(m) Is Shown at 89% Speed for the Case 14a Rotor.
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Figure 68. Twist-to-Flex Ratio Sensitivity: Damping Extrapolation With Pressure Ratio
(pr) s Shown at 89% Speed for the Case 14a Rotor.

Figure 69 shows a summary of the aeroelastic analysis of the Case 14a rotor. A qualitative
assessment of the predicted instability points produced the stability line on the figure.

The viscous TURBO analysis indicates that the fan will have a potential stability problem at
70 percent speed. The near stall steady-flow results at 70 percent speed show flow separation on
the suction surface at about 75 percent span. The Case 14a fan was rerun using TURBO in the
inviscid mode to compare to viscous solution obtained from NASA. It was first verified that the
steady inviscid solution did not show any flow separation. Figure 70 shows the mass flow rate
versus pressure ratio map from the TURBO steady solutions for the 70 percent speed line. As
expected, the inviscid TURBO solution predicts higher flow with the same pressure ratio (or higher
pressure-ratio with the same flow) than the viscous solution. For each operating point, TURBO
unsteady flutter solutions were run for nodal diameters of 0, 2, 4, 6, and —2. Typical unsteady
convergence histories of the damping are shown in Figure 71. The unsteady runs are fully
converged for a total of 20 vibratory cycles from the steady state solutions. The resulting damping
versus nodal diameter comparison is given in Figure 72. The minimum damping occurs between
nodal diameters 0 and 2. The damping versus mass flow rate comparison of the inviscid results
with the viscous results is given in Figure 73. The inviscid results show that instability point occur
at a slightly lower mass flow rate than viscous results, but the design still becomes unstable in the
operating rage below stall. This small shift in the stability point is probably due to the viscous
solution showing a separation which inviscid solution did not capture.
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The TURBO results for Case 14a showed a small region of flow separation (Figure 74 and
Figure 75). It was decided to continue the analysis with rotor ITER07, on which the rotor
performance was closer to design intent and no separation was seen (Figure 76). The previous
Case 14a TURBO analyses were conducted with mode shapes from an airfoil-only ANSYS
model. It was discovered that there was a significant change in the mode shapes and frequencies
for Case 14a with the attachment (unlike the results for QHSF I). It appears that rotor blade
ITERO7, with blade/attachment mode shapes and frequencies, is a stable configuration.
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Figure 74. Mach Number Contoursin the Blade Passage Show a Region of Flow
Separation in the Case 14a Rotor Design.

(a) Case 14a (b) ITERO7

Figure 75. Mach Number Contours Near the Blade Suction Surface Show a Region of Flow
Separation in the Case 14a Rotor Design.
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Figure 76. The Aerodynamic Damping as a Function of Mass Flow Rate (Mass) Showsthe
Small Effect of the Separation Region on the Blade Stability.

5.4 Justification for the Use of the TURBO Evaluation of the Case 14a Rotor

The TURBO code was a key element in the design of QHSF II. The QHSF I design relied
on the empirical guidelines available at that time to determine the acceptability of the fan blade
design from a stability standpoint. The stability assessment was based on the consideration of
reduced frequency, defined as

where
k = reduced frequency
b = half-chord (true chord/2)
o = circular frequency
V = reference velocity

Honeywell has defined critical reduced frequency values based on experience to assure a
stable design; the reduced frequency must be above the critical values of

k > 0.165 for pure bending
k > 0.80 for pure torsion

NASA/CR—2012-217451 75



For these calculations, the parameters are based on values at 75 percent span for design
point conditions. (In the QHSF I final report, an equivalent parameter called the “flutter
parameter” was used. Honeywell has since adopted the industry standard “reduced frequency”
and the criteria have been updated accordingly.)

For the QHSF I, the reduced frequency was calculated for each mode. Then each mode was
classified as either a bending mode or a torsion mode so that the reduced frequency could be
compared to the appropriate criterion. This classification was based on a calculation of the twist-
to-flex ratio, which quantifies the amount of torsion in a particular mode and is defined by

WZT

where
Y = twist-to-flex ratio
b = half-chord (true chord / 2)
o = angular deflection in mode shape (pitching motion)
h = translational deflection in mode shape (plunging motion).

The value of the twist-to-flex ratio at the 75 percent and 95 percent spans was determined.
For modes with small values of twist-to-flex ratio, the bending criterion was applied; for larger
values, the torsion criterion was used. For example, mode 1 had a twist-to-flex value at each
span of approximately 0.4, and the mode was classified as a bending mode. The reduced
frequency was about 0.3, which is above the criterion of 0.165 for pure bending modes, and so
the blade should be stable based on this empirical guideline. Other modes similarly met the
appropriate guidelines.

Obviously, this approach was not successful in QHSF 1, as flutter was encountered for
mode 1 at part speed conditions near the stall line. There were a number of contributors to the
breakdown of the design criteria. Note that in the empirical approach outlined above, there is no
consideration of engine speed, operating condition along a speed line, incidence, shock location,
contribution from tip effects, etc. All of these are known from experimental data and previous
computational studies to be important contributors to the actual flutter behavior. Flutter is also
known to be very sensitive to mode shape. The mode shape was considered only to calculate
twist-to-flex to determine the criterion to be used, and the classification was based on judgement.
(Note that if mode 1 had been classified as a torsion mode, flutter would have been expected.)
At the time, there was no criterion for modes with intermediate values of twist-to-flex ratio.

The QHSF I experience is an example that highlights the need for advanced computational
tools such as TURBO-AE, and demonstrates that the use of the tool is crucial to have a
successful redesign effort in the QHSF II program. With these advanced tools, the effects that
are known to be important can be addressed directly. The entire blade is included, rather than
just a single representative span. The actual mode shape calculated by finite element analyses is
used. And the steady flow field is based on the actual speed and operating conditions.

The potential benefits of using TURBO-AE are clear, given that it successfully predicts the
QHSF I design to be unstable. If the tool had been available during the original design, the

NASA/CR—2012-217451 76



flutter would have been predicted and changes could have been incorporated during the design
phase to eliminate the problem. A second benefit has already occurred during the QHSF II
design work. We had assumed up to this time that the forward sweep of the QHSF I was a
significant de-stabilizing influence. However, our results have clearly shown that this is not true,
and forward sweep actually has a small benefit for flutter. This insight has had a significant
effect on our design approach.

TURBO-AE was applied to predict the aeroelastic stability of the Case 14a rotor and
determined that it was not stable on the 75 percent speed line near stall. This result would not
have been determined from analysis of reduced frequency and twist-to-flex ratio. Figure 77
shows a plot of the reduced frequency as a function of incidence. Two points are shown on the
figure for each speed: one at peak efficiency and one near the stall line. There is nothing in this
data that signals that the 70 percent speed line should be unstable as compared to the other speed
lines. A similar conclusion is reached from the reduced frequency vs. twist-to-flex ratio plot
shown in Figure 78.
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Figure 77. Evaluation of the Reduced Frequency of the Case 14a Rotor Blade Does Not
Identify the I nstability at 70% Speed.
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Figure 78. Evaluation of the Reduced Frequency of the Case 14a Rotor Blade Does Not
Identify the I nstability at 70% Speed.

In summary, the reduced frequency limit is a useful guideline to distinguish blade designs
and/or modes that are either very stable (so that further detailed analysis is not necessary) or very
unstable (so that a significant design change is needed to eliminate flutter) from marginally
stable designs. As such, it can be a very effective screening tool. Recent experience indicates
that modern fan designs result in blades where factors such as mode shape and operating
conditions must be taken into account. In these cases, the use of an advanced computational tool
such as TURBO-AE is crucial in properly determining the stability of the design. In the QHSF
II, we are using TURBO-AE as part of a Design of Experiments approach to help identify the
factors that are de-stabilizing the blade. TURBO-AE is needed in the detailed blade design
process to define an aeroelastically stable fan design.

5.5 Final Rotor Optimization

An ADPAC 3-D viscous CFD model of the Case 14a rotor and the Baseline II stator was
developed to do detailed analyses of the fan stage. This model was used to optimize the rotor
blade thickness and incidence distribution.

The ADPAC full-stage model is comprised of two rotor blocks, one core stator block, one
core duct/strut block, one bypass stator block and one bypass duct/strut block. This split-flow
modeling technique, using separate core and bypass stream throttle pressures, has been shown to
be necessary to properly establish the prescribed fan bypass ratio using current CFD codes.
Otherwise, the rotor passage shock in the tip region will not be properly located for the
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aerodynamic design reference conditions. The complex grid structure for the full-stage ADPAC
model introduced a new complication to the post-processing analysis due to the highly skewed
grid surfaces in the rotor (see Figure 79). Grid surfaces could no longer be assumed to
approximate streamline surfaces through the rotor passage, prompting a modification to the post-
processing code that provides flow properties along quasi-streamlines.
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Figure 79. Comparison of the ADPAC Computational Grid for the Split-Stator
Configuration With the Streamline Pattern.

Since the CFD analysis of the rotor for DOE 1 was performed in TURBO, it was desirable
to compare the TURBO and ADPAC analysis results for Case 14a to ensure that the transition to
a different software tool did not change the performance of Case 14a. Figure 80 shows a
comparison of the Mach number contours at two different radial positions for the two codes.
Figure 81 shows a comparison of the Mach number contours near the suction and pressure
surfaces for the two codes. Little difference is seen for the two models.

NASA/CR—2012-217451 79



Il Retor Case 14 Go-Fwd QHSF Il Rotar Case 14 Go-Fwd
1007, Speed . 1007, Speed
{TURBO - Viscous} { {ADPAC - Viscous} .~

Section 27 |

Section 43

/ Conlours of Mach Mumber
Contours of Mach Mumber

(a) TURBO — 60.1% span (b) ADPAC — 60.1% span
QHSF Il Rotor Case 14 Go-Fwd 1.60 QHSF Il Rotor Case 14 Go-Fwd
1007, Speed . 1007, Speed
{TURBD = Viscous} 4 {ADPAC - Viscous|

Section 30 |

Section 51

.'rI
.-"II
/ Contours of Mach Mumber
Contours of Mach Number

(a) TURBO — 80.0% span

(b) ADPAC — 80.0% span

Figure80. A Comparison of the TURBO and ADPAC Mach Number Contours Shows No
Significant Flowfield Differences.
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Figure81. A Comparison of the TURBO and ADPAC Mach Number Contours Shows No
Significant Flowfield Differ ences.

To begin the process of optimizing the Case 14a rotor aerodynamic design, several rotor
airfoil models with different mean line angle distributions were constructed using the streamline
curvature/airfoil generator code. Vibration characteristics of the resultant blades (i.e., airfoil plus
attachment) were analyzed. CFD analyses of the airfoils were performed on the candidate mean
line distributions.
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In response to the decision to return to the full-span stator design of QHSF I, the ADPAC
model was then modified to include the full span stator design. After completion of the revision,
the rotor evaluations were resumed.

