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Abstract 

Alternate aviation fuels for military or commercial use are required to satisfy MIL-DTL-
83133F(2008) or ASTM D 7566 (2010) standards, respectively, and are classified as “drop-in” fuel 
replacements. To satisfy legacy issues, blends to 50% alternate fuel with petroleum fuels are certified 
individually on the basis of processing and assumed to be feedstock agnostic. Adherence to alternate fuels 
and fuel blends requires “smart fueling systems” or advanced fuel-flexible systems, including combustors 
and engines, without significant sacrifice in performance or emissions requirements. This paper provides 
preliminary performance (Part A) and emissions and particulates (Part B) combustor sector data. The data 
are for  nominal inlet conditions at 225 psia and 800 F (1.551 MPa and 700 K), for synthetic-paraffinic-
kerosene- (SPK-) type (Fisher-Tropsch (FT)) fuel and blends with JP-8+100 relative to JP-8+100 as 
baseline fueling. Assessments are made of the change in combustor efficiency, wall temperatures, 
emissions, and luminosity with SPK of 0%, 50%, and 100% fueling composition at 3% combustor 
pressure drop. The performance results (Part A)  indicate no quantifiable differences in combustor 
efficiency,  a general trend to lower liner and higher core flow temperatures with increased FT fuel 
blends.  In general, emissions data (Part B) show little differences, but with percent increase in FT-SPK-
type fueling, particulate emissions and wall temperatures are less than with baseline JP-8.  High-speed 
photography illustrates both luminosity and combustor dynamic flame characteristics. 

Introduction  

Synthetic and biomass fueling are now considered as near-term aviation alternate fueling. The major 
impediment is a secure sustainable supply of these fuels at reasonable cost. Alternate aviation fuels are 
currently required to satisfy MIL-DTL-83133F (2008) for Fisher-Tropsch- (FT-) equivalent processed 
ASTM D 7566 (2010) and known as “drop-in” fuel replacements (military and civil, respectively). As in 
aviation, many land-based and marine power generation systems are elderly, known as the legacy issue. 
Fueling these systems requires careful compliance to the fuel handling and engine systems for which they 
were (are) designed. To satisfy a sustainable fuel supply, it will be necessary to accept fuels derived from 
a variety of feedstocks. Consequently, adherence to alternate fuels and fuel blends requires “smart fueling 
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systems” or advanced fuel-flexible systems, including combustors and engines, without significant 
sacrifice in performance or emissions requirements.  

The common military services fueling concept is that JP-8+100 or alternate FT-type fuels that can 
fuel gas turbines as well as many diesel systems. Diesel biomass-derived oils are often unsuitable because 
sufficient aromatics and sulfur are lacking, which provide lubricity, thus reducing design component life. 
To counter these issues, additives are promoted.   

This paper provides preliminary performance, luminosity, emissions, and particulates combustor 
sector data relative to JP-8+100 as baseline fueling, for synthetic-parafinic-kerosene- (SPK-) type fuel 
blends (herein FT-type fuel) and projections for testing of biofuel fuel blends leading to preliminary 
development of smart fueling (fuel flexible) and combustor systems for the next generation aeronautic 
and aeronautic-derivative gas turbine engines. Fuel flexibility is an engine operations goal to enable 
various designer fuels operations with minor alterations in controller function or geometry. 

Truly performance and emissions are coupled issues; however, combustor performance will be 
presented in Part A and combustor emissions as Part B for understanding both in sufficient detail. 
Herein, fueling acronyms are synthetic paraffinic kerosene (SPK), and hydro-treated renewable jet (HRJ) 
also known as bio-SPK or SPK-HEFA (SPK from hydroprocessed esters and fatty acids) and proposed as 
ASTM D7566-Annex-1. 

Part A: Combustor Performance 

Part A presents fueling characteristics, facility development, and operation followed by thermal 
performance of the combustor and combustor visualization. The results are for one of several 
combustors—herein denoted as combustor A—to be evaluated in development of fuel-flexible engine 
combustors.  