For the Case 14a rotor aecrodynamic design, several rotor airfoil models with different mean
line angle distributions were analyzed with the ADPAC code to optimize rotor performance.
Airfoil changes include modifications to incidence, angle passage area distribution, and turning,
such that rotor performance was brought closer to design point objectives. These initial ADPAC
analyses show that design flow can be achieved as shown in Figure 82.
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Figure82. Preliminary ADPAC Results Show That the Case 14a Rotor Has the Potential
to Meet the Design Point Flow and Pressure Ratio by Adjusting the Mean Line
Angle Distribution.

A total of 25 configurations were analyzed with ADPAC (referred to as ITEROI to ITER2S).

A Campbell diagram (shown in Figure 83) of design iteration ITER07 indicated a mode
2/3E crossing at 100 percent RPM. A study was completed to assess tradeoffs between blade
and attachment weight for optimum mechanical performance. Figure 84 illustrates the ITER07
status relative to the mechanical design goal. Based on the results of this study, a sloped
attachment was selected, which results in adequate frequency margin with minimal aeroelastic
risk. Figure 85 confirms that the design goals have been achieved with the sloped attachment.
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Figure 84. A Design Study Completed to Restore Adequate Frequency Margin Suggested
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Figure 85. The Campbell Diagram for the ITERO7 Rotor Blade With Sloped Attachment
Shows Adequate Design Margin.

5.6 Stator Design

15 split-span stator vane configurations were defined for the first stator DOE as shown in
Figure 86. The axial sweep was kept constant for this evaluation. The acoustic and mechanical
evaluations were completed to determine the optimum stator for the Case 14a rotor. However,
after extensive evaluation of the SOURCE3D and ANSYS results, it was determined that the
conservative design at the hub (leaning against the direction of fan rotation) to prevent suction
side flow separation was a significant negative influence on the acoustic results. Three of the
DOE 1 cases (1, 5, and 7) that had significant tip sweep in the direction of rotation were carried
forward into stator DOE 2 (see Figure 87). The lean distribution labeled “Case 1 Mod” is the
Case 1 profile that has been adjusted to have zero lean at the hub. This profile was added to
access the impact of the suction side lean on the tone noise reduction. It was also decided to
perform DOE 2 with a 50 vane stator instead of the 70 vane stator of DOE 1 to reduce the
broadband noise levels and have a stator count similar to the QHSF I (52 vanes).
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Figure 86. Comparison of the Stator Lean Profiles (YSD Parameter) for the 15 Cases of
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Figure 87. These Four Circumferential Lean Distributions Were Used for Stator DOE 2.
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To overcome the negative impact on noise of the vane suction side lean at the hub, both

non-linear sweep in the axial direction and non-linear lean on the tangential direction were
explored in DOE 2. The design concept is to apply sweep where the vane cannot be leaned and

apply lean where the vane cannot be swept. The concept is shown in Figure 88.
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Two nonlinear axial sweeps were defined for stator vane DOE 2 in addition to the nominal
linear sweep as shown in Figure 89. Constraints on the vane position at the hub and shroud for

the 50-vane configuration limited the linear sweep to 13 degrees.
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Figure 89. These Three Axial Sweep Distributions Were Used for Stator DOE 2.

Based on the acoustic results, Case 109 (see Table 15) was chosen as the go-forward
design. Case 109 has the 45-20-0 4™ order sweep profile and the Case 1 tangential lean profile
from DOE 1.

Table 15. Tone Sound Power Results of Stator DOE 2 From SOURCE3D at 61.7%
Corrected Fan Speed.

Sweep 1= Sweep 1 = Sweep 1 =
Straight 30-18-5 45-20-0

YCG = Bypass Stator Case 104 Case 108 Case 112
DOE 1 Case 1m -2.0 -2.6 -2.6

YCG = Bypass Stator Case 101 Case 105 Case 109
DOE 1 Case 1 -1.3 -1.9 -2.2

YCG = Bypass Stator Case 102 Case 106 Case 110
DOE 1 Case 5 -0.1 0.1 0.4

YCG = Bypass Stator Case 103 Case 107 Case 111
DOE 1 Case 7 0.5 1.5 1.9

The decision was made for the QHSF II to return to the full span stator configuration since
the optimum core and bypass stator counts were both 50. Confirmation runs were performed to
ensure that the full span stator preserved the tone noise reduction benefit obtained with the split
span stator design of DOE II. Figure 90 shows the summary of the analysis. SOURCE3D
predicts a 3 dB reduction in tone sound power for the QHSF II go forward design as compared to
the Baseline II rotor at 61.7 percent speed. Figure 91 shows a two view drawing of the go-
forward vane design.
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Figure91. The Go-Forward Design for the QHSF |1 Stator Isa Full Span Vane With
Nonlinear Axial Sweep and Tangential L ean.

A confirmation analysis of the go-forward stator mechanical design was conducted with
ANSYS. As expected, the vane has atypical vibration mode shapes and the flutter parameters
are not all within the Honeywell design experience (see Figure 92).
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5.7 SOURCE3D and V072 Studiesfor QHSF Il Stator DOE |

The fan tone noise calculations for the first stator DOE were performed using an engine
scale fan flowpath as shown in Figure 93. The fan had a forward-swept rotor and a split-span
stator. The tone noise predictions were performed using the SOURCE3D program, which is part
of NASA’s TFaNS fan tone noise prediction tool, and the V072 program, an earlier tool upon
which the SOURCE3D program is based.
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Figure 93. A Split-Stator Fan Flow Path Was Used for the Initial Stator DOE Tone Noise
Calculations.
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5.7.1 Calibration of SOURCE3D With Straight-L ean Stators

To calibrate the results of the SOURCE3D program, tone noise predictions for the bypass-
portion of the QHSF II fan were examined at three speeds (62 percent, 77 percent, and 89 percent).
The stators of DOE I were replaced by a set of 5 stators with straight lean of +25 degrees, +15
degrees, 0 degrees - straight radial, -15 degrees, and —25 degrees. Positive lean angles were
defined as lean in the direction of rotor rotation. (Note that the SOURCE3D/V(072 variable YSD is
negative, for vane lean in the direction of rotor rotation.) The behavior of these cases was expected
to follow the trend of increased tone noise as the stator was leaned against rotation.

The SOURCE3D results showed different trends at each speed, as presented in Figure 94 to
Figure 96. Depending on which circumferential modes dominated, the sound power level was
either nonlinear (62 percent speed), constant (77 percent speed), or linear (89 percent speed) with
stator lean. At 77 percent and 89 percent speed, the 1 *BPF (m = 22) and 2*BPF (m = 44) rotor-
locked modes had constant PWL for all stator leans. At all speeds, the 2*BPF (m = -26)

circumferential mode showed nonlinear behavior with lean. Also, the 3*BPF (m = -4) mode was
nonlinear with lean, at 62 percent speed.

All radial modes were constant for the rotor-locked circumferential modes. All other radial
modes demonstrated non-linear variation with stator lean. It was the combination of these radial
modes that determined the overall behavior of the PWL trend with stator lean.
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Figure 94. SOURCES3D Resultsfor QHSF Il at 62% Speed, With Straight-L eaned Stators.
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Figure 95. SOURCES3D Resultsfor QHSF Il at 77% Speed, With Straight-L eaned Stators.
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Figure 96. SOURCES3D Resultsfor QHSF Il at 89% Speed, With Straight-L eaned Stators.
5.7.2 Comparison of SOURCE3D and V072 at 62 Percent Speed

Review of the QHSF I Design Report showed that the V072 analyses performed for the
QHSF I stator at 55.9 percent speed predicted a fairly linear variation of PWL with stator lean,
unlike the 62 percent speed SOURCE3D predictions. To determine if V072 was consistent with
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the predictions from SOURCE3D for the QHSF II, the set of straight-lean stators was studied at

62 percent speed, using V072 with input files generated by PREV072 (a preprocessor to V072
developed at Honeywell).

The V072 input files were generated with all 24 streamlines from AXCAPS, in contrast to
the SOURCE3D input files, which used a subset of 17 streamlines. The straight-lean stator
geometry was copied from the SOURCE3D input files, and additional data was added to account
for the additional streamlines. One difference between the input files concerned the
representation of YRD, the circumferential offset of the rotor trailing edge, relative to the radial
direction. The scheme for calculating YRD for a split-span stator in PREV072 resulted in bypass
YRD values that were not zero-based at the flow splitter radius. It was not clear that this was

necessary within the SOURCE3D/V072 algorithms; however, the SOURCE3D input had used
zero-based YRD distributions.

Comparison of the SOURCE3D and V072 results at 62 percent speed (Figure 94 and Figure
97, respectively) showed that the V072 overall PWL values were higher. Also, the V072 results
showed less non-linearity with stator lean compared to SOURCE3D. This behavior was even
more apparent when the differences in PWL for the leaned stators relative to the unleaned stators
were compared for SOURCE3D and V072. As shown in Figure 98 and Figure 99, the behavior of
the V072 case was more consistent with the expected trends. In general, the variation in results
between SOURCE3D and V072 was of a similar magnitude to the variations due to stator lean.
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Figure 97. V072 Resultsfor QHSF 11 at 62% Speed, With Straight-L eaned Stators.
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Figure 99. Comparison of V072 Results Relativeto Unleaned Stator.
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5.7.3 Moaodification of PREV072 Calculation of YRD

The circumferential offset of the rotor trailing edge, relative to the radial direction (YRD)
was being computed in PREV(072 inconsistently with its usage in V072. YRD was computed in
PREV072 using the offset angle relative to the hub and the local radius at the rotor trailing edge.
Although this produced an accurate circumferential offset, the V072 program did not use YRD in
the same way. In V072, the offset angles that were obtained from YRD were computed using
the reference radii (i.e., the RADIUS array specified in the input file), which in this case was at
the bypass stator leading edge.

PREV072 was modified to compute YRD based on the reference radius. In addition, for
bypass-only analyses, the offset was recomputed to have a zero-base at the flow splitter. Results
of this modification are shown in Figure 100. Only a minimal change in PWL was seen for the
modification to YRD. This was even more apparent in Figure 100, where trends for the
differences in PWL relative to the unleaned stator remained similar, with the revised input files.
This would seem to indicate that the zero- and non-zero-based YRD distributions result in
essentially the same rotor wake behavior at the stator leading edge.

As a check of the validity of the original SOURCE3D input, the new correctly computed
YRD distribution for the V072 input was compared with the YRD distribution used in
SOURCES3D. There was a significant difference in the two distributions. Although this
discrepancy in rotor trailing edge circumferential offset was constant across all cases examined,
it may have contributed to the disparity in the SOURCE3D and V072 results.
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Figure 100. V072 Results Based on the Revised Specification of YRD.
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Figure 101. Comparison of V072 Results Relative to Unleaned Stator, With Revised
Specification of YRD.

5.7.4 Comparison of QHSF | Cases With QHSF [

After modifying PREV072, new V072 analyses were performed for the Baseline I fan and
QHSF I, along with the Baseline II straight stator and a QHSF II leaned stator case. Speeds were
not directly comparable; however, all cases were near Approach. The Baseline I and QHSF I
cases were at 55.9 percent Speed, the Baseline II case was at Approach, and the QHSF II fan
with the +15 Degree leaned stator was at 62 percent Speed. Results are shown in Figure 102.

General sound power level trends of the Baseline I, QHSF I, Baseline II, and QHSF II fans
indicated that the QHSF II was comparable to the Baseline II fan, and Baseline II fan had louder
tones than the old baseline and QHSF 1.

Comparison of the QHSF I case relative to the Baseline I fan showed somewhat different
trends (varying by several dB) than those presented in the QHSF I Design Report (Reference 1).
In the final report, the differences were generally reported to be much greater. A contributing
factor may be the underestimate of the radial loss distribution specified for the Baseline I rotor in
the original QHSF I evaluations. This original loss model was replaced by the QHSF I loss
distribution for the current V072 analysis of the Baseline I fan.
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Figure 102. Comparison of the QHSF | and QHSF Il Cases With the Baseline |l and
Basdlinell Cases.

5.7.5 Adjustment for Low Cutoff Ratio

It was noted that some of the radial modes had cutoff ratios very close to 1.0, along with
very large predicted sound power levels. Because the accuracy of the cutoff ratio calculation in
V072 was not well established, there remained some question as to the validity of the sound
power levels for these modes. To determine the impact of the modes with low cutoff ratio, the
V072 results were adjusted by computing the sound power levels after discarding any modes
having cutoff ratios less than or equal to 1.1. The primary impact of this adjustment was on the
QHSF II case, which was reduced significantly in overall sound power level, as shown in Figure
103. Compared to the unfiltered results shown in Figure 102, this sound power level indicates a
substantial decrease in fan tone noise for the QHSF II stator with +15 degrees of straight lean.

To determine the impact on sound power level with stator lean, results for the 5 straight-
lean stator cases at 62 percent speed were filtered to remove any mode with a cutoff ratio less
than or equal to 1.1. The results of this analysis are shown in Figure 104. The cutoff ratio
filtering impacted only the 2*BPF modes, reducing them significantly, relative to the unfiltered
modes shown in Figure 100. As a result, the overall sound power levels were also substantially
reduced for the filtered predictions.
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Figure 103. Comparison of QHSF | and QHSF Il Cases Adjusted for Low Cutoff Ratio.
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Figure 104. Variation in PWL for QHSF Il With Stator Lean at 62% Speed, Adjusted for
L ow Cutoff Ratio.
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5.7.6 Comparison of Rotor Loss Profiles

Before reaching any conclusions concerning the QHSF II stator V072 analyses, additional
issues were considered. One area of concern was the rotor loss distribution for the QHSF II.
Rotor loss distributions for the QHSF I at 55.9 percent speed, the Baseline II fan at Approach,
and QHSF II at 62 percent speed were compared, as shown in Figure 105. The QHSF I and
Baseline II profiles appeared to be similar; however, the QHSF II distribution was quite low in
the outer span region.
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—&—QHSF | - 55.9% Spd
0.25 ——Baseline Il Approach
1 —A—QHSF Il - 62% Spd
0.2 1
[2]
%]
o
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QHSF Il Core  €——% QHSF Il Bypass Percent Span

Figure 105. Radial L oss Distributions From AXCAPS.
5.8 Final QHSF Il Design

The final aerodynamic design of the rotor and stator for the QHSF II was selected to be
Case 18h (which was derived from Rotor ITER18 and Stator Case 109). Case 18h is the
optimum configuration resulting from a series of analytical DOEs that were subsequently further
optimized for reduced mechanical stress and improved aerodynamic performance. Figure 106
depicts the geometry of the final QHSF II design relative to the baseline engine.
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Figure 106. QHSF 11 Reduces Noise Through Rotor Sweep and Stator Sweep and Lean.

5.8.1 Aerodynamic Performance

Figure 107 shows the aerodynamic performance of the QHSF II rotor at 100 percent
corrected fan speed. Figure 108 shows the aerodynamic performance of the QHSF II stage at
100 percent corrected fan speed. The QHSF II stage meets pressure ratio and efficiency goals.
Suction-side Mach number contours are shown in Figure 109 for the QHSF II and Baseline 11

rotors. Figure 110 shows the Mach number contours at the rotor exit. The rotors show very

similar aerodynamic performance.
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Figure 107. The QHSF Il Rotor Meets Pressure Ratio and Efficiency Goals Set for the

Program.
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Figure 109. The Results of the ADPAC Analyses Show the Differencesin Mach Number
Contourson the Suction Side of the Blade Between the Baseline Il and QHSF

Il Rotor.

NASA/CR—2012-217451

100



QHSF Il Rotor Baseline |l Rotor

Figure 110. The Results of the ADPAC Analyses Show the Differencesin Mach Number
Contoursat the Rotor Exit Between the Baselinell and QHSF 11 Rotor.

Figure 111 shows the suction side Mach number contours for the QHSF II and Baseline II
stators. Figure 112 shows the Mach number contours at the vane exit. There is a small amount
of flow separation introduced in the QHSF 1I stator design relative to the Baseline II design. The
separation was estimated to be worth approximately 0.5 point in efficiency as shown in Figure
113 and has an undetermined noise impact judged to be of low risk.

QHSF || Stator Baseline |l Stator

Figure111. The Resultsof the ADPAC Analyses Show the Differencesin Mach Number
Contourson the Suction Side of the Vane Between the Basdline Il and QHSF
Il Stator.
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Figure 112. The Results of the ADPAC Analyses Show the Differencesin Mach Number
Contoursat the Vane Exit Between the Baselinell and QHSF |11 Stator.
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Figure 113. A Quick Analysisof the Stator Separation Indicated a Small Reduction in
Efficiency for the QHSF Il Stator.
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As part of the original design goals for the QHSF I program, an attempt was made to adjust
the rotor shock position at the critical takeoff condition so that the shock would be totally
captured in the blade passage. Unfortunately, the multidiscipline optimization process of DOE 1
led to a design that did not achieve shock capture. Figure 114 shows Mach number contours for
a typical take-off condition at four spanwise radii on the blade. It can be seen from the figure
that the shocks are not contained in the blade passage. Figure 115 shows the Mach number
contours near the pressure and suction side of the blade surface. The spanwise variation in shock
position is clearly shown.

QHSF Il Rotor Case 14 Go-Fwd
897, Speed
I TURBQ = Viscous)

QHSF Il Rotor Case 14 Go-Fwd
§9% Speed
I TURBOQ = Viscous)

Seclion 27 Seclion 28

Contours of Mach Number Contours of Mach Number

(a) 60.1% span
QHSF Il Rotor Case 14 Go-Fwd
897, Speed

{TUREQ = Viscous)

Seclion 30

Contours of Mach Number

(c) 80.0% span

Figure 114. Mach Number Contours From the TURBO Viscous Analysis at 89% Speed

(b) 68.3% span
QHSF Il Rotor Case 14 Go-Fwd
897, Speed
{TUREQ = Viscous)

Seclion 34

Contours of Mach Number

(d) 92.1% span

Show That Shock Capture Was Not Achieved for the QHSF |1 Fan.
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Figure 115. Mach Contours From the TURBO Viscous Analysis Show the Shock Positions
for the 89% Speed Condition.

5.8.2 Mechanical Performance

A sloped attachment of 4.5 degrees was selected for the QHSF II rotor design as shown in
Figure 116. This slope is adequate to put the blade-out loads equal to Baseline II engine levels,
meet frequency goals, and provides adequate flutter margin. A state-of-the-art finite element
model of the rotor blade and attachment was used for the mechanical analysis. Table 16 is a
summary of the mechanical design status.

4.5° Ramp Angle

10° Broach Angle

Figure 116. A Sloped Attachment Was Designed for the QHSF |1 Rotor.
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Figure 117. Honeywell Applied State-of-the-Art Finite Element M odeling Techniquesin
the Mechanical Analysisof the QHSF Il Rotor Blade and Attachment.

Table 16. All of the Mechanical Design Requirements Were Met for the QHSF I1.

Blade Weight

e Meets target weight requirements (less than Baseline II)

Blade Modal Characteristics

e Adequate frequency margins at 100 percent Speed for 1E to 4E distortion
e Fundamental mode crossing speeds are within Honeywell experience
Medium Bird Ingestion

e C(Calculated blockage is with in Honeywell experience

Blade Stress

e Results are within Honeywell design experience

Fan Disk Burst Margin

e Relative to NASA criteria, 30 percent above burst margin requirement

e Relative to Honeywell criteria: 53 percent margin, required > 25 percent margin
Fan Stator Vane

e Airfoil-only vibration analysis shows adequate flutter margin

Figure 118 shows blade stress levels at the aerodynamic design point (defined as a tip speed
of 1506 ft/s, corresponding to a corrected speed of 15,621 rpm on the 22 rig). All stresses are
within Honeywell design experience. Figure 119 shows that stress levels in the sloped blade
attachment are well balanced and relatively low in the retention area. The attachment minimum
neck stresses redistribute, but are within experience for a frictionless condition. The axial contact
stress for the limiting (frictionless) condition is 33.8 Ksi. Figure 120 shows the results of 3-D disk
wedge analyses. Results indicate that the disk has adequate burst margin relative to NASA criteria
as shown (mechanical design point is defined as physical speed of 15,842 rpm on the 22" rig).
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Disk Material: Maraging Steel C-250
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NASA Criteria: Avg Hoop < 0.47 F,, (=112 ksi)
Average Hoop @ aero design point: 93.4 ks
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Figure 120. Disk Analysisat Aerodynamic Design Point Show Principal Stress Well Below
NASA Burst Margin Criteria.

To support the determination of dynamic loads on the rig and potential blade out loads, the
blade weight and center of gravity locations were estimated. Figure 121 shows the calculated
values for the airfoil (A/F) only, the release blade (largest portion lost in a blade-out event), and
the total blade for the QHSF II.