Most data herein are testing at nominal inlet conditions of 225 psia and 800 F (1.55 MPa, 700 K) at 
3% combustor pressure drop, where JP-8+100 (JP-8) is taken as baseline. Selected emissions data are 
provided at and below 225 psia (1.55 MPa). 

Fuel Characteristics 

In general all alternate fueling is required to meet or exceed MIL-DTL-83133F or ASTM D7566 and 
Annex 1 requirements. The carbon-distribution for each fuel used and primary characteristics differ 
depending on feedstock source and distilling practices, yet all fall within specification. Typical C-
distributions for JP-8 and an (SPK) FT-derived fuel are shown in Figure 1(a) with vendor variations in 
fuels illustrated in Figure 1(b). Secondary refining of petroleum-based kerosene fuels can also satisfy 
specifications.  

The specifications for one of the fuels, AFRL No. 5172 Shell GTL-SPK (FT), are presented in 
Appendix A. 

While fuels purchased by Defense Energy Support Center (DESC) are within specification, 
independent of whether petroleum- or alternate-based fuels, batch-to-batch variations do occur depending 
on processors, feedstock, ;production date and location of fuel production: a world-wide fuels sourcing 
problem.  
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Facility Development 

Before validation data could be taken, it was necessary to learn what it takes to conduct high-pressure 
combustor testing of alternate fuels such as FT and biomass feedstock fuels. It is first necessary to 
establish the combustion parameters required by the study such as operability, performance, durability 
time-dependent measurements such as flame studies, and others. Next, an assessment of the effects of 
pressure ratios and inlet temperatures on both the combustor sector model and desired data was 
undertaken as well as most importantly, how to safely blend the fuels. The blending system, while 
complex, enables operations to establish and stabilize combustor inlet pressures and temperatures of 
preheated air at the required test condition without the additional complication of simultaneously 
establishing fuel blend.   

To establish the fuel delivery system, questions such as how much fuel and time are required to fully 
evaluate a typical fuel candidate must be resolved. A 500-gal trailer-mounted fuel tank was chosen for 
porting alternative fuels with the added feature of coupling to the facility fueling system. The facility has 
two duplicate fuel systems that provided a means of handling JP-8 fuel with one system to pump, meter, 
and control the JP-8 fuel; this system is referred to as the main fuel delivery system. The identical system 
was fed the alternative fuel supply, which is pumped from the trailer into the facility primary fuel system 
and ultimately blended online with the main fuel system to provide the desired fuel blend from 0% to 
100% trailer fuel. An analysis of fuel blending errors is provided in Appendix C. To verify the 50/50 
blend, samples were collected just upstream of the fuel injectors and analyzed using liquid 
chromatography; blending is within ±4%. 

Test Parameters and Data Collection 

For this series of testing, the nominal test conditions for pressures and temperatures of blends and the 
extensive data collection systems have been established. The parameters were chosen to be most 
representative of engine operations envelope from idle to altitude cruise; however, TO (take-off) pressures 
are currently beyond the range of this facility.  
 
Combustor parameters 
Inlet pressures (P): 75, 125, 175, and 225 psia (0.517, 0.862, 1.207, and 1.551 MPa) 
Inlet temperature (T): 500, 625, 725, and 790 F  (533, 603, 658, and 694 K)  
Combustor pressure drops (ΔP): 3%, 4%, and 5%  
Fuel blends: 100% JP-8, 50:50 JP-8:FT, and 100% FT 
 
Data collection  
Gaseous emissions 
Exit temperature rake type B thermocouples, (also for metal and sidewall temperatures) 
Photo diode output (voltage) 
Still and high-speed photography 
Smoke and particulate emissions  
 

Combustor outer and inner liner temperature data are given in Appendix D, and estimates of errors in 
performance, flame temperature, emissions data, and geometric coordinates are given in Appendix C. 

Combustor Thermal Performance 

The combustion efficiencies for combinations of fuel:air ratio F/A and fuel compositions were of the 
order of 99.9% (Table 1), and one is unable to distinguish combustor changes from this single parameter; 
thus, other parameters will be investigated. For example, the emissions-based calculated flame  
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3. Sidewall temperature TSWFD ranges are 5.6% , 2.1%, and 1.4% higher for FT fueling for  
F/A = 0.01, 0.015, and 0.02, respectively. This may relate to the flame front moving away from 
the fuel injection interface. 