Axial CG Radial CG Weight, Ib
AJF Only -0.327 7.019 0.55
Release Blade -0.145 6.166 0.78
Total Blade -0.127 5.895 0.86 e ¥

Figure 121. The Blade Weight and Center of Gravity (CG) Location Relativeto the
I nter section of the Axis of Rotation and the Stacking Axis Are Provided for
Rig Structural and Dynamic Analyses.
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Modal analysis of the final QHSF II rotor blade design was performed and is summarized
by the Campbell Diagram in Figure 122. The characteristics of the first tree mode shapes are
shown in Figure 123. The first bending mode is placed between first and second rotational
harmonics at the mechanical design point with a 40 percent frequency margin. The second mode
is placed between the third and fourth rotational harmonic with a 12.6 percent frequency margin.
The third mode was placed between the fourth and fifth rotational harmonic with an 8 percent
frequency margin.

Figure 124 shows the ANSYS" calculation of the maximum deflections of the QHSF II
rotor blade at 100 percent Speed. The figure shows that the direction of principal motion is
circumferential. Figure 125 shows that the QHSF II rotor blade meets the bird strike criterion.
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Figure 122. The Campbell Diagram for the QHSF Il Rotor Shows Adequate Frequency
Margin for the Three Primary Vibration Modes.
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Figure 123. TheQHSF Il Rotor Blade Hasa Complex Vibration Modal Structure.
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Figure 124. The Direction for the Maximum Deflections of the QHSF Il Rotor Isin the
Circumferential Direction.
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Figure 125. The Analysisof the QHSF Il Rotor Blade With NOSAPM Shows That the
Blade Will Meet the Bird Strike Criteria.

Figure 126 shows the completed rotor blades being installed in the fan disk. The boundary
conditions for the finite element analysis for the QHSF II fan blade assumed the dovetail contact
surfaces to be fully fixed in all degrees of freedom. This type of boundary condition was
calibrated for fan blades with a beaver tooth, which restrained (in the axial direction) the blade
dovetail at the forward end of the dovetail. The QHSF I fan blade has no beaver tooth and thus
does not have this additional constraint on the forward side of blade dovetail. The blade is
retained axially by the feature added on the pressure side of the shank and the mating tab on the
fan disk post. Since the mating retention feature was not incorporated on the broach block, the
finite element model boundary conditions were adjusted to match the bench test condition. In
the analysis the fan blade was fixed normal to the dovetail contact plane, and a group of nodes
were fixed parallel to the contact plane near the dovetail axial center.

A set of 22 QHSF II fan blades were acoustic ring (ARS) tested. The fan blades were
mounted on the broach block (P/N R3563132-1) and secured in the slot with the mounting bolts.
A bolt torque of 500 in-Ib. was applied to ensure the dovetail was securely mounted and the
mating surfaces were fully in contact. Results of the test for the first 10 modes are documented
in Table 17. There is good agreement with the predicted frequencies of the finite element model.
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Figure 126. QHSF Il Rotor — Partial Assembly.

Table17. QHSF Il Fan Blade--ARS Bench Test Frequencies.

Blade S/IN|Mode 1|Mode 2|Mode 3|Mode 4|Mode 5|Mode 6| Mode 7|Mode 8| Mode 9| Mode 10
Analysis 234 654 1158 | 1638 | 2136 | 2463 | 2570 | 2798 | 3455 3876
02 238 664 1154 | 1634 | 2132 | 2407 | 2549 | 2783 | 3428 3727
10 236 662 1168 | 1650 | 2138 | 2465 | 2610 | 2828 | 3495 3603
11 238 665 1171 | 1655 | 2141 | 2453 | 2587 | 2825 | 3482 3714
12 239 668 1174 | 1659 | 2141 | 2459 | 2601 | 2829 | 3484 3724
13 240 670 1164 | 1652 | 2131 | 2426 | 2580 | 2812 | 3452 3703
14 241 674 1168 | 1662 | 2144 | 2460 | 2579 | 2842 | 3475 3747
15 240 669 1165 | 1654 | 2134 | 2438 | 2576 | 2828 | 3466 3724
16 240 670 1166 | 1654 | 2133 | 2424 | 2574 | 2820 | 3461 3706
17 241 670 1168 | 1656 | 2137 | 2434 | 2572 | 2825 | 3468 3696
18 240 670 1166 | 1655 | 2136 | 2437 | 2572 | 2826 | 3463 3738
19 241 672 1168 | 1662 | 2141 | 2444 | 2584 | 2828 | 3470 3710
20 240 671 1166 | 1658 | 2134 | 2436 | 2575 | 2828 | 3463 3741
21 241 672 1167 | 1657 | 2135 | 2424 | 2579 | 2821 | 3459 3746
22 240 668 1167 | 1654 | 2138 | 2459 | 2582 | 2835 | 3464 3736
23 240 670 1168 | 1659 | 2141 | 2462 | 2573 | 2830 | 3469 3741
24 240 668 1166 | 1651 | 2138 | 2432 | 2573 | 2822 | 3466 3739
25 240 669 1163 | 1658 | 2135 | 2428 | 2579 | 2829 | 3466 3742
26 240 670 1165 | 1657 | 2137 | 2444 | 2574 | 2825 | 3469 3735
27 239 667 1165 | 1660 | 2134 | 2453 | 2576 | 2833 | 3470 3742
29 239 668 1168 | 1660 | 2138 | 2452 | 2584 | 2841 | 3479 3603
30 240 669 1163 | 1651 | 2127 | 2432 | 2582 | 2821 | 3458 3745
Min 236 662 1154 | 1634 | 2127 | 2407 | 2549 | 2783 | 3428 3603
Max 241 674 1174 | 1662 | 2144 | 2465 | 2610 | 2842 | 3495 3747
Mean 240 669 1166 | 1655 | 2136 | 2441 | 2579 | 2825 | 3467 3717
Std Dev 1.2 2.7 3.8 6.0 4.0 15.6 11.7 11.8 13.2 41.0
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Holography bench testing was conducted on the QHSF II fan blade using the same type of
set-up that was used in the ARS bench test. The results are documented in Table 18 where the
holography frequencies are compared to the average ARS frequencies of the 21 blades, as well as
to the analytically predicted frequencies. The data shows there is good agreement between the
bench test and finite element analysis frequencies. Figure 127 shows mode shapes (for modes 1-
6, respectively) obtained from holography test and finite element analysis. There is good
agreement between the holography bench test and analytically predicted mode shapes. The close
agreement of the results indicates the boundary condition used in the finite element analyses is
consistent with the conditions of the bench test.

Table 18. QHSF Il Fan Blade-- Comparison of Finite Element Analysis, Acoustic Ring
Signature, and Holography Test.

ARS** Frequency (Hz)
Analysis* Percent |Holography***| Percent
Mode| (Hz) [Average| Min Max | Std Dev | Difference (Hhz) Difference
1 234 240 236 241 1.2 2.5 236 1.0
2 654 669 662 674 2.7 2.2 659 0.8
3 1158 1166 1154 1174 3.8 0.7 1160 0.2
4 1638 1655 1634 1662 6.0 1.0 1639 0.0
5 2136 2136 | 2127 | 2144 4.0 0.0 2137 0.1
6 2463 2441 2407 | 2465 15.6 -0.9 2428 -1.4
7 2570 2579 | 2549 | 2610 11.7 0.4 2562 -0.3
8 2798 2825 | 2783 | 2842 11.8 1.0 2798 0.0
9 3455 3467 | 3428 | 3495 13.2 0.3 3483 0.8
10 3876 3717 | 3603 | 3747 41.0 -4.3 3736 -3.8

* Fixed normal to contact surface + a row of nodes fixed parallel to contact surface at

mid-dovetail
**Acoustic ring frequency of a set of 21 fan blades fixed in broach block
***Holography test of a single blade fixed in broach block
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Figure 127. QHSF Il Fan Blade— Comparison of Holography and Finite Element Analysis.
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For the rig configuration, the stator vane is made from SS355 material. The metal vane is
brazed to the outer shroud and thus in the finite element model it is fully fixed at the outer shroud.
At the hub, the vane is positioned in a pre-cut slot, and constrained in the radial direction by an
aluminum ring. The hub shroud itself is on rollers that allow the stator assembly to rotate about the
engine axis. In the finite element model, the vane is fixed in radial and axial directions at the hub.
The resulting reduced frequencies for the first two modes are above the design criteria. The
Campbell Diagram for the stator vane is shown in Figure 128 and the predicted mode shapes are
shown in Figure 129. The frequencies for the first 6 vane modes are given below.

Mode Frequency, Hz
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Figure 128. The Campbell Diagram for the QHSF 11 Vane Shows That No Vibration
| ssues Are Expected.
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5.8.3 Aerodastic Performance

Viscous TURBO-AE analysis of the final design was performed. The predicted flutter
boundary is shown in Figure 130 for the various blade attachment concepts. For the current 4.5
degree sloped attachment design, the aeroelastic “pinch point™ at 70 percent speed is predicted to
be stable based on the viscous results.

5.8.4 Acoustic Performance

Acoustic analysis was performed to verify the performance of the Case 18h design. In
summary, noise reduction on QHSF II is anticipated to be similar to that demonstrated on the
QHSF I. Noise is reduced primarily by decreased rotor-stator and rotor-strut interactions that are
obtained by the geometric features of the rotor and stator.
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Figure 130. Viscous TURBO Results Show Reduced Risk for 4.5 Degree Sloped
Attachment.

100

5.9 Further Revisionsto the Stator Design

Additional aerodynamic design efforts were applied to examine potential solutions to the
separation in Case 18h and resulting efficiency loss. Figure 131 shows stator lean and metal
angle profiles for the Baseline II, Case 18h, and a new study case for the stator separation
elimination, labeled Q2a. A more aggressive lean, with compensating changes to the leading
edge metal angle are combined to reduce flow separation and could also offer further noise
reduction. Aerodynamic results for QHSF II and “Q2a” are shown in Figure 133 and Figure 134.
While the separation has not been completely eliminated, it has been significantly reduced, with
an estimated efficiency improvement of 0.3 percent at the peak point, as shown in Figure 135.
The improvements to the flow field appear to be significant, indicating that the efficiency
improvement may be somewhat under predicted by the CFD results.
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(a) QHSF 11 — Q2a (b) QHSF II - Case 18h (c) Baseline 11

Figure 133. Mach Number Contourson the Vane Suction Surface Show the Reduction of
the Flow Separation Near the Shroud.
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Figure 134. Trailing Edge Mach Contours Show Reduced Stator Separation for the Q2a
Design.
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Figure 135. The Results of the CFD AnalysisIndicate an Improvement of 0.3% in Peak
Efficiency.

5.10 ModificationstotheBasdlinell Stators

A program augmentation was received on August 11, 2003 to make hardware for a set of
Baseline II stators. The aerodynamic design of the Baseline II vane needed to be modified to run

effectively behind the QHSF II rotor.

Figure 136 shows a solid model comparison of the QHSF II stator design to the modified
Baseline II stator. The new stator has geometry similar to the Baseline II stator, with nearly
identical performance to the QHSF II design as indicated by the Mach No. Profile in Figure 137,
the pressure ratio comparison in Figure 138, and the adiabatic stage efficiency comparison in

Figure 139.
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Figure 140 shows the final Baseline II stator fabricated for the 22 QHSF II Rig.

Figure 140. A Baselinell Stator Set Was Designed and Fabricated to Match the QHSF 11
Rotor for Study of Rotor/Strut Interaction Effects.

5.11 Analysisof the Rotor-Strut Interaction With the Baselinell and QHSF |1 Stators

The purpose of the Rotor-Strut Interaction Analysis was to further understand the role of
the stator in that interaction. In particular, the study focused on the impact on flow behavior of
the stator shape (lean and bow) and the pitchwise alignment (or circumferential clocking) of the
stators relative to the struts.

Stator/strut flow predictions were performed for 8 flowpath configurations, including 4
different stator/strut clocking positions, for both the Baseline Il and QHSF II stators. For purposes
of the analyses, the struts were clocked relative to the stators, with clocking angles of 0.0, 1.8, 3.6,
and 5.4 degrees. The 4 stator/strut clocking positions are illustrated in Figure 141, for both the
Baseline II and QHSF II stators. The strut geometry was identical for both stators. Inlet flow
conditions for the stator/strut analyses were taken from an axisymmetric flow analysis prediction
of QHSF II rotor exit conditions at the 85 percent corrected speed, SLS operating line point.

The stator/strut flow predictions were performed using the Fluent® CFD analysis program.
Each of the flowpath models contained an annular periodic sector composed of 5 stators and 1
strut, as shown in Figure 142. The computational mesh consisted of an unstructured tetrahedral
volume mesh constructed from a triangular surface mesh. The triangular surface mesh on the
strut is shown in Figure 143. The computational meshes for the Baseline II cases had
approximately 3.8 million cells; the meshes for the QHSF II cases totaled approximately 4.2
million cells. These meshes were considerably more dense than those used in the QHSF I rotor-
strut interaction analyses. The solutions were performed using Version 6.1.23 of Fluent®, and
employed the segregated, implicit solver, with the realizable k-epsilon turbulence model using
non-equilibrium wall functions.
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Evaluation of the flow analyses focused on the predicted static pressure fields upstream of
the stators. Static pressure data were processed at various axial and radial locations in the
upstream flowfield, as illustrated in Figure 144.

Figure 145 - Figure 148 present the circumferential distributions of static pressure at
selected locations resulting from the flow analyses of all 8 stator/strut configurations. Based on a
review of these figures, the following observations may be made:

e At all sampling locations upstream of the stator, a strut-induced static pressure
disturbance or pulse is evident. The pulses decay with increasing distance upstream
from the strut.

® Lean and bow of the QHSF II stator appear to affect the strut pressure pulses at outer
span radial locations. The pulse amplitude appears higher for the unbowed Baseline I1
stator cases. In addition, as seen in Figure 148, the unbowed Baseline II stator cases
show evidence of the stator pressure pulses superposed over the strut pulse; in
contrast, the QHSF II cases show very little evidence of stator pressure pulses.

®  Clocking effects appear to be evident with both stators. Differences in pulse
amplitude and peak shape appear to correlate with stator/strut clocking.

It may be concluded from the Rotor/Strut Interaction Study that the stator shape and pitchwise
alignment relative to the struts does have an impact on the static pressure distribution upstream
of the stators.

Unbowed Baseline Il Stator

QHSF Il Stator

0.0 deg 1.8 deg 3.6 deg 5.4 deg

Figure 141. Four Stator/Strut Clocking Positions Were Analyzed for Both the Baselinell
and QHSF Il Stators.
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Figure 142. The Flow Path Model for Rotor/Strut I nteraction Analyses Consisted of a
Periodic Sector of 5 Statorsand 1 Strut.

Figure 143. TheUnstructured Triangular Surface Mesh, Shown Here Applied to the
Bypass Strut, Formed the Basisfor the Tetrahedral Volume Mesh.
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Figure 144. Axial and Radial L ocations at Which Static Pressure Data Were Processed in
the Region Upstream of the Stators.
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Figure 145. Circumferential Static Pressure Distributionsat R = 7.48 Inchesand X =-5.71
I nches Show Differencesin Pulse Amplitude and Shape With Strut Clocking.
Unbowed Baselinell Stator Case I's Shown on the Left; QHSF 11 Stator Case
Ison the Right.
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Figure 146.

Circumferential Static Pressure Distributionsat R = 8.66 Inchesand X =-4.92
I nches Show Pulse Amplitude IsHigher for the Unbowed Baselinell Stator
Case. Also, Differences Are Seen in Pulse Amplitude and Shape With Strut
Clocking. Unbowed Baseline |l Stator Case Is Shown on the Left; QHSF 11
Stator Case lson the Right.
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Figure 147. Circumferential Static Pressure Distributionsat R = 9.84 Inchesand X =-4.92
I nches Show Pulse Amplitude IsHigher for the Unbowed Baselinell Stator
Case. Also, Differences Are Seen in Pulse Amplitude and Shape With Strut
Clocking. Unbowed Baselinell Stator Case Is Shown on the Left; QHSF 11
Stator Caselson the Right.
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Figure 148. Circumferential Static Pressure Distributionsat R = 9.84 Inchesand X =-4.13
I nches Show Pulse Amplitude IsHigher for the Unbowed Baselinell Stator
Case. Also, Pressure Pulse Shapesfor the Baselinell Stators Show the
I nfluence of the Stator Pressure PulsesMore Than QHSF |l Stators, at the
Same Axial Position. Unbowed Baseline |l Stator Case |I's Shown on the L eft;
QHSF Il Stator Caselson the Right.

6. RIGMODIFICATIONS
6.1 Overview

Several modifications to the existing QHSF rig were required to accommodate the QHSF II
design. Key mechanical differences include a reduced hub/tip ratio, the addition of a rotating
stator set & actuation system, and fan frame modifications to accommodate additional
instrumentation. An overlay of the QHSF I and QHSF II rigs is shown in Figure 149. Figure
150 is a schematic diagram of the rig installed in the wind tunnel.

A set of distortion screens and a screen rotator device were provided to complete additional
mechanical and operability testing of the QHSF II rig in the NASA wind tunnel. Figure 151
shows the inlet distortion screen rotator that has been proven in prior rig testing at Honeywell.
Figure 152 shows the rig in the performance test configuration, which has been modified for
rotation of stator set during rig operation. Figure 153 shows the rig in the acoustic configuration.
Changes to acoustic configuration are minimal. The inlet liner has been changed by NASA from
fiberglass to aluminum. During far-field acoustic testing of the QHSF II, the rotating stator
actuation system was removed, eliminating the need for any modifications to the nacelle.
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6.2 Front Frame

Figure 154 shows the modifications to the front frame design for the QHSF II rig and
Figure 155 shows the new QHSF II aluminum frame mounted on the 22” dummy drive rig.

10 struts cored for instrumentation routing

5 comb rakes (w/ removable plugs in core
and bypass)

Figure 154. The Front Frame Design for QHSF Il Was Modified to Incorporate 5 Comb
Rakesfor Stage Performance Measurements.

Figure 155. QHSF Il Fan Frame on the NASA 22" Dummy Drive Rig.
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6.3 Rotating Group

Figure 156 shows the modifications that were made to accommodate the new fan design.
The torque sleeve was modified to accommodate the new flow path that was introduced due to
the lower hub-to-tip ratio of the QHSF II. The spinner was re-designed to match the new
flowpath and to match a more current engine design. The design of the disk was modified to
implement the new blades with the sloped attachment. The mechanical design of the disk is
presented in Section 5. Figure 157 shows the results of the stress analysis of the aft spinner
modification. The maximum stress level was well below acceptable limits established by
Honeywell design practice.

Torque sleeve OD
reduced by .485in
due to change in
flow path

4.50 sloped blade
attachment on disk

(I \
# Fﬂ

=
|
New spinner

Figure 156. Changesto the Rotor System Design for QHSF |11 Include a New Disk, Torque
Sleeve, and Spinner.
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Figure 157. The Maximum Stress L evel in the Spinner Was Computed to Be 13 ksi.
6.4 Rotating Stator Assembly

A rotating stator concept was proposed to allow detailed flow measurements behind the
stator and to allow the stator positions to be clocked relative to the strut positions. A drawing of
the dual-actuator system is shown in Figure 158. This concept allows for mechanical rotation of
the stators in both the acoustic and performance configurations of the 22" rig.

Figure 158 shows the original design concept for the rotating stator assembly with 2
actuators and 2 horizontal rods. The design load capability for each actuator is 1000 Ib. The
expected maximum total aerodynamic and mechanical load is expected to be 650 Ib. During
assembly, it was determined that the opposing actuators, as designed, could potentially bind each
other. It was decided that since one actuator had enough authority to rotate the stators, only one
actuator and horizontal rod would be used. Figure 159 shows a photograph of the final
configuration.
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Figure 158. The Rotating Stator Concept Allowsfor Variable Positioning of the Stator
Relativeto the Strutsin the 22" QHSF Il Rig, asWell as Facilitate Stage
Performance M easur ements.

Figure 159. The Final Rotating Stator Actuation System Uses One Actuator and
Horizontal Bar.
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6.5 Safety Review

Honeywell’s safety analyses for the QHSF II rig are supplemental to those performed on
the entire QHSF rig structure (Reference 1), and are focussed only on the previously described
mechanical differences in the QHSF Il rig. In general, all changes to the QHSF II mechanical
structure resulted in either identical or better margins of safety relative to the previous design.

Stress levels of the QHSFII fan disk meet Honeywell design requirements. Table 19 shows
the calculated LCF life for the QHSF II fan disk with maraging steel C-250 properties using
Honeywell’s Browse material database. The maximum test speed analyzed represents the
highest speed the rig is expected to achieve as part of the planned testing, and is equivalent to
105 percent of the aerodynamic design speed of the QHSF II.

Table 20 and Figure 160 show the results of the QHSF II airfoil stress calculations at the
maximum test speed of 16,402 rpm.

Factor of Safety margins for the new rotating QHSF II hardware are summarized in Table
21, and satisfy the NASA requirements as shown. Details of the calculations are summarized in
Table 21.

Table19. LCF Lifefor C-250 Fan Disk.

Condition Max Test Speed| Trip Speed
Speed (RPM) 16402 16700
LCF Llfewnh Min Material 9071 7553
Properties (cycles)
LCF Lifewith Average 29177 18456
Fatigue Properties (cycles)
Temperature (Deg F) 200 200
Stress Ratio 0 0
Stress Range (KSl) 186 193
CF Radial Section Average Stress

Component Load (Ib) [Area(in*2) (ksi)

Blade root 38844 1.003 39

Airfoil root 29288 0.774 38
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Figure 160. Average Blade Root and Airfoil Root Section Stress Calculation at 16402 RPM.