4. Rake temperatures show core flow generally higher with FT than with JP-8, but one rake 
thermocouple (TC) was lost during testing, which inhibits conclusiveness.  

5. All temperatures increase with F/A. 
6. The 50:50 blend test results generally are between JP-8 and FT and somewhat closer to FT.  
7. Lean blow out (LBO) and ignition (IGN) tests were not part of the planned test program, yet 

observations made during startup and shutdown procedures were consistent with previous 
JP-8+100 testing.  For a limited data set at a nominal 5% combustor pressure drop, the F/A  
for LBO is nearly 40% of the IGN F/A for both 100% FT and JP-8+100.  On the average,  
(F/A) LBO 100% FT /(F/A) LBO JP-8+100  < 1, with some sensitivity to percent combustor pressure 
drop, and (F/A) IGN 100% FT /(F/A) IGN JP-8+100  < 1. Definitive values at lower percent combustor 
pressure drops are insufficient for conclusions.   

8. Altitude relight, ignition and LBO testing programs remain to be carried out. 
9. High-speed photographs of the combustion process provide some insights for CFD analysts as 

well as heuristic information for combustor designers. For example, there was decreased 
luminosity with FT versus JP-8, and clips show enhanced vorticity for the conditions cited in 
Table 1. 

Part B: Combustor Emissions 

Part B presents gaseous emissions as CO2, CO, and NOx (which also includes smoke and luminosity 
data); particulate emissions including distribution; and a brief comparison to small and large engine 
testing results from other programs. The emissions data are taken for the same tests and test conditions 
cited in Part A, nominally 225 psia at 800 F (1.551 MPa at 700 K) with the  sampling probe located at 
the nozzle exit plane. Emissions have a direct impact on aviation climatic constraints based on life cycle 
analysis (LCA) of fueling feedstocks, which includes fueling development and engine emissions. Herein 
the testing is directed toward fuel flex engine combustors, providing basic data for LCA fueling 
evaluations, where combustor A is one of several to be evaluated in development of fuel-flexible engine 
combustors. 

Gaseous Emissions 

Measurements for NOx were determined from combining NO and NO2 measurements (Figs. 11(a) 
and (b). Nitric oxide (NO) with molecular atomic dimension (0.115 nm) (NO), while less than JP-8 at  
F/A = 0.010, steadily increases to become marginally higher than JP-8 at F/A = 0.020 (extrapolated) 
(Fig. 11(a)). Nitrogen dioxide (NO2) (0.221 nm) (ppm) for FT or 50:50 blended fueling is considerably 
higher than for JP-8 and generally increases with F/A. Combining nitrogen dioxide (ppm) and nitric oxide 
(ppm), the trend with F/A and fuel composition is similar to that seen for NO; a slight decrease in NO2: 
less than JP-8 at F/A = 0.010 and marginally higher than JP-8 at F/A = 0.020 (Fig. 11(c)). 

Regarding the variation of %CO2 (0.0116 nm), ppm CO, and %O2, (Figs.12, 13, and 14, respectively), 
whereas each is strongly dependent with increasing F/A, the increase in %CO2 and ppm CO and the 
decrease in %O2 are marginally consistent with varied dependencies on fuel composition. The %CO2 
appears somewhat consistent with decreased %CO and O2 with fueling changes from JP-8 to FT, in 
agreement with flame temperature (Fig. 2).  
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Measurement precision is much better than potential errors in measurements.  For example, if most of 
the particles are >10 nm in size,  determination of EI values in the range of  (1 to 100)1014/kg fuel 
burned is to about 10% precision. Similarly, the “apparent” black carbon (BC) EI of between 10 and 
1000 mg/(kg fuel burned) is also to about 10% precision. However, estimate of errors can be an order of 
magnitude greater arising from the several factors such as (Ref. 8) 

 
1. Lack of instrument measurement specificity for black carbon(BC) 
2. Lack of direct measurement approaches for BC mass 
3. Lack of standards:  BC characteristics vary widely between and within combustion sources 
4. Severe particulate losses within sampling lines (e.g., 50% to 70% in a 25-m line prior to the 

diagnostic instruments) 
5. Interference from background particulates, which often comprise dust and other refractory 

particles that do not evaporate in the combustor.    
 
Comparisons of engine on-wing missions data (Ref. 8)  and combustor-sector test data herein imply 

(but not conclude at this time) that sector test data replicate, at least qualitatively, on-wing test data, 
providing both detail and insights not gained from on-wing testing, including particulate data.  Post 
AAFEX 2010 Workshop data (Ref. 9) also show similar qualitative emissions trends for both gaseous and 
particulate emissions with emissions results herein, yet elude quantitative comparisons for lack of 
measurement scales on many of the AAFEX reported emissions data plots. 

There are qualitative differences in the emissions depending on SPK alternate fueling relative to both 
SPK and JP-8 fueling; however, quantitative values are not given and while these differences appear to be 
minor, but not insignificant, the actual values remain to be demonstrated. While this feedstock 
dependency of the fueling may not be large, it remains to be evaluated, which in turn affects the ASTM 
specifications and the presumption of being feedstock agnostic.  

The EPA (Ref. 10) provided logarithmically-transformed emissions index composites data sets for 
three turbofan engines with selected fueling types similar to those used for AAFEX. These data show 
significant changes with engine and fuel type. Sixty-four semivolatile organic compounds (n-alkanes and 
polycyclic aromatic hydrocarbons (PAH) were measured (Ref. 10).  The coupled concerns over engine 
and fuel type may delay FT fueling certification or prompt regulation. 

It should also be noted that current aircraft auxiliary power units (APUs) (2011) have significantly 
higher black carbon emissions than on-wing engines (Ref. 8).   

Conclusions: Part B 

Alternate fueling testing is being carried out to determine preliminary performance, emissions, and 
particulates combustor sector data relative to JP-8+100 as baseline fueling, for SPK-type (e.g., Fischer-
Tropsch, FT) fuels blends and projections for testing of biofuel fuel blends leading to preliminary 
development of smart fueling (fuel flexible) and combustor systems for the next generation aeronautic 
and aeronautic-derivative gas turbine engines. Herein alternate fueling test results for a well characterized 
but proprietary combustor are provided for JP-8+100, a FT-derived fuel, and a blend of 50% each by 
volume. 

The test data presented are part of a more extensive data set where combustion parameters were 
varied over a range of values. The data herein are for the case of nominal inlet conditions at 75 psia 
(0.517 MPa) to 225 psia (1.551 MPa) and 800 F (700 K), and JP-8+100 is taken as the baseline. 

The 50:50 blend test performance and emissions results generally are between JP and FT and 
somewhat closer to FT 
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Emissions: CO is lower with FT; CO2 is about the same; NO is lower with FT; NO2 is higher with FT 
fueling F/A; NOx is lower to higher with FT with F/A; O2 decreases with F/A (consistent with 
temperature increase), is lower with FT with increased spread from JP-8 with F/A, again consistent with 
rake temperature; HC generally decreases with F/A, yet FT humps at 0.015. No explanation is provided.  

Basic emissions show more change with F/A than with  JP-8 or FT; the latter being the more 
significant. These results appear to agree qualitatively to on-wing engine testing. Quantitative agreement 
requires resolution pending data release. The other aspect is to look at how emissions change with 
pressure and EXTRAPOLATE those results to core pressure on the ground, that is, at much higher 
pressures.  

These comparisons and test data presented herein imply—yet at this time cannot conclude—that 
sector test data replicate, at least qualitatively, on-wing test data, providing both detail and insights not 
gained from on-wing tests. Post AAFEX 2010 Workshop analysis of released data and data herein is 
warranted. 

Comparisons of engine on-wing test data (Ref. 8) and combustor-sector test data herein imply (but 
not conclude at this time) replicate, at least qualitatively, on-wing test data, for both gaseous emissions 
and particulate results, providing both detail and insights not gained from on-wing tests. Post AAFEX 
2010 Workshop data (Ref. 9) also show similar qualitative emissions trends with results herein, yet elude 
quantitative comparisons for lack of scales on many of the AAFEX reported data. 