Table20. New QHSF Il Hardwar e Satisfies NASA Factor of Safety Requirements.

QHSF QHSF Il at [QHSF Il at| NASA Req
15621 rpm  |16402 rpm
Yield Margin for Blade Airfoil 1.2 1.2 1.1 1.1
Yield Margin for Blade n/a 1.2 1.1 1.1
Attachment
Burst Margin (NASA Criterion) 1.5 (ultimate) 1.2 1.1 1.1(1.5
Ultimate)
Yield Margin for Spinner 1.9 (ultimate) 3.9 3.7 1.1 (1.5
(fwd spinner) Ultimate)
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6.6 Rig Speeds

Table 22 defines key physical operating speeds and their relationship to the corrected
aerodynamic design speed of the QHSF II fan.

Table22. QHSF Il Physical and Corrected Design Speed for Key Operating Points.

Physical Speed* %N1lreQHSFII
QHSF |1 Aero Design Point (1485 ft/s 15621 100%
corrected tip speed req)
QHSF Il Mechanical Design Point 15842 101%
(from 1506 ft/s mech tip speed req.)
Max Speed in QHSF |l Test Plan 16402 105%
22" Rig Mechanical Speed Limit 16850 108%

* Mech. Speed calculations are applicable to 59 deg. Std. Day
6.7 Nozzle Sizing

The predicted exit flow (Wc) for the QHSF II matches the QHSF along most of the
operating line (including Approach and Cutback acoustic conditions), but is slightly lower near
the Sideline condition (~90% fan speed, Nc). The nozzle may be slightly large for the QHSF 1I;
but the small differences shown in Figure 161 are not critical to the acoustic measurements.

70 ‘ : :
—o— QHSF Il Sea Level Standard
—8— QHSF 1 Sea Level Standard A--A--4--,
60 -1 - A- QHSFICruise - ,

a1
o
!

Exit Wc (Ibm/sec)
N
o

N
o
|

10
20 30 40 50 60 70 80 90 100 110

% Nc

Figure 161. The Predicted QHSF Il Operating Line Shows That the Existing QHSF |
Nozzle Will Accommodate the QHSF |1 Fan.
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6.8 Instrumentation

The complete instrumentation list for the QHSF II rig is presented in Appendix I. A
general description of the rig instrumentation by Honeywell appears below. NASA-provided
instrumentation not described in this section (but included in Appendix I) include rig speed & all
rig mechanical integrity, instrumented performance bellmouth, rotor exit radial survey probes,
light probes, core flow rakes, and the LDV measurement system. Also included in Appendix I
are detailed descriptions and figures of the fan case plug instrumentation.

6.8.1 Accelerometers

Three accelerometers mounted at top dead center on the fan frame will provide continuous
vibration data (in the vertical, axial, and horizontal directions).

6.8.2 Boundary Layer Rakes

Five rakes with 10 pressure elements each are used to determine the magnitude of the inlet
boundary layer (these rakes are identical to the rakes used in QHSF I testing, as described in
Reference 1 and Appendix I). The boundary layer rake is pictured in Figure 162.

Figure 162. Boundary Layer Rake Shown in QHSF |1 Fan Case Plug (18 Degree L ocation).
6.8.3 Capacitance Probes

Four capacitance probes spaced equally spaced around the fan at rotor leading edge, mid-
span, and trailing edge are used to measure rotor clearance.

6.8.4 Comb Rakes

Five rakes consisting of 14 pressure and temperature elements each (9 bypass and 5 core)
will be used to measure stage performance at traversing positions across the vane passage
(accomplished by clocking of the stator set). The comb rakes mimic the trailing edge stator
geometry as shown in Figure 163.
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Figure 163. Aft Looking Forward View of Fan Frame and QHSF |11 Stator, With One
Comb Rake Shown.

6.8.5 Distortion Rakes

Ten rakes with six total pressure elements will be used to measure radial inlet distortion
effects, forward of the fan rotor (Figure 164).

T
3

Figure 164. Inlet Distortion Rake Design for QHSF I 1.

6.8.6 Kulites

Four kulites in a fan case plug and an additional kulite in the fan case spanning 1 strut
passage will be used to evaluate strut potential field at the rotor. An additional 10 kulites placed
diagonally across the plug will be used to evaluate rotor shock position. Figure 165 shows the
kulite locations in the fan case plug.
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Figure 165. QHSF Il Fan Case Plug Kulites.

6.8.7 Static Pressures

Numerous statics (as defined in Appendix I) are located throughout the rig at critical
locations on the hub and shroud, including core, bypass, and vane leading edge measurement
planes. Figure 166 depicts locations of the static pressure measurements (PS) acquired during
aerodynamic performance mapping. (Total temperature (TT) and total pressure (PT)
measurement points also shown.)
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° PT/TT Combo

o PS

o PT

Figure 166. Aerodynamic Performance M easurementson QHSF Il Fan Rig.

6.8.8 Strain Gages

A total of twenty strain gages were mounted on critical stress areas of 4 rotor blades (5 per
blade), as shown below in Table 23, Table 24, and Figures 167-170. Two strain gages were
placed on the fan disk, as shown in Figure 171. Two strain gages were placed on each of two
QHSF II stator vanes as shown in Figure 172.

Table23. The Strain Gages Are Described for the QHSF 11 Rotor Blade.

GAGE RATIOS 90 75 80

Mode #--> 1 2 3
Gage #

90

9% 9 9 90 80

90

GAGE LOCATIONS

1PS 96 [79 |2

2SS 29 65 |89

3SS 3 41 29
4 SS 1 15 32

Freq(Hz) -> 370 886 1256 1872 2309 2418 2709 3032 3619 3798 | Axial Radial Angle
4 5 6 7 8 9 10 (in) (in)  (deg)
41 5 17 6 6 3 2 -1.604 -0.586 3.820
6 11 7 10 1 30 3 1.603 0.519 6.130
100 (93 81 8 92 7 39 -1.392 -1.534 9.792
63 7 20 97 26 58 58 -0.462 0.009 9.849
Gage Size = 3.2E-2
Table24. Strain Gage Locations Are ldentified for the QHSF |1 Rotor Blade.

Global Cartesian Origin at Ref. Pt (TE Tip) Origin at Ref. Paint (TE Tip)
x-along engine axis x-along dovetail
S/GLoc X Y Z X Y Z X Y Z
1 -1.604 -0.586 3.820 2.202 -2.561 -6.495 -2.608 -2.150 6.495
2 1.603 0.519 6.130 -1.004 -1.456 -4.185 0.741 -1.619 4.185
3 -1.392 -1.534 9.792 1.990 -3.509 -0.523 -2.564 -3.120 0.523
4 -0.462 0.009 9.849 1.060 -1.966 -0.466 -1.950 -2.367 -0.434
Ref. Pt 0.599 1.975 10.315 0.000 0.000 0.000 0.000 0.000 0.000
(TETip)
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Suction Side Pressure Side

Figure 167. Strain Gage L ocations Were Defined to Measure 7 Major Vibrational Modes.

Y AY
S/G Loc #3 \ L%
\ x-axis aligned
S/G Loc #1 with engine Axis
f X
>'<\k x-axis aligned

with dovetail

S/G Loc #4 S/G Loc #2

Top View

Figure 168. The Top View of Blade Showsthe Strain Gage L ocations and the Relative
Positions of the Engine and Dovetail Axes.
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Strain Gage
Location #5

K

Section
A-A

4.5 degrees

Figure 169. TheFifth Strain Gage I s L ocated on the Blade Dovetail.

Figure 170. QHSF Il Fan Blade— Strain Gages.

NASA/CR—2012-217451 145



<4+— 0478 in.

|

2 Gages, 30 degrees Apart
Oriented Circumferentially

Figure171. A Strain Gage Was Also Mounted on the Fan Disk to Monitor the Mechanical

Behavior.

Strain gage strain limits are set based on Goodman diagram data for Ti-6-4 MA at 190°F. The
maximum allowable strain on each gage is summarized below in Table 25. Tables 26 — 30 describe
in detail the allowable strain levels at each gage location, for various critical vibration modes.

Table 25. Summary of Maximum Allowable Strains.

NASA/CR—2012-217451

Gage | Max Allowable
L ocation | Strain (p-p)

1 4500

2 5780

3 5000

4 6440

5 4500
Disk 1000
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Table 26. Allowable Strainsfor Modes 5 and 6, Gage L ocation #5.

Engine M ean Gage Loc 5 Allowable
Order Mode RPM Freg (hz) Stress(ks) | Gage Ratio | Sig-Alt (ks) | Strain (p-p)
4 1 3100 244 3.13 0.98 53.19 6240
3 1 5400 252 9.49 0.98 50.76 5955
2 1 8200 272 21.88 0.98 46.02 5399
1 16634 352 90.02 0.98 8.68 1018
6 2 7000 702 15.94 0.99 48.79 5723
5 2 8800 724 25.20 0.99 45.21 5304
4 2 11500 766 43.03 0.99 38.32 4495
2 16634 895 90.02 0.99 8.77 1029
Table 27. Allowable Strainsfor Modes 1 and 2, Gage L ocation #1.
Engine Mean GagelLoc 1 Allowable
Order Mode RPM |Freq (hz)|Stress(ks) Gage Ratio| Sig-Alt (ksi)| Strain (p-p)
4 1 3100 244 1.30 0.96 52.79 6193
3 1 5400 252 3.94 0.96 51.80 6077
2 1 8200 272 9.09 0.96 49.88 5851
1 16634 352 37.40 0.96 39.27 4606
6 2 7000 702 6.62 0.79 41.80 4904
5 2 8800 724 10.47 0.79 40.62 4765
4 2 11500 766 17.88 0.79 38.33 4497
2 16634 895 37.40 0.79 32.31 3791
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Table28. Allowable Strainsfor Modes 1, 2, and 3, Gage L ocation #2.

Engine Mean GagelLoc 2 Allowable
Order Mode RPM |Freq (hz)|Stress(ks) Gage Ratio| Sig-Alt (ks)| Strain (p-p)
4 1 3100 244 0.01 0.29 16.09 1888
3 1 5400 252 0.03 0.29 16.09 1888
2 1 8200 272 0.06 0.29 16.09 1887
1 16634 352 0.25 0.29 16.07 1885
6 2 7000 702 0.04 0.65 36.06 4231
5 2 8800 724 0.07 0.65 36.06 4230
4 2 11500 766 0.12 0.65 36.04 4228
3 2 17800 895 0.29 0.65 36.00 4223
10 3 7000 1167 0.04 0.89 49.38 5793
9 3 7800 1170 0.06 0.89 49.38 5792
8 3 8800 1173 0.07 0.89 49.37 5792
7 3 10100 1178 0.09 0.89 49.36 5791
6 3 11950 1195 0.13 0.89 49.35 5789
5 3 14450 1204 0.19 0.89 49.33 5787
4 3 18475 1232 0.31 0.89 49.29 5782

Table29. Allowable Strainsfor Modes 4, 5, and 6, Gage L ocation #3.