SPK and JP-8 emissions profiles are qualitatively similar, yet there are observable differences in the 
emissions depending on alternate fueling feedstock and engine type, however quantitative AAFEX values 
are not provided and remain to be demonstrated. This feedstock dependency makes it more difficult for 
ASTM to certify as fuel feedstock agnostic and may require conformity to more strict ASTM fuel 
requirements?   

It should also be noted that current aircraft APU’s (2011) have significantly higher black carbon 
emissions than on-wing engines (Ref. 8).   
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Appendix A.—Fuel Specifications 

 
 

TABLE A–1.—FUEL SPECIFICATIONS FOR FT FUEL,   
AFRL NO. 5172-6: LAB REPORT 2007LA06946001 

Method Test Result 
 ASTM D 3242–05 Total acid number (mg KOH/g) 0.002 
 ASTM D 1319–05 Aromatics (% vol) 0.0 
ASTM D 3227–04a Mercaptan sulfur (% mass) 0.000 
ASTM D 4294–03 Total sulfur (% mass) 0.00 
ASTM D 86–07a Distillation  
 Initial boiling point (C) 148 
 10% recovered (C) 162 
 20% recovered (C) 163 
 50% recovered (C) 169 
 90% recovered (C) 185 
 End point (C) 198 
 Residue (% vol) 0.9 
 Loss (% vol) 1.1 
ASTM D 93–07 Flash point (C) 44 
ASTM D 4052–96 API gravity @ 60 F 60.5 
ASTM D 5972–05 Freezing point (C) –54 
ASTM D 445–06 Viscosity @ –20 C (mm2/s) 2.6 
ASTM D 3338–05 Net heat of combustion (MJ/kg) 44.2 
ASTM D 3343–05 Hydrogen content (% mass) 15.6 
ASTM D 1322–97 Smoke point (mm) 40.0 
ASTM D 130–04 Copper strip corrosion (2h @ 100 C) 1a 
ASTM D 3241–06 Thermal stability @ 260 C  
 Change in pressure (mmHg) 0 
  Tube deposit rating, visual 1 
ASTM D 381–04 Existent gum (mg/100 mL) <1 
ASTM D 5452–06 Particulate matter (mg/L) 0.5 
MIL–DTL–83133E Filtration time (min) 3 
ASTM D 1094–00 Water reaction interface rating 1 
ASTM D 5006–03 FSII (% vol) 0.00 
ASTM D 2624–07 Conductivity (pS/m) 233 
ASTM D 5001–06 Lubricity test (BOCLE) wear scar (mm) 0.77 
ASTM D 4809–06 Net heat of combustion  (MJ/kg) 44.2 
MIL–DTL–83133E Workmanship Pass 
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TABLE A–2.—FUEL SPECIFICATIONS FOR  
AFRL  NO. B18-JP8+100: LAB REPORT 2009LA16176001 

[ASTM-D1332 smoke point was greater than 40.00 mm.] 
Method Test Result 

 ASTM D 3242–08 Total acid number (mg KOH/g) 0.003 
 ASTM D 1319–08 Aromatics (% vol) 18.5 
ASTM D 3227–04a Mercaptan sulfur (% mass) 0.000 
ASTM D 4294–08a Total sulfur (% mass) 0.05 
ASTM D 86–08 Distillation  
 Initial boiling point (C) 160 
 10% recovered (C) 178 
 20% recovered (C) 163 
 50% recovered (C) 203 
 90% recovered (C) 240 
 End point (C) 261 
 Residue (% vol) 1.3 
 Loss (% vol) 0.8 
ASTM D 93–08 Flash point (C) 46 
ASTM D 4052–96 API gravity @ 60 F 46.0 
ASTM D 5972–05e1 Freezing point (C) –50 
ASTM D 445–06 Viscosity @ –20 C (mm2/s) 4.2 
ASTM D 3338–08 Net heat of combustion (MJ/kg) 43.3 
ASTM D 3343–05 Hydrogen content (% mass) 13.8 
ASTM D 1322–08 Smoke point (mm) 26.0 
ASTM D 130–04 Copper strip corrosion (2h @ 100 C) 1a 
ASTM D 3241–08a Thermal stability @ 260 C  
 Change in pressure (mmHg) 0 
  Tube deposit rating, visual 1 
ASTM D 381–04 Existent gum (mg/100 mL) 4.4 
ASTM D 5452–08 Particulate matter (mg/L) 0.3 
MIL–DTL–83133F Filtration time (min) 6 
ASTM D 1094–00 Water reaction interface rating ----- 
ASTM D 5006–03 FSII (% vol) 0.10 
ASTM D 2624–07 Conductivity (pS/m) 498 
ASTM D 5001–06 Lubricity test (BOCLE) wear scar (mm) ----- 
ASTM D 4809–06 Net heat of combustion  (MJ/kg) ----- 
MIL–DTL–83133F Workmanship Pass 
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Appendix C.—Estimates of Measurement Errors 

In this appendix we provide estimates of errors in the data measurements repeatability for the 
combustor, on-wing, and fuel blend ratios and some additional explanations for arriving at those 
estimates.  
 
Combustor sector experiments 
Thermal measurements:   ±0.5% full scale  
Flow measurements:  ±1% 
Fuel flow measurements (turbine flow meters ±0.25%) 
Fuel blend ratio less than ±4% 
Static pressure:   ±0.1%  
Thermal rake:   ±0.5% to 3% 
Emissions rake:   ±1% 
Relative carbon balance:  ±3% 
Calculated flame temperature: ±3% 
Particulates:  ±5% to 10% 
 
Smoke number:  ±3 SN, where SN = [(mg-C)/s ] / [(kg-combustor gas)/s] 
 
Note 1: Thermocouple geometric placement:  ±1.5%. 
Note  2: The relative carbon balance error involves comparison of metered experimental to calculated fuel/air 
ratio (F/A = FAR), determined from the emissions data [CO, CO2, HC and NOx], per SAE Aerospace 
Recommended Practice (ARP) 1533 guidance (Ref. 11). The emissions analyzers are calibrated prior to every 
day-to-day test using certified (2%) gas concentrations.  The relative error is considered representative data 
(across industry), when it is between 10% and 15% (10% for engines above idle and 15% at idle). Herein the 
uncertainty in the measured raw emissions data is considered 3%, accurate to the 2% certified gas calibrations 
and accounting for the combined propagated error for the analyzer specifications: 1% full-scale reading. With 
multiple calibration gases the analyzers are accurate with the standard gas, repeatable (precise), such that  the 
relative error in the carbon balance is considered accurate to 3%.  
Note 3:  The calculated flame temperature is a thermodynamic energy balance between reactants and products, 
utilizing emissions data (efficiency) and experimental operating conditions; it is consistent with temperatures 
determined from thermocouple rakes (based on multiple experiments, to within ±10 °F  (±5.6 °C)), which 
reinforces the cited 0.5% error full scale. However, the calculated flame temperature can be no better than 3% 
because it is based on efficiency, as calculated from SAE ARP 1533 [11].   
 
Estimates of error for on-wing data 
gaseous emissions  ±5 % or better  
Black Carbon (BC)  number or mass ±6 % or better 
Particulates  measurement variations [not repeatability ( precision) error bands] can be large as there are 
no convenient methods for calibrating instruments. Nanoparticulates are lost on rake placement, probe 
inlets, transport tubing walls and vary by species (Ref. 8), with estimate of error: 
EI Number [200% (dirty engine (APU) and 100% (clean engine)] 
EI mass 50% to 100%   
 