Engine Freq Mean GageLoc 3 Allowable
Order | Mode | RPM (hz) |Stress(ks) Gage Ratio Sig-Alt (ks))|Strain (p-p)
10 4 10300 1717 2.26 1.0 54.62 6407
9 4 11650 1748 2.90 1.0 54.37 6378
8 4 13300 1773 3.77 1.0 54.03 6338
7 4 15650 1826 5.23 1.0 53.46 6271
14 5 9050 2112 1.75 0.93 50.98 5981
13 5 9770 2117 2.04 0.93 50.88 5968
12 5 10600 2120 2.40 0.93 50.75 5953
11 5 11575 2122 2.86 0.93 50.58 5933
10 5 12730 2122 3.46 0.93 50.36 5908
9 5 14180 2127 4.29 0.93 50.06 5872
8 5 16000 2133 5.46 0.93 49.63 5822
14 6 10500 2450 2.35 0.81 4421 5186
13 6 11300 2448 2.72 0.81 44.09 5173
12 6 12200 2440 3.18 0.81 43.95 5156
11 6 13280 2435 3.76 0.81 43.77 5134
10 6 14575 2429 4.53 0.81 43.52 5106
9 6 16100 2415 5.53 0.81 43.21 5069
8 6 18000 2400 6.91 0.81 42.77 5017
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Table 30.

Allowable Strainsfor Modes 5 and 6, Gage L ocation #4.

Engine Mean GageLoc 4 Allowable

Order Mode RPM |Freq (hz)|Stress(ks) Gage Ratio| Sig-Alt (ksi)| Strain (p-p)
14 5 9050 2112 0.40 1.00 55.34 6492
13 5 9770 2117 0.47 1.00 55.32 6489
12 5 10600 2120 0.55 1.00 55.29 6485
11 5 11575 2122 0.66 1.00 55.24 6481
10 5 12730 2122 0.80 1.00 55.19 6474
9 5 14180 2127 0.99 1.00 55.11 6465
8 5 16000 2133 1.26 1.00 55.01 6453
14 6 10500 2450 0.54 1.00 55.29 6486
13 6 11300 2448 0.63 1.00 55.26 6482
12 6 12200 2440 0.73 1.00 55.22 6477
11 6 13280 2435 0.87 1.00 55.16 6471
10 6 14575 2429 1.04 1.00 55.09 6463
9 6 16100 2415 1.27 1.00 55.00 6452
8 6 18000 2400 1.59 1.00 54.88 6438

Il 1]
- D

2.552 in.

4.400in. 4 | S/G Loc 3

-S /G Loc 1

e All gages on the concave side with the gage center 0.100 in. from the edge.

Figure 172. The Side View of Vane Showsthe Strain Gage L ocations Relative to the

Shroud.
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Fan stator vane strain gage strain limits are set based on Goodman diagram data for S355
Stainless Steel at 75°F, as shown in Table 31.

Table31. QHSF Il Stator Strain Gage Limits.

Gage | Max Allowable
L ocation Strain (p-p)

1 3520
3 3520

6.9 Distortion Screens

A set of classical, tip radial, and complex distortion screens (described in Table 32) are
recommended distortion screens for testing on the QHSF II rig. The screen selections were made
after considering the unique design of the QHSF II and reviewing the Honeywell’s 18” rig test
data of the Baseline II distortion screens. Honeywell has tested all the recommended distortion
screens previously on the Baseline II fan rig, with the exception of the tip radial distortion
screens. Given the unique nature of the fan tip design of the QHSF II, the tip radial distortion
screens were included in this test.

Table 32. Recommended Distortion Screensfor the QHSF Il Rig Test.

Screen # MPR Description Wire | Grid | Porosity Dist.
Dia. | Size Level
1 0 Backer 0.080 | 1.016 84.8%
104 1 1E Classical 0.079 | 1.017 85.1% 4%
112 1 1E Classical 0.054 | 0.334 70.1% 12%
115 1 1E Classical 0.018 | 0.085 62.9% 15%
204 2 2E Classical 0.079 | 1.017 85.1% 4%
212 2 2E Classical 0.054 | 0.334 70.1% 12%
304 3 3E Classical 0.079 | 1.017 85.1% 4%
312 3 3E Classical 0.054 | 0.334 70.1% 12%
404 4 4E Classical 0.079 | 1.017 85.1% 4%
412 4 4E Classical 0.054 | 0.334 70.1% 12%
503 0 Tip Radial 0.062 | 0.606 80.5% 3%
506 0 Tip Radial 0.055 | 0.314 68.0% 6%
901 Complex Left Eng. 30 Kt x-wind See Figure 3
902 Complex Right Eng. 30 Kt x-wind See Figure 4

Table 32 also indicates what screen material was used to build the distortion screens and the
resulting screen porosity. Sample circumferential distortion screens are shown in Figure 173.
Figure 174 shows a tip radial distortion screen. Figure 175 and Figure 176 show the complex
crosswind distortion screens for the left and right engines, respectively. The OD and ID values
quoted in Figure 173 and Figure 174 reflect the diameter of the QHSF II rig test screen holder.
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QHSF RIG CIRCUMFERENTIAL DISTORTION SCREENS
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Figure 173. QHSF Rig Circumferential Distortion Screens.
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TIP RADIAL SCREEN
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30 Knot Left Cross-Wind
Left Engine @ Takeoff Power

350, 0 10
340 ‘ 0

310
300 / 60
/
290 70
280, ;g’ 80
270 D 2 90
!
260 \ B 100
B
250 \ 110
240 120
230
210 - 150
200 L —+ 160 .
190 180 170 Aft Looking Forward
Sguares/inch Porosity Wire Dia. (in) Notes
Region A -- 84.6 -- *Backer Screen
Region B 4.0 78.9 0.028
RegionC ~ 10.0 56.3 0.025
Region D 12.0 33.2 0.035

Figure 175. Left Engine 30-Knot Crosswind Distortion Screen.
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30 Knot Left Cross-Wind
Right Engine @ Takeoff Power
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Region D 12.0 33.2 0.035

Figure 176. Right Engine 30-Knot Crosswind Distortion Screen.
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6.10 Model Assembly

Overall assembly of the QHSF II rig is as described in Reference 1. Figures 179 — 184
depict phases of the QHSF II rig assembly and wind tunnel installation as described below.

Figure177. QHSF Il Fan Frame on the NASA 22" Dummy Drive Rig.

Figure 178. QHSF Il Fan Stator and Rotating Stator Actuation Assembly on the NASA
22" Dummy DriveRig.
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I 4%
R

Figure 179. NASA Wind Tunnel Installation of QHSF Il Stator Assembly, Shown With
Outer Fan Case.

}.":.i
Figure 180. Aft View of NASA USB Drive Rig/lQHSF Il During Wind Tunnel Installation.
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Figure 181. Configuration for Operability Testing Includes Screen Rotator Assembly and
Long“Tomato Can” Inlet.

Figure 182. QHSF Il Tunnel Installation, in Aerodynamic Perfor mance M easur ement
Configuration.
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Figure 183. QHSF |1 (a) in Far-Field Acoustic M easurement Configuration (b).

6.11 Modification of Rotating Group After Initial Assembly

NASA discovered an issue with rotor bore size and the “top hat” of the dynamic balance.
The top hat was not a feature that had been included in Honeywell’s QHSF drawings that were
used as the basis of the QHSF II design. Three parts were identified that would require
modification for a larger bore diameter to accommodate the top hat are: 1) fan disk, 2) aft
spinner, and 3) torque sleeve nut.

Mechanical design evaluation of the modified hardware was completed. Figure 184 and
Figure 185 show the drawings of the modified fan disk and new aft spinner. The modification of
the disk has no impact on the hoop strength of disk bore or the peak static stress at the fan disk
dovetail slot. Therefore, there will be no change to the previously calculated factors of safety for
the fan disk.

Stress analysis results of the new aft spinner are shown in Figure 186. Shifting the inner
segment forward (instead of radial on the original design) attenuated the radial stress through the
slot hole. The overall peak stress of the modified design (55.3 ksi) is higher than the previously
calculated value of 43 ksi. Nevertheless, the redesigned aft spinner has adequate margin of
safety. The recalculated values are shown in the table.
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Original Design

Figure 184. QHSF Il Fan Disk Modified for Larger Bore Diameter to Allow Clearance for
the Top Hat.

Modified Design

Original Design

Figure 185. QHSF Il Aft Spinner M odification Was Made to Allow Clearance for the
Dynamic Balance Top Hat.
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Figure186. QHSF Il New Aft Spinner Maximum Principal Stress -- New Design
Maintains Adequate Margin of Safety.

Factor of Safety

Met?
Fsu
Fty ult. Peak | Avg.
Yield [Ftu Ult.| Shear | Stress |Stress | FS** | FS*** FS | 1.1y | 1.5y | 3.0y
Component| Qty [Material| (ksi) (ksi) (ksi) | (ksi) [ *(ksi) | Yield | Ult. | Shear| 1.5u | 3.0u | 5.0u
Stainles
. 154 172
Aft Spinner| 1 | s Steel 55.3 12.7 2.8 9.5 Yes | Yes
174 | @75F | @75F
*Avg stress = average tangential stress
** FS Yield = (PeakStress)/(FtyYield)
** FS Ult = [Avg Stress/(0.7*FtuUlt)]
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7. NEW TECHNOLOGY

This final report has identified all nonpatentable discoveries, innovations, and computer
code improvements, and all patentable inventions that were developed or discovered during the
performance of the contract. In summary, there have been a number of innovations throughout

the design, hardware, and test phases of the QHSF II program. Such innovations include the

TURBO-AE aeroelastic tool improvement, the multi-disciplinary analytical design of
experiments approach to the QHSFII fan design, and the rotating stator capability added to the
NASA 22" rig. To date, two innovations have been identified as being patentable: the advanced
swept stator and the sloped disk attachment feature. Table 31 summarizes each innovation and
references the applicable section of this report. Possible secondary applications of the reported
new technology are also identified.