Error of estimate for fuel blend 

In an analysis to verify fuel blending,  samples of the 50/50 blended fuel were collected just upstream 
of the fuel injectors. The FT fuel used to make the JP-8+100/FT blend contained no aromatics (<0.2 
volume %), so analysis of aromatic hydrocarbon content  was used to determine the ratio of JP-8+100 in 
the JP-8+100/FT blend. The analysis was performed using ASTM D6379. In this method, normal-phase 
high performance liquid chromatography (HPLC) with refractive index detection was used. The aromatics 
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were eluted from a cyano column (4.6  150 cm) with hexanes as the mobile phase. Standards containing 
mono-aromatics and di-aromatics were used to calibrate the HPLC (Agilent Model 1100). Both standards 
and samples were diluted to the same level (1:50) in hexanes before injection into the HPLC. The 
refractive index peak areas were used to quantify the mono-aromatics and di-aromatics concentrations. 
These were summed to yield the total aromatics content in the fuels in volume percent. The JP-8+100 fuel 
sample contained 17.3 volume % aromatics and the JP-8+100/FT blend sample contained 8.3 volume % 
aromatics. Thus, the ratio of JP-8+100 in the blend was 8.3/17.3 or 0.48, or 48% JP-8+100 and 52% FT to 
within 4%.  
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Appendix D.—Combustor Thermal Data and Post Processing Parameters 
TABLE D–1.—COMBUSTOR OUTER AND INNER LINER TEMPERATURE, THERMAL DIFFERENCE DATA,  

AND NUMBER AND NAME OF THERMOCOUPLES (TCS) USED TO PLOT THERMAL PROFILES.a,b,c 
 

    F/A = 0.010 F/A = 0.015 F/A = 0.020 
TC Unwrappedd JP-8 FT 50:50 JP-8 FT 50:50 JP-8 FT 50:50 

TC No. X  Col C Col G Col F Col O Col K Col M Col Q Col V Col T 
Outer liner 

   0.00          
TOLAL 22 0.94 0.20 817 825 825 852 850 846 882 873 881 
TOLFL 20 0.00 0.22 900 904 907 968 935 946 1030 971 1002 
TOLML 21 0.67 0.26 861 870 869 927 924 925 987 957 985 
TOLMWA 24 0.19 0.32 870 875 878 962 917 944 1027 960 1002 
TOLFM 27 0.00 0.34 899 902 908 983 944 956 1060 985 1024 
TOLCA 25 1.00 0.52 862 872 872 920 910 912 986 952 974 
TOLAM 28 0.94 0.58 814 825 825 852 851 850 888 874 886 
TOLMR 36 0.67 0.62 873 887 884 953 918 941 1013 955 996 
TOLFR 34 0.00 0.74 887 888 891 965 924 944 1016 956 1001 
TOLMWI 23 0.33 0.79 879 879 884 933 905 914 992 937 969 
TOLAR 37 0.84 0.86 831 843 843 877 872 874 917 906 922 
TSWFD 41 0.22 0.97 1218 1288 1280 1438 1469 1444 1544 1565 1581 
TSWFT 30 0.78 1.00 814 820 820 847 836 841 854 842 850 

Inner liner 
TILMWI 38 0.50 1.20 897 908 906 994 969 976 1091 1023 1066 
TILFR 35 0.00 1.23 890 917 919 995 959 967 1075 1006 1050 
TILMWO 26 0.50 1.33 902 908 909 988 962 968 1096 1025 1071 
TILCA 29 1.00 1.50 1056 1065 1058 1229 1217 1219 1411 1326 1348 
TILFL 39 0.00 1.54 913 917 916 1002 970 981 1098 1030 1069 
   2.00          

aGeometric position accuracy of thermocouple position coordinates is estimated at ±1.5%. 
bFor nominal inlet pressure 225 psia (1.55 MPa), 800 F (700 K), and 3% combustor pressure drop. 
cNote: Col C, G, F, K, M, Q, V, and T are data set tracking identifiers. 
dX = x/L (which varies from 0 to 1), where x is the TC position measured from the liner inlet and L is the overall liner length.  

  = circumferential TC position measured over the liner outside y/Lθ (0 to 1) and continuing back along the inside liner (1 to 
2), where Lθ is half the unwrapped liner “width.” The normalized unwrapped coordinate ( X,  ) is the TC location (x, y)  
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TABLE D–2.—COMBUSTOR OUTER AND INNER LINER TEMPERATURE  
DIFFERENCE WITH RESPECT TO JP-8+100a (TFUEL BLEND  – TJP-8) (F) 

[For nominal inlet pressure 225 psia (1.55 MPa), 800 F (700 K), and 3% combustor pressure drop.] 
    F/A = 0.010 F/A = 0.015 F/A = 0.020 