Table 33. Summary of Each Innovation and Applicable Section of This Report.

swept stator

QHSF 11 22" |Section Innovation Benefit Secondary |Patentable
Rig Project Application
Design 3.0 |Aeroelastic Tool Calibration | Improved design accuracy/higher | Future Fans no
risk design trades possible
Design 5.1 Multi-disciplinary DOE Optimized design that meets all | Future Fans no
design approach acoustic, aero, & mechanical
requirements
Design 5.6 Optimized Non-Linear Elimination of rotor-strut Future Fans yes
Stator interaction noise
Design 5.8.2 | Sloped fan disk attachment | Uniform stress balance, reduced | Future Fans yes
weight
Hardware/ 6 All aero measurements Eliminate need for 2nd rig, Future Fans no
I nstrumentation/ (including operability, inlet | reduces test time, hardware fab in NASA
Test distortion, synchronous cost, improves data quality 9X15
vibration) on NASA 22" Rig facility
Hardware 6.4 | Rotating Stator System for Variable stator position allows | Future Fans no
NASA 22" Rig investigation of fan source noise in NASA
evaluation, and investigation of 9X15
aero/acoustic optimum stator facility
positions
Test 6.8.4 | Stage exit rakes with stator | Improved measurement quality | Future fans no
TE geometry required for advanced stator with
advanced

It has been shown that the shank configuration (such as the buttress and/or the dovetail
slope) significantly affects the fan blade mode shape, which in turn is a key driver for flutter
behavior. The dovetail slope provides the means to get the desired flutter margin (by controlling
the mode shape) while meeting other constraints. This approach is very different from the prior
approaches used at Honeywell and other companies, which eliminated flutter problems by
increasing the frequency, changing the loading distribution, or clipping the geometry.

TURBO-AE would be applicable to any system that flutters, such as LPT blades and isolated
wings. This approach could also be used to reduce the vibration level in a more-typical (Campbell
Diagram type) forced response.
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8. SUMMARY AND CONCLUSIONS
8.1 Aerodastic Tool Evaluation

Results from a detailed study of flutter encountered on a forward-swept fan were
summarized and compared to experimental data. Overall, the correlation of the computational
results is in good agreement with experimental observations. The blade was correctly predicted
to be free of flutter up to the stall line at 100 percent speed. At 85 percent and 75 percent speeds,
flutter was predicted just above the operating line, and well before stall was encountered. This is
again consistent with the rig test, and the predicted and measured flutter boundaries in terms of
the fan map are in good agreement. The correct critical nodal diameter was also predicted.

Inviscid analyses were shown to provide predictions of damping in remarkably good
agreement with the viscous results. The key benefit of utilizing an inviscid assumption is that
the computations require only 2-5 percent of the computational time required for full viscous
analyses. Potential uses include identification of the critical nodal diameter, trade studies, and
sensitivity assessments. The conclusions from the results provided here are that the primary
drivers for fan flutter are dominated by shock structures and are inviscid in nature, and the
damping change along the speed line is tied principally to the change in shock position.

Several additional studies were conducted to further investigate the flutter behavior, and to
better understand sensitivities. Changes in the aerodynamic damping predictions due to
variations in blade shape due to speed changes, inlet and exit pressure profiles, tip clearance, and
mode shapes were all evaluated. Surprisingly, none of these changes had a very significant
effect on the damping prediction. The position on the fan map gave a consistently good
indication of the stability for these effects.

One shortcoming in this correlation effort is that the flutter boundary had to be extrapolated
for the viscous analyses at part-speed conditions because “numerical” stall was en-countered.
This is a limitation of the “steady” solver, i.e., not related to the blade motion, and is a common
limitation of CFD codes. Note that TURBO was able to reach the measured stall boundary at
100 percent speed, and this is very encouraging. However, the ability to reach the actual stall
line would provide much more confidence in the ability of the unsteady analysis to accurately
predict the flutter boundary.

8.2 QHSF | Data Evaluation

A study was completed to identify and explain any differences between the QHSF I 18-inch
and 22-inch measured aerodynamic and aeroelastic performance. This study concludes that the
differences in performance would be consistent if the two blade sets differed in hot shape. This
difference would have altered blade incidence, thereby explaining differences in both aeroelastic
behavior and aerodynamic performance. The possibility that the two blade sets, identical in
design except for scale, differed in cold shape was considered unlikely and not further
investigated in this study.

Acoustic data from the QHSF I 22” rig test was conducted. The primary noise reduction
was achieved by the significant reductions in both rotor-stator and rotor-strut interaction, and is
responsible for up to 6 EPNdB noise reduction at higher tip speeds. Less acoustic benefit was
achieved at lower tip speeds, and is attributable to a flow separation on the QHSF I rotor blades
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that occurred only at the lower fan speeds. Comparisons of acoustic results with CFD analyses
and LDV measurements are in good agreement, and show the reduced strength of the QHSF 1
rotor wake relative to the Baseline I. The forward swept blade increases the distance between
the rotor trailing edge and stator leading edge, which contributes to the reduction of rotor-stator
interaction noise. The rotor wake structure displays a tangential lean due to forward swept
geometry, this effect is enhanced by addition lean and sweep of the stator leading edge. Asa
result, the QHSF I rotor wake traverses the stator leading edge more slowly than the Baseline I
stator, and serves to further reduce the rotor-stator interaction tone noise.

Additional noise reduction was achieved by the virtual elimination of rotor-strut interaction
tones at some speeds. A rotor-strut interaction CFD study was conducted to assess any
differences between pressure distributions upstream of the Baseline I and QHSF I stators.
Significant differences in the stator geometry occur near the tip, and results show that the
Baseline I fan has more static pressure variation than the QHSF I, suggesting that the cause of
rotor-strut interaction tones is the rotor responding to the variation in potential pressure field of
the struts.

8.3 QHSF Il Design

The QHSF II design was developed based on the experience of the QHSF as well as other
recent Honeywell product fan design experience. The design process relied heavily upon use of
analytical Design of Experiments (DOEs) to define the optimum rotor and stator system to
achieve all acoustic, aerodynamic, aeroelastic, and mechanical performance goals. This series of
analyses included the selection of blade forward sweep, blade tangential lean, blade thickness
distribution, rotor incidence, and stator sweep and lean optimization. The DOE process allowed
the rapid assessment of these key design features relative to all of the interdisciplinary design
goals, as well as an understanding of the interaction and sensitivity of key design parameters.
Design tool inputs to the DOEs included ADPAC for aerodynamics, ANSYS for stress, V072
and SOURCES3D for acoustics, and TURBOAE for aeroelastics.

The final design selection of the QHSF II includes a forward-swept blade with reduced
sweep at the tip and additional sweep at lower spans relative to the QHSF I, and a full span stator
with an optimized, non-linear sweep and lean. These features analytically demonstrate the
simultaneous achievement of all the NASA program and internal Honeywell goals.

Subsequent to completion of the QHSF II design, a program augmentation was received to
fabricate a set of Baseline II stators. The “moderate bow” stators were modified to run
effectively behind the QHSF II rotor. The Baseline II stators are expected to have identical
aerodynamic performance (pressure ratio and efficiency) as the QHSF II design. Relative to
noise, a rotor-strut interaction study concludes that the stator shape and pitchwise alignment
relative to the struts does have an impact on the static pressure distribution upstream of the
stators, and therefore will impact the noise signature.

8.4 RigModifications

Several modifications to the existing QHSF rig were required to accommodate the QHSF 11
design. Key mechanical differences include a reduced hub/tip ratio, fan frame modifications to
accommodate additional instrumentation, and a stator actuation system that allows rotation of the
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entire stator set during rig operation. The actuation system facilitates aerodynamic stage
performance measurements, as well as the investigation of rotor-strut and rotor-stator interaction
noise mechanisms. External hardware for the actuation system can be removed, and the system
can be manually actuated, allowing the external nacelle to remain intact for far-field noise
measurements.

All aerodynamic, mechanical, and acoustic measurements on the QHSF II design will be
accomplished on the 22” rig, in the NASA-Glenn 9x15 Wind Tunnel facility, eliminating the
possibility for data discrepancies experienced between the 18 and 22” scale fans on the QHSF 1
program. In order to accomplish all aerodynamic and mechanical testing at NASA, additional
hardware was provided for test purposes that included distortion screens and a screen rotator
mechanism for additional rotor mechanical and fan operability measurements. Additional
instrumentation (relative to the QHSF I 22” fan) included stage performance rakes and CAP
probes provided by Honeywell. NASA provided a rotor exit survey probe system.
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Circumferential Placement of Plugs

18 deg

90 deg 270 deg

Forward Looking Aft

Detailed Plug Configuations

Plug 1 Instrumentation Test Config Placement Responsibility
Inlet Boundary Layer/Inlet Distortion Aero/Dist 90 deg NASA
/"t\ CAP probes (LE, Mid, TE) Aero 90 deg Honeywell
000 O(Q PS1250 Static Pressures Aero 90 deg NASA
c0000 o < Rotor Exit Survey (Wedge Probe) Aero 90 deg NASA
S : .
I Fan Rubstrip static pressure, Passage 1  Aero 90 deg Honeywell
Plug 2
/ Inlet Boundary Layer/Inlet Distortion Aero/Dist 18 deg NASA
o Rotor Exit Survey (Combo PT/TT Probe) Aero 18 deg NASA
O O(——ig PS1250 Static Pressures Aero 18 deg NASA
o &
Plug 3
/\
o<\ | Inlet Boundary Layer/Inlet Distortion Aero/Dist 270 deg NASA
O 000 <€ CAP probes (LE, Mid, TE) Aero 270 deg Honeywell
o< Optical light probes for flutter Aero 270 deg NASA
) Fan Rubstrip static pressure, Passage 2 Aero 270 deg Honeywell
Plug 4
|  — LDV Window Aero 90 deg NASA
<1
Plug 5
o o - - .
OOO o(\ Shock Position & Strut Potential kulites ~ Aero 18 deg NASA
OOO ° o (15 total, 14+ one in fan case)
©0f |
Plug 6
Blank (NASA)
Plug 7
Blank (NASA)
Plug 8
Blank (NASA)
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Fan Case Liner with Plugs

B
plug (3)
A
Instrumentation to Modify Part Config Location Comment
A CAP probes (LE, Mid, TE) Aero 0 deg, 180 deg 2 in fan case, 2 in plugs for total of 4(x3)
B Rotor Exit Survey Ps, 10 total Aero in survey plane all 10 in case when no plugs

6 in case when plugs installed,
(2 in two plugs for a total of 4): 10 total
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18 deg : $ ; '
window T : i £ i Rub strip Kulite (#11)
I}‘. '}
0 deg cap probes
(LE, MC,TE)

f

|

PS1250(10)

1Ps1250(1)

Boundary layer rake " ‘ \
(or distortion rake) . .

90 deg
window

? /
/

90 deg cap probes
(LE, MC,TE)

| ]

IPS1250(3)
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