TC Unwrappedc JP-8 FT 50:50 JP-8 FT 50:50 JP-8 FT 50:50 
TC No. X  Col C Col G Col F Col O Col K Col M Col Q Col V Col T 

Outer liner 
Circumferential start point 0.00          
TOLAL 22 0.94 0.20 0 8 8 0 –2 –6 0 –9 ––– 
TOLFL 20 0.00 0.22 0 4 7 0 –33 –22 0 –1 –28 
TOLML 21 0.67 0.26 0 9 8 0 –3 –2 0 –30 –2 
TOLMWA 24 0.19 0.32 0 5 8 0 –45 –18 0 –67 –25 
TOLFM 27 0.00 0.34 0 3 9 0 –39 –2 0 –75 –36 
TOLCA 25 1.00 0.52 0 10 10 0 –10 –8 0 –34 –12 
TOLAM 28 0.94 0.58 0 11 11 0 –1 –2 0 –14 –2 
TOLMR 36 0.67 0.62 0 14 11 0 –35 –12 0 –58 –17 
TOLFR 34 0.00 0.74 0 1 4 0 –41 –21 0 –60 –15 
TOLMWI 23 0.33 0.79 0 0 5 0 –28 –19 0 –55 –23 
TOLAR 37 0.84 0.86 0 12 12 0 –5 –3 0 –11 5 
TSWFD 41 0.22 0.97 0 70 62 0 31 6 0 21 37 
TSWFT 30 0.78 1.00 0 6 6 0 –11 –6 0 –12 –4 

Inner liner 
TILMWI 38 0.50 1.20 0 11 9 0 –25 –18 0 –68 –25 
TILFR 35 0.00 1.23 0 27 29 0 –36 –28 0 –69 –25 
TILMWO 26 0.50 1.33 0 6 7 0 –26 –20 0 –71 –25 
TILCA 29 1.00 1.50 0 9 2 0 –12 –10 0 –85 –63 
TILFL 39 0.00 1.54 0 4 3 0 –32 –21 0 –68 –29 
Circumferential end point 2.00          
Average without TSWFD  8 9  –23 –14  –50 –19 

 
Average with TSWFD  12 12  –20 –13  –46 –16 

 

Average 





 

2

withwithout
 

 10 10  –21 –14  –48 –18 
aGeometric position accuracy of thermocouple position coordinates is estimated at ±1.5%. 
bNote  Δ°C = ΔK = Δ°F/1.8.     
cX = x/L where x is the TC position measured from the liner inlet and Lx is the overall liner length.  
 = circumferential TC position measured over the liner outside/Lθ (0 to 1) and continuing back along inside liner (1 to 2) where Lθ is 
half the unwrapped liner “width.” 
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Thermocouple number and name used in plotting thermal and thermal difference profiles.  These 
selected TCs provide for nominal axial and circumferential thermal and differential thermal profiles. The 
profiles are not aligned with mutually perpendicular coordinate locations. 

 
 

TABLE D–3.—THERMOCOUPLE (TC) NUMBER AND NAME USED IN PLOTTING  
THERMAL AND THERMAL DIFFERENCE PROFILESa 

Liner outer wall 
Axial Circumferential 

Forward (FWD) Midplane (MID) Aft (AFT) 
TC No. TC name TC No. TC name TC No. TC name TC No. TC name 

20 TOLFL 20 TOLFL 21 TOLML 22 TOTAL 
27 TOLFM 27 TOLFM 24 TOLMWA 25 TOLCA 
24 TOLMWA 34 TOLFR 36 TOLMR 28 TOLAM 
21 TOLML   23 TOLMWI 37 TOLAR 
22 TOLAL       

Liner inner wall 
Axial Circumferential 

Forward (FWD) Midplane (MID) Aft (AFT) 
TC No. TC name TC No. TC name TC No. TC name TC No. TC name 

35  TILFR  35  TILFR  38  TILMLWI  29  TILCA  
26  TILMWD  39  TILFL  36  TILMWD    
29  TILCA        

aThese selected TCs provide for nominal axial and circumferential thermal and differential thermal profiles. The profiles are not 
aligned with mutually perpendicular coordinate locations. 
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